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F-HARMONIC MAPS AS GLOBAL MAXIMA
MOHAMMED BENALILI AND HAFIDA BENALLAL

ABSTRACT. In this note, we show that some F-harmonic maps
into spheres are global maxima of the variations of their energy
functional on the conformal group of the sphere. Our result ex-
tends partially those obtained in [15] and [17] for harmonic and
p-harmonic maps.

1. INTRODUCTION

Harmonic maps have been studied first by J. Eells and J.H.Sampson
in the sixties and since then many articles have appeared ( see [6], [12],
[16], [19], [20], [24]) to cite a few of them. Extensions to the notions
of p-harmonic, biharmonic, F-harmonic and f-harmonic maps were
introduced and similar research has been carried out (see [1], [2], [3],
(7], [15], [18], [21], [23]). Harmonic maps were applied to broad areas
in sciences and engineering including the robot mechanics ( see [5], [8],
[9] ).

In this paper for a C*-function F : [0, +o0o[ — [0, +o00[ such that
F'(t) > 0ont € ]0,+o0[, we look for sufficient conditions which present
F-harmonic maps into spheres as global maxima of the energy func-
tional. Our result extends similar results obtained in [17] and [18] for
harmonic and p-harmonic maps.

Let (M, g) and S™ be, respectively, a compact Riemannian manifold
of dimension m > 2 and the unit n-dimensional Euclidean sphere with
n > 2 endowed with the canonical metric can induced by the inner
product of R"*1.

For a C'- application ¢ : (M,g) — (S™ can), we define the F-
energy functional by

Er(o)= [ F (@) o,
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where 1% denotes the energy density given by

M—EZ’CM

and where {e;} is an orthonormal ba81s on the tangent space 7, M and
dvg is the Riemannian measure associated to g on M.

Let ¢ 'TS"and T (qb_lTS") be, respectively, the pullback vector
fiber bundle of T'S™ and the space of sections on ¢ 'T'S™. Denote
by VM, V5" and V, respectively, the Levi-Civita connections on: T'M,
T S™ and ¢ 'TS™. Recall that V is defined by

VxY =V Y

where X € TM and Y € T (¢~ 'T5").
Let v be a vector field on S™ and denote by (7}), the flow of diffeo-
morphisms induced by v on S™ i.e.

d v
dt%t 0= ('Yt)-

Denote by ¢, = 7}o¢ the flow generated by v along the map ¢. The
first variation formula of Fr(¢) is given by

Yo = id

d do,|”
EBR(61) liom /M F (%) (Voudhy ds) oo v,

[ e,
M
where Tr(¢) = trace,V (F’ (@) dgb) is the F-tension.

Definition 1.1. ¢ is said F-harmonic if and only if 7r(¢) = 0 i.e. ¢
is a critical point of the F-energy functional Ep.

Let v € R™™ and set 0(y) = v — (v,y)y for any y € S™. It is known
that v is a conformal vector field on S™ i.e. (7¢)* can = a?can where
(77), denotes the flow induced by the vector field v. The expression of
oy is given in [17] by

[l

1 = .
(1) Y= Vol cht + o, sht

where ¢, (x) = (v,¢ (x)) and (.,.) the inner product on the Euclidean
space R™*1. Denote by £(¢) the subspace of T'(¢*T'S™) given by

£(¢) ={vo0¢,ve R},
Obviously, if ¢ is not constant, £(¢) is of dimension n + 1.
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2. F-HARMONIC MAPS AS GLOBAL MAXIMA

For any v € £(¢), we denote by (v}),cp the one parameter group
of conformal diffeomorphisms on S™ induced by the vector v. For a
C?-function F : [0, +00[ — [0, +-00[ such that F’(t) > 0 in ]0, +o0.

Now we introduce the following tensor field

(14 |dgl?
S (9)=F (T) PR

C1del? | ldel L, (1dsl?\ | .
F<2)+2F(T ¢ can.

For x € M, we set
SoT(¢) (x) = inf {S],(¢)(X, X), X € T, M such that g(X,X) =1}.

The tensor S} (¢) () will be said positive ( resp. positive defined) at
xif SPF(¢) (x) > 0 (resp. SoF(¢) (x) > 0).

Example 1. For F(t) = ﬁ(Qt)%, with p = 2 or p > 4, SP () is the
stress-enerqy tensor introduced, respectively, by Eells and Lemaire for
p = 2 [12] and modulo a multiplied positive constant by El Soufi for

p >4 [16], so we may call 5’5(@ the stress-energy tensor of ¢.
Indeed if F(t) =t then F/(t) =1, F"(t) = 0 and

d 2
57 6=, goan

, with p > 4, Fi(t) = (20)27, F'(t) =

y
2

In the case F(t) = %(225)
(p—2)(2t)57% and

1 p - * p 1 - *
Sy (9) = 5 ldo[" g — 5 |dol"™* ¢"can = 3 (5 [dol” g — |do|"™ c«m)
The function F' is called admissible if F' satisfies
|do|?
F' (0206, 199 F" <—>
@00 3 otop - —22 | 6,2 0
F’(Oé%OQb.T) F (%)
and the stress-energy tensor S ; (¢) of ¢ fulfills

Sy (1,00) > afod.Sy (¢)
where v, is the one parameter group of conformal transformations in-

duced by the vector field T ( defined above ) on the euclidean sphere
S™ and «y is given by (1).

B =
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Example 2

The function F(t) = %(Qt)g forp=2and p > 4 and ¢t > 0 is
admissible.
Indeed, for F(t) =

diffeomorphism ~ on th

51 (v00) = 5 14 (300)” g £ |d (3,08)2 6*can

so if we let |d (v,00)|° = a20¢. |d¢|?, we get
1 p 2
S5 (00) = aoo. (5 ldol" g — § 4o 67can)

= a;09.5; (9).

The F(t) = 1+at — e, for t € [0, +00] where @ = max,ey, 225 d" is ad-
missible provided that the conformal diffeomorphism on the euchdean
sphere S™ is contracting that means that the function ¢, given in the
expression of (1) is nonnegative.

Indeed, we have

6_a30¢\d¢\2 o |d¢2>|2
2
B = _'at 0¢ ‘d¢‘2 + |d¢|2 ¢’U
a+ e oio? a+e 2

SRl

(2t )% we have B = 0 and for any conformal
euclidean sphere, we have

@

\d¢>\2

Putting u = a?0¢ € ]0, 1], we consider the function ¢ (u) = —.UW—{—
ldg|?

S—W,We get

ate

2 _ldo?

/ _ | |d¢| o —dePu € 2
80 (u> - ( 2 u a € 7|d¢|2u 2
<a+e 2 )

and it is obvious that ¢'(u) < 0, hence ¢ is a decreasing function on
10,1] i.e. p(u) > ¢(1) = 0. Consequently B > 0.
Now

2 2
55 (o) (0 ) = (a5 ) MO0

2 2 ° 2
B [(a_f_e_d(%f;‘?) ) B ]d(7t20¢)\ - ldazge) ] (1,06)" can (X, X) .

2\ |d
= a’o¢ (a+e‘a%°¢d§ ) 1" ¢l g(X,X)
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2,5 012 AP° _2oplass®
<a + e_at‘"z’dﬁ) - afogb%e_ato‘i’ldﬁl ] ¢*can (X, X)

— adoo (w057 F 64 (X, ) = can (X, X)]

—aZo¢

ratogl22L

(X, X).

An other example is the following function F(t) = (1+ 2t)* where
0 < a < 1, the F-energy is the a-energy of Sacks-Uhlenbeck ( see 7?7
). In fact

B _ 1 > 1
B=la 1)<1+a%o¢.|d¢|2at0¢ 1+|d¢\2)¢”

_ (a—1)(afop —1)
(1+ ajoo. [do|*) (1 + |do|*)

provided that ¢, > 0.
And for vector field X on M, we have

¢y 20

SF (3008) (X: X) = 20 (1+ o ldof)" " 2o g (x, x) -
[Za (1 + a?o¢ |d¢|2)  t+da(a—1) (1 + a?o¢ |dqb|2)a_2 Ozfogb] a?op.¢*can (X, X)

|dg|’

= [2@ (1+ afo¢|dq§]2) a?od ( g(X,X) — ¢*can (X, X)) +

4o (1 —a) (1+ ofod |d¢]2)a72 a?og.¢*can (X, X)]

and taking account of the positivity of the stress-energy tensor of ¢
and the fact that ¢, > 0, we infer that

Sy (1100) (X, X) > afod.S; ¢ (X, X).

Remark 2.1. ¢, > 0 occurs for example if ¢(M) is included in the
positive half-sphere S = {x € S™: (z,v) > 0}.

In this section we state the following result

Theorem 2.2. Let F' : [0,4+o00[ — [0,400[ be an admissible function
and ¢ be an F-harmonic map from a compact m-Riemannian mani-
fold (M, g) (m > 2) into the Euclidean sphere S™ (n > 2). Then for
any conformal diffeomorphism v on S™, Ep (vop) < Egr(¢) ( resp.
Ep (yop) < Ep (¢) ) provided that the stress-energy tensor SE (¢) is
positive (respectively positive defined).
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ya
2

Remark 2.3. In case F(t) = %(Qt) , p =2 orp >4 the condition

@, > 0 1s not needed since B = 0, so our result recover the ones by
El-Soufi in [16] and [18].

To prove Theorem 2.2, we need the following lemmas

Lemma 2.4. Let ¢ : (M,g) — (N,h) be a smooth map and ~y be a
conformal diffeomorphism on N, then the F-tension of the map ~oo,
s given by

2

Lty (e (8)) + dy ( (' iid ) ” (Vf))

2
F! 0520¢ ‘d‘g‘

ldo|2
P (1455)

Proof. We follow closely the proof in [18]

Tr (yo) = trace,V (F’ (M) d (’yoqﬁ)) =F (M) trace (Vd (o))

s (57 (6290

where V' (M) is the gradient of F’ (M) in M.

Since 7 is a conformal diffeomorphism on 5", we have

e (106) = (O‘%@) 7 (700) + d (y09) (VF’ ( $199! ))

e ( ol%0 ) (trace,Vdy (o, d) + dv.r (6))+d (109) (VF( ML ))

2
~ (a%as@) (tmcegm (06,d6) + — sy <¢>>)
()

F'(a20¢'%0)  ( 1dof” A s ol
_Md(fyo@ <VF( 5 +d (yop) | VF 040¢T )

where f = and v*can = o’can.




F-HARMONIC MAPS AS GLOBAL MAXIMA 7

2
F’(a20¢‘d§‘ )

()

7r (yo9) = F'(a*0p——

Putting f = we get

| ¢' Jtrace, V" dy (dé, ) + fdy (rx (6))

P (@) 4(106) (V1)

Now since v : (N,v*can) — (N, can) is an isometry then, if V
denotes the connection corresponding to v*can, we have

Vdy(X,Y) = dy (%XY . VXY>
and since ( see [18])
VxY —VxY =a ' ((X,Va) Y + (Y, Va) X — (X,Y) Va)

we obtain
2
trace,Vdy (dg, dg) = 2o og.dy <dq§ (Vaog) — @V(wqﬁ) :

Finally we infer that

\¢\

d 2
71 (708) = 20" 06 F' (02061 ) <d¢ <Vao¢>—%wo¢)

fdy (e () + F (' i )d 0dé (V1)

[l

Lemma 2.5. Let ¢ be an F-harmonic map from an m-dimensional
Riemannian manifold (M, g) (m > 2) into the Fuclidean unit sphere
(S™, can) (n > 2).

Then for any v € R"™ — {0} and any t, € R we have

d

E Er (7? 0¢) t=t

ht, '
_2S|vt| /Moz?m.F (afoo . >(|d¢| [Fog|” = 1dg,[") dv,

- [ atoor <Id¢| ><d¢<wto>,@0¢> o
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F (a2 opldol?

h o to 2 * 2
wnere fto = W , 7y can = OétOCCLTL
2

and
]
¢, sht, + |v| cht,

Proof. Recall that the first variation formula of the F-energy is given
by

CYtO

d
e 0100), = = [ (e (31.00) o (1100)) do,

By Lemma 2.4 and the fact that ¢ is ['-harmonic we get

d v
EEF (’Yt Ogb)t:to =

2 2
—/ 20,00 F' (a? 0gb.|d¢| ) <(V0ztoo¢)T _ ldel Vatoo¢,ﬁo¢> dv,
y 0Py 2

N /M F (@) (do (V1) ,v09) dvg

and since ( see [18] )

(a7,)"
(2) Va; = —l—]shto@
v
we have
b\ 2
(3) (Vay,00,700) = — (O’é;]) sht, |50qb|2 )

Now let (e, ..., e,,) be an orthogonal basis on M

m

((Var,00)" 700) = >~ (Var,06,dd(e)) (voo, do(e:))

=1

ht, -
__ S|v7 (r,00)* 3 (W06, do(e;))?
=1
ht,
B _% (at00¢)2 |d¢v|2

Hence

sht, do|? do|* _
-2 /Ma;?ooqs.F’ (afooap.’ 2| ) (' 2' [Dog|* — |do,|* | dvg
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- [ atosr <|d¢| ) (6 (V £,,) , 7o) du,.

We set

ott) = [ atos.r (‘d‘f | ) (46 (V £,) T00) dv,.

Lemma 2.6.
g(t) =

[ atos.Fia; 'd'>\d¢\< 6 (V (ar,06)) ,Tod) dv,

206 | P20 900 oy _ Fl0F0050) L, dof
+[\4&t0¢. (F (Oét0¢. 5 )atO(ﬁ—mF | ’]dqﬁl d .

Proof. First, we compute V f;

F// 2 M
Vi QQ(TZZ') ) (a106. |49 ¥ (109) + oo (V6. d6))
2

2
_Fl(afos %) -, (ldof?
Jal (MY 2
2
_ F”(afo¢.‘d§‘2)

|do|
F(145)

e, 2 |dg|? (2o, 14 2
N (F (at0¢. D) )at20¢— F(OétO(b- 2 >F” (|d¢| )) <Vd¢’d¢>

) (Vdo, do)

a0 |dp|* V (o00)

e () T
Then
g(t) = /M 06 F' ("M )<d¢ (V£.,) 0) du,
— [ atoor(at oo '¢' ) |d6f2 (d (V (o, 00)) , Tog) do,
(4)

) oo ldOP ,  Fadoep ) |dgf?
+/Mat00¢. (F (o 0. 5 )i od — - <@>2 F 5
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x (d¢ (V |do|*) ,Tos) dv,.

Let {e1, ..., e} be a basis of T, M which diagonalizes ¢"can, we have

<d¢ (v'dg | ) ,vo¢> = (V.,d6,d9) (706, do(e;)) {do(er), do(c,))

= (Ve do, do) (vod, do(e;)) ¢*can (e;, e;)
= (Vaosd (e;) , d¢ (e;))
= (Vg (e, 000, do (¢;)) + ([Dog, do (e;)], do (e;)) -

Likewise we get

_ 1d
([Uog,do (e;)],do (e;)) = 5 im0 7} 1do (e;)]?
1d
=5 im0 2 |do ()|

and taking account of (1) we obtain that

([vod,d¢ (¢;)], d¢ (¢;)) =

so we infer that

d
< i < o9l ) ,UO¢> = % |dg[* + (V.,Tog, d (e;))

v ||d¢( e;)|’

and
(Ve,U0g,do (e;)) = V., (Vop,d¢ (e;)) — (Do, V,do (e;))
= V.. (v do (e;)) <voqz5 Ve, do (e])>
<v Ve, do (e; > <v0¢ Ve, do (6])>
<v — 009, V,de (ej)> 0.
Hence
2
(5) <d¢ (V'df' ) ,vo¢> - 5 aof
U
Now set

ht, ) d do® _
ot =25 [ ot ¢F’< '¢'><—L§Lhmw”+u@ﬁ>d%

~ [ 0000050 O 146 9 (a,000) 500
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and since by (2) we have

ht,
(06 (¥ 01,00)) o) = =00 00 do,
we get
®) 2 2 2
o(t,) = 2% o 0. (F' (a?go¢.|d§| > —|—afoo¢.|d(2b| F” (a?go¢.|d§| )) |de,|?
M
2 2
—F (afoo¢.@> @ \Eo¢|2] duy.
or

sht, v
o(t,) = —2 o /Maf’ooqb.S;F (v 00) dv,.

Proof. ( of Theorem 2.2) Recall ( see [13] ) that for any conformal

diffeomorphism v of the unit sphere S™ there exist an isometry r €

O (n + 1), a real number ¢ > 0 and a vector v € R"™ — {0} such that

v = rov?, so it suffices to consider ¥ with ¢ > 0 and v € R""! — {0}.
On the other hand

S Br (1506) = o(t) + X(1)

|de|* dv,

_ 2 "y 2 |d¢‘2 2 F,(agogb'@) " |d¢|2 ¢v
X0 =~ [ atoo. | F(ao0 % yatos - eam (50

and ¢ (t) is given by (6). Now, since the function F' is admissible
we infer that y(t) < 0 . Since the energy stress-tensor S} (yo¢) =
Sf (v,00) of yo¢ is positive ( resp. positive defined ) by assumption
and

2 2

e (|d<vto¢>|2> L la0w0d)l’ L, (\d(vto@f)] 106" can

S (y.08) = F' <|d<w¢>|2> 4000l

2 2 2

2 2 2

= a?og
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d do|?
—aZo¢ |¢| —F" afogb% ¢"can
so the tensor
o PN L W L ™ B L |d¢! LR
F atoqﬁT — 9~ F atoqﬁT + a?op—-F atoaﬁT @~ can

is positive ( resp. positive defined ). Consequently ¢(t) < 0 ( resp.
©(t) < 0) for any ¢t > 0 and the proof of Theorem 2.2 is complete. [
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