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Asymmetric Cache Coherency: Policy Modifications to Improve
Multicore Performance

John Shield, Lab-STICC, Université de Bretagne-Sud
Jean-Philippe Diguet, Lab-STICC, Université de Bretagne-Sud
Guy Gogniat, Lab-STICC, Université de Bretagne-Sud

Asymmetric coherency is a new optimisation method for coherency policies to support non-uniform work-
loads in multicore processors. Asymmetric coherency assists in load balancing a workload and this is applica-
ble to SoC multicores where the applications are not evenly spread among the processors and customization
of the coherency is possible. Asymmetric coherency is a policy change, and consequently our designs re-
quire little or no additional hardware over an existing system. We explore two different types of asymmetric
coherency policies. Our bus based asymmetric coherency policy, generated a 60% coherency cost reduction
(reduction of latencies due to coherency messages) for non-shared data. Our directory based asymmetric co-
herency policy, showed up to a 5.8% execution time improvement and up to a 22% improvement in average
memory latency for the parallel benchmarks Sha, using a statically allocated asymmetry. Dynamically allo-
cated asymmetry was found to generate further improvements in access latency, increasing the effectiveness
of asymmetric coherency by up to 73.8% when compared to the static asymmetric solution.

Categories and Subject Descriptors: I.7.2 [Processor Architectures]: Other Architecture Styles—Adapt-
able Architectures

Additional Key Words and Phrases: Non-Uniform Workload; Cache; Memory Coherency; Multicore Process-
ing; Memory Management

1. INTRODUCTION
FPGA multicore systems can allow for custom coherency policies to improve load bal-
ancing with methods that are complementary to task distribution and on-chip network
arbitration. In multicore systems, the workload is not always evenly distributed. Se-
quential operations limit the parallel performance improvement as stated in Amdahl’s
Law and this limits the distribution of the workload by the designer and the operating
system load balancing. We define the workload as a non-uniform workload (an asym-
metric workload), when some cores are idle due to the sequential limitations of the
workload. This situation is especially true for embedded multiprocessor architectures.
Embedded MPSoC systems are often designed for specialized applications [Wolf et al.
2008], where they can accelerate the critical parts of the system. The possibility of ac-
celerating a critical part of the workload is usually a sign of an asymmetric workload
that can also benefit from asymmetric coherency.

Memory coherency is necessary to ensure that all cores are using the most recent
data values. However, the necessary drawback is there are overheads for maintain-

Authors’ addresses: John Shield, Lab-STICC, Université de Bretagne-Sud, F-56321 Lorient, France; E-mail:
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ing the memory coherency. Coherency overheads are from the required additional co-
herency signals sent on the communication channel.

We present the new concept of asymmetric coherency, the purposeful design of the
memory coherency to have different performances for different cores. Our work in
asymmetric coherency addresses the non-uniform distribution of the application work-
load through modifications in memory coherency. The coherency modifications impact
the communication latency and throughput for the memory system. We label the criti-
cal core (with the heavy workload) as the primary core and other cores (less important
cores) to be secondary cores. We redistribute the coherency overheads to improve the
memory latency and throughput of the primary core at the expense of secondary cores.
This is approach to workload balancing accelerates parts of the workload and is com-
plementary to workload distribution methods.

Asymmetric coherency is a policy change, so our design has low hardware cost and
simplicity in implementation. The low cost and good performance shows that our tech-
nique is a suitable method for dealing with the asymmetry in multicore workloads.

Our theory of asymmetric coherency is a suitable customisation for MPSoC systems.
In this paper, we present two asymmetric coherency policies as a proof of concept
for the theory. Our previous work [Shield et al. 2011], was a bus based coherency
policy targeted at soft real-time systems or application specific systems, where the
core requiring acceleration is known. We also extend our previous work by present-
ing a new directory based coherency policy, analysing multi-threaded shared memory
benchmarks, and using a full system simulator with operating system. The directory
coherency is targeted for more general purpose systems MPSoC systems. The asym-
metric settings are runtime adjustable and will only activate for shared data.

The remainder of this paper is as follows: Section 2 describes related work; Section 3
explains the theoretical details behind the asymmetric coherency research; Section 4
describes the experimental tools and setup used; Section 5 presents the results that
show asymmetric coherency improvements and describe discovered aspects of the be-
haviour; Section 6 discusses where asymmetric coherency can be applied, based on our
findings; and finally Section 7 concludes this paper and mentions our future work.

2. RELATED WORK
Our previous work [Shield et al. 2011] presented results for a bus based asymmetric
coherency, for multi-programming workloads that did not contain shared data. The
simulation system was also dependant on recorded cache traces, which limited results
to unshared data.

The new work in this paper extends the research by considering multi-threaded
workloads that contain shared data. A directory based system is considered for the
asymmetric coherency, which is far more scalable than a bus based system. The simu-
lation system was changed to GEMS [Martin et al. 2005], which allows for full system
simulation with an operating system. This allows us to demonstrate that our work can
be complementary to operating system load balancing.

The closest related work in cache coherency has considered custom methods to ad-
dress producer consumer or migratory data behaviour [Bennett et al. 1990; Cox and
Fowler 1993; Stenström et al. 1993; Cheng et al. 2007; Martin et al. 2003]. These op-
timisations work on the basis of creating special exceptions in the cache coherency to
handle fine-grained behaviour within an application. The previous work maintained
the underlying cache coherency system and caters for special circumstances generated
by the applications. The previous work required significant additional hardware to
cater for these special circumstances and does not consider workload asymmetry.

The previous cache coherency research does not address the same problem as our
work. Their aim is to improve coherency communications in general, whereas our co-
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herency research aims to help solve workload balancing issues. Our proposed solution
creates asymmetry in the performance of the cache coherency, which has not been
considered before. Furthermore, unlike the previous work, our proposed asymmetric
coherency policies are simple to implement.

There are several areas of research that address the problem of Amdahl’s Law: pro-
cessor frequency scaling [Annavaram et al. 2005]; heterogeneous processors [Becchi
and Crowley 2006] containing different cache sizes/blocks/associativity; and quality of
service (QoS) through bus arbitration [Iyer et al. 2007]. QoS of on-chip network arbitra-
tion is the most similar as it is concerned with communication. However, on-chip net-
work arbitration only changes the priority of messages, while asymmetric coherency
changes the quantities and inherent latencies of messages. All of this previous work is
complementary as it can be used with asymmetric cache coherency.

An alternative solution to a shared memory coherency system, is to use private mem-
ories and message passing. However, a previous study [Chandra et al. 1994] found
limited performance differences from using message passing over shared memory co-
herency. More recent design trends in reducing time to market in embedded systems
emphasises an additional drawback for message passing. Message passing requires
that the software explicitly manages the shared data and this raises problems of in-
creased design time for software development. However, message passing can be useful
for increased system reliability [Kumar et al. 2011], when all the software is designed
using message passing.

3. ASYMMETRIC COHERENCY DESIGN
The main theory behind our research concept is that an asymmetric performing cache
coherency policy can help to improve the performance of asymmetric workloads by
modifying the coherency overheads. In this section, we will present the details of our
two asymmetric coherency policies.

3.1. Asymmetric Bus Based Coherency
Our first presented asymmetric coherency policy is based on a bus based system. This
system will be used to demonstrate improvement for asymmetric coherency in multi-
programming applications. Applications could either be a soft-real-time system that
needs the critical code accelerated or an application specific system, where even distri-
bution of the workload is not possible due to algorithmic limitations.

3.1.1. Implementation. The asymmetric coherency was developed from a MSI write-
back/invalidate coherency and modified to provide writethrough/update operations for
secondary cores. The modifications to the state machine are shown in Fig. 1.
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Fig. 1. Cache controller state machine changes to implement asymmetric coherency from an initial sym-
metric writeback (grey shows removed logic compared to the symmetric MSI writeback)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 9, No. 4, Article 1, Publication date: April 2012.



1:4 J. Shield, J. Diguet and G. Gogniat

Behaviour Description:
• The primary core does not need to check for modifications as it is always updated.
• The secondary cores always updates the primary core with any modifications.
Performance Differences:
• The primary core saves on coherency overhead, because it does not need to fetch the

data modifications.
• Secondary cores take on an extra overhead in updating the primary core.

3.1.2. Hardware Costs and Scalability. The bus based asymmetric coherency uses less
hardware than the best performing symmetric system, which is writeback. The slight
reduction is due to a simpler cache controller state machine. This asymmetric co-
herency is a trivial policy change that only modifies the cache controller state machine
and does not require any additional hardware changes. The primary core is fixed at
design time, so no interface hardware and no runtime adaptivity is required. A core
only needs the reduced infrastructure for either asymmetric writeback or asymmetric
writethrough, but not both.

Fig. 1 shows the full extent of the hardware changes required. The implementation
of the asymmetric coherency simplifies the original symmetric writeback system.

Bus interconnects are limited in scalability, so the bus based coherency policy was
designed with only one primary core. The one primary core limits the scalability of
the design to smaller systems. However, this is an acceptable design limitation as the
bus interconnect, which this particular coherency policy is based on, already limits the
scaling of the system.

3.2. Asymmetric Directory Based Coherency
Our second presented asymmetric coherency policy is designed for a non-bus inter-
connect (hierarchical switch), which requires a directory to keep track of coherency.
We target general purpose MPSoC systems with this coherency policy. This system
will be used to demonstrate improvement for asymmetric coherency in multi-threaded
applications.

3.2.1. Implementation. The directory based asymmetric coherency was developed from
a MOESI directory coherency. The modifications to the state machine from the stan-
dard MOESI directory coherency are shown in Fig. 2.

The directory allows for tracking of cache lines that the primary core is sharing.
Consequently, asymmetric operations can be restricted to only the shared cache lines of
the primary core. The primary core sets the line to be volatile rather than invalidating
the secondary cores on writes. Volatile causes secondary cores to read and write to the
primary core directly. For all asymmetric cache lines, the secondary cores will always
write to the primary core.
Behaviour Description:
• The primary core has additional logic for choosing and setting special asymmetric

states. The primary core sets the cache line to be volatile, instead of invalidating,
which removes a wait for acknowledgement requirement.

• The secondary cores cater for two new asymmetric states. The asymmetric shared
state always updates the primary core for writes, but performs reads locally. The
asymmetric volatile state denotes that the primary core has write permission (data
is volatile), and both reads and writes are always directed at the primary core.

• The other cache line behaviour is unchanged. All the non-shared cache lines and the
cache lines shared between only the secondary cores behave in the same way as the
original symmetric MOESI coherency policy.
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Fig. 2. Cache controller state machine changes to implement asymmetric coherency from an initial MOESI
symmetric policy (blue shows added logic)

Performance Differences:
• The volatile state removes the acknowledgement time for shared writes in the pri-

mary core.
• The additional asymmetric states mean that the primary core is never invalidated by

the secondary cores. Consequently, it never needs to refetch invalidated cache lines.
• The secondary cores need to perform all the update functions for the shared cache

lines of the primary core.

3.2.2. Hardware Costs and Scalability. To implement the asymmetric directory system,
the following is required: a more complex state machine for the cache controllers (de-
scribed in Fig. 2), a single storage bit (to denote asymmetry) for each tag in the di-
rectory and the caches, and finally a processor accessible register to control setting of
the primary core during runtime. The additional bit is to denote whether a line is an
asymmetric cache line. In our experimental setup, the additional memory bit causes a
2% to 3% increase in the cache memory size. These hardware cost increases are trivial
compared to the complexity and storage requirements of the original MOESI system.

Unlike the bus based policy, a directory based policy allows for tracking of exclusive
cache lines and allows for normal symmetric coherency behaviour between secondary
cores. This significantly improves the scalability of the system (compared to the bus
based policy) as only data with known asymmetry will be targeted. If the asymmetry
is targeted correctly to the data, our directory based policy can always be configured
to be equal or better than a standard coherency policy no matter what scaling of the
system.

Furthermore, primary core settings for each individual cache line can ensure scala-
bility of the performance improvement in much larger systems. Only a single primary
core was used in the experiments, but a different primary core for each cache line is
possible if a primary core bit is added for each cache tag. This provides very good scala-
bility when used with good analysis for setting the asymmetry, because the asymmetry
is handled on an individual cache line level.
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4. EXPERIMENTAL SETUP
This section explains the two different experiment setups for the multi-programming
(previous research [Shield et al. 2011]) and multi-threaded (new research) results. Two
different simulation systems were used. The multi-programming results use a faster
simulator, which lacks the ability to model the operating system. The multi-threaded
results use a much slower full system simulator, which models the operating system
behaviour. Section 4.1 describes the simulation system used in the multi-programming
experiments. Section 4.2 describes the simulation system used in the multi-threaded
experiments.

4.1. Multi-programming Experiment Setup for Asymmetric Bus Based Coherency
MiBench [Guthaus et al. 2001] was used for the multi-programming workload. Mem-
ory traces were recorded from the MiBench running on a Virtex 4 FPGA with Microb-
laze and uClinux.

A cycle accurate trace driven simulation system [Shield et al. 2007] was upgraded
to implement the bus based asymmetric coherency (Section 3.1). The simulator uses
memory traces for each core. The modified simulator has the additional ability to sim-
ulate a spinlock by simulating the polling of a memory location until the value matches
the release signal. The simulator can load different configuration files to change the
architecture and policies in the multicore system. It supports up to 16 cores. In the
experiments, 1 primary core and 4 secondary cores were given workloads. The private
caches used are 4 KBytes in size, 2 way associativity, Pseudo-LRU replacement and a
16 byte line size. The cores are connected to a DRAM main memory through a bus.

The experimental parameters modified were the system type, write policy and bus
arbitration policy. Combinations of these parameters created the different systems
tested. The details of the parameters are listed below:
• System Type: Single Processor; Multicore Symmetric Coherency; Multicore Asymmetric Co-

herency
• Write Policy: Writeback; WritebackOnHit; Writethrough
• Bus Arbitration Policy: Base (Round Robin); Priority (Bus Arbitration by Priority); Cancel

(Bus Arbitration by Priority & Cancellation of Low Priority Accesses)
In the symmetric systems, all the cores use the same write policy parameter. In the

asymmetric systems, the write policy mentioned only denotes the primary core policy.
Writeback or writebackOnHit is used for the primary core and a writethrough policy
is always used for the secondary cores.

4.2. Multi-threaded Experiment Setup for Asymmetric Directory Based Coherency
ParMiBench [Iqbal et al. 2010] was used for the multi-threaded workload.

In the multi-threaded experiments, the GEMS Simulator [Martin et al. 2005] was
used to provide cycle-accurate full-system simulation results for the asymmetric direc-
tory coherency. The asymmetric directory coherency policy and MOESI coherency pol-
icy (Section 3.2) were implemented using the SLICC coherency description language
in GEMS.

The GEMS configuration settings were: hierarchical switch interconnect; Solaris 8
operating system; 4 UltraSPARC III cores; off-chip main memory; no L2 cache; and
private 64 KBytes L1 caches with 4 ways. All other settings are default.

Two enhancements to the GEMS simulator were required to add timing delay in the
state machines (to improve accuracy) and to allow write update operations.

Results for static and dynamic allocation of asymmetry were obtained. In the static
solution, the asymmetry core is set for the entire execution of the application. In the
dynamic solution, the best asymmetric core allocation is chosen periodically.
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5. RESULTS
We present the performance results for our two asymmetric coherency policies using
multi-programming and multi-threaded workloads.

Section 5.1 presents possible performance improvements for an asymmetric multi-
programming workload under asymmetric bus coherency. Section 5.2 describes the
possible performance improvements for an asymmetric multi-threaded workload un-
der asymmetric directory coherency.

5.1. Asymmetric Multi-programming Workloads
In multi-programming workloads, some applications have a higher priority than others
or sometimes soft real-time requirements. However, these applications often cannot
run on more than a single core. Asymmetric policies can be used to accelerate a single
primary core, while still allowing for secondary cores to continue running.

In this section, we demonstrate that a static setting of the bus based asymmetric
coherency can reduce overheads. This is only a small summary of our work with the
bus based asymmetric coherency. More detailed results for the bus coherency system
can be found in previous research [Shield et al. 2011].

5.1.1. Asymmetric Coherency Improvement. The asymmetric coherency policy alleviates
the cost of the coherency overhead. If the secondary cores are writethrough-always,
checking their data is not required. This removes a bus extra cycle for checking
whether there is dirty data in the secondary cores, when writeback is used in the
secondary cores and the primary core needs to fetch data. This means that the asym-
metric policy has an advantage over the symmetric policy when there is a read miss.
Due to this difference the asymmetric policy reduced non-shared data coherency costs.
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Fig. 3. Coherency costs of asymmetric and symmetric policies for single core workloads (MiBench applica-
tions) placed on a multicore system (Displaying percentage cost relative to memory access time)

Fig. 3 shows the coherency costs for the asymmetric and symmetric policies using
both writeback and writebackOnHit under a wider range of MiBench applications.
Applications that contained less than 2% system bus usage are not shown due to irrel-
evance as they do not access the main memory much.

The difference between the coherency costs for the asymmetric policy and symmetric
policy varied between 0.3% (for the application Stringsearch) and 8.7% (for the appli-
cation Rijndael Decrypt). For the Stringsearch case, the coherency cost showed minor
improvement with only a 2.3% and a 9.3% reduction in costs due to infrequent writes.
However, in all the other cases the coherency costs were reduced by 20% to 60%.
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5.2. Asymmetric Multi-threaded Workloads
In multi-threaded workloads, asymmetry in the cache coherency can improve perfor-
mance by decreasing coherency costs for the sequential parts of algorithms. Thus mit-
igating the effects of Amdahl’s law. Decreasing the coherency costs of threads that
access shared data more frequently than others can also accelerate the system.

In the multi-threaded experiments, the asymmetric directory-coherency policy was
used to test the impact of coherency on shared data. ParMiBench applications are used
for the multi-threaded workload.

Multi-programming benchmarks running with the asymmetric directory policy
showed no performance difference. The directory allows for tracking of shared cache
lines, so asymmetry is designed to only be active for shared data. Consequently, asym-
metric directory policy only has different behaviour for shared data.

We first present static allocations of the primary core for the entire application exe-
cution. Then we present runtime allocation of the primary core.

5.2.1. Static Allocation of Asymmetric Coherency. In this section, our tests showed that
workloads with uniform work distribution experienced a small performance improve-
ment that does not come from asymmetry, instead deriving from better cache data
retention with our policy. Workloads with non-uniform work distribution were able to
achieve a larger improvement or reduction in performance, depending on the primary
core setting. Consequently, it is important to set the primary core correctly for non-
uniform workloads with shared data. However, uniform workloads can obtain a slight
improvement without requiring any primary core adjustment.

An initial naive allocation of the primary core was conducted, based on setting the
primary core to the parent thread on application startup.
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Fig. 4. Asymmetric execution time, memory latency and CPU utilisation for ParMiBench applications

Fig. 4 shows the asymmetric coherency results normalised to the symmetric result
for execution time and memory latency, and the CPU utilisation of the applications.

Fig. 4 (c) gives the CPU utilisation of each application, excluding the kernel usage
that is mainly found on CPU0. The CPU utilisation is fairly evenly distributed across
the cores due to the operating system load balancing. Most of the applications effec-
tively utilised the free CPU time on the cores, so they have a good uniform-workload
distribution. However, the application Sha (Secure Hash Algorithm) shows that a sig-
nificant amount of the time the CPUs are idle. The idle time indicates that the ap-
plication has been limited by its sequential operations, so the application Sha was a
non-uniform workload.

Fig. 4 (a) shows a few percent improvement for the uniform-workload ParMiBench
applications, when using the asymmetric coherency. However, the memory latency for
individual cores, in Fig. 4 (b), indicates the improvement is not caused by shifting
coherency overheads to idle cores as the memory latency reduced for all the cores.
Asymmetry in the coherency does not appear to impact uniform workloads.
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Secondary cores show improvement in many cases. The improvement in the sec-
ondary cores can be explained by better retention of data within the caches. Detailed
analysis of the secondary cores caches traces showed that the number of external mem-
ory misses decreased and misses that result in cache to cache transfers increased.
Cache to cache transfers are far less costly than cache to external memory transfers,
so more cache to cache transfers improves the performance. The decreased number of
external memory misses is due to the reduced amount of invalidation required in the
asymmetric coherency. Invalidation reduces the system caches to a single copy of the
data, and this one copy can be flushed by the replacement policy before another core
tries to access it. The asymmetric cache reduces invalidation and the larger number of
copies reduces the likely-hood for all copies of shared data to be flushed back to main
memory when it is still needed.

The Sha application was a non-uniform workload, so setting the primary core is im-
portant as the primary impacts this type of workload. Further exploration of static
primary core allocations was made with Sha, Stringsearch, and Susan, while the other
applications were not explored due to the long simulation times required for full sys-
tem simulation (Dijsktra took over 4 weeks to simulate once).
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Fig. 5. Static allocation of the primary core for ParMiBench applications (normalised to symmetric results)

Fig. 5 shows the results for the ParMiBench applications, using static allocations
of the primary core of the asymmetric policy. For Sha, there was a 9.9% increase in
execution time when the primary core was incorrectly allocated to CPU2 and a 5.8%
decrease in execution time when the primary core was correctly allocated to CPU1.
For Stringsearch, there was a 0% to 1.8% decrease in execution time depending on
primary core allocation. For Susan, there was a 1.6% to 3.2% decrease in execution
time depending on primary core allocation.

Fig. 5 (b) shows that 5.8% Sha execution time improvement was due to the redis-
tribution of coherency overheads. The memory latencies of the four cores varied the
most for the correct primary core setting of CPU1. Two cores exhibited higher memory
latency with CPU1 as the primary core, while the other two experienced much lower
latency. The lower latency for CPU0 and CPU2 (22.5% and 17.4% respectively) sped
up sequential portions of the application and overcame the performance decreases
found in CPU1 and CPU3 (6.7% and 21.3% decreases respectively). Unlike Sha, the
Stringsearch and Susan applications were relatively unaffected by coherency asym-
metry, because their workloads were relatively symmetric as shown in Fig. 4 (c). Some
improvement was still found in these two applications due to the impact of the better
data retention in the caches, which was explained earlier.

5.2.2. Runtime Memory Latency Variation for Asymmetry. The number of shared accesses in
an application varies significantly over time as the application performs different func-
tions. Consequently, the improvement of asymmetric coherency can vary significantly
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over time too. Greater performance improvements in memory latency are possible by
fine-tuning the coherency policy during execution time.

For the dynamic asymmetry experiment, only the first 6% of Sha’s execution was
run, due to the long simulation time of full system simulation. Dynamic allocation of
the primary core was made every 1 million instructions, using an offline calculation.
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Fig. 6. Memory latency for CPU cores over time for the application Sha

Fig. 6 shows the asymmetric policy memory-latency improvement for the applica-
tion Sha using both static and dynamic allocations of the primary core. Overall the dy-
namic solution improves memory access latency between 16.2% to 73.8% compared to
the static asymmetric solution. This shows further improvement is possible for asym-
metric cache coherency if runtime adaptation is implemented rather than a static al-
location for the entire application duration.

6. DISCUSSION OF FINDINGS
Asymmetric coherency was shown to be a method that redistributes coherency costs
in a multicore processor system. Two coherency policies were discussed and different
experiments with different workloads were conducted: a multiprogramming workload
using a bus based coherency system, and a multi-threaded workload using a network
on chip with directory based coherency system.

Our bus based asymmetric coherency showed that redistribution of coherency costs
can be used to accelerate a single core at the cost of slow down in other cores. Due
to the slow down in other cores, this coherency policy is only suitable for customized
MPSoC systems where the workload can be profiled and one of the cores is found to
limit the performance of the entire system. This could either be a soft-real-time system
that needs the critical code accelerated, or an application specific system where even
distribution of the workload is not possible due to algorithmic limitations.

Our directory based asymmetric coherency targeted general purpose systems MP-
SoC systems. Our results show performance improvements for multi-threaded appli-
cations when the application generates idle time on some of the cores in the system
(asymmetry in the workload). The idle time can be due to either bad partitioning of
the algorithm in the code, or partitioning limitations in the algorithm itself. The ex-
pected secondary core slowdown was instead a small improvement in many cases due
to better retention of cache data. Consequently, for applications with little asymmetry
in the workload, the results still showed some minor improvement due to the better
cache data retention.

7. CONCLUSIONS
Our contribution is the concept of asymmetric coherency. The concept is to modify
coherency policy to favour part of the workload where a sequential operations limits
the performance of the system.
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We have designed two examples, one bus based asymmetric coherency policy and
one directory based asymmetric coherency policy. Using the bus based system we have
demonstrated that asymmetric coherency can reduce the inherent coherency costs of
unshared data by 20% to 60% in multi-programming applications. We used the direc-
tory based system to look at the impact of shared data in multi-threaded applications.
We achieved an overall 5.8% execution time improvement for a parallel Sha application
and memory latency reductions for some cores going up to 22%. Analysis of the appli-
cation Sha shows that runtime adaptation of the coherency policy can further increase
performance improvements. Our results, showing the benefits of runtime adaptation
of coherency policy, motivates future work in implementing a decision algorithm for
asymmetric-coherency runtime adaptivity.
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