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Constraint Programming as a Means to Manage Configurations in Self-Adaptive 

Systems 

 

Pete Sawyer, Raul Mazo, Daniel Diaz, Camille Salinesi and Danny Hughes 

 

Abstract 

 

In recent years, new software architectures have been developed in which components can be 

bound and unbound dynamically as the context demands. This capacity to dynamically adapt 

the software’s structure, behaviour and quality of service should make resilience easier to 

achieve by allowing systems to respond more flexibly to changing environmental contexts. 

However, because the decision of how to react to a new context is devolved to a run-time 

decision-making element that senses the context and selects an appropriate component 

configuration, a new approach to how software is specified is needed. A self-adaptive system 

that uses architectural adaptation may be conceptualized as a dynamic SPL. In this paper we 

argue that the problem of specifying a DSPL can be reduced to a constraint satisfaction 

problem. We combine goal modeling techniques with constraint programming to provide the 

analyst with a means to identify the system variants best suited to the various environmental 

contexts that a system might encounter at runtime. We illustrate our approach using the 

example of a self-adaptive wireless sensor network. 

 

Keywords Dynamic Software Product Lines, Self-Adaptive Systems, Goal Modeling, 

Constraint Programming 

 

Introduction 

 

It is hard to make software systems resilient when their operating environment is volatile. In 

recent years, new software architectures have been developed in which components and 

services can be bound and unbound dynamically as the context demands [1][4]. This capacity 

to dynamically adapt (self adapt) the software’s structure, behaviour and quality of service to 

changing contexts should have two potential advantages. Compared with traditional code-

based or parametric adaptation (e.g. using exception handling), such architectural adaptation 

[5] should make it easier to evolve the software as understanding of the system’s environment 

improves and as new components and services become available. It should also make 

resilience easier to achieve by allowing systems to respond flexibly to changing 

environmental contexts. However, because the decision of how to react to a new context is 

devolved to a run-time decision-making element that senses the context and selects an 

appropriate component configuration, a new approach to how software is specified is needed. 

Instead of directly enumerating the requirements that define system behaviour under every 

context, the software engineer must focus on understanding the trade-offs that constrain how 

the system achieves optimization of its goals [10].  

 

A self-adaptive system [7] that uses architectural adaptation may be conceptualized as a 

dynamic software product line (DSPL) [2] in which each configuration is one of the possible 

variants of the SPL.  However, in a self-adaptive system, these variants may be bound 

dynamically and emergent. Two kinds of variability exist: structural variability, which 

defines the configuration of components that define a particular configuration (a product in 

SPL terms); and environmental variability, which concerns the states that the environment 

may adopt and the associated uncertainty about the contexts that the system may encounter at 

runtime. 

 

In this paper we argue that the problem of specifying a DSPL can be reduced to a constraint 

satisfaction problem. By combining the strengths of goal modeling techniques, such as the 

ability to reason about quality of service (QoS), with constraint programming which has been 

shown to support reasoning about variability [6], the analyst is provided with a means to 



identify the system variants best suited to the various environmental contexts that a system 

might encounter at runtime. Our solution adapts the VariaMos tool [6], which allows us to 

reason efficiently over constraints used to model a DSPL. We illustrate our approach using 

the example of a self-adaptive wireless sensor network (WSN) that uses architectural 

adaptation and is subject to a challenging set of environmental contexts. 

 

An Example DSPL: the GridStix Wireless Sensor Network 

 

Wireless Sensor Networks (WSNs) are used for collecting data from a physical environment, 

often where access to fixed (wired) power or communications infrastructure is impractical or 

otherwise unavailable. WSNs may offer a solution where data needs to be collected from 

dangerous or remote locations or in situations where things are on the move. They are 

composed of embedded computers that are equipped with sensors and low-power wireless 

communications. Self-adaptation permits a WSN to respond tactically to changing context, 

for example, by varying sampling rate or spatial resolution to reduce energy consumption. 

This is important because resources such as memory, power availability and communication 

bandwidth are constrained meaning that the desired QoS is seldom fully achievable. Thus 

trade-offs between different QoS properties are needed but are complicated because the 

optimal trade-off may differ from one context to another. Further, the QoS that is achievable 

is often emergent since (e.g.) wireless network signals may be absorbed by obstacles, and 

weather may affect battery life.  

 

GridStix [3] is a flood warning WSN deployed on the Rivers Ribble and Dee in England and 

Wales respectively (Figure 1). GridStix uses Linux boards with depth and flow sensors 

deployed over a c. one-kilometer stretch of river. Power is supplied by batteries, replenished 

by solar panels. Nodes are equipped with both 802.11b (WiFi) and Bluetooth communications 

for inter-node data transmission, with a single GSM uplink node. 

 

 
Figure 1. A GridStix node next to the River Ribble 

 

A stochastic model predicts river behaviour and uses the WSN as a lightweight grid capable 

of distributing tasks. The model’s accuracy is a function of the number and distribution of 

nodes contributing sensor data and of the resources committed to processing the data.  

 

At the software architecture level, GridStix uses a set of domain-specific component 

frameworks [1]. Each supports a component configuration within which components from a 

corresponding component library can be swapped in and out dynamically. For example, the 



OpenOverlays component framework is responsible for networking, using components that 

(among other things) provide spanning tree algorithms and wireless communication. GridStix 

can therefore be conceptualized as a variable configuration of components within a fixed 

architecture. Some of these components are common to all variants while others are variable, 

and some component combinations are incompatible. 

 

WSN designers need to make assumptions about the QoS that will achieved by deployed 

components. For example, the terrain, weather and other factors affect radio signal 

propagation, which in turn can affect QoS properties such as resilience. This is a key point; 

that systems and their environment don’t always behave as expected and self-adaptation is a 

means to tolerate the unexpected. 

 

Modeling DSPLs 

 

Several notations exist for modeling SPLs, of which perhaps the best-known is FODA 

(Feature-Oriented Domain Analysis). A useful model of an SPL will capture:  

• the set of features of which a product can be composed;  

• variability rules that define which features are common and which are variable;  

• constraints that ensure that products are configured to (e.g.) avoid incompatible 

component combinations.  

These notions are necessary but not sufficient for a DSPL. Domain engineering must acquire 

an understanding of environmental variability, by identifying the contexts that may be 

encountered during operation and the QoS required for each context. Thus context and QoS 

need to be modeled explicitly and context variables identified that can be monitored at 

runtime to detect when an adaptation needs to be triggered.  

 

While they are not identical, features and requirements are related since features exist to 

satisfy requirements. It is not therefore such a big step to use requirements as proxies for 

features and model requirements variability instead of feature variability. Unsurprisingly, 

therefore, goal modeling [11] (where goals derive requirements) has also been used for 

modeling variability [8]. Goal modeling is particularly useful for reasoning about variants that 

have different QoS requirements (or softgoals). Thus (e.g.), two variants may have a common 

goal but offer alternative ways to operationalize the goal to achieve different levels of QoS. 

 

Figure 2 shows a simplified goal model of GridStix represented as a variant of KAOS [11]. 

The main elements in the models are: 

• Goals, shown as white parallelograms, indicate the (functional) purpose of the system. 

Goals are either satisfied (TRUE) or denied (FALSE).  

• Softgoals, shown as grey parallelograms, are a specific kind of goal, specifying the 

system’s non-functional requirements (QoS). The extent to which a softgoal is satisfied is 

modeled on an ordinal scale in which the set of values is {--, -, =, +, ++}, ranging from 

complete denial (--) through neutral or undefined (=) to complete satisfaction (++). 

• Goal operationalizations, shown as hexagons, specify how a goal may be satisfied. Only 

one operationalization may be bound (TRUE) at any instant in time, as represented by the 

XOR labels. 

• Claims which we model using KAOS assumptions (shown as trapeziums) indicate 

assumptions about operationalizations’ satisfaction of softgoals. A claim is taken as 

TRUE until and unless runtime monitoring shows the assumption to not hold. 

• Context variables, shown as rectangles, are abstractions over a part of the system’s 

environment, and are monitored at runtime by sensing. Context is the combination of all 

context variables and the set of all contexts represents the environmental variability. 

• Soft dependencies, shown as grey ellipses, express required levels of softgoal 

satisfaction for a particular context variable value. They are soft in the sense that it may 

prove impossible to satisfy them for all possible values. 



 

 
Figure 2. GridStix Goal Model 

 

Modeling the system using a goal model starts with the highest-level (e.g. business) 

requirements, represented as goals at the root(s) of the goal model. The goals are decomposed 

to form a directed acyclic graph (DAG), reflecting the hierarchy of goals of the system. 

Eventually, goal decomposition will reach a point where it is possible to identify how to 

operationalize the goals; in other words to identify the software or other components to which 

responsibility for the satisfaction of a leaf goal is assigned. Each identified goal 

operationalization has a link between it and the goal it operationalizes. A goal may have 

several alternative operationalizations in which case the goal acts as a variation point, with 

the operationalizations acting as mutually exclusive alternative features. The set of possible 

system configurations, as defined by the set of possible operationalizations, represents the 

system’s architectural variability. At variation points, a decision needs to be taken about 

which of the alternative goal operationalizations to select. In a conventional static SPL, this 

decision would be taken by the analyst at design time according to a range of criteria. In a 

DSPL, it may also be a run-time decision driven by the current context. 

 

Selection among the set of possible operationalizations to be deployed is made on the basis of 

softgoals, for which an optimal satisfaction is sought for each context. To help achieve this, 

the contexts that represent environmental variation need to be identified. The impact an 

operationalization is believed to have on a softgoal is recorded using a claim, linked to both 

the operationalization and the softgoal. For each identified context, one or more soft 

dependencies is defined to specify the degree of satisfaction required for one of the softgoals. 

Thus claims and soft dependencies are orthogonal. Claims specify the QoS expected from 

particular operationalizations, while soft dependencies specify the QoS required under 

particular context variable values.  

 



Using the set of claims and soft dependencies, for each context the set of goal 

operationalizations is selected that (as predicted by the claims) will come closest to achieving 

the required degrees of softgoal satisfaction.  

 

In Figure 2, there are three softgoals; EnergyEfficiency, FaultTolerance and 

PredictionAccuracy. The single root goal is to PredictFlooding, which has been 

refined into a number of sub-goals. Goal refinement eventually leads to the derivation of leaf 

goals, such as TransmitData, for which a goal operationalization can be identified. In the 

GridStix case, this means a software component or configuration of components can be 

identified that satisfies the goal. TransmitData can be operationalized using either a 

Bluetooth or a WiFi component.  

 

In Figure 2, claim C1 indicates that using Bluetooth has a strongly positive (++) effect on 

EnergyEfficiency, while WiFi has a weakly negative (-) impact. Thus, a configuration 

that uses the BlueTooth component is likely to satisfy the EnergyEfficiency softgoal 

better than WiFi. This advantage is reversed for FaultTolerance where BlueTooth’s 

low power consumption results in a comparatively short range, worsening the risk of network 

fragmentation. 

 

Claims represent assumptions and reflect the fact that sometimes, the way we operationalize a 

goal does not result in the anticipated QoS levels. In GridStix, for example, achievement of 

expected QoS is subject to the uncertainties characteristic of WSNs. For this reason, claims 

are monitored at run-time in order to check their validity. Claim monitoring is a complex 

issue that we do not have space to examine here (see [12]) beyond noting that in the worst 

case, evaluating the truth or falsity of a claim may require the statistical interpretation of 

empirical data collected over prolonged periods. The key point is that claims may be subject 

to revision at run-time. Because a claim informs decisions taken at design time, revision of 

the claim caused by the accretion of empirical evidence for how an operationalization really 

satisfies a softgoal, means that the decisions will need to be retaken, possibly at runtime and 

using automated reasoning.  

 

Context in Figure 2 comprises the two context variables: StateOfRiver and 

HealthOfBattery. Domain analysis indicates that the state of the river can be; normal 

(the river is quiescent), alert (flow rate has increased, but not depth) or emergency (flood). 

Battery health is modeled using only two states; low and high. GridStix’ context can therefore 

be represented as a set of 6 possible value pairs, representing StateOfRiver and 

HealthOfBattery. In Figure 2, SD1 is an example of a soft dependency and specifies 

that when the health of the battery is low, GridStix’s EnergyEfficiency should be at its 

highest (++). 

 

Model Reasoning 

 

Figure 2 illustrates how it is possible to treat a self-adaptive system as a DSPL, and use goal 

modeling to represent architectural and environmental variability, and to reason about the 

extent to which different variants (component configurations) satisfy the soft constraints.  

 

Even in a model as small as that in Figure 2, it may be difficult to use the set of claims to 

derive a variant for each context that satisfies the soft dependencies. In complex systems there 

may be thousands of possible component configurations [4] and many soft dependencies, 

leading to a risk of defining ones that are mutually inconsistent, contradictory, or simply 

unachievable. Thus a systematic or automatic means for analyzing a DSPL, exposing 

inconsistencies and deriving the set of valid variants for any context is needed.  

 

Our approach has two phases of use: 



 

1. At design time domain, a goal model of the DSPL is constructed, as described in the 

previous section, and verified to avoid defects of the types described above. Once 

verified, a variant is sought for each context that best satisfies the soft dependencies, even 

if none exists that can satisfy them all. To achieve this, we transform the goal model into 

a Constraint Program (CP) that can be executed by VariaMos [6]. The transformation 

follows a set of mapping rules where goals, softgoals, operationalizations and context 

variables are modeled as variables within the CP, while claims and soft constraints are 

modeled as constraints within the constraint program. The CP can also represent SPL 

properties such as operationalization incompatibilities (excludes relationships) that cannot 

be easily represented in goal models. 

 

2. Once deployed, the DSPL operates an execute, monitor, evaluate, adapt control loop. Our 

focus in this paper is only on the decision-making evaluate element that takes the result of 

monitoring as input and triggers adaptations as output. The other elements can be 

provided by: 

 

I. an adaptive architecture such as that provided by the OpenCom component model [1] 

and GridKit middleware [3], or by the MADAM middleware [4]; 

II. a means to monitor claims, by collecting data about the system and its environment and 

interpreting it in terms of whether it supports or refutes the claims [12]. 

 

 

Constraint Modeling 

 

A constraint is a logical relationship among several unknowns (or variables), each one taking 

a value in a given domain of possible values, where a domain is a set of possible values that a 

variable can take. Constraint programming is a programming paradigm in which constraints 

between variables are defined declaratively and a solution is found using a solver. A 

constraint program is defined as a triple (X, D, C), where X is a set of variables, D is a set of 

domains and C is a set of constraints restricting the values that the variables can 

simultaneously take. Classical constraint programming deals with finite domains for the 

variables, which are usually mapped to ordinal values such as integers. The impact on a 

softgoal of a particular operationalization is represented in the constraint program by integers 

in the range from 0 (--) to 4 (++). Elements that take Boolean values (See Figure 2) are 

represented as the integers 0 and 1. 

 

Solving constraints involves first reducing the variable domains by propagation techniques 

[9] that will eliminate inconsistent values within domains, and then finding values for each 

constrained variable in a labeling phase. The labeling phase iteratively grounds (i.e. fixes a 

value to) each variable and propagates its effect onto other variable domains by again 

applying the same propagation technique. The net effect of this is to make verification and 

evaluation of the transformed goal model very efficient by using optimization techniques 

proven for solving hard combinatorial problems.  

 

To illustrate the derivation of a constraint program, the GridStix goal model in Figure 2 can 

be transformed as follows:  

 

• The group cardinality dependency between the goal TransmitData and the software 

components Bluetooth and WiFi is represented by the following constraint:  

 

TransmitData = Bluetooth + WiFi.  

 



Which means that if TransmitData is satisfied (equal to 1), then exactly one of 

Bluetooth and WiFi must be satisfied too, and vice versa. 

• The claims are reified as variables that can be satisfied or not by the user as an input 

value. For instance, in the claim C1, the value 4 means that Bluetooth fully satisfies 

(++) EnergyEfficiency. WiFi weakly impedes (-) EnergyEfficiency so has 

the value 1. This is represented by:  

 

C1 ! (Bluetooth " EnergyEfficiency = 4) !  

(WiFi " EnergyEfficiency = 1). 

• The soft dependencies are reified as Boolean variables. For instance, SD1 specifies that if 

the health of the battery is low then EnergyEfficiency should be fully satisfied and 

is represented by:  

 

SD1 ! (HealthOfBattery = 0 " EnergyEfficiency = 4). 

 

Once the goal model is transformed into a constraint program, it can be augmented to 

represent properties that are hard to represent in a goal model but easy in a constraint 

program. For example, Bluetooth’s bandwidth is too low to support distributed processing, so 

the Bluetooth and DistributedProcessing operationalizations should not be used 

in the same variant. This can be represented as an SPL excludes relationship using the 

constraint: 

 

¬(Bluetooth # DistributedProcessing) 

 

Once the model is complete, it can be verified, analyzed and simulated with different input 

values. An example of verification is checking for contradictory soft dependencies. For 

example, a soft dependency that specified that EnergyEfficiency should be ’-‘ when 

StateOfRiver was Normal would contradict SD1.  

 

Evaluation seeks to identify the optimal configuration of goal operationalizations, for any 

given context at design time and (if claims are revised) at runtime. To do this, constraint 

analysis is performed for every legal configuration.  

 

For any context, the aim is to find at least one configuration that satisfies all the soft 

dependencies. To illustrate what we mean, consider the following based on the GridStix goal 

model: 

 

SAT represents softgoal satisfaction values: 
SAT ::= -- | - | = | + | ++ 

 

These map onto the ordinal values 0 to 4 so simple arithmetic operators apply.  

 

OP represents the operationalizations : 
OP ::= Bluetooth | WiFi | FHTopology | SPTopology | 
SingleNodeProcessing | DistributedProcessing 

 
G represents the variation point goals:  

G ::= TransmitData | OrganizeNetwork | CalculateFlowRate 
 

SG represents the softgoals: 
SG ::= EnergyEfficiency | FaultTolerance | 
PredictionAccuracy 
 

CXTV represents the context variable values: 



CXTV ::= (HealthOfBattery, High) | (HealthOfBattery, Low) 
| (StateOfRiver, Normal) | (StateOfRiver, Alert) | 
(StateOfRiver, Flood) 

 

Let the function operationalizes define the variation point goal that an 

operationalization realizes. 

operationalizes: OP $ G 
 

The function softDepends returns the required level of satisfaction of a softgoal for a 

particular context variable value. 

softDepends: CXTV X SG $ SAT 
 
The function claim returns the predicted level of satisfaction of a softgoal by an 

operationalization. 

claim: OP X SG $ SAT 
 

config defines the set of operationalizations (op) that satisfy the soft dependencies for each 

softgoal (sg) for a given context variable value (cxtv). Note that config will not 

necessarily define the full set of operationalizations, since it only contains operationalizations 

that affect a softgoal that participates in one of the soft dependencies defined for that context 

variable. 

config = {%cxtv:CXTV, &sg:SG|%op:OP claim(op, sg) ' 

softDepends(cxtv, sg) • op} 
 

A configuration must not contain two different operationalizations of the same variation point 

goal because they are always XOR-ed.  

&op1 ( config, ¬% op2 ( config, %g:G|  

op1 ) op2 # op1 operationalizes g # op2 operationalizes g 
 

For every combination of context variable values that represent a context, VariaMos tries to 

find a legal configuration. In GridStix, this means that for every HealthOfBattery, 

StateOfRiver pair, a configuration is sought that satisfies both the HealthOfBattery 

value and the StateOfRiver value. In addition, the system will use the claims to try to 

optimize the softgoals that do not participate in soft dependencies, and will check for 

excludes relations. 

 

At design time, in the best case, for each context at least one configuration will be found that 

satisfies all the soft constraints. The analyst’s job then is simply to select one; typically the 

one that maximizes softgoal satisfaction. Thus, for example for the context 

(StateOfRiver, Emergency), (HealthOfBattery, High), the optimal 

configuration would be {WiFi, FHTopology, DistributeProcessing}. This is 

because WiFi and FHTopology when combined result in complete satisfaction of the 

FaultTolerance softgoal as specified by SD3, while DistributedProcessing 

maximizes satisfaction of the softgoal PredictionAccuracy.  

 

If no variant exists that satisfies all the soft dependencies for a given context, the analyst 

either needs to re-think the soft dependencies, find some alternative (better) goal 

operationalizations or (more commonly) accept that the soft dependencies can’t all be 

satisfied in this context and select a configuration that satisfies as many of the soft 

dependencies for that context as possible. This would be the case for the context 

(StateOfRiver, Emergency), (HealthOfBattery, Low) where SD1 specifies 

that EnergyEfficiency be maximized, and SD3 specifies that FaultTolerance and 

PredictionAccuracy be maximized. It is impossible to satisfy both SD1 and SD3 

because SD1 can only be achieved by a configuration that uses BlueTooth and 



SingleNodeProcessing, while S3 needs WiFi and DistributedProcessing. 

Here, the analyst would need to make a judgement about which of FaultTolerance and 

PredictionAccuracy, and EnergyEfficiency were most important. Since, WiFi and 
DistributedProcessing maximize more of the softgoals this would be the default 

choice. 

 

Table 1 summarizes the various configurations for the context (StateOfRiver, 
Emergency), (HealthOfBattery, Low). Note that a ‘=’ in a soft dependency column 

means simply that the soft dependency doesn’t apply in this context. The rows in grey are 

illegal configurations because they conflict with the constraint that BlueTooth and 

DistributedProcessing are mutually exclusive. The row with the bold outline is the 

optimal configuration since although SD1 is not satisfied, SD3 is and two softgoals are 

maximized. 

 
Table 1. GridStix Configuration for the context (StateOfRiver, Emergency), 
(HealthOfBattery, Low) 
TransmitData OrgNetwork CalcFlowRate Softgoals Soft dependencies 

BT WF FHT SPT SNP DP EE FT PA SD1 SD2 SD3 SD4 

*  *  *  ++ + - * = X = 

*  *   * = + ++ X = X = 

*   * *  ++ -- - * = X = 

*   *  * = -- ++ X = X = 

 * *  *  + ++ - X = * = 

 * *   * -- ++ ++ X = * = 

 *  * *  + + - X = X = 

 *  *  * -- + ++ X = X = 

 

Once a configuration has been defined for each context, the DSPL will adapt to the 

appropriate configuration whenever sensing detects a new context. However, over time, 

monitoring the claims may cause their revision. Monitoring can result in three things: 

1. No evidence is found that the claim is incorrect; 

2. The evidence shows the claim to be false but does not support computation of an accurate 

value. By default the effect on softgoal satisfaction predicted by the claim is 

automatically revised to neutral [12]; 

3. A new value for the claim may be computed from the collected monitoring evidence.  

Cases (2) and (3) constitute changes to the goal model, meaning that the DSPL’s architectural 

configurations may be invalid. For case (2), it would be possible to evaluate the goal model at 

design time to pre-compute the optimal configuration under each context using a series of 

what-if scenarios for refuted claims. For case (3), static evaluation isn’t practical and must be 

reactive to monitoring results. In this case, runtime re-evaluation is the only option so must be 

fully automatic. 

 

As with the design-time computation of the per-context configurations, where no optimal 

configuration exists, a configuration must be sought that satisfies as many soft dependencies 

as possible. For example, it may turn out that DistributedProcessing does not in fact 

yield better prediction accuracy than SingleNodeProcessing, and  claim C5 is 

automatically revised to (DP =; SN =) (case 2 above). Now, for the (StateOfRiver, 
Emergency), (HealthOfBattery, Low) context, there would be a tie between WiFi 
and SingleNodeProcessing and BlueTooth and SingleNodeProcessing for 

the optimal configuration. In fact, the former would be selected to minimize reconfiguration 

costs since WiFi is already the bound operationalization for TransmitData. 

 

Where runtime recomputation of the optimal configurations is necessary (case 3 above), a 

performance overhead is incurred. However, in contrast to the design time evaluation, the 

whole model need not be evaluated at once. The optimal configurations only needs to be 



found for a particular context when that context becomes current. In GridStix, only 6 (8 

minus the 2 illegal combinations of Bluetooth and DistributedProcessing) 

configurations need to be evaluated, whereas if it had been necessary to evaluate these 6 

configurations for all 6 contexts, the value would be 36. Thus, the degree of environmental 

variability has no impact on the cost of runtime efficiency, which is dominated by the 

complexity of the architectural variability.  

 

Conclusions 

 

Self-adaptive systems that use architectural adaptation can be conceptualized as dynamic 

SPLs. This is an attractive notion because work on SPLs has resulted in powerful techniques 

for modeling architectural variability. However, conventional SPL models cannot easily 

handle two important properties of DSPLs; environmental variability and QoS. Our 

contribution is to combine goal modeling with constraint programming. Goals support the 

modeling of environmental variability and QoS as well as a subset of the concepts needed for 

the effective representation of architectural variability. A goal model can be mapped to a 

constraint program, which has the added capability to represent properties such as excludes 

relationships that are hard to represent in goal models. Moreover, a constraint program, when 

solved using a tool such as VariaMos, is able to determine the extent to which the set of 

variants for any context meet the QoS requirements. The key advantages of our approach are 

that it allows the analyst to perform static verification of the goal model that captures the 

requirements and assumptions for a DSPL, and that the same techniques can be used to 

dynamically re-evaluate the goal model as assumptions are revised in the light of evidence 

acquired by runtime monitoring. 

 

There are, of course limitation to our approach. Our approach would not work where a high 

degree of environmental complexity made it impossible to identify a discrete set of contexts 

a-priori. However, we are confident of our constraint programming approach’s ability to deal 

with significant architectural variability. Computation of the optimal configuration for any 

GridStix context takes c. 20ms on a standard PC. GridStix has relatively little architectural 

variability, but we have tested VariaMos on static SPLs running to many thousands of 

features, and including the added complexity of optional features that are absent from our 

WSN models. These experiments show that VariaMos evaluates these product line models in 

linear or polynomial time.  

 

Generalizing the above, finding the per-context optimal architectural configuration is 

essentially a problem of multi-criteria decision-making (MCDM), and this is an 

acknowledged open problem for self-adaptive systems [7]. However, in our approach we only 

attempt to optimize softgoals. We treat (functional) goal satisfaction as Boolean and the set of 

goals and softgoals as fixed and unchanging. All that varies is:  

• the required degree of softgoal satisfaction that is defined per context; 

• the expected degree of softgoal satisfaction achievable by the different goal 

operationalizations. 

Both of these are measured using a discrete set of ordinal values. The net effect is to allow 

our approach to exploit the highly efficient capabilities of modern constraint program solvers. 

Our approach still suffers the problem common to other MCDM techniques whereby the 

assignment of the right weights (required and estimated degrees of softgoal satisfaction in our 

case) can be hard. At least with our approach, claims can be revised using empirical evidence 

gathered by runtime monitoring.   

 

Memory consumption may be more of an issue for WSNs but even here, with careful design 

and appropriate middleware support, processing can be performed off-line and new 

configurations (or rather the policy rules that select components) distributed to the nodes. 

Note that in any case this is likely to be needed only rarely, when a claim is revised. We are 



therefore confident that constraint programming holds real promise for DSPLs combining 

significantly greater scale and complexity than GridStix, our exemplar DSPL. 
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