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Abstract—To improve software quality, rule checkers statically
check if a software contains violations of good programming
practices. On a real sized system, the alerts (rule violations
detected by the tool) may be numbered by the thousands. Unfor-
tunately, these tools generate a high proportion of ‘“false alerts”,
which in the context of a specific software, should not be fixed.
Huge numbers of false alerts may render impossible the finding
and correction of “true alerts” and dissuade developers from
using these tools. In order to overcome this problem, the literature
provides different ranking methods that aim at computing the
probability of an alert being a “true one”. In this paper, we
propose a framework for comparing these ranking algorithms
and identify the best approach to rank alerts. We have selected
six algorithms described in literature. For comparison, we use
a benchmark covering two programming languages (Java and
Smalltalk) and three rule checkers (FindBug, PMD, SmallLint).
Results show that the best ranking methods are based on the
history of past alerts and their location. We could not identify
any significant advantage in using statistical tools such as linear
regression or Bayesian networks or ad-hoc methods.

I. INTRODUCTION

Rule checkers [2], [8], [9], [13]-[15], [19], [28], [30], [32]
are tools that check whether some source code violates some
good programming rules. For example, rules can specify an
upper bound for method size [32], perform flow analysis
to verify that a stream is properly closed [19], or check
the correct use of an array to avoid out of bound accesses.
These rules model good programming standards or frequent
programming mistakes. Rule checkers thus raise alerts (or
warnings) each time one of their rules is violated. These
alerts must then be manually inspected by developers, to be
eventually fixed. Correcting alerts improves the quality of the
target system [31] and may prevent future bugs [18]. The
systematic use of these tools facilitate and improves software
maintenance [38].

However, not all alerts are corrected by the developers.
Some may be ignored because it would be too difficult to
fix them or because the developers do not agree that they
represent an instance of bad code. Following Heckman et al.
[17] terminology, when an alert is actually fixed by developers,
we say it is an actionable (“true”) alert, conversely, an un-
actionable (“false”) alert is one that does not require to be
fixed, whatever the reason. On real systems, a rule checker
may commonly raises thousands of alerts, many of which un-
actionable. In fact, between 35% to 91% [5], [16], [21], [22],
[24], [25] of reported alerts are un-actionable. In this case,

the high rate of un-actionable alerts adversely impacts the
review of the alerts and the identification of the actionable
ones. Additionally, this suggests that the rules are wrong or
do not make sense and may discourage developers to use these
tools.

To overcome this problem, one solution is to use more
complex rules and tools to increase the precision of the rule
checkers [18], [31]. But even with more sophisticated analyses,
the rate of un-actionable alerts can still be high [33]. Another
solution is to add a filtering step by computing the probability
of an alert being actionable in a given context. The filtering
may also be performed on individual alerts or on rules, to
identify the ones that, in the given context, are more likely to
produce actionable alerts. Thus, by selecting the alerts or rules
with the higher probability, the rate of un-actionable alerts can
be reduced.

Despite a review of approaches for ranking alerts done by
Heckman etr al. [17], to our knowledge, these approaches
were never compared with each other to understand the
strengths and limits of each one. In this paper, we propose a
framework for comparing different alert ranking approaches. It
uses a benchmark covering two programming languages (Java
and Smalltalk) and three rules checker (FindBug, PMD, and
SmallLint). Six algorithms for the ranking of alerts are selected
and compared using this framework, three ranking individual
alerts and three ranking rules.

This paper is structured as follow. Section II discusses
related work. Section III introduces the study design, detailing
the research questions, the approach used to answer such
questions and finally the threats to the validity of the experi-
ments. In Section IV we analyze the results of the experiments
according to the research questions. Finally, we conclude the
paper in Section V.

II. RELATED WORKS

Different aspects of rules checker tools have already been
studied.

The study closest to our work, by Heckman et al. [17],
synthesizes available research results on ranking algorithms.
Eighteen algorithms are detailed and described according to
different criteria like information used, or algorithm used. One
can see the study presented here as an extension of the one of
Heckman er al. Indeed, in this paper we propose a framework
for comparing the alerts ranking synthesis.



To compare the fault detection algorithms, various bench-
marks have been proposed in the literature. BUGBENCH [26]
is a benchmark containing seventeen buggy, open-source,
C/C++ applications ranging from seven thousand lines of code
(KLOC) to 1 MLOC in various domains. This benchmarck
includes defects like buffer overflows, uninitialized reads,
memory or semantic bugs but does not provide data on the
alert from rule checkers. PROMISE [4] is a repository for
data sets from empirical research in predictive modeling, and
half of the 60 data sets are for anomaly prediction. However,
most of the PROMISE data sets provide metrics without the
project source, and some data sets refer to large, open-source
projects while the remainder refers to commercial products.
To our knowledge, FAULTBENCH [16] is the only benchmark
precisely developed for comparing ranking algorithms for rule
checkers. It contains three Java programs, alerts from the rule
checkers FindBugs and PMD and a set of metrics on subject
programs.

Other publications are more related to the pertinence of
the domain. For example, Zheng et al. [38] are following
the GQM! paradigm to determine whether rule checkers can
help an organization to improve the economic quality of
software products. Their results indicate that rule checkers are
an economic complement to other verification and validation
techniques.

Nagappan et al. [29] proposed an empirical approach for
the early prediction of pre-release defect density based on
the defects found using ASA. The defects identified by two
tools, PREfix and PREfast, are used to fit and predict the
actual pre-release defect density on the 199 component of
Windows Server 2003. They concluded that warning density
can be used to predict pre-release defect density at statistically
significant levels and warning can be used to discriminate
between components of high and low quality.

In recent years, some approaches have been proposed to
study the relation between alerts and bugs. Such approaches
are remotely connected to our study as one could consider
that alerts that cause practical faults should be what we call
actionable alerts (i.e., alerts that are actually corrected when
reported). Boogerd et al. [6], [7] empirically assess the relation
between faults and violations of coding standard rules raised
by MISRA C, using coding standard rules for embedded C
development on industrial cases. The authors found that only
10 out of 88 rules for the case study presented in [7], and
12 out of 72 in rules for the case study presented in [6] were
significant predictors of fault location.

Basalaj et al. [3] studied the link between QA C++ warnings
and faults for snapshots from 18 different projects and found
a correlation for 12 out of 900 rules. Wagner et al. [36]
evaluated two Java bug-finding tools (FindBugs and PMD) on
two different software projects, in order to evaluate their use in
defect-detection. Their study could not confirm this possibility
for their two projects. Couto et al. [10] also showed that overall

Goal/Question/Metric, a process used to define a set of metrics to answer
an abstract question.

there is no correspondence between the static location of the
warnings raised by FindBugs and the methods changed by
software maintainers in order to remove defects.

In [20], Araujo et al. study the relevance of the alerts
reported by FindBug and PMD in several Java systems. They
conclude that better relevance (less false positives) can be
achieved when FindBugs is configured in a proper way, i.e.,
when the tool is configured to report warnings that make sense
for the system under analysis. Hora et al. [18] investigate the
relation between generic or domain specific warnings (reported
by SmallLint on a Smalltalk system) and observed defects.
They have shown that domain specific rules provide better
defect prevention than generic ones for the case study under
analysis. This is has also shown by Renggli et al. [31].

Rutar et al. [33] studied the correlation and overlap between
warnings generated by ESC/Java, FindBugs, JLint, and PMD.
Their experimental results show that none of the tools strictly
overlap another. In addition, there is little or no correlation
between the warnings generated by these tools. This suggests
that results for one tool may not be easily generalized to
another and one needs to study each of them. In this paper, we
studied three rule checkers (FindBugs, PMD, and SmallLint).

III. EXPERIMENT DESCRIPTION
A. Definition of the experiment

The first purpose of this study is to set up a framework to
evaluate different alert ranking algorithms and find the “best”
one. The notion of best algorithm is too vague, and needs to
be refined. On one hand, rule checkers are typically noisy,
they generate many false positive (un-actionable alerts). On
the other hand, it would be illusory to expect these checkers
to identify all bugs in a system [21]. Therefore, we chose
to give more importance to the precision of the results than
to their completeness. Thus, we prefer filtering methods that
accept only actionable alerts over the ones that recognize all
actionable alerts. This is measured by an effort metric that
counts the average number of filtered alerts to (manually)
inspect to find an actionable one. The effort metric is further
detailed in Section III-D.

Q1 Which algorithm has the best (lowest) effort?

H}  There are no differences between ranking methods
effort.
H}!  Some ranking methods have a lower effort than other.

Assuming we have an answer to this research question, we
may want to get into more details to better understand the
differences between the different alert ranking methods.

First, ranking methods can be split into two categories, those
working on rules (all the alerts of a rule are considered equally
good), which are generally faster; and those working on alerts:

Q2

Is it better to rank alerts on rules or on individual

alerts?

HZ  Ranking methods on rules and alerts have similar
effort.

H?2  The effort of ranking methods is different for alerts
and rules.



To rank alerts, some methods use statistical tool such as
Bayesian networks or linear regression. Implementing such
tools may be complex and their results might be difficult to
explain or understand. If “simpler” more intuitive methods are
as successful, it could facilitate their implementation and/or
adoption.

Q3 Is there any difference between statistical and more
ad-hoc alert ranking methods?

H?  Ranking methods using statistical algorithms give the
same effort than ad-hoc methods.
H?  The effort of ranking methods based on statistical

models is different from the effort of ad-hoc ranking
methods.

B. Subjects selection

To realize this experiment, we must select appropriate
subjects. To compare the ranking alert methods we need a
set of alerts already classified as actionable/un-actionable. We
must also run the ranking methods on the subjects, which
implies having access to all the required information, or being
able to collect it.

1) Software systems: We first selected three datasets from
the FaultBench 0.3 benchmark? [16]. It contains three real,
Java programs for comparison and evaluation of alert ranking
methods. The revision history of each subject covers a period
of approximately seven years, from this, a number of revisions
have been sampled by the authors of this benchmark. For each
sample revision, FaultBench provides the alerts generated by
FindBugs and PMD and also a set of metrics on the subjects.

We also generated three datasets from systems in Smalltalk
for which we had access to the required data. Alerts were
generated with the SmallLint rule checker (see below) and we
extracted the information required to run the different alert
ranking methods tested.

We shortly describe each system here. Table I also gives
some data on them.

o JDOM is a Java-based solution for accessing, manipu-
lating, and outputting XML data.

o Runtime is part of the Eclipse platform and provides
support for the runtime platform.

o Logging is part of Apache Commons and provides a
wrapper around a variety of logging API implementa-
tions.

« Seaside-Core is an open-source web application frame-
work written in Smalltalk [12].

o Pharo-Collection is part of Pharo® kernel. It conposed
of collections, such as arrayed or sorted collections, sets,
dictionaries, bags, in Pharo.

o Pharo-System is also part of the Pharo kernel. It defines
several system tasks, such as processes, number types,
exceptions, and even the Smalltalk object model.

Zhttp://www.realsearchgroup.org/faultbench
3Pharo is the Smalltalk dialect used in this work (www.pharo-project.org)

TABLE I
EXAMPLE SYSTEMS USED IN THE EXPERIMENTS. THE FIRST THREE ARE
IN JAVA, THE LAST THREE IN SMALLTALK

LOC (min—-max) init. rev. final rev.  # rev.
JDOM 9035-13 146 05/2000 12/2008 1168
Runtime 2066-15516 05/2000  08/2001 1324
Logging 355-1785 08/2001 09/2008 710
Seaside-Core 4235-9507 11/2007 07/2011 943
Pharo-Collection 14 661-17 206 07/2006  08/2011 422
Pharo-System 24 985-34 044 03/2009 10/2011 555

2) Rules checkers: We use three different rule checkers,
two for Java and one for Smalltalk.

FindBugs [19] is an open-source tool for Java with more
than 360 rules (called bug patterns). They are written using
BCEL, an open-source byte-code analysis and instrumentation
library that works on the abstract syntax three (AST) of
the source code. The rules can also rely on intra-procedural
control and data flow analysis. The rules are classified in
categories (such as correctness, performance, malicious code,
bad practice, etc.) and priorities (high, medium, or low).

PMD* is an open-source tool that supports a rich set of
rules for detecting potential bugs and checking coding style in
Java. For example, PMD supports rules for detecting empty
try/catch/finally/switch statements or dead code like unused
local variables, parameters and private methods. There are
also rules for dealing with particular frameworks, such as Java
Beans, JSP, JUnit, Android etc. PMD requires the source code
of the target program, because constraint rules are defined over
the AST of the programs. Finally, as in FindBugs, rules have
a priority and a category.

SmallLint [32] is a generic rule checker for Smalltalk.
It accepts two types of rules: those working on the AST
(similar to Findbug and PMD) and those using the reflectivity
of Smalltalk by accessing the objects representing the classes
and methods. For coherence with Findbug and PMD, we use
only rules working on the AST. But our framework could have
used the other rules too. Again SmallLint rules have a category
(e.g., possible bug, unnecessary code, bug, etc.).

3) Classification of alerts: Alerts generated by the rule
checkers are classified as (un-)actionable as follows: consider-
ing an alert appearing in an artifact (class, method, or package)
in revision . If, in revision i +n, the artifact still exists and the
alert is removed (the artifact no longer contains it) then it is
an actionable alert. An alert is un-actionable if the artifact is
removed before the alert is corrected. Finally, if the alert and
the artifact still exist in the latest revision of the benchmark,
we can not determine whether the alert is actionable or not,
and it is removed from the benchmark. Table II summarizes
the number of alerts for each of the three rule checkers.

C. Treatments

For this experiment, the different treatments are the alert
ranking methods applied. From the result of the rule checkers
and other data collected on the system checked, these methods

4pmd.sourceforge.net



TABLE III
TYPE OF INFORMATION USED BY THE ALERT RANKING ALGORITHMS

use of type of information used by the ranking algorithm
entities  statistical alert age of alert size of history of rule rule severity
ranked  approach  history alert artifact  code artifact  code artifact  of alert  or category
AWARE alerts v v
FeedBackRank alerts v v v v
RPM alerts v v v v v v v v
ZRanking rules v v
AlertLifeTime rules v
EFindBugs rules v v v
TABLE II . .
NUMBER OF ALERTS IN THE BENCHMARK where alerts close to -1 are more likely to be un-actionable
FindBugs  PMD _ SmallLint and alerts close to 1 are more likely to be actionable. Alerts
# rules 110 160 90 are ranked by considering the developer’s feedback, via past
# alerts 161l 25867 22860 actionable and un-actionable alerts, to generate a measure of
Actionable alerts 588 4447 3908 . . .
Un-actionable alerts 003 13373 2761 the set of alerts sharing either the same rule or code location.
Alerts not classified 120 8047 16191 FeedBackRanking: Kremenek et al. [24] developed an

try to filter out un-actionable alerts. This is done either by
classifying them as (un-)actionable or by ranking them in
decreasing probability of being actionable.

We selected five methods from the 18 presented by Heck-
man et al. [17] according to the following criteria:

o The ranking methods require only data from static anal-
ysis (they don’t require to run the subject system). This
is important to be able to use rule checkers in the early
stages of the project development. This criterion excludes
AJO06 [1] and CHECK’ N’ CRASH [11].

o Required data is available to us, either in the FaultBench
benchmark or we can compute it for the Smalltalk sub-
ject systems. This excludes the method of Boogerd and
Moonen [5] that uses call graphs, HWP [21] requiring
commit messages and code changes, or SCAS [37] that
relies on lexical analysis.

o The methods should be generic enough to work on any
kind of rule. This excludes HISTORYAWARE that ranks
only one rule (check return value rule) based on return
information obtained in the system history.

o The methods must be able to run on the results of a
single rule checker. This excludes MMWOS8 [27] and
ISA [23] that compare and merge the results of several
rule checkers.

To these five methods, we added EFindBugs [35] that is
too recent to appear in Heckman et al. review. It respects the
selection criteria.

We now present each of the six treatments. Some of them
work on individual alerts, other work on rules, considering that
all alerts from a rule are equally actionable or not. Table III
summarizes some information on the alert ranking algorithms.

AWARE: Heckman and Williams [16] rank individual alerts
using their rule and their location in the source code. An as-
sumption of the model is that alerts from the same rule and/or
from the same source code artifact are similarly actionable or
un-actionable. AWARE ranks alerts on a scale from -1 to 1,

adaptive prioritization algorithm based on the intuition that
alerts sharing an artifact location (method, class and package)
tend to be either all actionable or all un-actionable (similarly
to AWARE). Each inspection of an alert by a developer adjusts
the ranking of un-inspected alerts. After each inspection, the
set of inspected alerts is used to build a Bayesian Network,
which models the probabilities that groups of alerts sharing
a location are actionable or un-actionable. In our case, the
training set (inspected alerts) is static and we do not used
feedback to improve the accuracy of this method.

RPM: Ruthruff et al. [34] use a logistic regression model
to predict actionable alerts. Thirty-three alert characteristics
are considered for the logistic regression model. Reducing
the number of characteristics for inclusion in the logistic
regression model is done via a screening process, whereby
logistic regression models are built with increasingly larger
portions of the alert set. Characteristics with a contribution
lower than a specified threshold are thrown out until some
minimum number of characteristics remains. In our case, we
used only 18 characteristics of the 33 because some of them,
like the Google warning descriptors, are specific to the context
of their research.

ZRanking: Kremenek and Engler [25] proposed a statistical
model for ranking rules for MC, a specific rule checking
tool (not considered in our experiment). Unlike most other
rule checkers, MC reports for each rules where it is satisfied
(successful checks) and where it is not (failed checks). The
ZRanking statistical method is based on this information
and a “grouping operator” gathering together alerts that are
likely of being equally actionable. The grouping operator use
characteristics of the artifacts checked by the rules and/or
of the alert, for example, call site, number of calls to free
memory, function. A limitation of this technique is that the
ranking success depends on the grouping operator. For our
experiments we used a very simple one where alerts are
grouped by their rule.

Also, because we use FindBugs, PMD, and SmallLint rule
checkers (see Section III-B) that don’t output successful/failed
checks, we approximate this result. Considering a rule that



applies on methods, for example to check whether a call to
a given primitive is correctly performed. All alerts reported
by our rule checkers are failed checks; all other methods are
considered successful checks which obviously might not be
true.

AlertLifeTime: Kim and Ernst [22] prioritize rules by the
average lifetime of alerts in this rule. The idea is that alerts
fixed quickly are more important to developers. In our case,
the lifetime of an alert is measured at the file level for Java
and, in Smalltalk, from the revision of this rule’s first alert
until closure of its last alert. Alerts still existing in the last
revision studied® are given a penalty of 365 days added to
their lifetime.

EFindBugs: In [35] Shen er al. present EFindBugs that
prioritizes rules by using their defect likelihood. It is computed
as the ratio of the actionable alerts over the un-actionable alerts
for each rule. Periodically in the system’s lifetime, new sets of
(un-)actionable alerts are recomputed and the defect likelihood
of each rule is updated accordingly. The initial set of classified
alert may be obtained from another system or from the alert
history of the current system.

D. Experimental Design and Analysis

We provide in this section a brief description and justifica-
tion of the analysis procedure that we used.

The six alert ranking algorithms are implemented in
Smalltalk. To compute the binomial regressions and Bayesian
network necessary for the algorithms [24], [34], we use the R
statistical language/system.

The datasets are split in two: a training set and a test
set. Each set contains 50% of the benchmark alerts. Then,
each algorithm is trained on the training set and used on the
test set. The results are compared which the correct results
computed as described in Section III-B3. This process (training
set generation, algorithm training, result testing) is repeated
100 times for each ranking algorithm to avoid bias. The results
presented in this article are the average of the 100 executions.
Additionally, we also take care that training set and test set
have the same percentage of (un-)actionable alerts as the whole
dataset. This helps us comparing the different alert ranking
methods by ensuring that they all learn from training datasets
with similar characteristics and then all run on test datasets
with similar characteristics.

To evaluate the ranking algorithms, different measures have
been proposed in the literature. We use the measure of effort
proposed in [25]. Alerts are ordered in decreasing probability
of being actionable or not. Effort is computed for the first x%
of the alerts output by a ranking algorithm, and it is equal
to the average number of alerts one must inspect to find an
actionable one. The best value of effort, for a perfect alert
ranking algorithm, would be 1, meaning that any alert picked
in the first £% is actionable, or all x% alerts are actionable.
An effort of 2 tells that one out of two alerts is actionable.

5To train the algorithm we don’t eliminate undecidable alerts as was
explained above (Section III-B3).

As alerts are ranked in decreasing order of probability of
being actionable, one expects that, as % increases, the effort
will also increase because their will be more and more un-
actionable alerts in the results.

We will also use the Fault Detection Rate Curve. For a
given algorithm, the curve is formed by the percentage of all
actionable alerts found within the first y alerts of the alert
ranking algorithm. For an optimal alert ranking algorithm,
when y is less than the total number of actionable alerts, the
curve raises linearly from 0% to 100% as all extracted alerts
are actionable (in Figure 1, this is materialized by the upper
dotted line). When y is equal or greater than the total number
of actionable alerts, the curve is constant with value 100%.
In the figures, we also materialize a random alert ranking
algorithm (lower dotted line) that achieves 100% only when
all the alerts are considered.

We compare the alert ranking algorithms between them-
selves using these curves. For this we compare the curves two
by two with a Chi-squared test of homogeneity (x?). This
test allows us to determine if two curves follow a different
distribution. When the p-value of the test is less than a given
threshold (we use 5% and 1%o) we can conclude that the
two curves do not follow a similar distribution. Note that the
comparison is not symmetric, but in practice, comparing A to
B rarely leads to a different result than comparing B to A.

E. Threats to Validity

1) Internal validity: Our implementation of the ZRanking
algorithm is rough. The grouping operator implemented is
overly simple and the successful/failed check behavior could
only be approximated as the rule checking tools used do not
output successful checks. The results of this ranking algorithm
might be different from the original implementation.

2) External validity: We tried to be as generic as possible
by selecting a range of systems from different domains and
two programing languages. The systems are real-world and
non-trivial application, with a consolidated number of users.
Data are collected for a large number of versions over an
extended time frame (several years).

3) Conclusion validity: We did not test the statistical va-
lidity of the difference in the results of the effort metric.
For this reason we tried to be very conservative in drawing
conclusions from these results and back them up with the 2
test comparing the fault detection rate curves.

IV. ANALYSIS RESULT

In this section, we analyze the results of the experiment
according to the research questions presented in the previous
section.

A. QI: What is the best alert ranking method?

This question was formalized as: Q1 — Which algorithm has
the lowest effort?

The results are given in Table IV: effort for the first 20%,
50%, or 80% of all alerts. Figure 1 also presents all the fault
detection rate curves, and Table V gives the results for the
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Fig. 1. Fault detection rate curves of the alert ranking algorithms tested for

the three rule checkers. Dotted lines represent a random ranking algorithm
(lower dotted line) and a perfect ranking one (upper dotted line).

TABLE IV
RESULTS FOR THE EFFORT METRIC FOR THE FIRST 20%, 50%, AND 80%.
BOLD VALUES SHOW THE BEST RESULTS (CLOSER TO 1).

PMD FindBugs SmallLint
Threshold 20% 50% 80% 20% 50% 80%  20% 50% 80%
AWARE 1.01 1.03 1.36 1.13 1.14 135 1.01 1.02 1.03
FeedBackRank  1.08 1.04 1.75 1.19 122 145 1.01 1.02 1.04
RPM 1.9 202 246 1.17 1.19 147 1.01 1.02 1.11
ZRanking 4.05 444 42 127 13 184 171 1.69 1.67
AlertLifeTime  4.06 3.79 3.72 2.05 1.65 176 1.04 1.49 1.69
EFindBugs 2.7 3.01 322 1.3 1.28 1.58 1.02 1.14 1.35
TABLE V

RESULTS OF THE X2 TEST OF DIFFERENCE BETWEEN ALL FAULT
DETECTION RATE CURVES (PRESENTED IN FIGURE 1). (*) CURVES ARE
DIFFERENT AT THE 5% LEVEL (P-VALUE < 0.05) ; (**) CURVES ARE
DIFFERENT AT THE 1%oLEVEL (P-VALUE < 0.001. ABBREVIATIONS:
A=AWARE; FBR=FEEDBACKRANK; ZR=ZRANKING;
ALT=ALERTLIFETIME; EFB=EFINDBUGS.

A FBR RPM 7ZR ALT EFB
FindBugs
A - 3 8 28 667%* 13
FBR 3 - 16 38k T3 22%
RPM 8* 14 - 12 43%% 2
ZR 26%* 34 10 - 4% 8
ALT 60%* 64 3] 33k - 20%*
EFB 13 20%* 2 10 26%* -
PMD
A - 289 82%* 436%*  379%k  DO3HE
FBR  283%* - 149%%  373%%k 33k DDk
RPM  71%** 172%:% - 1115 90 22%
ZR 334#% D35k 91#* - 5 41%*
ALT  294%%  2]4%* T3 6 - R
EFB 153%%  224%%* 18* 49 42%% -
SmallLint

A - 28%* 10 127%% 88** 39%*
FBR 25% - 5 81%* 51 11
RPM 10 6 - 83k 50%* 11
ZR 142%%* 66%* 82%* - 28* 49
ALT Q5% 4% 48 3% - 16*
EFB R 9 11 60%* 18%* -

homogeneity tests between the curves. In Table V results of the
x? tests are marked with (*) when the difference between the
curves is statistically significant at the 5% level, and marked
with (**) when the difference is statistically significant at the
1%o level.

First, we observe that the AWARE algorithm has consis-
tently the lowest effort (see Table 1V). Its effort is typically
close to 1. Even when one inspects almost all (80%) of the
alerts ranked by the algorithm the effort is still only about 1.33
which means that 3 out of 4 inspected alerts are actionable.

FeedBackRank also shows good results and is consistently
the second best.

On the other end of the spectrum, we have the ZRanking and
AlertLifeTime algorithms with efforts going up to 4.44 (only
1 out of 4 inspected alerts is actionable). The two alert ranking
algorithms present the interesting characteristic that the effort
may decrease when one inspects more alerts. This means that
the actionable alerts are not ranked first, but after the 20% or
50% first. One can see in Figures 1(b) and 1(c) that ZRanking
can even perform worse than a random classifier (i.e., its fault
detection rate curve is under the lower dotted line).



Such results for the ZRanking algorithm may be explained
by the simple grouping operator used in our implementation
(see Section III-C) and because of the approximation of the
successful/failed check behavior.

Figure 1 and Table V allow one to statistically test the
differences between the alert ranking methods. One must note
that results depend on the used rule checker. For PMD, all alert
ranking algorithms are different two by two, except for the
ZRanking and AlertLifeTime algorithms. For FindBugs and
SmallLint, we can not draw conclusions taking into account
their pairs.

In summary, for two test bed (SmallLint and PMD), the
Aware and FeedBackRank algorithms are significantly better
than the other alert ranking methods while the ZRanking and
AlertLifeTime algorithms are significantly worse.

B. Q2: Is it better to rank alerts on rules or on individual
alerts?

A first answer comes from the fact that from the three
ranking algorithms working on individual alerts (Table III),
two (Aware and FeedBackRank) were found to be better
than the other methods. Moreover, from the three algorithms
working on rules, two (ZRanking and AlertLifeTime) were
found to be worse.

To analyze these results with more details, we plot the
cumulative percentage of actionable alerts in the rules in
figures 2, 3, and 4. The x axis represents rules with a given
percentage of actionable alerts. Thus, the left side of the x
axis shows the “bad rules” with low percentage of actionable
alerts, and the right side of the x axis shows the “good rules”,
with high percentage of actionable alerts.

In FindBugs and SmallLint test beds (Figures 2 and 3),
the bar plot raises steadily, whereas for the PMD test bed
(Figure 4), it raises very fast at the beginning. This means
for PMD that 80% of all actionable alerts are raised by “bad
rules” (with less than 35% of their alert being actionable). For
FindBugs, this means that less than 50% of all actionable alerts
come from reasonably “good rules” (up to 85% of their alerts
are actionable). Therefore, alert ranking algorithms working
on rules give poor results for PMD, while for FindBugs and
SmallLint the results are better.

Additionally, we explain the staged shape of the ZRanking
fault detection rate curves by the grouping of alerts (see
definition of ZRanking). Because of the defective grouping
operator used, when a group comes in, its actionable alerts
raises the curve steeply. Then when the other (un-actionable)
alerts of the same group are considered, the curves remain
stable (no improvement) until the next group comes in. This
shows the consequence of grouping alerts together.

In conclusion, overall one should probably opt for ranking
algorithms that work on individual alerts. However, on a
practical point of view, it would be interesting to check
whether the training on one system can easily be ported to
another one. Because of the fine grained training at the level
of individual alerts, on new systems without history, it might

be better to start with an algorithm trained (on some other
system) at the level of rules?

100
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Fig. 2. % of actionable alerts in FindBugs rules

C. Q3: Is there any difference between statistical and more
ad-hoc alert ranking algorithms?

Among the two best ranking algorithms (AWARE and
FeedBackRank), one is ad hoc and the other is based on a
statistical algorithm. Similarly, among the two worst ranking
algorithms (ZRanking and AlertLifeTime), one is ad hoc and
the other is based on a statistical algorithm. Therefore it seems
difficult to clearly decide between the two approaches based on
these data. From our experience, we can only say that the ad-
hoc algorithms were easier to implement and usually required
less information. We therefore suggest to go with one of these
(typically AWARE) if one has a choice.

D. Additional Comments

All ranking methods do not require the same information.
For instance, the RPM algorithm requires lot of data about
the alerts and obtaining such information is difficult and
expensive.

As shown in Table III, the two best ranking algorithms
(FeedBackRank and AWARE) use exactly the same type of
data: the artifact which contains the alert, the rule of the alert,
and the actionable and un-actionable alerts. In addition, the
best ranking algorithm working at rule-level (EFindBugs) also
uses the actionable and un-actionable alerts as well as the rule
of the alert. In such ranking algorithms, the history of past
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alerts is used to determine the ratio of actionable alert/un-
actionable alert for the system code artifact and the rules of
the rule checker.

One might hypothesize first that not all data sources have
the same relevance in ranking alerts or rules, and second that
history of past alerts and the location of the alerts (artifact
containing the alert) are probably good sources.

Looking again at the results in Table III, one may notice that
SmallLint has results consistently better than the two others, or
that FindBugs lead to consistently better results than PMD for
ranking algorithms working on rules (see also Section IV-B).

One might hypothesize that all rule checkers do not behave
equally. This was expected from the discussion at the end of
Section II. More experiments could be undertook to understand
why and how these differences occur, whether due to the tool
themselves or to the rules they contain.

V. CONCLUSION

In this paper, we propose a framework for comparing six
alert ranking algorithms and identify the best conditions to
separate actionable from un-actionable alerts. We selected six
alert ranking algorithms described in the literature and identi-
fied some of their characteristics that could be meaningful in
this comparison:

o three algorithms rank individual alerts and three rank
rules;

o three algorithms are ad-hoc and three are based on a
statistical approach;

o All algorithms do not use the same input data.

For comparison, we use a benchmark covering two pro-
gramming languages (Java and Smalltalk), three rule checkers
(FindBug, PMD, SmallLint) and six different systems.

The conclusions of our experiments are:

o All ranking algorithms are not equally efficient, particu-
larly AWARE is the best alert ranking algorithm on our
benchmark, closely followed by FeedBackRank;

o Ranking algorithms working on alerts give better results
than the ones working on rules. This implies that rules are
not inherently good are bad but depend on the context.
We did not try to qualify better how the context influences
the results.

e We could not identify any significant advantage in the
results of ad-hoc or statistical approaches. We, however,
suggest hat the ad-hoc solutions are easier to implement
and might give results easier to understand.

We also identified possible future research directions regard-
ing the respective relevance of different data sources used by
the ranking algorithms or the difference in result yielded by
the various rule checking tools.
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