Vibration-based fault detection of accelerometers in helicopters

Victor Girondin Midzodzi Pekpe – Hervé Morel – Jean-Philippe Cassar

LAGIS

Fault Tolerant Systems team Polytech-Lille, University Lille 1 midzodzi.pekpe@univ-lille1.fr jean-philippe.cassar victor.girondin@etudiant.univ-lille1.fr

Vibration-based helicopter monitoring

Helicopter mechanical transmission system

EADS, Eurocopter

Research and Development Department herve.morel@eurocopter.com

EUROCOPTER

Its for non-optimized and optimized skewness Resu

Lab experiments : accelerometer with loosening

Main objectives

- To improve helicopter's availability and safety while reducing operational costs through automated algorithms able to detect and diagnose degradations within a condition-based and data managing framework
- The scope is restricted to vibration-based analysis of the mechanical transmission: shafts, bearings, meshings, couplings and rotors

Figure 1 : Scheme of a EC145 with a simplified mechanical transmission

Flight data that had been recorded on the epicyclical stage (EPI), the main gearbox (MGB) and the tail drive shaft (TDS) have been replicated with a shaker for increasing loosening.

Figure 4 : Skewness and Optimized Skewness in log-scale for loosening experiment. The spacing is in 0,1 millimeters from the nominal position. Thresholds are plotted in solid line.

- > Asymmetry is visible in the global shape of the values and also **through transients** \Rightarrow non-linear phenomena.
- \succ Levels and patterns of asymmetry strongly depends on the locations of the accelerometers.

In-flight loosenings

• 3 days of flight : 350 recordings during various flight stages (steady, hover, turn...).

Context of maintenance

Accelerometers monitoring

The accelerometer is subject to several heterogeneous phenomena and to the complex dynamic response of the aircraft

Figure 2 : An accelerometer mounted on the casing of a shaft and several phenomena that can affect its functioning

Passive monitoring of accelerometers

Problem To design a passive method detecting loosenings and fallings of the accelerometer that does not require trend analysis

Solution

• Operational feedbacks on loosenings (low tightening torque) and fallings (mechanical shocks on the accelerometer).

- 2 accelerometers on MGB and 2 accelerometers on TDS : 50000 samples at 15kHz.
- 1 maintenance action has been applied after the 137th recording (vertical line).
- After verifications, it appeared that these MGB2 and TDS2 sensors were underscrewed.

(a) Optimized skewness (b) Standard skewness on MGB1, MGB2 (main gearbox) and TDS1, TDS2 (tail drive shaft) for 3 consecutive days.

The thresholds used in figure 4 have been plotted with solid horizontal lines.

- \succ The optimized skewness allows a better false-alarms/no-detections ratio. \succ When the accelerometers are not well calibrated, they may saturate. This saturation lowers down the performances of the skewness. \succ Vibrations need to « trigger » the fault.
- Extensive analysis of vibrations from lab experiments and flights \Rightarrow strong asymmetry for degraded accelerometers.

- third centered and > The reduced cumulant, called skewness, is able to measure the identified pattern.
- > A linear filter optimizing the skewness is applied.
- \succ Since this indicator is normalized, it not make trend analysis does necessary.

Figure 3 : Two reduced flight recordings before and after loosening. Because of this degradation, the skewness increases from 0.03 to 3.

Acknowledgements: The authors would like to thanks J.F. Brunel and the mechanical engineering staff of Polytech'Lille for their help and support.

Conclusion

- Monitoring the mechanical transmission of a helicopter \Rightarrow monitoring the monitoring system itself
- The two main cases of degradations have been studied \bullet and one statistical indicator has been designed : the optimized skewness
- According to lab experiments and flight tests \Rightarrow performance depends strongly on the frequential content of the recorded vibrations