
HAL Id: hal-00747723
https://hal.science/hal-00747723v1

Submitted on 1 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Programming as a Means to Manage
Configurations in Self-Adaptive Systems

Pete Sawyer, Raul Mazo, Daniel Diaz, Camille Salinesi, Danny Hughes

To cite this version:
Pete Sawyer, Raul Mazo, Daniel Diaz, Camille Salinesi, Danny Hughes. Constraint Programming as a
Means to Manage Configurations in Self-Adaptive Systems. Special Issue in IEEE Computer Dynamic
Software Product Lines, 2012, pp.1-12. �hal-00747723�

https://hal.science/hal-00747723v1
https://hal.archives-ouvertes.fr

Constraint Programming as a Means to Manage Configurations in Self-Adaptive

Systems

Pete Sawyer, Raul Mazo, Daniel Diaz, Camille Salinesi and Danny Hughes

Abstract

In recent years, new software architectures have been developed in which components can be

bound and unbound dynamically as the context demands. This capacity to dynamically adapt

the software’s structure, behaviour and quality of service should make resilience easier to

achieve by allowing systems to respond more flexibly to changing environmental contexts.

However, because the decision of how to react to a new context is devolved to a run-time

decision-making element that senses the context and selects an appropriate component

configuration, a new approach to how software is specified is needed. A self-adaptive system

that uses architectural adaptation may be conceptualized as a dynamic SPL. In this paper we

argue that the problem of specifying a DSPL can be reduced to a constraint satisfaction

problem. We combine goal modeling techniques with constraint programming to provide the

analyst with a means to identify the system variants best suited to the various environmental

contexts that a system might encounter at runtime. We illustrate our approach using the

example of a self-adaptive wireless sensor network.

Keywords Dynamic Software Product Lines, Self-Adaptive Systems, Goal Modeling,

Constraint Programming

Introduction

It is hard to make software systems resilient when their operating environment is volatile. In

recent years, new software architectures have been developed in which components and

services can be bound and unbound dynamically as the context demands [1][4]. This capacity

to dynamically adapt (self adapt) the software’s structure, behaviour and quality of service to

changing contexts should have two potential advantages. Compared with traditional code-

based or parametric adaptation (e.g. using exception handling), such architectural adaptation

[5] should make it easier to evolve the software as understanding of the system’s environment

improves and as new components and services become available. It should also make

resilience easier to achieve by allowing systems to respond flexibly to changing

environmental contexts. However, because the decision of how to react to a new context is

devolved to a run-time decision-making element that senses the context and selects an

appropriate component configuration, a new approach to how software is specified is needed.

Instead of directly enumerating the requirements that define system behaviour under every

context, the software engineer must focus on understanding the trade-offs that constrain how

the system achieves optimization of its goals [10].

A self-adaptive system [7] that uses architectural adaptation may be conceptualized as a

dynamic software product line (DSPL) [2] in which each configuration is one of the possible

variants of the SPL. However, in a self-adaptive system, these variants may be bound

dynamically and emergent. Two kinds of variability exist: structural variability, which

defines the configuration of components that define a particular configuration (a product in

SPL terms); and environmental variability, which concerns the states that the environment

may adopt and the associated uncertainty about the contexts that the system may encounter at

runtime.

In this paper we argue that the problem of specifying a DSPL can be reduced to a constraint

satisfaction problem. By combining the strengths of goal modeling techniques, such as the

ability to reason about quality of service (QoS), with constraint programming which has been

shown to support reasoning about variability [6], the analyst is provided with a means to

identify the system variants best suited to the various environmental contexts that a system

might encounter at runtime. Our solution adapts the VariaMos tool [6], which allows us to

reason efficiently over constraints used to model a DSPL. We illustrate our approach using

the example of a self-adaptive wireless sensor network (WSN) that uses architectural

adaptation and is subject to a challenging set of environmental contexts.

An Example DSPL: the GridStix Wireless Sensor Network

Wireless Sensor Networks (WSNs) are used for collecting data from a physical environment,

often where access to fixed (wired) power or communications infrastructure is impractical or

otherwise unavailable. WSNs may offer a solution where data needs to be collected from

dangerous or remote locations or in situations where things are on the move. They are

composed of embedded computers that are equipped with sensors and low-power wireless

communications. Self-adaptation permits a WSN to respond tactically to changing context,

for example, by varying sampling rate or spatial resolution to reduce energy consumption.

This is important because resources such as memory, power availability and communication

bandwidth are constrained meaning that the desired QoS is seldom fully achievable. Thus

trade-offs between different QoS properties are needed but are complicated because the

optimal trade-off may differ from one context to another. Further, the QoS that is achievable

is often emergent since (e.g.) wireless network signals may be absorbed by obstacles, and

weather may affect battery life.

GridStix [3] is a flood warning WSN deployed on the Rivers Ribble and Dee in England and

Wales respectively (Figure 1). GridStix uses Linux boards with depth and flow sensors

deployed over a c. one-kilometer stretch of river. Power is supplied by batteries, replenished

by solar panels. Nodes are equipped with both 802.11b (WiFi) and Bluetooth communications

for inter-node data transmission, with a single GSM uplink node.

Figure 1. A GridStix node next to the River Ribble

A stochastic model predicts river behaviour and uses the WSN as a lightweight grid capable

of distributing tasks. The model’s accuracy is a function of the number and distribution of

nodes contributing sensor data and of the resources committed to processing the data.

At the software architecture level, GridStix uses a set of domain-specific component

frameworks [1]. Each supports a component configuration within which components from a

corresponding component library can be swapped in and out dynamically. For example, the

OpenOverlays component framework is responsible for networking, using components that

(among other things) provide spanning tree algorithms and wireless communication. GridStix

can therefore be conceptualized as a variable configuration of components within a fixed

architecture. Some of these components are common to all variants while others are variable,

and some component combinations are incompatible.

WSN designers need to make assumptions about the QoS that will achieved by deployed

components. For example, the terrain, weather and other factors affect radio signal

propagation, which in turn can affect QoS properties such as resilience. This is a key point;

that systems and their environment don’t always behave as expected and self-adaptation is a

means to tolerate the unexpected.

Modeling DSPLs

Several notations exist for modeling SPLs, of which perhaps the best-known is FODA

(Feature-Oriented Domain Analysis). A useful model of an SPL will capture:

• the set of features of which a product can be composed;

• variability rules that define which features are common and which are variable;

• constraints that ensure that products are configured to (e.g.) avoid incompatible

component combinations.

These notions are necessary but not sufficient for a DSPL. Domain engineering must acquire

an understanding of environmental variability, by identifying the contexts that may be

encountered during operation and the QoS required for each context. Thus context and QoS

need to be modeled explicitly and context variables identified that can be monitored at

runtime to detect when an adaptation needs to be triggered.

While they are not identical, features and requirements are related since features exist to

satisfy requirements. It is not therefore such a big step to use requirements as proxies for

features and model requirements variability instead of feature variability. Unsurprisingly,

therefore, goal modeling [11] (where goals derive requirements) has also been used for

modeling variability [8]. Goal modeling is particularly useful for reasoning about variants that

have different QoS requirements (or softgoals). Thus (e.g.), two variants may have a common

goal but offer alternative ways to operationalize the goal to achieve different levels of QoS.

Figure 2 shows a simplified goal model of GridStix represented as a variant of KAOS [11].

The main elements in the models are:

• Goals, shown as white parallelograms, indicate the (functional) purpose of the system.

Goals are either satisfied (TRUE) or denied (FALSE).

• Softgoals, shown as grey parallelograms, are a specific kind of goal, specifying the

system’s non-functional requirements (QoS). The extent to which a softgoal is satisfied is

modeled on an ordinal scale in which the set of values is {--, -, =, +, ++}, ranging from

complete denial (--) through neutral or undefined (=) to complete satisfaction (++).

• Goal operationalizations, shown as hexagons, specify how a goal may be satisfied. Only

one operationalization may be bound (TRUE) at any instant in time, as represented by the

XOR labels.

• Claims which we model using KAOS assumptions (shown as trapeziums) indicate

assumptions about operationalizations’ satisfaction of softgoals. A claim is taken as

TRUE until and unless runtime monitoring shows the assumption to not hold.

• Context variables, shown as rectangles, are abstractions over a part of the system’s

environment, and are monitored at runtime by sensing. Context is the combination of all

context variables and the set of all contexts represents the environmental variability.

• Soft dependencies, shown as grey ellipses, express required levels of softgoal

satisfaction for a particular context variable value. They are soft in the sense that it may

prove impossible to satisfy them for all possible values.

Figure 2. GridStix Goal Model

Modeling the system using a goal model starts with the highest-level (e.g. business)

requirements, represented as goals at the root(s) of the goal model. The goals are decomposed

to form a directed acyclic graph (DAG), reflecting the hierarchy of goals of the system.

Eventually, goal decomposition will reach a point where it is possible to identify how to

operationalize the goals; in other words to identify the software or other components to which

responsibility for the satisfaction of a leaf goal is assigned. Each identified goal

operationalization has a link between it and the goal it operationalizes. A goal may have

several alternative operationalizations in which case the goal acts as a variation point, with

the operationalizations acting as mutually exclusive alternative features. The set of possible

system configurations, as defined by the set of possible operationalizations, represents the

system’s architectural variability. At variation points, a decision needs to be taken about

which of the alternative goal operationalizations to select. In a conventional static SPL, this

decision would be taken by the analyst at design time according to a range of criteria. In a

DSPL, it may also be a run-time decision driven by the current context.

Selection among the set of possible operationalizations to be deployed is made on the basis of

softgoals, for which an optimal satisfaction is sought for each context. To help achieve this,

the contexts that represent environmental variation need to be identified. The impact an

operationalization is believed to have on a softgoal is recorded using a claim, linked to both

the operationalization and the softgoal. For each identified context, one or more soft

dependencies is defined to specify the degree of satisfaction required for one of the softgoals.

Thus claims and soft dependencies are orthogonal. Claims specify the QoS expected from

particular operationalizations, while soft dependencies specify the QoS required under

particular context variable values.

Using the set of claims and soft dependencies, for each context the set of goal

operationalizations is selected that (as predicted by the claims) will come closest to achieving

the required degrees of softgoal satisfaction.

In Figure 2, there are three softgoals; EnergyEfficiency, FaultTolerance and

PredictionAccuracy. The single root goal is to PredictFlooding, which has been

refined into a number of sub-goals. Goal refinement eventually leads to the derivation of leaf

goals, such as TransmitData, for which a goal operationalization can be identified. In the

GridStix case, this means a software component or configuration of components can be

identified that satisfies the goal. TransmitData can be operationalized using either a

Bluetooth or a WiFi component.

In Figure 2, claim C1 indicates that using Bluetooth has a strongly positive (++) effect on

EnergyEfficiency, while WiFi has a weakly negative (-) impact. Thus, a configuration

that uses the BlueTooth component is likely to satisfy the EnergyEfficiency softgoal

better than WiFi. This advantage is reversed for FaultTolerance where BlueTooth’s

low power consumption results in a comparatively short range, worsening the risk of network

fragmentation.

Claims represent assumptions and reflect the fact that sometimes, the way we operationalize a

goal does not result in the anticipated QoS levels. In GridStix, for example, achievement of

expected QoS is subject to the uncertainties characteristic of WSNs. For this reason, claims

are monitored at run-time in order to check their validity. Claim monitoring is a complex

issue that we do not have space to examine here (see [12]) beyond noting that in the worst

case, evaluating the truth or falsity of a claim may require the statistical interpretation of

empirical data collected over prolonged periods. The key point is that claims may be subject

to revision at run-time. Because a claim informs decisions taken at design time, revision of

the claim caused by the accretion of empirical evidence for how an operationalization really

satisfies a softgoal, means that the decisions will need to be retaken, possibly at runtime and

using automated reasoning.

Context in Figure 2 comprises the two context variables: StateOfRiver and

HealthOfBattery. Domain analysis indicates that the state of the river can be; normal

(the river is quiescent), alert (flow rate has increased, but not depth) or emergency (flood).

Battery health is modeled using only two states; low and high. GridStix’ context can therefore

be represented as a set of 6 possible value pairs, representing StateOfRiver and

HealthOfBattery. In Figure 2, SD1 is an example of a soft dependency and specifies

that when the health of the battery is low, GridStix’s EnergyEfficiency should be at its

highest (++).

Model Reasoning

Figure 2 illustrates how it is possible to treat a self-adaptive system as a DSPL, and use goal

modeling to represent architectural and environmental variability, and to reason about the

extent to which different variants (component configurations) satisfy the soft constraints.

Even in a model as small as that in Figure 2, it may be difficult to use the set of claims to

derive a variant for each context that satisfies the soft dependencies. In complex systems there

may be thousands of possible component configurations [4] and many soft dependencies,

leading to a risk of defining ones that are mutually inconsistent, contradictory, or simply

unachievable. Thus a systematic or automatic means for analyzing a DSPL, exposing

inconsistencies and deriving the set of valid variants for any context is needed.

Our approach has two phases of use:

1. At design time domain, a goal model of the DSPL is constructed, as described in the

previous section, and verified to avoid defects of the types described above. Once

verified, a variant is sought for each context that best satisfies the soft dependencies, even

if none exists that can satisfy them all. To achieve this, we transform the goal model into

a Constraint Program (CP) that can be executed by VariaMos [6]. The transformation

follows a set of mapping rules where goals, softgoals, operationalizations and context

variables are modeled as variables within the CP, while claims and soft constraints are

modeled as constraints within the constraint program. The CP can also represent SPL

properties such as operationalization incompatibilities (excludes relationships) that cannot

be easily represented in goal models.

2. Once deployed, the DSPL operates an execute, monitor, evaluate, adapt control loop. Our

focus in this paper is only on the decision-making evaluate element that takes the result of

monitoring as input and triggers adaptations as output. The other elements can be

provided by:

I. an adaptive architecture such as that provided by the OpenCom component model [1]

and GridKit middleware [3], or by the MADAM middleware [4];

II. a means to monitor claims, by collecting data about the system and its environment and

interpreting it in terms of whether it supports or refutes the claims [12].

Constraint Modeling

A constraint is a logical relationship among several unknowns (or variables), each one taking

a value in a given domain of possible values, where a domain is a set of possible values that a

variable can take. Constraint programming is a programming paradigm in which constraints

between variables are defined declaratively and a solution is found using a solver. A

constraint program is defined as a triple (X, D, C), where X is a set of variables, D is a set of

domains and C is a set of constraints restricting the values that the variables can

simultaneously take. Classical constraint programming deals with finite domains for the

variables, which are usually mapped to ordinal values such as integers. The impact on a

softgoal of a particular operationalization is represented in the constraint program by integers

in the range from 0 (--) to 4 (++). Elements that take Boolean values (See Figure 2) are

represented as the integers 0 and 1.

Solving constraints involves first reducing the variable domains by propagation techniques

[9] that will eliminate inconsistent values within domains, and then finding values for each

constrained variable in a labeling phase. The labeling phase iteratively grounds (i.e. fixes a

value to) each variable and propagates its effect onto other variable domains by again

applying the same propagation technique. The net effect of this is to make verification and

evaluation of the transformed goal model very efficient by using optimization techniques

proven for solving hard combinatorial problems.

To illustrate the derivation of a constraint program, the GridStix goal model in Figure 2 can

be transformed as follows:

• The group cardinality dependency between the goal TransmitData and the software

components Bluetooth and WiFi is represented by the following constraint:

TransmitData = Bluetooth + WiFi.

Which means that if TransmitData is satisfied (equal to 1), then exactly one of

Bluetooth and WiFi must be satisfied too, and vice versa.

• The claims are reified as variables that can be satisfied or not by the user as an input

value. For instance, in the claim C1, the value 4 means that Bluetooth fully satisfies

(++) EnergyEfficiency. WiFi weakly impedes (-) EnergyEfficiency so has

the value 1. This is represented by:

C1 ! (Bluetooth " EnergyEfficiency = 4) !

(WiFi " EnergyEfficiency = 1).

• The soft dependencies are reified as Boolean variables. For instance, SD1 specifies that if

the health of the battery is low then EnergyEfficiency should be fully satisfied and

is represented by:

SD1 ! (HealthOfBattery = 0 " EnergyEfficiency = 4).

Once the goal model is transformed into a constraint program, it can be augmented to

represent properties that are hard to represent in a goal model but easy in a constraint

program. For example, Bluetooth’s bandwidth is too low to support distributed processing, so

the Bluetooth and DistributedProcessing operationalizations should not be used

in the same variant. This can be represented as an SPL excludes relationship using the

constraint:

¬(Bluetooth # DistributedProcessing)

Once the model is complete, it can be verified, analyzed and simulated with different input

values. An example of verification is checking for contradictory soft dependencies. For

example, a soft dependency that specified that EnergyEfficiency should be ’-‘ when

StateOfRiver was Normal would contradict SD1.

Evaluation seeks to identify the optimal configuration of goal operationalizations, for any

given context at design time and (if claims are revised) at runtime. To do this, constraint

analysis is performed for every legal configuration.

For any context, the aim is to find at least one configuration that satisfies all the soft

dependencies. To illustrate what we mean, consider the following based on the GridStix goal

model:

SAT represents softgoal satisfaction values:
SAT ::= -- | - | = | + | ++

These map onto the ordinal values 0 to 4 so simple arithmetic operators apply.

OP represents the operationalizations :
OP ::= Bluetooth | WiFi | FHTopology | SPTopology |
SingleNodeProcessing | DistributedProcessing

G represents the variation point goals:

G ::= TransmitData | OrganizeNetwork | CalculateFlowRate

SG represents the softgoals:
SG ::= EnergyEfficiency | FaultTolerance |
PredictionAccuracy

CXTV represents the context variable values:

CXTV ::= (HealthOfBattery, High) | (HealthOfBattery, Low)
| (StateOfRiver, Normal) | (StateOfRiver, Alert) |
(StateOfRiver, Flood)

Let the function operationalizes define the variation point goal that an

operationalization realizes.

operationalizes: OP $ G

The function softDepends returns the required level of satisfaction of a softgoal for a

particular context variable value.

softDepends: CXTV X SG $ SAT

The function claim returns the predicted level of satisfaction of a softgoal by an

operationalization.

claim: OP X SG $ SAT

config defines the set of operationalizations (op) that satisfy the soft dependencies for each

softgoal (sg) for a given context variable value (cxtv). Note that config will not

necessarily define the full set of operationalizations, since it only contains operationalizations

that affect a softgoal that participates in one of the soft dependencies defined for that context

variable.

config = {%cxtv:CXTV, &sg:SG|%op:OP claim(op, sg) '

softDepends(cxtv, sg) • op}

A configuration must not contain two different operationalizations of the same variation point

goal because they are always XOR-ed.

&op1 (config, ¬% op2 (config, %g:G|

op1) op2 # op1 operationalizes g # op2 operationalizes g

For every combination of context variable values that represent a context, VariaMos tries to

find a legal configuration. In GridStix, this means that for every HealthOfBattery,

StateOfRiver pair, a configuration is sought that satisfies both the HealthOfBattery

value and the StateOfRiver value. In addition, the system will use the claims to try to

optimize the softgoals that do not participate in soft dependencies, and will check for

excludes relations.

At design time, in the best case, for each context at least one configuration will be found that

satisfies all the soft constraints. The analyst’s job then is simply to select one; typically the

one that maximizes softgoal satisfaction. Thus, for example for the context

(StateOfRiver, Emergency), (HealthOfBattery, High), the optimal

configuration would be {WiFi, FHTopology, DistributeProcessing}. This is

because WiFi and FHTopology when combined result in complete satisfaction of the

FaultTolerance softgoal as specified by SD3, while DistributedProcessing

maximizes satisfaction of the softgoal PredictionAccuracy.

If no variant exists that satisfies all the soft dependencies for a given context, the analyst

either needs to re-think the soft dependencies, find some alternative (better) goal

operationalizations or (more commonly) accept that the soft dependencies can’t all be

satisfied in this context and select a configuration that satisfies as many of the soft

dependencies for that context as possible. This would be the case for the context

(StateOfRiver, Emergency), (HealthOfBattery, Low) where SD1 specifies

that EnergyEfficiency be maximized, and SD3 specifies that FaultTolerance and

PredictionAccuracy be maximized. It is impossible to satisfy both SD1 and SD3

because SD1 can only be achieved by a configuration that uses BlueTooth and

SingleNodeProcessing, while S3 needs WiFi and DistributedProcessing.

Here, the analyst would need to make a judgement about which of FaultTolerance and

PredictionAccuracy, and EnergyEfficiency were most important. Since, WiFi and
DistributedProcessing maximize more of the softgoals this would be the default

choice.

Table 1 summarizes the various configurations for the context (StateOfRiver,
Emergency), (HealthOfBattery, Low). Note that a ‘=’ in a soft dependency column

means simply that the soft dependency doesn’t apply in this context. The rows in grey are

illegal configurations because they conflict with the constraint that BlueTooth and

DistributedProcessing are mutually exclusive. The row with the bold outline is the

optimal configuration since although SD1 is not satisfied, SD3 is and two softgoals are

maximized.

Table 1. GridStix Configuration for the context (StateOfRiver, Emergency),
(HealthOfBattery, Low)
TransmitData OrgNetwork CalcFlowRate Softgoals Soft dependencies

BT WF FHT SPT SNP DP EE FT PA SD1 SD2 SD3 SD4

* * * ++ + - * = X =

* * * = + ++ X = X =

* * * ++ -- - * = X =

* * * = -- ++ X = X =

 * * * + ++ - X = * =

 * * * -- ++ ++ X = * =

 * * * + + - X = X =

 * * * -- + ++ X = X =

Once a configuration has been defined for each context, the DSPL will adapt to the

appropriate configuration whenever sensing detects a new context. However, over time,

monitoring the claims may cause their revision. Monitoring can result in three things:

1. No evidence is found that the claim is incorrect;

2. The evidence shows the claim to be false but does not support computation of an accurate

value. By default the effect on softgoal satisfaction predicted by the claim is

automatically revised to neutral [12];

3. A new value for the claim may be computed from the collected monitoring evidence.

Cases (2) and (3) constitute changes to the goal model, meaning that the DSPL’s architectural

configurations may be invalid. For case (2), it would be possible to evaluate the goal model at

design time to pre-compute the optimal configuration under each context using a series of

what-if scenarios for refuted claims. For case (3), static evaluation isn’t practical and must be

reactive to monitoring results. In this case, runtime re-evaluation is the only option so must be

fully automatic.

As with the design-time computation of the per-context configurations, where no optimal

configuration exists, a configuration must be sought that satisfies as many soft dependencies

as possible. For example, it may turn out that DistributedProcessing does not in fact

yield better prediction accuracy than SingleNodeProcessing, and claim C5 is

automatically revised to (DP =; SN =) (case 2 above). Now, for the (StateOfRiver,
Emergency), (HealthOfBattery, Low) context, there would be a tie between WiFi
and SingleNodeProcessing and BlueTooth and SingleNodeProcessing for

the optimal configuration. In fact, the former would be selected to minimize reconfiguration

costs since WiFi is already the bound operationalization for TransmitData.

Where runtime recomputation of the optimal configurations is necessary (case 3 above), a

performance overhead is incurred. However, in contrast to the design time evaluation, the

whole model need not be evaluated at once. The optimal configurations only needs to be

found for a particular context when that context becomes current. In GridStix, only 6 (8

minus the 2 illegal combinations of Bluetooth and DistributedProcessing)

configurations need to be evaluated, whereas if it had been necessary to evaluate these 6

configurations for all 6 contexts, the value would be 36. Thus, the degree of environmental

variability has no impact on the cost of runtime efficiency, which is dominated by the

complexity of the architectural variability.

Conclusions

Self-adaptive systems that use architectural adaptation can be conceptualized as dynamic

SPLs. This is an attractive notion because work on SPLs has resulted in powerful techniques

for modeling architectural variability. However, conventional SPL models cannot easily

handle two important properties of DSPLs; environmental variability and QoS. Our

contribution is to combine goal modeling with constraint programming. Goals support the

modeling of environmental variability and QoS as well as a subset of the concepts needed for

the effective representation of architectural variability. A goal model can be mapped to a

constraint program, which has the added capability to represent properties such as excludes

relationships that are hard to represent in goal models. Moreover, a constraint program, when

solved using a tool such as VariaMos, is able to determine the extent to which the set of

variants for any context meet the QoS requirements. The key advantages of our approach are

that it allows the analyst to perform static verification of the goal model that captures the

requirements and assumptions for a DSPL, and that the same techniques can be used to

dynamically re-evaluate the goal model as assumptions are revised in the light of evidence

acquired by runtime monitoring.

There are, of course limitation to our approach. Our approach would not work where a high

degree of environmental complexity made it impossible to identify a discrete set of contexts

a-priori. However, we are confident of our constraint programming approach’s ability to deal

with significant architectural variability. Computation of the optimal configuration for any

GridStix context takes c. 20ms on a standard PC. GridStix has relatively little architectural

variability, but we have tested VariaMos on static SPLs running to many thousands of

features, and including the added complexity of optional features that are absent from our

WSN models. These experiments show that VariaMos evaluates these product line models in

linear or polynomial time.

Generalizing the above, finding the per-context optimal architectural configuration is

essentially a problem of multi-criteria decision-making (MCDM), and this is an

acknowledged open problem for self-adaptive systems [7]. However, in our approach we only

attempt to optimize softgoals. We treat (functional) goal satisfaction as Boolean and the set of

goals and softgoals as fixed and unchanging. All that varies is:

• the required degree of softgoal satisfaction that is defined per context;

• the expected degree of softgoal satisfaction achievable by the different goal

operationalizations.

Both of these are measured using a discrete set of ordinal values. The net effect is to allow

our approach to exploit the highly efficient capabilities of modern constraint program solvers.

Our approach still suffers the problem common to other MCDM techniques whereby the

assignment of the right weights (required and estimated degrees of softgoal satisfaction in our

case) can be hard. At least with our approach, claims can be revised using empirical evidence

gathered by runtime monitoring.

Memory consumption may be more of an issue for WSNs but even here, with careful design

and appropriate middleware support, processing can be performed off-line and new

configurations (or rather the policy rules that select components) distributed to the nodes.

Note that in any case this is likely to be needed only rarely, when a claim is revised. We are

therefore confident that constraint programming holds real promise for DSPLs combining

significantly greater scale and complexity than GridStix, our exemplar DSPL.

References

1. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T. (2008) “A

generic component model for building systems software”. ACM Transactions on

Computer Systems, 26 (1).

2. Hallsteinsen, S.; Hinchey, M.; Sooyong Park; Schmid, K. (2008) “Dynamic Software

Product Lines” IEEE Computer, 41 (4).

3. Hughes, D., Greenwood, P., Coulson, G., Blair, G., Grace, P., Pappenberger, F., Smith,

P., Beven, K. (2008) “An experiment with reflective middleware to support grid-based

flood monitoring,” Concurrency and Computation: Practice and Experience, 20 (11).

4. Khan, M. U., Reichle, R., Geihs, K. (2008) “Architectural Constraints in the Model-

Driven Development of Self-Adaptive Applications”, IEEE Distributed Systems Online 9

(7)

5. Mckinley, P., Sadjadi, S., Kasten, E., Cheng, B. (2004) “Composing adaptive software”

IEEE Computer 37 (7)

6. Mazo, R., Salinesi, C., Diaz, D., Djebbi, O., Lora-Michiels, A. (2012) “Constraints: the

Heart of Domain and Application Engineering in the Product Lines Engineering

Strategy”, International Journal of Information System Modeling and Design (IJISMD), 3

(2).

7. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A. (2010) “Requirements-

aware systems: A research agenda for RE for self-adaptive systems,” 18
th

 IEEE

International Conference on Requirements Engineering (RE’10), Sydney, Australia.

8. Semmak, F., Gnaho, C., Laleau, R. (2010) “Extended KAOS Method to Model

Variability in Requirements” in (Maciaszek, L., González-Pérez, C., Jablonski, S. Eds)

Evaluation of Novel Approaches to Software Engineering, Springer Berlin Heidelberg.

9. Schulte, C., Stuckey, P. (2008) “Efficient constraint propagation engines” ACM Trans.

Program. Lang. Syst. 31 (1).

10. Sykes, D., Heaven, W., Magee, J., Kramer, J. (2010) “Exploiting non-functional

preferences in architectural adaptation for self-managed systems” Proc. ACM

Symposium on Applied Computing (SAC '10), New York, NY.

11. van Lamsweerde, A. (2009) Requirements Engineering: From System Goals to UML

Models to Software Specifications. John Wiley & Sons, Chichester, UK.

12. Welsh, K., Sawyer, P., Bencomo, N. (2011) ”Towards Requirements Aware Systems:

Run-time Resolution of Design-time Assumptions”, Proc. 26
th

 IEEE/ACM International

Conference on Automated Software Engineering (ASE’11), Lawrence, Kansas.

Author Biographies

Pete Sawyer is Professor of Software Systems Engineering at Lancaster University. His

primary research interests are in requirements engineering, self-adaptive systems and

knowledge management. Sawyer received a PhD in Computer Science from Lancaster

University. He is a member of the IEEE, the ACM and the British Computer Society.

Raúl Mazo is an Associate Professor at Université Paris 1, Panthéon Sorbonne. His research

interests include the definition of constraint-based formalisms to represent complex product

line models, the definition of methods to validate, verify, analyse, configure and evolve

variability models and the construction of product line models. Mazo received a PhD in

Computer Science from Université Paris 1, Panthéon Sorbonne. Contact him at:

raulmazo@gmail.com

Daniel Diaz is an Associate Professor at Université Paris 1, Panthéon Sorbonne. He is

member of the Centre de Recherche en Informatique. He is the author of GNU Prolog. His

research interests include: Logic Programming, Constraint Programming, Local search and

parallelism. Diaz received his PhD from Université d'Orléans. Contact him at:

Daniel.Diaz@univ-paris1.fr

Camille Salinesi is a Professor at Université Paris 1, Panthéon Sorbonne. He is the head of

the Centre de Recherche en Informatique, which specializes in Information Systems

Engineering. His research interests include requirements engineering, strategic alignment and

product lines. Salinesi received a PhD from Université Paris 6, Pierre et Marie Curie. Contact

him at: camille.salinesi@univ-paris1.fr

Danny Hughes is an Assistant Professor with the IBBT-DistriNet research group of KU

Leuven. His research interests focus on reconfigurable component models, service oriented

architectures and self-adaptive middleware for networked embedded systems. Hughes

received a PhD in Computer Science from Lancaster University. He is a member of the IEEE

and the ACM. Contact him at: danny.hughes@cs.kuleuven.br

Contact Information:

Pete Sawyer: School of Computing and Communications, InfoLab21, Lancaster University,

Lancaster, UK. LA1 4WA. +44 1524 510320, sawyer@comp.lancs.ac.uk

Raul Mazo: Centre de Recherche en Informatique (CRI), Université Paris 1 Panthéon

Sorbonne, 90 rue de Tolbiac, 75013 Paris, France. +33 1 44 07 86 45, raulmazo@gmail.com

Daniel Diaz: Centre de Recherche en Informatique (CRI), Université Paris 1 Panthéon

Sorbonne, 90 rue de Tolbiac, 75013 Paris, France. +33 1 44 07 89 61, daniel.diaz@univ-

paris1.fr

Camille Salinesi: Centre de Recherche en Informatique (CRI), Université Paris 1 Panthéon

Sorbonne, 90 rue de Tolbiac, 75013 Paris, France. +33 1 44 07 86 45, camille.salinesi@univ-

paris1.fr

Danny Hughes: IBBT-DistriNet, Department of Computer Science, KU Leuven,

Celestijnenlaan 200a, B-3001 Heverlee, Belgium. + 32 16 3 28287,

danny.hughes@cs.kuleuven.be

