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ABSTRACT

Data-intensive Web sites, e.g., blogs or news sites, present
pages containing Web articles (a blog post, a news item,
etc.). These Web articles, typically automatically generated
by a content management system, use a fixed template and
variable content. Unsupervised extraction of their content
(excluding the boilerplate of Web pages, i.e., their common
template) is of interest in many applications, such as indexing
or archiving. We present a novel approach for the extraction
of Web articles from dynamic Web pages. Our algorithm,
Forest, targets the zone of the Web page relevant to some
(automatically acquired) keywords for a Web page to obtain
structural patterns identifying the content of interest. We
consider two potential source of keywords: Web feeds that
may link to the Web page, and terms found through a fre-
quency analysis on the Web page itself. These structural
patterns are aggregated among different Web pages that use
the same layout, and ranked using a new measure of rele-
vance with respect to the set of keywords. We extensively
evaluate Forest and report improved results over the state
of the art in Web article content extraction.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms

Algorithms, Experimentation

Keywords

content extraction, keywords, structural similarity, tag path

1. INTRODUCTION
Textual Web content on modern Web sites is, in the over-

whelming majority of cases, produced by dedicated content
management systems (CMSs). Such software generates Web
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pages containing textual articles (news items, forum mes-
sages, wiki articles, blog posts, tweets, etc.) by filling a
template with information fetched from databases. In this
process, the original textual or structured content are turned
into full-fledged HTML documents, where the Web article is
hidden among the markup encoding the site layout. Some
parts of the resulting Web page are thus meaningful (they
form the Web articles that are the main content of the Web
site), others are boilerplate (they just ensure a common lay-
out of the site, or add contextual information, navigation
structure, advertisements, comments). Note that boilerplate
may change from one page to another and cannot be assumed
to be completely static. In addition, boilerplate can actu-
ally take up more volume than meaningful information [16].
Distinguishing between main content and boilerplate is a
challenging task [19,30,32,33], with many Web information
retrieval and data mining applications: search engines index
Web pages based on the informative part of their content;
end-users are primarily interested in the main content, and
may wish to extract it for readability or accessibility pur-
poses; Web archivists and analysts may wish to archive Web
articles independently of the containing Web page [29] to
track their evolution irrespectively of changes in layout.

An important design choice of modern Web sites, and a
consequence of the use of CMSs, is that Web pages from
the same site share a common structure, a structure that
can be easily traced in the DOM tree of the Web pages [11].
We further call these pages sample Web pages. To illustrate,
Figure 1 shows an example of two pages from the same Web
site presenting variable content within a fixed template. This
structural similarity across Web pages of the same site has
been leveraged in a number of information extraction tech-
niques to identify data records from data-intensive, somewhat
structured Web sites [1, 7, 24]. A typical use case is the deep
Web, where, given sample response pages that result from
the submission of a form (e.g., on e-commerce Web sites),
the task is to extract all properties (price, name, availability,
etc.) of response records.

To identify the information of interest, techniques from
the literature have considered the extraction of “informative
blocks” [33], pagelets [2, 7], fragments [32] or articles [19, 30]
from Web pages. These notions are essentially equivalent:
they represent the Web page’s main content. A variety of
techniques has been used in these works: text-based [19,
30], tag-based [36], visual-based [26,33], or using heuristics
on DOM paths [29]. However, in contrast with wrapper
induction techniques, these methods operate at the level of
a single Web page. Therefore, they ignore an interesting



Figure 1: Two sibling news pages (BBC travel blog)

feature of pages belonging to the same site: their structural
uniformity. We introduce a technique for effective extraction
of a Web page’s main content, by taking into account both
the content itself, and the repeated structure of Web pages
that have been generated by the same software resource.
The proposed method, called Forest for “Focused Object
Retrieval by Exploiting Significant Tag paths”, works in a
succession of steps:

1. we automatically acquire some keywords for each Web
page in the set of sample pages (these keywords may
also come from an external source of semantics: query
logs, HTML metadata, Web feeds);

2. we identify, at the level of the DOM, structural patterns
that are shared by most of the sample pages;

3. we rank these patterns through a novel relevance mea-
sure based on information theory and statistics;

4. we infer a generic XPath expression which gives the
location of the main content in the sample Web page.

We outline the following contributions of this work:
(i) a novel measure for computing the informativeness of

the content of a Web page;
(ii) a technique for wrapper induction at Web site level

and automatic identification, using the tag paths of
significant DOM elements, of a generic XPath signature
of the node that contains the main content of interest;

(iii) effectiveness experiments showing the high accuracy in
terms of precision and recall of Forest over 1,006 Web
pages acquired from 93 heterogeneous Web sources,
with favorable comparisons, for different settings and
baselines including some state-of-the-art methods for
article text extraction.

We next discuss the related work before presenting Forest

(Section 3) and the effectiveness experiments (Section 4).

2. RELATED WORK
Relevant content extraction from Web pages is an exten-

sively studied domain [9], of use in many applications such
as information extraction, information retrieval, data mining,
adaptation of Web pages to small devices, etc.; it is also the
spotlight of many online applications1. We provide here a
brief review of the state-of-the-art.

Automatic Wrapper Induction. Content extraction from
Web pages that share structural patterns has often been
formalized as a wrapper induction problem [21] for the ex-
traction of data objects, also known as data records [1,24].

1For instance, http://fivefilters.org/content-only/

In unsupervised settings, wrapper induction makes use of the
common structure of various objects, either at single Web
page level [24], or across different Web pages that share the
same template [1,12]. MDR [24] and variants [25,38] com-
pare string paths that have been identified as being under
the same generalized node that represents the “data region.”
A work that compares tag paths as segments rather as strings
is [27]. RTDM [12] uses the tree edit distance that leverages
the common structure of news Web pages in order to identify
record patterns. However, the template tends to incorporate
elements that change from page to page (links, ads, etc.);
therefore, changes in content are not reliable enough to de-
cide that content is informative [1, 10]. Also, due to the
increasing complexity of HTML pages at DOM level, in the
absence of a content relevance measure, these techniques risk
detecting structural patterns that have little if no relevance
with respect to the extraction target.

Block-based Web Search. In the search for relevant con-
tent, segmentation algorithms partition Web pages into “se-
mantic” blocks. Vision-based segmentation is one of the most
frequent. vips [6] or methods such as [3, 31, 38] have defined
a content relevance measure using visual cues, that is, heuris-
tics on which humans usually rely upon to identify blocks or
portions of Web pages that seem to be more interesting than
others. However, as argued in [36], given the fast evolving
manners of expressing visual properties of text, visual clues
are not always reliable and tend to become obsolete with time.
Another drawback in the use of visual cues is that the Web
page typically needs to be rendered. Therefore, algorithms
that use vips [4, 26, 37] in the pre-processing phase need
large memory resources and processing time. An alternative
is to use DOM-based page segmentation. The omini [5]
system provides an automated way of learning rules that
helps identify the Web object boundaries. The approach is
based on structural features of a tag node (e.g., fanout, size,
tag count), combined with heuristics to identify an object
separator tag (e.g., repeating tag, standard deviation in the
size, etc.).

In order to determine whether a Web page block is in-
formative, several different measures have been proposed.
For instance, [33] defines a measure of importance for blocks
using spatial and content features (e.g., link density or inner
text length), but relies on machine learning to identify the
best combination of features. We note also [18], which uses
an entropy-based measure to determine the importance of
page blocks.

Exploiting Keywords. A big advantage of using keywords
is computational. In contrast to other techniques [27] that
consider all tag paths as equally important, analyzing only
the interesting ones drastically reduces the computations.
The query terms occurring in search logs have been proposed
as a source of keywords in [8], but with a different goal as
ours: to perform an unsupervised structural clustering of
Web pages that have been obtained in response to a user
query. The access to search logs is however limited either
to the Web sites owners or to search engines themselves.
In Forest, keywords are automatically discovered, and the
technique remains widely accessible.

Using the Web feeds’ semantic clues. In our previous
work [29], we used Web feeds as clues about the relevant

http://fivefilters.org/content-only/


content in a Web page. The bottom-up algorithm of [29],
referred to as Sigfeed in what follows, uses DOM block
heuristics to extract the full content of a Web page that is re-
ferred to by the respective item in the feed. We have included
Sigfeed as a baseline and report the results compared with
Forest in the experimental section.

By pre-processing in Forest the sample pages into XML
documents, and looking for the occurrence of some keywords,
we get closer to the rich literature on keyword search over
XML documents [17,34]. Our ranking measure of informa-
tiveness applies, not at the level of DOM elements directly,
but similarly, at the level of DOM element types as we will
see next. However, we significantly differ from these works:
first, the XML keyword search works assume keywords as
given, while Forest obtains them automatically; second,
the ranking measures are different. In [34] the emphasis is
on finding the smallest lowest common ancestor (SLCA) that
contains all searched keywords, while we are interested in
regions that are dense in keywords but which not necessarily
contain all of them. We also diverge in our vision of the
ranking measure for XML elements: for instance, [17] uses an
adaptation of PageRank. We compare in Section 4 Forest

to a baseline that implements an alternative version of the
SLCA algorithm, named Coverage.

Text Extraction. A number of recent works [19,30,36] aim at
extracting the textual content of a Web article in a Web page
by relying either on the text or the tag density in subsequent
Web page segments. By using a technique used primarily
in image processing, similar to [27], Cetr [36] computes,
per line of HTML code of the Web page, a tag ratio array.
The resulting matrix can be fed to a histogram clustering
algorithm which filters extraneous data (i.e., boilerplate).
Boilerpipe [19] relies on shallow text features and learning
to identify the fulltext of a Web article, and to filter by
exclusion the boilerplate present in the respective Web page.
Relying only on shallow text features may also conduct to
the extraction of other portions of the page which are richer
in text than the article itself (for instance, comments). On
the other hand, while Forest relies on sample pages that
share the same template, Boilerpipe works at the level of
individual Web pages. We use Boilerpipe as a baseline
method: its extractors have been trained on Web articles,
which makes it perfectly applicable to our context.

Template Removal and Change Detection. Template re-
moval methods usually need as input Web pages that share
a uniform layout [35]. Tree matching (e.g., the number of
occurrences of some branch in the whole forest of DOM
trees) or abstract structural features [11] are usually em-
ployed as pre-processing before template removal. Most of
the time, the problem is reduced to that of finding common
DOM subtrees [7] by cross-page clustering for a set of HTML
documents.

Tools and Standards. Some tools, such as the Reader mode
of the Safari browser or similar browser plugins, aim at
presenting the main content of a Web page in a visually, more
readable way. These tools use a combination of heuristics,
site-specific parameters, and estimation of text density.

Several recent development of Web technologies go in the
direction of adding more semantics to the markup of a Web
page to clearly identify the main content of a Web page. The

HTML5 working draft introduces the very useful <article>

tag to denote a Web page’s or a section’s main content.
HTML5 is not widely used on the Web at the moment,
and it is unclear at this point whether the use of such a
tag will be consistent enough from a Web site to another.
Another initiative is the hAtom2 microformat for syndicated
content, which indicates in particular which part of a Web
page corresponds to a feed item; the use of hAtom on the Web
is still marginal, while our approach aims at being generic,
without relying on user markup.

3. METHOD
In this section, we describe Forest’s signifier-aware pro-

cess for extracting the main content’s block from sample
pages.

3.1 Preliminary Notions

Sample pages. Wrapper induction techniques typically work
on a set of pages that share a common HTML template. The
suitable classes of sample pages are, nevertheless, most of
the time manually collected. There are relevant works [8,11]
that structurally cluster Web pages of a Web site. We chose
however a simpler, automatic approach to collect structurally
similar pages: we use Web feeds.

An increasing number of Web sites incorporate feed facili-
ties so that users can keep in touch with new information.
As, first, we put feeds to use for the dataset construction,
and, second, we study some feed properties that are relevant
to our article extraction problem, we next present some basic
information about them.

Web Feeds. RSS (acronym for RDF Site Summary, or Re-
ally Simple Syndication) and Atom are popular feed formats,
dialects of XML, that are used to publish frequently updated
content such as blog or news entries, audio and video, all
in a standardized format. An RSS or Atom document, also
called a Web feed, contains a Web channel that groups var-
ious items (or entries) that refer to Web articles. In the
RSS specification3, each item has three compulsory elements:
title, link, and description. While the title gives the name of
the Web article (usually) as it appears on the referenced Web
page through the link URL, the description is meant to be a
short text describing the respective article. In practice, the
description of an item often represents the first lines of the
Web article, rather than a real description of its contents.

Signifiers. To spot the main content area on a Web page,
and to further determine which DOM elements of the corre-
sponding tag tree are more important than others, we auto-
matically construct a set of relevant terms for that page. As
an example of their possible usefulness, we show in Figure 2
how some keywords like “Halloween”, “past” and “present”
(coming from the title of the respective Web article) are
targeting zones in the page. We utilize the notion of key-
word in the information retrieval sense, as a linguistic clue.
However, the high incidence that a keyword may have in the
text of a Web article makes it closer to a concept entity (e.g.,
“Halloween” in our example).

2http://microformats.org/wiki/hatom
3http://cyber.law.harvard.edu/rss/rss.html
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Figure 2: Match of keywords in a Web article

Given a set of sample Web pages, we apply tokenization,
stop words removal, and stemming on the text of page. The
resulting terms are indexed based on the classic tf-idf mea-
sure. For each page, the top-k weighted terms according to
this measure are called signifiers. In the experiments, we fix
the k threshold to 10 (but discuss other variations). More
complex processing, such as POS-tagging or semantic anal-
ysis is possible, but not required (preliminary experiments
suggest little impact on the results).

We also consider another source of signifiers: the title
and description of a feed item. These are also automatically
obtained: by a simple parsing of a feed item metadata we
get the title and a small description (typically, first lines
or subtitle) of the Web article object that we target. This
latter method of acquiring signifiers is very straightforward.
Without any global analysis on all the textual content of
pages, by just extracting terms or n-grams from the title and
description of an item, we obtain some reliable clues about
the content that the item pinpoints.

From HTML pages to XML trees. From the Web feeds,
we gather the item’s URLs and construct a usable version
of the HTML page in the form of a DOM tree. We use for
this the HTMLCleaner4 parser, which puts the HTML “tag
soup” in the right order and filters out scripts and other tag
nodes (e.g., <noscript>) that are neither dealt with, nor
necessary in our approach. Most importantly, we add to
every node in the tag tree a dfs attribute that records the
order of browsing of a depth-first search walk starting from
the root. These dfs values serve to identify nodes in the case
when they do not have any unique combination of attributes
(e.g., id, class), but also to keep track of possible positions
of nodes in the tag tree. This enforced structure is serialized
into an XML document. We next denote all such documents
coming from a single Web feed channel that exposes sample
pages dk, 1 6 k 6 r, r 6 r, where n is the number of items in
the feed and r represents the number of sample pages that
have been annotated.

3.2 Structural Patterns

4http://htmlcleaner.sourceforge.net/

Significant Nodes. For each analyzed document dk, we
extract all textual leaf nodes that are significant, where a
significant node is a leaf DOM node whose textual content
matches at least one signifier. For precision, leaf nodes that
we consider are non-empty textual nodes at the bottom of
the DOM tree.

Significant Paths. For each significant node, we construct
its tag path. A tag path is the sequence of node identifiers
from the root to a node in the tag tree. When the node is a
leaf, we call this path a terminal one.

Definition 1. A significant terminal path is a tag path
whose last node is significant.

By following the path of signifiers in the DOM, we have an
idea about the location of leaf nodes that are significant in a
Web page. However, due to the nested structure of elements
in the DOM, the location of significant nodes is not sufficient
per se to identify the boundaries of the article object, which
is a more complicated problem [5].

We further analyze only the composing DOM elements of
significant paths with the aim of finding structural similarities
across different sample pages.

Since the node that generates a significant tag path con-
tains signifiers, the same holds for all its ancestors (i.e., their
textual content contains signifiers). The higher in the DOM
hierarchy, the more a node tends to contain signifiers; at the
same time, it also tends to contain many more non-significant,
regular terms. Note that the number of significant paths that
have to “decompose” for analysis can be small if the num-
ber of signifiers is small, or if the signifiers are consistently
pinpointing the same terminal paths.

Element identification. A DOM element typically has a
tag name and a list of attributes. However, not all elements
have attributes that can make them unique. Paragraphs,
table elements, etc., are rarely determined by a unique com-
bination of attributes. Luckily, due to the pre-processing
phase, each node has, besides its tag name, at least one dfs
attribute.

To be able to reuse the element clue from one document
to the other, we add a refinement that deals with the fact
that, contrarily to what one would expect, id and class

names generated by CMSs may slightly vary from one page
to another. In particular, it is common to find, say, a <div>

tag with a class attribute of “post wrapper-09” in one
document, and of “post wrapper-02” in another, knowing
that empirically they denote the same type of element. We
found that a practical way of abstracting out these small
differences is to simply keep the first token of the value of
an attribute and filter out possible numbers. We next refer
to the stemmed value of an attribute as its tolerant form.
For instance, the tolerant form of the attribute value “post
wrapper-02” (occurring in page two) and “post wrapper-09”
(occurring in page nine) is simply “post”.

Taking the full value of an attribute rather than its tolerant
form has however little impact on the results, as we describe
in Section 4.

Definition 2. The element type of a DOM element is
defined as an XPath expression constructed based on 〈t, atts〉,
where t is the tag name and atts is a set of key-value pairs
as follows:

http://htmlcleaner.sourceforge.net/


(i) if the DOM element has attributes other than dfs (e.g.,
id, class) then atts is set to the collection of attribute
key-value pairs, where the values have been reduced to
a tolerant form;

(ii) otherwise, atts is set to {dfs = d}, where d is dfs index
of the respective element.

The intuition behind an element type is that block ele-
ments will typically have a way to be referred to in a general
manner and grouped across pages (their number of occurence
will increase), while, comparatively, more specific elements
(e.g., p) will be having either a different dfs that its homo-
logues from other sample pages, or, comparatively with block
nodes will have less signifiers. Examples of simple element
types are //div[@id=“container” and @class=“post”] or
//p[@dfs=24].

Structural patterns

Definition 3. A structural pattern is defined by the com-
bination of an element type and the level on which the element
occurs in the tag tree (i.e., its index in the significant path).

Structural patterns are used to identify similarities between
DOM elements across various pages. Indeed, the values
of element type and level are typically common to nodes
belonging to different sample Web pages (see Figure 3), due
to their common generation source (e.g., a script). Figure 3
gives more insights on structural patterns, that have been
clustered based on the level on which they occur. Although
the elements having the dfs equal to 21 and 29 respectively
share the same identifying clue, they are counted separately
because they reside on different levels.

The dfs position of an element is either already present
in its type or can be added to a structural pattern in order
to uniquely identify that DOM element in a particular Web
page.

3.3 Informativeness measure
We now introduce the measure of relevance for ranking

structural patterns that occur in sample pages, based on the
fact they that have been formed by DOM elements that are
significant across various documents dk, 1 6 k 6 r.

We fix an node element ei in an XML document dk. Let
x be the number of signifiers in ei’s text, counted with their
multiplicity. Then all other terms represent non-signifiers,
let y be their number. Then N = x + y is the number of
terms in the text of ei. We analogously denote the number
of signifiers and non-signifiers in the whole dk in which ei

occurs, that , as X and Y respectively.

Statistical signifier density. One of the most natural ways
to determine whether a node is highly significant is to com-
pute its density in signifiers, i.e., x

N
. However, when N is

small, this density might be imprecise, due to lack of obser-
vations (a node formed of a single signifier is likely not to be
the most significant node of the document). In such contexts,
we can use Jeffrey’s add-half rule [20] as a better statistical

estimator of the proportion of signifier terms, yielding x+1/2
N+1

.
Furthermore, when sampling N elements from a potentially

larger set, we have a margin of error on the semantic density.
With f the frequency given by the estimator above, the

standard deviation is

√

f(1−f)
N

[15]. Assuming 1 standard

l Identifying clue dfs n

1 //body 1 10
2 //div[@id=’container’] 19 10
3 //div[@class=’maincntnr’] 20 10
4 //div[@class=’idem’] 21 10
5 //div[@class=’idem’] 25, 29 10
6 //div[@class=’story’] 78, 82, 83 8
6 //p[@style=’text-align:justify;’] 175 2
7 //p[@dfs=98] 98 1
7 //p[@dfs=107] 107 1

Figure 3: Partial list of elements occurring in termi-
nal paths for some sample documents, together with
their dfs, and number of occurrences

deviation to obtain a confidence interval of ≈ 70% [15] and
combining with the aforementioned estimate, we obtain the
following interval for the semantic density of a node:

x + 1/2

N + 1
±

1

N + 1

√

(x + 1/2) × (y + 1/2)

N
(1)

We now define as Jeffrey’s statistical density, J , the lower
value of this interval, i.e., the worst-case estimator at 70%
confidence of the semantic density; if this value is less than 0
(because the sample is not large enough), we fix it to 0:

J = max

(

0,
1

N + 1

(

x + 1/2 −

√

(x + 1/2) × (y + 1/2)

N

))

(2)
As an example, if x = 8 and y = 20, J(x, y) is comparable to
that of a node with x = 3 signifiers and y = 5 non-signifiers:
the lower proportion ( 2

5
compared with 3

5
) is compensated by

the smaller number of observations. Even more interestingly,
when x = 1 and y = 0 we have a J ≈ 0.32, to be compared to
the naive density of 1: this element is indeed dense, but due
to the low (zero here) number of non-signifiers, we cannot
be very sure of its importance. As expected, this density
measure tends to favor rather specific nodes, that is, nodes
that appear lower in the DOM hierarchy.

Unexpectedness. We derive another approach to signifi-
cance of a node from the notion of unexpectedness, coming
from the cognitive model of simplicity theory [13] and informa-
tion theory in general: this measure relies on the observation
that humans tend to find a situation interesting when they
perceive a discrepancy in complexity.

A situation is unexpected if it is simpler to describe than
to generate. Assume a computation model given (say, Turing
machine encodings for a given universal Turing machine).
Given an object, we consider its generation complexity Cw

(i.e., the size of the program that has generated it) and
its description complexity C (i.e., its Kolmogorov complex-
ity, the minimum size of a program that describes it); then
the unexpectedness of this object is the difference between
the two (note that we always have C 6 Cw). We apply
this to the simple setting of non-uniform binomial distri-
butions, that corresponds to our context. Specifically, for
each significant node in the DOM tree, we consider its un-
expectedness with respect to the number of signifiers and
non-signifiers contained in the subtree defined by its location
in the DOM. The generation complexity corresponds (up
to an additive constant) to the logarithm of the number of



ways to draw x + y elements out of a set of X + Y elements:
Cw = log(X + Y )x+y = (x + y) log(X + Y ). The description
complexity, on the other hand, represents the complexity of
describing the content of the textual node, knowing that x
terms are signifiers: it is the logarithm of the number of ways
of choosing exactly x signifiers and y non-signifiers, that is:
C = x log X + y log Y . Finally, the unexpectedness is the
difference between these two complexities:

U = (x + y) log(X + Y ) − x log X − y log Y (3)

As a typical example, for a Web page with a total of 20
signifiers and 100 non-signifiers, a node with 10 signifiers
and 26 non-signifiers will have an unexpectedness of 23 bits,
which is definitely higher than a node with 3 signifiers and 1
non-signifier: 6 bits.

Our preliminary experiments show that unexpectedness
favors elements with a large amount of text content that is
richer in signifiers than the typical distribution of signifiers on
the Web page as a whole. This turns out to be complementary
to the statistical density J , which favors nodes poor in non-
signifiers.

Informativeness.

I(spi, dk) = J(spi, dk) × U(spi, dk) (4)

This measure characterize the informativeness of a struc-
tural pattern spi, i ∈ 1 : m, where m is the total number of
structural patterns that are shared by our sample pages, as
the product between the unexpectedness and the statistical
signifier density of a DOM element that has the structural
pattern spi in document dk.

3.4 Combining structure and content
A global measure of relevance for a structural pattern

combines the informativeness of it (Section 3.3) with its
number of occurrences and a decay factor given by its level
(Section 3.2). In terms of the number p of significant terminal
paths where spi occurs on level, we have:

RForest[spi] =

p
∑

k=0

I(spi, dk) × p × level(spi) (5)

There exists a single spi (element type on a certain level),
so the number of occurrences of spi in the sample pages is p,
p ≤ n, where n is the total number of documents. The role
of the p factor is clear, since we want to give a bigger weight
to structural patterns that are not only informative, but also
very frequent. In addition, the level factor is a heuristic
favoring nodes that are deeper in the DOM tree. Indeed,
elements that are too high in the hierarchy (e.g, <body>) are
more unlikely to effectively identify the target article object
because they are not discriminative enough. The idea of a
decay factor has been also introduced in other works [17,22],
under different forms. For instance, in the ranking formula
of [17] the decay factor is a value in the range 0 to 1.

We rank the structural patterns spi, i ∈ 1 : m using this
relevance measure. In the end, we simply derive the XPath
clue of the best ranked structural pattern, which at this point
fully identifies a target subtree across various documents. For
clarity, following the reasoning on Figure 3, the path of the
generic wrapper will be: //div[contains(@class,’story’)

and (@dfs=’78’ or @dfs=’82’ or @dfs=’83’)]. By apply-
ing the generic element clue as a XPath expression over the

dk, k ∈ 1 : r, we are most likely to find a node element that
satisfies these structural conditions and whose content is
highly informative.

We summarize the final part of Forest in Algorithm 1 (for
space reasons, we assume clear the pre-processing, concepts
definition and we use the measures previously described):

Input: elementT ypes
Output: infoBlock : the most informative block of a Web

page
foreach possible level do

get the structuralP atterns occuring on this level;
foreach elementT ype of structuralP attern do

count the nbofOccurrences of elementT ype;
possibleDfs := group all its dfs positions across
xmlDocuments;

end

fullXP athClue := elementT ype completed with its
possibleDfs;
compute the relevance of structuralP attern ;
construct a
genericW rapper := 〈fullXP athClue, relevance〉;
candidates.add(genericW rapper):

end

sort candidates based on their relevance;
return infoBlock := the top ranked element from candidates;

Algorithm 1: Ranking structural patterns

3.5 Coverage
Intuitively, the DOM node which contains the main con-

tent of an article should be defined as the smallest, lowest
common ancestor (SLCA [34]) node in the hierarchy that has
a maximal coverage. For a structural pattern spi, i ∈ 1 : m,
the coverage of it represents the sum of normalized tf-idf
weights of signifiers occurring in the text of a DOM element
that has spi in dk.

Cov(spi, dk) =

∑nbSigs(node(spi,dk))

j=0 weight(signifierj)

totalNbOfSignifiers
(6)

We implement this as a baseline to show what can be
achieved by making use of the bag of signifiers, in compari-
son with the more sophisticated measures used by Forest.
For this setting, Coverage uses Cov(spi, dk) to replace the
informativeness measure in Formula 7, and selects a struc-
tural pattern that is best covered in terms of signifiers:

RCoverage[spi] =

p
∑

k=0

Cov(spi, dk) × p × level(spi) (7)

4. EXPERIMENTS

Dataset construction. Next, we describe the RED (for
RSS-based Experimental Dataset) dataset used to evaluate all
techniques discussed in this section. Note that the existence
of Web feeds is not a condition for Forest, which only needs
some sample pages that may represent per se the source of
keywords. We have used Web feeds not only as a potential,
alternative source of keywords, but also because the feed
items of a Web channel refer to Web pages that typically
share the same template.



The motivation for construction of this dataset is the
current impossibility to test Forest directly on existing
Web article content extraction datasets: first, they operate
at Web page level [19]; second, the datasets that are using the
setting of sample pages for the main article extraction are not
online [12]; finally, datasets using sample pages may exist, but
are used instead in the context of the deep Web for response
record extraction. In addition, one of the source of signifiers
that is common to Forest, but also to the Sigfeed baseline
is Web feeds, and there exists, at our best knowledge, no
other feed-based dataset for Web article content extraction.

Feeds of Web sites are acquired in an automatic man-
ner by scraping the results of a feed meta-search engine,
Search4RSS5. The condition of selection of feeds is to be
parseable and to point to Web articles (and not tweets, for
instance). Both feed and reference Web pages have been
crawled at a given point in time, for 90 Web sites, with 3
exposing two slightly different templates. We have thus accu-
mulated 93 types in total and 1,010 sample Web pages. Note
that the annotation process is particularly time-consuming
since more than 1,000 Web pages need to be annotated by
hand.

As mentioned, feed URLs were given by Search4RSS in
response to a topic query (keyword-based). For this reason,
RED is quite heterogeneous: it includes various types of
Web articles that exists on the Web on a particular subject
(e.g., poetry), such as blog posts, news pages, professional
or personal Web pages, etc. There exist various particu-
larities of Web articles that we have observed during the
annotation phase; for instance, we have found main article
content scripted, spreading across different pages, or mainly
composed of images or videos. Content is represented in new
ways, which increases the difficulty of the extraction task.
The gold standard is further discussed and available at the
first author’s Web page.6

Gold standard. Remember that the target of the extraction
is a Web article, so the goal is to retrieve the title, fulltext, and
metadata like author(s), publication date, image captions,
categories and tags, if they exist.

The gold standard for our dataset has been manually
annotated. We have also annotated multiple, random Web
pages corresponding to feed items. This is useful in the
analysis of the number of pages that are necessary to reach a
top efficiency. On the other hand, not all Web feeds have the
same number of items in their channel, so we have annotated
between 2 and 20 Web pages per feed, knowing that the
typical number of items in a feed is 10 [29]. After a round
of quality assurance to check that the guidelines were well
understood, the annotation task is intuitive enough to reach
a high-level of inter-annotator agreement; the precision from
one annotator to another was 97%.

Baselines. We compare the two variants of Forest (when
keywords come from feeds, or from the tf-idf analysis) to
four different baselines.

The first is Boilerpipe [19], already introduced in Sec-
tion 2. As a state-of-the-art method in content extraction,
Boilerpipe uses quantitative linguistics (features like aver-

5http://www.search4rss.com/
6http://perso.telecom-paristech.fr/~oita/research.
html

age word length, absolute number of words, and the like)
mingled with some heuristics on the DOM tree and semi-
supervised learning to identify fragmented, short text in
blocks of a document as boilerplate, and filter it in order to
obtain the main article content. Unlike Forest, Boiler-

pipe needs to be trained for specific data, but a pre-trained
extractor (i.e., ArticleExtractor) that we believe to be the
best adapted for the articles in RED, is publicly available
in the author’s implementation.7 No significant differences
were observed for other provided extractors.

Another baseline, that we have previously developed, is
Sigfeed [29]. This technique selects, at the level of a single
Web page (similarly to Boilerpipe), the smallest, lowest
<div> block ancestor in the DOM hierarchy that is the most
dense in keywords obtained from the feed description (simi-
larly to Forest (feeds)).

The Coverage (see (6)) baseline is one intuitive technique
that takes into account the tf-idf weighted signifiers that we
automatically acquire in the presence of multiple sample
pages. This heuristic is useful to test whether our elaborate
informativeness measure adds value.

Finally, the Description heuristic simply takes, as the
main content of the Web page, the title and description of an
item as it appears in the Web feed (with some processing on
the description to eliminate the possible HTML encoding).
This hypothesis is important to be tested in the case of Web
feeds, because there are cases in which feeds contain the
whole title and fulltext of an article.

Performance metrics. The result of our technique is a
generic tag path which returns, for each Web page of studied
channel, a DOM subtree in the form of an XML document.
This is useful to get any media resource that is typically in-
corporated in an article which contributes to its object view.
In spite of that, we make the evaluation on the extracted
textual content, to compare it with our baselines (in partic-
ular, because the output of Boilerpipe and Description

is plain text). We also want the comparison measure to be
insensitive to different amounts of whitespace extracted by
various methods. After a typical normalization, we compute
the set S of 2-grams (two consecutive words) in the output
of all methods, and estimate classical precision and recall
measures by comparing it to the set G of 2-grams of the gold
standard, as:

Precision(G, S) =
|G ∩ S|

|S|
, Recall(G, S) =

|G ∩ S|

|G|
.

Precision and recall are then summarized by their harmonic
mean, the F1 measure. Note that the precision we compute
is exactly the Rouge-N [23] measure used for comparing
the performance of text summarization techniques.

Main results. We show in Table 1 the mean precision, mean
recall, and corresponding F1 measure of the different methods
tested over the whole dataset. We note that, since we have a
sample of 90 independent sites and values of the order of 90%,
the confidence interval at 95% probability (1.96 standard
deviation) [15] is ± 0.06. To investigate more precisely the
shape of the distribution of results for each method, Figure 4
presents the F1 measure of the different methods. We show
for each method its 9th and 91th percentile (whiskers), its

7http://code.google.com/p/Boilerpipe/

http://www.search4rss.com/
http://perso.telecom-paristech.fr/~oita/research.html
http://perso.telecom-paristech.fr/~oita/research.html
http://code.google.com/p/Boilerpipe/


Prec. (%) Rec. (%) F1 (%)

Forest (tf-idf) 93 92.8 92.1
Forest (feeds) 92 90.5 89.6
Boilerpipe 79.5 84.0 81.7
Sigfeed 88 83.9 84
Coverage 89.7 83 82.9
Description 84.4 22 30.3

Table 1: Mean precision, recall, and corresponding
F1-measure

first and third quartile (box) and its median (horizontal rule).
Both variants of Forest significantly outperform the base-

lines, with a global F1 measure of, respectively 92.1% and
89.6%. These results were obtained for the whole dataset,
that is, 1006 Web pages.

Boilerpipe achieves a relatively low score here, despite
the fact that the Web pages of our dataset (blog posts, news
articles) match the kind of Web pages the ArticleExtractor
has been trained on. We observe in practice that Boilerpipe

has the following shortcomings: when a Web page contains
various small Web articles, the text of all is taken as a whole.
Also, when the text of an article is segmented by the use of
images (or different kind of content that text), Boilerpipe

considers them as separators, giving in this case a partial
result. At the same time, Boilerpipe can be applied directly
at the level of a single Web page, which is a more independent
setting than that of Forest, in which at least two pages
that share the same template are needed.

The intuitive Coverage approach that uses a relevance
measure based on weighted keywords and the Sigfeed [29]
heuristic-based method manages a higher level of F1 measure
than Boilerpipe. We infer from this that, wherever their
source, keywords are globally useful in the task of content
extraction. Sigfeed is however outperformed by Forest:
the simple div block heuristic that works in many cases, fails
to fully extract the article when complex HTML element
nesting is involved.

Precision of the Description baseline is low, suggesting
first, that feed items also contain 2-grams that do not appear
in the main content (an example of that are dedicated links
to go to the unabridged version), and second, judging by the
abysmal recall, that feed items are often incomplete versions
of the main content of a Web page. We also found out that,
for practical (the article can be very long) or commercial
purposes (to attract site visitors), many feed generators just
cut the description to a couple of lines [14].

To look more carefully into these results, turn now to
Figure 4. This graph shows in particular that in addition of
having better performance in average, the two variants of
Forest are also more robust: on 90% of the corpus (resp.,
75%), the F1 measure is greater than 84% (resp., 91%), to
compare with 55% and 73% for Boilerpipe.

Another interesting feature shown in Figure 4 is that both
Sigfeed and Coverage have quite a high median, which
means they will work well on most sources, but have a F1-
measure less than, respectively, 55% and 9%, on 10% of
the corpus. As already noted, Description performs very
poorly, with a F1 score greater than 50% on less than 25%
of the corpus.

The similar performance of Forest(tf-idf) and Forest(feeds)
suggests that keywords extracted from Web sites themselves
are as useful as keywords from more trusted sources like Web
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Figure 4: Box chart of the F1 measure
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Figure 5: Evolution of the F1 measure in function of
the (maximum) number of pages sharing a similar
layout considered for each site

feeds items. However, Forest(tf-idf) has the advantage of
not depending on the presence of Web feeds.

Influence of the number of pages. To understand the im-
pact of the number of pages with the same layout available
to Forest, we plot in Figure 5 the obtained F1 measure
of different methods with respect to the number of pages
sharing the same template. Obviously, since neither Sigfeed

nor Boilerpipe make use of the repeated structure, the vari-
ation of their F1 measure here is not significant: it is just
due to the somewhat fluctuating performance behavior on
the collection of Web pages of a given site.

Forest(feeds) is already at the same effectiveness level
as the Sigfeed baseline that does a comparable job, and
is even slightly better, perhaps thanks to the measure of
informativeness used.

Forest requires at least two pages sharing the same layout:
this is helpful not only for the acquisition of discriminative
keywords using Tf-Idf, but also allows the exploitation of the
repeated Web page structure for pattern identification. As
soon as there are at least two sample pages, Forest reaches
an F1 score that is already above that of Boilerpipe.

When the signifiers are given by a Tf-Idf analysis on the
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Figure 6: Evolution of the F1 measure in function
of the (maximum) number of signifiers used in the
process of path selection

Web pages themselves, Forest cannot be applied with good
precision on a single page: this is expected, since it means
that the IDF measure is here constant and cannot serve
to distinguish between page-specific and terms which are
common to the Web site as a whole. In addition, there is
no repeated structure that can serve to add relevance to
tag paths. Forest keeps improving as the number of Web
pages increases, to reach a plateau around 8–10 pages. In
any case, a small number of pages is enough to get better
results than the baselines, which broadens the applicability
of the method.

Influence of the number of keywords. Another parameter
that can be modified is the number of signifiers kept for a
given Web page. From our experiments (see Figure 6), as
long as the number of signifiers exceeds 5, the quality of the
extraction is not overly affected, though we do observe a
slight reduction in effectiveness when too many signifiers are
considered.

When the number of signifiers falls below 5, the resulting
few terminal paths are not giving enough insight on the
informativeness of their element patterns, and the precision
of results gets lower.

Boilerpipe does not uses signifiers, so the variation of its
F1 measure is zero. On the contrary, Sigfeed does, and we
observe a surprisingly high F1 stability, with a high score,
even when using a single keyword. This could be explained
by the div heuristic that is employed in Sigfeed: the idea
that significant nodes are simply clustered based on their
first (i.e., lowest in the hierarchy) div ancestor. Obtaining
low variations of the efficiency when less signifiers are used to
get significant nodes could mean either that these significant
nodes have in common the same div block. As the sources
of signifiers for Sigfeed are the title and description of an
item, the feed signifiers tend to concentrate at the beginning
of the Web article, at the same relative location. So having
many other keywords in this case does not change the lowest
common block ancestor that is chosen as wrapper for the
target article.

Miscellaneous. We report briefly on additional variations
of the settings for Forest.

We have tested U and J separately in the beginning to find

Prec. Rec.
(tf-idf)

F1 Prec. Rec.
(feeds)

F1

0.86

0.88

0.9

0.92

0.94

0.96

0.98
J

U

I = J × U

Figure 7: Influence of J and U on mean precision,
recall, and corresponding F1-measure of Forest

a suitable measure (see Figure 7). The common pattern is
that, both for Forest (tf-idf) and Forest (feeds), J and U
alone give reasonable F1-measure scores, though lower than
the combination of J × U . In particular, J tends to have a
higher precision than U and a lower recall, which makes the
combination of the two a good compromise.

Challenges. Even if the DOM block is correctly identified,
Forest efficiency can be lowered in some cases by the fact
the extraction may also contain comments or related links.
The cause is simple: the signifiers can also pinpoint comments
or links; when comments or links are integrated together with
the main content in a DOM block without a proper logic
segmentation, the common block is taken as result.

We have annotated the gold standard regardless of the
actual relevance that comments or related links may have
to signifiers, with the aim to extract only the main content.
It is however difficult to decide whether this type of related
content can not be useful for a user that issues a keyword
query.

We have made experiments to filter out first, the lists of
anchors from the DOM of the document in the pre-processing
phase, and second, significant paths that have the keyword
“comments” in their signature. However, these heuristics
barely improve the results: 1% for the first and 2% for the
latter. The reason that we observe in practice is that either
the lists of anchors is part of the gold standard for some
articles, or the heuristics do not work because the anchors or
comments are encoded in multiple, subsequent divs rather
than in list items in ol, ul, etc typical DOM lists types.
The improvement is also minimal for other heuristic choices
like the use of the tolerant form of a DOM node attribute
in definition 2 (1%), and biasing Forest in favor of deep
nodes by a decay level factor in relevance formula (7) (2%).

5. DISCUSSION
We have presented a novel unsupervised technique that

mingles wrapper induction with content analysis, for Web
pages that share the same HTML template. The algorithm
has the originality of using keywords to trace locations of
interesting blocks in the Web pages. We filter out significant
tag paths and define a measure of relevance at the level of
DOM elements. This measure takes into account not only
the structural patterns of the elements, but also the content-



based informativeness. This approach produces a single,
generic tag path that is used to extract the data of interest
across the various pages. Forest achieves promising results
in comparison with state-of-the-art approaches for content
extraction, for a diversified dataset of Web pages containing
Web articles.

In this work, we have shown that we can successfully exploit
two potential sources of keywords: Web feed items and (if
enough pages using the same layout are given) frequent and
informative terms occurring on each Web page. We believe
that the same technique can be used on a broader range
of settings: other possible sources of keywords are anchor
text of links pointing to a page, terms occurring in search
engine query logs, semantic metadata associated to the Web
page. We have also successfully applied Forest to the
extraction of data from deep Web response pages generated
from submitting a form [28]: here, the signifiers can come
from the keywords used during the form submission.
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