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Abstract

This paper is devoted to the spectral analysis of the magnetic Neumann Laplacian
on an infinite cone of aperture a. When the magnetic field is constant and parallel
to the revolution axis and when the aperture goes to zero, we prove that the first n
eigenvalues exist and admit asymptotic expansions in powers of 2.
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1 Introduction

1.1 Presentation of the problem

We are interested in the low-lying eigenvalues of the magnetic Neumann Laplacian with
a constant magnetic field applied to a “ peak ”, i.e. a right circular cone C,, along to its
symmetry axis.

The right circular cone C, of angular opening o € (0,7) (see Figure 1) is defined in the
cartesian coordinates (x,y, z) by

Ca = {(x,y,z) € R37 z > 07 .%‘2 + y2 < 22 tang %}
Let B be the constant magnetic field
B(z,y,2) = (0,0,1)".

We choose the following magnetic potential A:

1 T
A(ZL', Y, Z) = 5(_3/7 xz, 0) )
which is compatible with the axisymmetry. We consider £, the Friedrichs extension asso-
ciated with the quadratic form

Qa(®) = [(=iV + A)pliEz ),
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Figure 1: Geometric setting.

defined for ¢ € Hj(C,) with
HA(Co) = {u € L2(Cy), (—iV 4+ A)u € L2(C,)}.
The operator £, is (—iV + A)? with domain:
Ha(Co) = {u € HA(Co), (—iV + A)?u € L2(Cy), (—iV + A)u-v =0 on 9C,}.

We define the n-th eigenvalue A, («) of £, by using Rayleigh quotients:

An(a) = sup inf Qa(¥) = inf sup  Qa(¥).
U1,y Uy 1 €HL (Ca) ‘I’le[‘l’ly-uﬁpnfl}L T, Un€HR (Ca) We[Wy,..., 0,
VeH, (Ca), H\I’||L2(Ca)=1 H‘I’HL2(CQ):1

(1.1)
Let 1, () be a normalized associated eigenvector (if it exists).

Remark 1.1 In the constant magnetic field case, due to the dilation invariance of the
cone and to the scaling x = b=1/2X, the operator (—iVy + bA(x))? with b > 0 is unitarily
equivalent to b(—iVx + A(X))2.

1.2 Motivation

Let us describe the motivation of this paper. The main motivation comes from the theory
of superconductivity where the linearization of the Ginzburg-Landau leads to the study
of the magnetic Laplacian. It is well-known (see [9]) that an applied magnetic field strong
enough makes superconductivity break down. This critical value of the magnetic field!
above which superconductivity disappears is directly related to the lowest eigenvalue of
(—iV + A)? (see [12], [7, Proposition 1.9], [5, Theorem 1.4] for example). The spectral
study of the magnetic Laplacian has given rise to numerous investigations in the last fifteen
years, in particular in the strong magnetic field limit i.e. when one considers (—iV + bA)?
with large b (for non smooth domains, see [3, 8, 17]). One of the most interesting results
is provided by Helffer and Morame in [10] where they prove that superconductivity, in 2D,
concentrates near the points of the boundary where the (algebraic) curvature is maximal.

'This critical value, denoted by Hc,, is called “third critical field of the Ginzburg-Landau functional”.



This nice property aroused interest in domains with corners, which somehow correspond
to points of the boundary where the curvature becomes infinite (see [11, 14] for the quarter
plane and [2, 3] for more general domains). Denoting by S, the sector in R? with angle «
and considering the magnetic Neumann Laplacian with constant magnetic field of intensity
1, it is proved in [2] that, as soon as « is small enough, a bound state exists. Its energy is
denoted by u(«). An asymptotic expansion at any order is even provided (see [2, Theorem

1.1]):
1

o) ~ o m;a?, with my= —. 1.2
() ; j 7 (1.2)
In particular, this proves that u(a) becomes smaller than the lowest eigenvalue, denoted
by Op, of the magnetic Neumann Laplacian in the half-plane with constant magnetic field
(of intensity 1). An important consequence is that the third critical field is larger when
there are corners than in the regular boundary case (see [5]). As already mentioned, this
result only concerns dimension 2. Nevertheless the case of the 2D sector can be used to
describe the infinite wedge with magnetic field parallel to the edge. This motivates the
study of dihedral domains (see [16]). Another possibility of investigation in 3D, with which
the present paper is concerned, is the case of a conical singularity of the boundary (and,
for sake of simplicity, with a magnetic field parallel to the cone axis). We would especially
like to answer the following questions: Can we go below u(a) and can we describe the
structure of the spectrum when the aperture of the cone goes to zero 7

1.3 The magnetic Laplacian in spherical coordinates

Due to the geometry setting, it is natural to deal with the spherical coordinates which are
combined with a dilation:

B(t,0, ) = (z,y,2) = a~ Y?(tcosfsinay, tsinbsinap, tcosap).
We denote by P the semi-infinite rectangular parallelepiped
Pi={(t0,0) eR? t>0, 6 €0,2m), p € (0,1)}

Let ¢ € Hp(Co). We write ¢(®(t,6,¢)) = a'/4)(t, 0, @) for any (¢,6, ) € P in these new
coordinates and then, using Appendix A, we have

61,y = [ 16006, @ simnapdtas d.

and:

Qa(¥) = aQa(t),
where the quadratic form @, is defined on the form domain H}\(P) by

— 2 1 : t2sin? ap
Qa(d}) e /7) <‘at7,[}| + m ‘ <—’L&9 + 2(1) ¢

with the measure

2

1 .
+a2t2|3¢¢|2> dig, (1.3)

dji = t? sin g dt d0 dop,
and, using (A.1),

H} (P) = {y € L*(P, dji), (—iV + Ay € L*(P, dji)}.



We consider £, the Friedrichs extension associated with the quadratic form Q.. We define
the n-th eigenvalue \,(«) of L, by using the Rayleigh quotients as in (1.1) and 9, («) a
normalized associated eigenvector if it exists. We have

An(a) = adn(a),  Yn(@)(2,y,2) = du(@)(t, 6, ¢).

1.4 Main result

In this paper we aim at estimating the discrete spectrum, if it exists, of £,. For that
purpose, we shall first determine the bottom of its essential spectrum. From Persson’s
characterization of the infimum of the essential spectrum, it is enough to consider the
behavior at infinity. Far away from the origin, the magnetic field makes an angle /2 with
the boundary of the cone so that we can compare with a half-space model and deduce the
following proposition (see Section 2).

Proposition 1.2 Let us denote by spe(L£a) the essential spectrum of £,. We have:

spess(f’a) = [G (%) 7+OO) )

where o(0) is the bottom of the spectrum of the Schrédinger operator with constant mag-
netic field B = (0, cos 0, sin 0) which makes the angle 6 with the boundary of the half-space
R3 (see Section 2.1).

At this stage we have still not proved that discrete spectrum exists. As it is the case in 2D
(see [2]) or in the case on infinite wedge (see [16]), there is hope to prove such an existence
in the limit o — 0.

Philosophy of the investigation Let us explain the structure of our analysis. The
first natural step to perform the investigation of the discrete spectrum is the introduction
of appropriate quasi-eigenpairs? whose energy is below the essential spectrum. Then we
have to prove that the constructed quasi-eigenpairs exactly describe the lowest eigenval-
ues. This is in fact the most delicate part of the analysis. As often in the study of the
magnetic operator, the spectral behavior is deeply related to localization and microlocal-
ization properties of the eigenfunctions. The localization estimates are standardly given
by the so-called Agmon estimates, whereas the microlocal behavior is more subtle to in-
vestigate. In order to succeed, the key point is to introduce a system of coordinates which
is compatible with the geometry of the magnetic field. Here our initial choice of gauge and
the spherical coordinates play this role. In the present situation, the phase variable that
we should understand is the dual variable of # given by a Fourier series decomposition and
denoted by m € Z. In other words, we realize a Fourier decomposition of £, with respect
to 6 and we introduce the family of 2D-operators (La,m)mez acting on L?(R, du):

1 1 sin?(ayp) 5 2 1 )
Loam = —tjatt O + Zsin?(ap) (m + Tt ) - m@; sin(ap)d,,
with
R={(t,p) eR* t>0, p€(0,3)},
and

dp = t? sin(a) dt de.

2By “eigenpair” we mean a pair (), ) where X is an eigenvalue and v a corresponding eigenfunction.



We denote Qqn,m the quadratic form associated with L, ,,. This normal form is also the
suitable form to construct quasimodes. Then an integrability argument proves that the
eigenfunctions are microlocalized in m = 0, i.e. they are axisymmetric. This allows a re-
duction of dimension. It remains to notice that the last term in £, o is penalized by a"?s0
that the Feshbach-Grushin projection on the groundstate of —a™2(sin(awp)) 10, sin(ap)d,
(the constant function) acts as an approximation of the identity on the eigenfunctions. In
other words the spectrum of £, o is described modulo lower order terms by the spectrum

of the average of L, o with respect to .

Organization of the paper and main result Let us now explain the scheme of our
investigation. We will construct quasimodes (independent from @) for the operator L, by
using an asymptotic expansion in o? of Lq,0 as explained in Section 3 (see Proposition
3.1). Using these quasimodes, we will prove that there exist eigenvalues below the essential
spectrum for angles small enough.

The main part of the analysis is to prove that the quasi-eigenpairs constructed in the
proof of Proposition 3.1 exactly give asymptotic expansion of the eigenpairs. As a first step,
using the comparison between the bottom of the essential spectrum given in Proposition
1.2 and the upper-bound of the n-th eigenvalue established in Corollary 3.4, we prove in
Section 4 a rough localization of the eigenfunctions with respect to z when « is small enough
(see Proposition 4.1). In a second step (see Section 5), we use the rough space estimates to
prove that the operators L, ,, with m # 0 can not contribute for the low-lying eigenvalues
i.e. that the first eigenfunctions are axisymmetric. In a last step (see Section 6), we need
to establish an accurate estimate of the spectral gap between the eigenvalues through the
Feshbach-Grushin method (see Proposition 6.1). Finally, combining Propositions 3.1 and
6.1, we deduce our main result which provides the complete asymptotic expansion for the
low-lying eigenpairs of L:

Theorem 1.3 For all n > 1, there exist apg(n) > 0 and a sequence (vjn);>0 such that,
for all a € (0,a9(n)), the n-th eigenvalue exists and satisfies:
An(a) ~ aZ'yjmaZj,

a—0 <
j=0

with yo., = b = 2_5/2(471 —1).

Remark 1.4 In particular Theorem 1.3 states that A\i(a) ~ 25%04. We have 25% < % 50
that the lowest eigenvalue of the magnetic cone goes below the lowest eigenvalue of the 2D
magnetic sector (see (1.2)). In terms of the third critical field Ho, in Ginzburg-Landau
theory, this means that Hc, is higher. In other words it is possible to apply a larger
magnetic field to the superconducting sample before superconductivity breaks down: This

phenomenon motivates our terminology “peak power”.

Remark 1.5 As a consequence of Theorem 1.3, we deduce that the lowest eigenvalues
are simple as soon as a is small enough. Therefore, the spectral theorem implies that the
quasimodes (see (3.4)) constructed in the proof of Proposition 3.1 are approximations of
the eigenfunctions of Lo. In particular, using the rescaled spherical coordinates, for all
n > 1, there exist a,, > 0 and Cy, such that, for a € (0,y):

[0n (@) = fullr2ep, ap) < Cna®,

where f,, is defined in Corollary C.2. From the Ginzburg-Landau point of view, this means
that superconductivity spreads in the cone at the scale a~1/2,



2 Essential spectrum

This section is devoted to the proof of Proposition 1.2.

2.1 Magnetic Laplacian on a half-space

As explained in the introduction, the magnetic field makes an angle «/2 with the boundary
of the cone. Therefore, it is quite intuitive, using Persson’s lemma (see Lemma 2.1), that
the Schrodinger operator in Ri with constant magnetic field B = (0,cos §,sin §) will
determine the bottom of the essential spectrum. Let us recall some results of [12, 4]
concerning this operator. Let # € (0,7/2) and Py be the Neumann realization on the

half-space RY = {(r,s,t) € R3,t > 0} of
D? + D? + (D, — tcos + ssin6)>.

The bottom of the spectrum, which is essential, is denoted by ¢ (). From [12] (see also [4]),
we know that the function 6 — o(6) is analytic and increasing from (0, §) onto (O, 1),
where the definition of Oy is recalled below Formula (1.2).

2.2 Proof of Proposition 1.2

Let us first recall the Persson’s lemma (see [15]) which characterizes the essential spectrum:

Lemma 2.1 Let Q be an unbounded domain of R® with Lipschitzian boundary. Then the
bottom of the essential spectrum of the Neumann realization of the Schrddinger operator
—Ap = (—iV + A)? is given by

inf spe (P) = nglgo Y(—Aa, R),

with

V+A) 2
S-anR) = e AelCVEARE
peCs (rtBr) Jo 10

where Br denotes the ball of radius R centered at the origin and CBr = R?\Bg.

Lower bound for 3X(—Aa, R) Let us first prove a lower bound for ¥(—Aa, R) for
large R. In order to do this, we introduce a partition of unity (x;); = (xj,r); such that:

D=1
J

and which satisfies, in cartesian coordinates:

supp (x;) C B(P;, R and > [IVx;la,) < CR™Y2.

We can also assume that the balls which intersect the boundary have their centers on it.
Let us also fix R such that R > (tan %)_4/ 3 (thus any ball centered on the boundary at a
point P; such that | Pj|| = R; > R and of radius R'/* does not intersect the cone axis).
For ¢ € C5°(Co N CBR), we want to prove a lower bound for Qa(¢)). The “IMS” formula
gives:

= ZQA(Xﬂ/J) - Z IVx91E2 e,
J J



This implies:
Qa(¥) > > Qalx;v) — CRT|Y[f2c. - (2.1)
J

Let us consider j such that B(P; ,RY*)N9C, = 0. Then, we can extend the function
X;¥ by zero to R3 and by the min-max principle applied to the Schrodinger operator with
constant magnetic field equal to 1 in R3, the following inequality holds:

Qa(¥) = Ixj¥ltzc.)- (2.2)

Let us now analyze the other balls and consider j such that B(P; RV nac, # 0.
For such ball, it is convenient to use the normal coordinates which parametmze Cqo (see
Appendix B). Denoting 1; the function x;¢ in the normal coordinates (p, 8, 7) € Dy, the

quadratic form can be written (see (B.1)):
(-Zae n ) " ) ap,

Da = {(p’e’T) € R?)?p > 079 € [O’ 27’[’)77' S (Ovptan%)},
Va(p,7) = (psin § — 7 cos %)2, dii = (psin§ —7cos §)dpdodr.

Qalx;j¥) = Qa(¥;) = /D <|3p1/’j|2 +10:0; 7 + V!

with

Let us use the translation p = R; 4+ p and denote 1/;j (p,0,7) =1;(p,0,7). We first notice
that (,0 sin§ — Tcos §) is close to R;jsin§ on the support of ¢;. Indeed, we have there
|psin § — 7cos §| < 2R'Y* and thus, since R < Rj, there exists C' > 0 such that for all j
and for all (p,0,7) on the support of ¥, we have

|(psin§ — 7cos §) — Rjsin §| = |psin § — 7cos §| < 2R* < CR™ 3/4R sin §.

With a possibly larger C', we have:

(1 —C’R‘3/4)Rj sing < |psing —7cos§| < (1+CR_3/4)Rj sin ¢, 23)
(1- CR_3/4)R;2 sin?% < Vo(Rj+p7)7t < (14 CR_3/4)R;2 sin™? §. '
Using (2.3), we have
. - 2
Qa(; - > -~ _
R.sin & (1(_%3—3/4) 2 /D ’@)%‘2 + |3H/)j\2 + V| —idg + - 1!)3 dpdédr,
J 2 o
(2.4)

where V,,(5,0,7) = Vo(R; + p, 7). Let us deal with the third term in (2.4):

V. psin & — 7 cos 2)2
—i89+7a:—189+R sing (psin§g —7cos §) + Cj + (psin 5 2)

2 )
where C; = %sin2 %R? can be erased modulo a gauge transform: 1/;]- = ¢ 10C; v;. We write,
using (2.3), for all n € (0,1):
- 2 . 9
- { -
vl (—z@g + ) LZ)] > (1—-CR™3*(1—n) ‘ <_R-sinaae + psin§ — 7 cos g) vj
g SIS
_ ' (psin § — 7 cos )

2
P 2 ’Uj’ .
4 Rj sin® §



We have
(psing — 7cos )* R

4R] sin? 3‘ 4R2 sin2 %

< —

:UQ

After the change of variable § = R; sin 50 and denoting w;(p, 0,7) = v;(p,0,7), the lower
bound (2.4) becomes

Qa(¢') - 2
e = Z/Ri 0w [*+10rw;[*+(1=CR™%)(1—n) | (=i05 + psin § — 7 cos §) w;|

- C};]wj|2> dpdfdr
U

> (I—CR_3/4)(1—77)/ <\8ﬁwj\2 + [0-w; | + | (—i0; + psin & — 7 cos §) wy| ) dpdédr
Y

C ~
—— [ |w;|*dpdédr,
nR Jgrs
+
where we have extended the function w; by zero outside its support and then defined
a function in the half-space. Thus, applying the min-max principle for the Schrédinger
operator with a constant magnetic field which makes an angle /2 with the boundary of
the half-space (see Section 2.1), we deduce (returning in (p, 0, 7) variables)
C
Q) > (1 - CR) Rysing (1 - CR (1 —no (3) = / b2 dpdd dr.
2 nR] Jp,
(2.5)
Let us now estimate the norm ||¢;{|12(p,, qp) With (2.3):

||¢j||i2(pa’dﬂ) = /D [ |?|psin g — 7cos §|dpdf dr

< <1+CR—3/4>sting/ ;]2 dp o dr. (2.6)
Da
Relations (2.5) and (2.6) give
CR3/4 5 oY c
| 1-CR™ o am3my1 — o (&) — C | w2
Qnl¥) = Qulw) 2 {1 gz (1= CR = (5) = 1| vl
(2.7)

Combining (2.1) with (2.7) and (2.2), we deduce for R large enough and 7 small enough
(since o(§) < 1):

1—CR3/*

ST 1 CRY (1 — i
Q)2 1o [0 - er o (3) - 477R]Z||xmu% L[
Thus we get:
S(—An, R) > ﬂ (1- CR™3/%(1-n) (g>_£ _ ¢
A = T OR-3/A MWI\) T aRr| T R
and

lim S(—Aa, B) > (1—n)o($).
R—o0
This relation is available for any n € (0,1). Therefore, we have with Lemma 2.1

inf spess (La) > 0(2):



Upper bound for ¥(—Aa, R) We have now to prove the upper-bound. Let v be fixed.
By the min-max principle applied to the operator P% , for any ¢, there exists ¢ € C§° (Ri)
such that
o f]R5 (]85¢|2+|8t¢|2+]( i0p +tcos§ — ssin §)| ) drdsdt o
= <o(= .
"(2)* Jes 0P drdsdt *J(z)“

We can assume that
supp(v)) C {(r,s,t) € R‘i, re(—=41L),se (—L10),te (0,0},

with £ > 0. For any R > 0, let us construct, using v, a function u € C§°(D, N CBR) in
normal coordinates such that

Qa(u) < (o(5) + o) [ullf2p,, ap-

Let us analyze Qq (u) by using the previous computations for the lower bound. We assume
that
supp(u) C {(p,0,7) ER®, pc (R—L,R+(),0 € (—m,7),7 € (0,0)}.

We use the change of variables p = R + p. Thus, we have on the support of u:
|(psing — 7cos §) — Rsin §| = [psin § — 7cos G| < 20. (2.9)
Thus there exists C' > 0 such that:
(1-ClR™Y)Rsing < |psing —7cosg| < (1+ClR)Rsing,

2.10
(1—C/RYHR 2sin2¢ < Vo(R+p7) ' < (14+CIR MR 2sin 29 (2.10)
2 (6] py PR

Using (2.10) and denoting a(p, 0, 7) = u(p,0,7) and Val(p,0,7) = Vo (R + p,T), we have:

~ 2
(—i@g + ?) il | dpdedr.

(2.11)

Qa(“) / ~12 ~12 r—1
<
Rsing (1+C(R™Y) = Jp, Gpul” + 10-af"+ Va

Let us deal with the third term in (2.11):

vV, 1 psin & — 7 cos £)2
—i89+7a:—189+Rsm (p51n—7-0082)+281n23‘R2+(p 2 5 2)

. a2 P2
We let @ = e~ 275" @R and we have

(%)

We write, using (2.9) and (2.10), for all n € (0, 1):

"‘/‘,
(—289 + 2)

< (14 CtR™) <(1 +n) ‘ (Rsliig

(2]
2

(psin § —Tcosg‘)z) ;

:'(—i@g—i—Rsing (psing — Tcos §) + 5

2
‘7,

67

+ (psin § —TCOS%)) v



Let us now make the change of variable § = ORsin § (denoting w(p, 0,7) = v(p,0,7)
extended to Ri by 0 outside its support), the upper bound (2.11) reads

Qa(u) 2 2 -1 ; ~ a 2
-1 -1 064 2 ~ 10
+(1+ClR™) (147 )ﬁ|w| dpdfdr

< (1+C€R1)(1+n)/ (|8;,w\2+\(97w\2+ \(—za§+(ﬁsin%—Tcosg))wf) dpdodr
R3

+

ce ~
+(Q+CRY (14971 / lw|* dpdf dr.
R2 Ri
Let us now estimate the norm [lully2(p g5y with (2.10):
HUH%Q(P,d,&) = / lul?|psin§ — 7 cos §|dpdf dr
> (1- C’ZR_I) Rsing/ |ul? dpdf dr
=
= (1- CZRl)/ lw|? dpdé dr. (2.12)
3

RY
We use for w the function 1 satisfying (2.8). Therefore, we get:

QQ(U) (1 + CgR—l)2 o B 064
HEA O S e, = e\ (0(5) +e) + 0™ Z )
ay ,LL

and

i S(-AnB) < (1L n)(o(3) +2).

Since this relation is available for any n € (0,1), we deduce

inf spess(La) < 0(5) +¢, Ve > 0.

3 Construction of quasimodes

This section deals with the proof of the following proposition.

Proposition 3.1 There exists a sequence (v;y)j>0n>1 such that for all N > 1 and J > 0,
there exist Cy,j and o such that for all 0 < a < ag and 1 <n < N, we have:

J
dist Spdis('ga)7 ZPYJI,”O?J—HL < CN,J a2J+3’
=0

where Yo n = b, = 2_5/2(4n —-1).

Proof: We construct quasimodes which do not depend on 6. In other words, we look
for quasimodes for:

sin?(a) 1

1
Loo = —t—Qatt28t + O, sin(ap)0,,.

4a? o2 2sin(ay)

10



We write a formal Taylor expansion of £, in powers of a?:
Lo ~ a_2L_1 + Lo + Z a2ij,

Jj>1

where:
1 9 |
L= —%@7@0@, Ly = ——att o + T + 32 =590,.
We look for quasi-eigenpairs expressed as formal series:
w~2a2jwj, )\Na_Q)\A—i-)\o—l-Zoﬂj)\j,
Jj=0 i>1

so that, formally, we have:

£a,0¢ ~ .

Term in a~2. We are led to solve the equation:

L 1o = — 89030&,07;[)0 = A_1%o.

e
We choose A_1 = 0 and 9y(t, ») = fo(t), with fy to be chosen in the next step.

0

Term in a”. We shall now solve the equation:

L 191 = (Ao — Lo)vo-
We look for v in the form: vy (t, ) = t2¢;(t, ©) + f1(t). The equation provides:
1 -
T pPOp11 = (Ao — Lo)bo. (3.1)

For each t > 0, the Fredholm condition is (Ao — Lo)%0, 1)12(( (0 = 0, that reads:

,3) e de)
1

/02(L0¢0)(t7 ©)pdp = %fo(t)-

Moreover we have:

1

/0 (Loto)(t.9) g = — 0D, fo(6) + ot o),

23t2
so that we get:
(—;aﬁ&e + 215752) fo=2ofo.
Using Corollary C.2, we are led to take:
Ao =In and fo(t) = fn(t).

For this choice of fj, we infer the existence of a unique function denoted by 1[1% (in the
Schwartz class with respect to ¢) orthogonal to 1 in L?((0, 3), ¢ d¢) which satisfies (3.1).
Using the decomposition of 1, we have:

Di(t, ) = 201 (8 9) + f1(8),

where f1 has to be determined in the next step.
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Further terms. Let us consider £ > 1 and assume that we have already constructed
(Aj)j=—1,...k—1> (fj)j=0,... k=1, (¥j)j=0,.. k—1 (Which are in the Schwartz class with respect
to t) and that, for j = 0,...,k, we can write:

djj(tv p) = t21;]4_(t7 ®) + fj(t)7

where (1/~1kL (t,¥))j=0,.k are determined functions in the Schwartz class (and orthogonal to
1in L?((0, 3), ¢ dy)) and where f;, has to be determined.

We write the equation corresponding to a*, L_i 41 = Z?:o()‘j — Lj)1p—; that reads:

L_1Yr1 = Mgpo + Aor — Loty + Ry,

where Ry is a determined function in the Schwartz class with respect to t:

k—1

Ry = Z()\j — Lj)Yp—j — L.

j=1
We look for 11 in the form g1 (¢, p) = thLkH(t, ©) + fr+1(t) and we can write:

1 ~
5 o 0O Vk11 = Apto + Aok — Loy + Ry. (3.2)

The Fredholm alternative provides (Agtbo + Ri + (Lo — Ao) ¥k, 1>L2((0,%)7¢d¢) = 0 and thus:

1 1
(—tgattQ(?t + =t — Ao) Jr = Aefo + 7, (3.3)

25
where 7 is a determined function in the Schwartz class. The Fredholm alternative implies
that:

e = —(k;, fo)t-

For this choice, we can find a unique normalized fi in the Schwartz class such that it
satisfies (3.3) and (fx, fo):+ = 0. Then, we obtain the existence of a unique function denoted
by 1;2;1, in the Schwartz class with respect to ¢ and orthogonal to 1 in L2((0, %), pdyp)
which satisfies (3.2).

We define:
J .
U () (t,0,0) = Y a¥y(te), V(t0,9)€P, (3.4)
j=0
J .
Ale) = > ¥ (3.5)
j=0

Due to the exponential decay of the 1); and thanks to Taylor expansions, there exists C,, s
such that:

| (Lo — A (0)) T ()l2(p,apy < Croa @ 2T () lr2(p, az)-

Using the spectral theorem and going back to the operator £, by change of variables, we
conclude the proof of Proposition 3.1 with «;, = A;. [

Considering the main term of the asymptotic expansion, we deduce the three following
corollaries.
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Corollary 3.2 Forall N > 1, there exist C' and ag and for all1 <n < N and0 < a < ag,
there exists an eigenvalue Ay o) () of Lo such that

Ak (@) = Ta| < Ca®.
Corollary 3.3 We observe that for 1 <n < N and o € (0, )
0 < An(a) € Aggnay (@) < 1 + Ca?.
This last corollary implies:

Corollary 3.4 For all n > 1, there exist ap(n) > 0 and C, > 0 such that, for all
a € (0,a0(n)), the n-th eigenvalue exists and satisfies:

An(a) < Chra,

or equivalently A, (o)) < Ch,.

4 Rough Agmon estimates

In our way to prove Theorem 1.3 we will need rough localization estimates “a la Agmon”
satisfied by the first eigenfunctions. We shall prove the following proposition.

Proposition 4.1 Let Cy > 0. There exist ag > 0 and C > 0 such that for any a € (0, ap)
and for all eigenpair (X, v) of £, satisfying A < Coa:

| e dsdydz < iR, (4.1)

and
Qn(eFly) < Callp|Za,). (42)
Proof: Let (M(@),¥na) = (A7) an eigenpair for £,. Let us introduce a smooth

cut-off function 0 < x <1 such that x =1 on [—1, 1] and x(z) = 0 for |z| > 2 and let us
also consider, for R > 1:

() = ax () Izl

We can write the Agmon identity:

QA(GCI)RQ;Z)) — )‘||€(DR¢||12_42(C&) — ||V(I)R6¢R1/)Hiz(ca).

We have A < Cha. Moreover we have |[VOr|| < a + 2| x'||co- There exists ap > 0 such
that for a € (0,ap) and all R > 1, we have:

Qa(e™ ) < Calle™ ¢ fac, -
We introduce a partition of unity with respect to z:
X1(2) +x3(2) = 1,
where x1(z) =1 for 0 <z <1 and xi(2) =0 for z > 2. For j = 1,2 and v > 0, we let:
Xin(2) = x5 (v7'2),

13



so that:

1 Loy < Cy 1

The “IMS” formula provides:
Qa(e®x1,9) + Qale® x2,1) — C*y 2|2,y < Calle®™ |2,y (43)

We want to write a lower bound for QA(@QRXQ’»{QZ)). In order to do that we integrate by
slices and neglect the z-derivative part:

QA(e@szﬁdj) = / 0 </2+ 24,2 tan2 & [(=iV +A)(6¢RX2”Yw)‘2d$ dy) &
z> rety“<z<tan® 5

- [ ( / (D = B ) + (D, + £) (e Xz )2 da dy> .
2>0 22+y2<22tan? 5

Let us denote by 41 (p) the lowest eigenvalue of (D, — %)2 + (Dy + %)2 on the disk D(0, p)

with Neumann condition. From the min-max principle, we infer:

QA(e‘I)RXsz) > /C 11 (z tan%) ]eq)RXgﬁw\zdx dydz. (4.4)

@

We choose v = %. On the support of x2 -, we have:
ztan§ > 2§ > Ro.

We recall (see [1, 6]) that there exists po > 0 such that, for gy > pp:

p(po) > %. (4.5)

We choose Ry = po. With (4.3), (4.4) and (4.5), we infer:
(5= ettt ) e u dsayds < ORI vl
We deduce that there exist ap > 0, C > 0 such that for « € (0,ap) and R > 0:
/C |e¢RX2,,Y1/)|2 drdydz < C||€¢RX1,7UJ||%2(CQ)-
With our choice of v(= 2Ropa™!), we infer:

/C P X2 da dy dz < Cll9]|72 ¢,

and P 2 2 2(C

Taking the limit R — +o00 and using the Fatou lemma, it follows:

/ Y2 de dydz < Cllelee, ),

Ca

which is (4.1). Using again (4.3), we infer (4.2). ]

Remark 4.2 We can guess with the construction of quasimodes given in Section 3 that
the decay of Proposition 4.1 is not optimal. Nevertheless this rough Agmon estimate is
enough to establish the optimal length scale (z ~ oY% or t ~ 1) in Proposition 6.3. In
addition, once Theorem 1.3 will be proved we will know that the quasimodes of Section 3
actually approximate the eigenfunctions which inherit the same decay.
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5 Axisymmetry of the first eigenfunctions

In this section, we prove that the first eigenfunctions of £, are axisymmetric as soon as «
is small anough.

Notation 5.1 From Propositions 1.2 and 3.1, we infer that, for all n > 1, there exists
an > 0 such that if o € (0, ), the n-th eigenvalue An(t) of Ly exists. Due to the fact
that —i0p commutes with the operator, one deduces that for each n > 1, we can consider
a basis (Ynj())j=1,.7(n,a) Of the eigenspace of L, associated with An(@) such that

¢n,j(04)(ta 97 SO) = eimn’j (a)g\I}n,j (ta 90)

As an application of the localization estimates of Section 4, we prove the following propo-
sition.

Proposition 5.2 For alln > 1, there exists ay, > 0 such that if a € (0, ), we have:
mpj(e) =0, Vji=1,...,J(n,a).

In other words, the functions of the n-th eigenspace are independent from 0 as soon as «
18 small enough.

In order to succeed, we use a contradiction argument: We consider an L2-normalized
eigenfunction of L, associated to A,(c) in the form e (®%¥ (¢, ) and we assume that
there exists o > 0 as small as we want such that m(«) # 0 or equivalently |m(a)| > 1.

We introduce a smooth cut-off function xq,(t) = x <a%+”t> where x is 1 near 0, and

n e (0, 1—(1)0). For short, we let:
UL, 9) = Xan(t)Valt, ).

5.1 Dirichlet condition on the axis ¢ =0

Let us prove the following lemma.

Lemma 5.3 For all t > 0, we have U (¢,0) = 0.

Proof: We recall the eigenvalue equation:
Lomio)¥Va = An(a)Tq,

so that: 3
Ea,m(()f)\IJCUt — )\n(a)\I/CUt 4 [ﬁa,m(a)v Xa,n]\pa- (5.1)

Thanks to Agmon’s estimates and to Corollary 3.4, we deduce:
Qam(a) (T) < Ol F2(z, gy

This implies:

1 sin?(a) o 2 cut ) i
/RtQSinQ(och) (m(o‘) ) N )P dp < O 2, g, < H00.

Using the inequality (a + b)? > $a® — 2b%, it follows:

m(a)Z/ 1 9 /tQSiHQ(agp) 9
et o) 2dy —2 [ EERNEP)geuty )24y < 4o,
- | v R a2 [ e o)y
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so that:
m(@)? [ S ) d < oo
and: .
/R m\ﬁlc‘”(t,@)]Qdy < +oo0. (5.2)

Therefore, for almost all ¢ > 0, we have:

1
3 1 .
/0 mﬂlmt(ta <p)|2 sin(agp) dp < +o0. (5.3)

The function R > (¢, ¢) — W (¢, ¢) is smooth by elliptic regularity inside C, (thus R).
In particular, it is continuous at ¢ = 0. By the integrability property (5.3), this imposes
that, for all ¢ > 0, we have Ut(¢,0) = 0. n
5.2 The operator —(sin(ay)) ', sin(ap)d,

Notation 5.4 For a € (0,7), let us consider the operator on L? ((0, 3) ,sin(ayp) dp) de-

fined by:
1

Pa =~ sin(avp)

O, sin(ap)0,,,

with domain:

Dom (B,) = {1/) elL? ((0, %), sin(aep) dy) ,

sin(lmp)aw sin(ap)0,1 € L2 ((O, %), sin(ap) dcp) , 0pt) (%) =0, ¥(0) = 0}.

We denote by v1(«) its first eigenvalue.

The aim of this subsection is to establish the following lemma:

Lemma 5.5 There exists co > 0 such that for all a € (0,7):
vi(a) > cp.

Proof: We consider the associated quadratic form pg:

|=

pa(t) = /0 " sin(ag)| v dg.

We have the elementary lower bound:

3 2 1 (3
o) > [* e (1= ) g0 dp > 5 [ avia o ag.

since 0 < ap < 5. We are led to analyze the lowest eigenvalue v > 0 of the operator on
L2 ((0, %) ,godgp) defined by —é&p(p&p with Dirichlet condition at ¢ = 0 and Neumann

condition at ¢ = % Let us prove that v > 0. If it were not the case, the corresponding
eigenvector ¢ would satisfy:

1
_g cpSDacpw =0,
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so that:
Y(p) =clnp+d, withe,deR.

The boundary conditions provide ¢ = d = 0 and thus ¢y = 0. By contradiction, we infer
that v > 0.
We deduce that:

: :
po(w) > 7 [Tapluae > 7 [sin(ag) vl ag.

By the min-max principle, we conclude that, for all a € (0, 7):

vi(a) > % =:¢p > 0.
]
5.3 End of the proof of Proposition 5.2
Let us recall that (5.1) holds so that:
[’a,m(a) (t\IICUt) = S‘n(a)t\pcm + t[‘ca,m(a)v Xoé,n]\lla + [‘Ca,m(a)?t]\IJCUt' (54)
We have:
—29 42 2
(Lam(a), t] = [-t770it°0, t] = =20, — 7
We take the scalar product of the equation (5.4) with t¥“t. We notice that:
([Lagmia) 1Y 00 20 4y = =210 2, 4y + 310 IE2(r, 4y = I IE2(r, -

The Agmon estimates provide:

‘(t[ﬁa,m(a% Xaﬂ?]qjaa t\IICUt>L2(R, du)‘ = O(aoo) H et HiQ(R, dp)*

We infer:
Qam(a) TTY) < CUIYY 2z ) + 10 27, apn))s

and especially:

o /R 002 dpr < C (19 Far, a0 + 19 P2, 00) -
Lemmas 5.3 and 5.5 imply that:
coa /72 WP du < C (Ht‘I’CUtHi%R,du) + ||‘I’CUt||iZ(7z,d#)) :
Due to support considerations, we have:
Coafzf\‘l’cm”izm,du) <C <a717277||‘1’m”%2(73, dp) T H‘I’CUtHiZ(R,dM)) :
We infer that, for a small enough, ¥t = 0. With the Agmon estimates, this implies that

W, = 0, and this is a contradiction.
This ends the proof of Proposition 5.2.
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6 Accurate estimate of the spectral gap

This section is devoted to the proof of the following proposition.

Proposition 6.1 For all n > 1, there exists apg(n) > 0 such that, for all o € (0, ag(n)),
the n-th eigenvalue exists and satisfies:

An(@) > yone+ o(a),
or equivalently A, () > 7o, + 0(1).

We first establish approximation results satisfied by the eigenfunctions in order to
investigate their behavior with respect to the t-variable. Then, we can apply a reduction
of dimension and we are reduced to a family of 1D model operators which is studied in
Appendix C.

6.1 Approximation of the eigenfunctions
Let us consider NV > 1 and let us introduce:

En () = span{y;f(a),1 < n < N},

where 5" (a)(t,0,¢) = Xan(t)¥n,1(t, @) are considered as functions defined in P (see

n,1

Notation 5.1).

Proposition 6.2 For all N > 1, there exist ag(N) > 0 and Cy > 0 such that, for all
¢ S QEN(CV):

17w = 0B gz < OnO W12 gz (6.1)
I = 6ep.am < Cna? (1812p,a + 1E01E2cp,ap)) (6.2)
1t = )2 apy < ONa2(||w||ia(p,dﬂ)+||tw|\iz<p,dm+Ht%Hiz(p,dm), (6.3)

IN

A

where:
(1) / U(t, ) pdp. (6.9
wdso
Proof: It is sufficient to prove the proposition for ¢ = wc“t( Jand 1 <n < N. We
have: ~
LoV 1(0) = A()¥)y 1 ().
It follows:

EaXa,n\I’n,l(a) = 5\n(O‘)XOc,n\I’n,l(04) + [‘Caa Xa,n]\pn,l(a)- (6'5)

Due to Agmon’s estimates (see Proposition 4.1), we can write:

Qa(¥) < (A (a) +O(@™)) ¥ 1F2(p, -

In particular, this provides:
Qa(¥) < ClIY[I2(p s

and thus, seeing 9 as a function on P:
1 -2 2 3~ 2
042/7>t 100" dit < CllY|[T2(p, az)-
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We get:
/p\&pw\Q sinapdtdfde < COZQHdJHiQ('p’dl])v

so that (using the inequality sin(og) > %°):

«
A;‘awy?dt dodp < Ca®| ¢ (p.az)-

We infer:
/P apld, (1 — ¥)? dtd0 dp < Ca([$]2ap, qp.

Let us consider the Neumann realization of the operator —é&pcpaw on L2((0,3), ¢ dp).
The first eigenvalue is simple, equal to 0 and associated to constant functions. Let § > 0
be the second eigenvalue. The function @ — 1) is orthogonal to constant functions in
L2((0, 3)¢ dep) by definition (6.4). Then, we apply the min-max principle to ¢ — 1) and
deduce:

/P&ygpw — ¢?dtdodp < C?Y[2(p.ap)»
and:
L8 = i < G,
which ends the proof of (6.1). We multiply (6.5) by ¢ and we take the scalar product with
ty to get:
Qu(t¥) < AN(Q)[tF2(p, apy + [([=t 208200, ], t)12(p, 4ty | + O Y 1E 2, apy-

We recall that: 5
[t 20,20, ] = —20; — -

We get:
Qu(t) < ClIE 122 a) + CIO N2 -

We deduce (6.2) in the same way as (6.1).
Finally, we multiply (6.5) by ¢? and take the scalar product with t?1 to get:

Qa(t*1) < AN(Q) Y12 (p apy + [([—t 200k, 8210, )12 (p 4y | + O@™)[G]22(p, as)-

The commutator is:
[—t 720,20y, 1%] = —6 — 4t0.

This implies:

Qa(t*¥) < CUIIF2(p apy + 1101 2p, ag) + 129 1E20p, a)-

The approximation (6.3) follows. [
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6.2 Control of the eigenfunctions with respect to ¢

Proposition 6.3 For all N > 1, there exist ag(N) > 0 and C > 0 such that, for all
a € (0,a0(N)) and ¥ € Ex(a), we have:

Itll2p,apy < CllYllizep, ap- (6.6)

Proof: It is again enough to prove the proposition for ¢ = wc“t( Jand 1 <n < N.
We have:
Qa(¥) < CllYlE2(p, an)»

and this implies in particular that:

Sin2(a80) 21 112 1~ 2
| e 4 < O, (6.7)

We now want to replace ¢ by ¢. For that purpose, we write:

sin?(ap) 5, o - sin?(ap) o 19 - sin®(avp) 2 2
[ g2 ewran- [ =5 ewran = [ LD (e - i) o

4 402 4
We infer:
/ SiHQ(aSD) t2‘¢|2 dﬂ _/ Sin2(a¢)t2’w‘2 dﬂ
P 4a2 P 40[2 -

< ClltY — Iz, apy (It llL2p,a) + Itlliz@p,ap) - (6.8)

Let us compare |[t*¢|| 2(p qz) and [[t*||12(p, az) for k =0, 1. Using the Jensen inequality

and the comparison %7 < sinay < ay available for any ¢ € (0, %), a € (0,7), we have

1
(denoting ¢! = [? ¢ dy):

) 1/2 1/2 2 .
HQHLQ('P,dﬂ) - / / / (p)@d(p t Slna¢dtd6d¢
>0 Jo=0 Jp=0
1/2 1/2
C/ / / Smo‘“b (/ |¢(t,g0)\2ag0d<p> 2dt d0de
t>0J0=0 J¢=0 =0

CllY g2, a0

IN

IN

and similarly:

2
[k = 1/2 v D(t, ©)pd 2 sin ag dt d6 dop
YIL2(p,dp)  — p)pap
t>0 J =0 J ¢p=0 o=

1/2 1/2
Smo@ dé t2 )2 2apdtdod
. 0 0
> =

CHt¢HL2(737d,;)- (6.9)

Then, putting together (6.7), (6.8) and (6.9), we deduce:

IN

IN

sin
/7> 4(2)752‘1[42 di < C”ﬂ)”m ap) T CltYllLzep ap ltY — tllLz(p, ap)-
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Since ¢ does not depend on the p-variable, we can write:

sin?(a sin3 (o) dep
[ 2 eypap = I [ jwan
P 402 f2 sin(ap) dp /P

‘We notice that: )
IS sin3 (o) dep

T =277+ 0(a?).
402 [ sin(ap) dp

Therefore, we get:

/P ty? dji < CW/JH%‘Z(P,@) + ClltYll2p,apy 11V — tdllr2(p, ap)-

With Proposition 6.2, we infer:

Ht%“i%'p,dg) < C||T/’||I%2(P,d;2)

+ Colltdllzp,am (I1Wl2e, ap + 1t0llize, ap + 102, ) -

We use the elementary inequality:

||W‘|i2(7>,dg) < 2(”7@”%2(73,@) + [[t(v — @Ilia(p,dm)-

We notice that, thanks to the support of 1, we can write:

129 L2, apy < Ca_l/Q_n||t¢HL2(P,dﬁ)-

Combining (6.12), (6.3) of Proposition 6.2 and (6.13), we deduce:

Hth%P(P,dﬁ) < C"@bHi?(P,dﬂ) + Cal/Q_n|’t¢H%2(P,dg)a

and (6.6) follows.

6.3 Proof of Proposition 6.1

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

We have now the elements to prove Proposition 6.1. The main idea is to apply the min-max

principle to the quadratic form @, and to the space €x(a).

Lemma 6.4 For all N > 1, there exist any > 0 and Cn > 0 such that, for all a« € (0, an)

and for all ¢ € En(a):

_ 1 % _
[ (000 275100 + 310,08 ) s < M@l Esp gy + O 1R,y

Proof: = We recall that, for all ) € €y (), we have:

Qa(¥) < S\N(OK)H"DH%Z(P,@) + 0(0400)||¢||i2(7>,dﬁ)'

We infer that:

/P Qaﬂw Sm< S (99) e Qtzwapw) < (Aw(@) + 0(a™)) 16122 p,
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We shall analyze the term [, %]twﬁdﬂ. We recall that (6.8) and (6.9) still hold.
With Proposition 6.3, we get:

sin?(o B sin?(« 5
A(“%waA(@Wm%ﬂsmwmmmmwmm@p

402 402
and thus:
sin*(ap) 5 19 1o sin*(ag) oo
/7)40[2'5 [Y|*diz > /th [9|°di — Cllty — tdllizep, ap 1YLz p, ap)-
Relation (6.14) and Propositions 6.2 and 6.3 provide:
[t — tllL2(p, apy < Ca'* [ PllL2(p, 4z, (6.15)
so that:

sin®(a) o o o sin®(ap) o 1o o 1/2— 2
[ sk an = [ G- cat i, g

We recall that (6.10) and (6.11) hold. We deduce:

4o
We have, for all € € (0,1):
I, am) = (1= Nt Eap,az) — € W = D)E2(p, az)-
Due to (6.15), it follows:
[t12(p, a7y = (1 = Nt aip ap — Ce™ a2 [0l 2(p, gz
We choose ¢ = a'/27" and get:
18122 pap = (1 — @2 DIt 22, am) — CaM2 6] o

Proposition 6.3 and (6.16) provide:

sin® () o o 5 2 1
sin®(ap) o — 1212
/p oz U =2 /p'w‘ it = Cor Y L p, a)-

sin?(« - — = -
/7>(cp)t2|1/)|2 dii > (27° - Caz)/P t1* dii = Cal Pl 2 p, - (6.16)

A straightforward consequence of Lemma 6.4 is:

Lemma 6.5 For all N > 1, there exist any > 0 and Cn > 0 such that, for all a« € (0, an)
and for all ¢ € En(a):

/’Q@¢P+25uwﬁ+
P

with dji = t?pdt dpdé.

1

012752’8@1/}’2> dp < (S\N(a) + CNO‘UQ#I) HT/}H%Q(P,dﬁ)v

Proof: It is sufficient to write for any ¢ € (0, %)

o= sin(ag) =¥ = Lsin(ap)(1 4+ 0(0?) s 0.

sin(ayp)

Combining Lemma 6.5 and Corollary C.3, we deduce (from the min-max principle) that
there exists a such that

Va € (0, an), An(a) > Iy — Cal/?7m,

This achieves the proof of Proposition 6.1.
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7 Numerical simulations

In this section, we illustrate the asymptotics expansion for the low-lying eigenpairs of L, o
denoted by (I, (a),un(@))n>1. According to Section 3 and Theorem 1.3, we have for a
small enough

() =1, + O(a?), and [un () = FallL2r, ap) < Cao?.

Numerically, we compute the eigenpairs of the operator L, o on the rectangle Ry = (0, £) x
(0, %) with a Dirichlet condition on the artificial boundary ¢ = £. We denote then by Lg,o
this operator and (I, («,¢),u,(c,¥)) its eigenpairs. We use the finite elements library
MELINA ([13]) with 40 x 10 square elements of degree Q1 and ¢ = 40. Figures 2 illustrate
the convergence of the low-lying eigenvalues as a tends to 0. In particular, Figure 2(a)
displays the first term of the asymptotic expansion of the eigenvalues, whereas Figure 2(b)
confirms the asymptotic expansion in powers of a?: we represent on Figure 2(b) the
function

o
logig (=) = pni(@) = loggo(Lu(@ €) = 1n).

9 T T T T T T T T T -0.5
9 L

1L

0 L L L L L L L L L L L L L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 -2.6 —24 -18 -16 -14 -12

22 =
almt log, (a/m)
(.a) (o, ) vs. 2 € {£1<k<20etk=1L1< (b) logo(ln(e, ) — [n) versus log; (2), ¢ = 40,
J <5} =140 2e{f1<k<10eth=1,2<j<5}

Figure 2: Approximations of [,,(«) for 0 < a < 0.1, 1 <n <12, £ = 40.

A Spherical coordinates
In dilated spherical coordinates (t,6, ) € P such that

(x,y,2z) = D(t,0,0) = oz_l/Q(t cos fsin awp, tsinfsinagp, tcosayp),
the magnetic potential reads

a—1/2

A(t,0,9) = (—tsin® sinayp,tcosd sinap,0)T.
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The Jacobian matrix associated with ® is

cosfsinap —tsinfsinap « tcosfcosayp
D<I>(t,6,g0):c’fl/2 sinfsinay tcosfsinay « tsinfcosap

Cos 0 —a tsinay
We can compute
t cos 0 sin avp tsin 0 sin ap tcos ap
(D®)7H(t,0, ) = oM/?71 | —sinf(sinop)™!  cos O(sin agp) ! 0
é cos 6 cos ap é sin § cos avp —é sin ap

Consequently, the metric becomes

1 0 0
G=(Dd) T(Dd»)t=a 0 t2(sinap)™2 0
0 0 (at)—2

The change of variables leads to define the new magnetic potential

- 2 2
A(t,0,0) = TDD A(t,0,¢) = a (o, 758“;‘“",0) . (A1)

Let ¢ be a function in the form domain Hj (Co) of the Schrédinger operator (—iV + A)?
and ¥ (t,0,0) = aV/*p(x,y, 2) (where o~ /4 is a normalization coefficient). The change
of variables on the norm and quadratic form reads

[61sc0) = [ 1560.0.)P sinaparas dg.

/ |(—iV + A)(z, y, z:)|2 dz dy dz

Ca

- / (G(~iVipp + AV, (—iVig, + A)D) t2sinapdtdf de
P

~ 1 t2sin ap -~
=« Mp* + —— || —i0g + ——F
/p <‘ ad t2 sin? ap ’( 0 20 )w

B Normal coordinates

2

+ a?t?

|8¢@Z~1|2> t? sin ap dt df de.

Let us introduce the system of coordinates associated with the exponential map of the
cone (see Figure 3). We can use the new coordinates (p, 6, 7) in the orthonormal basis

—sin@ sin § cos ¢ —cos § cost

ey = cos , e,=| singsinf |, e, = | —cosgsinf
o : o
0 COS 5 sin §

We consider the following change of variables
(psin § — 7 cos §)sind

®(p,0,7) = (x,y,2) = | (psin§ —7cos§)cosd ,
pcos g + 7sin g
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Figure 3: Normal coordinates.

whose differential is given by

: [0} : [e]] (o4 : o
sin § cosf —(psin§ —7cos §)sinf —cos G cosb

D®(p,0,7) = | singsinf (psin§ —7cos§)cosd —cos§sinf
cos 5 0 sin §
Thus
sin § cos 0 sin § sin ¢ cos §
TD®(p,0,7) = | —(psin § —Tcosg)sing (psing —71cos§)cos 0 ,

—cos § cost —cos § sin @ sin §

1 0 0

("TD®D®)'=[ 0 (psing —7cos9)"2 0 |,
0 0 1

and det D® = psin § — 7cos §. The considered magnetic potential is

1 [ Y —(psin§ — 7cos §)sin 6
A=— x =— (psin§ — 7cos §) cos 6
0 0

The change of variables leads to consider the new magnetic potential :
0
A= TDoA=_ in § a)2
= =3 (psin§ — 7 cos §)
0

Thus the quadratic form ()a becomes in the new coordinates
Qa) = =iV + A |22,y = Qald)
- 1 ~12 .
_ / <|ap¢|2 1 a7 (0 + 3(psin g — reos §)%) b + yaw?) dji,
Da 2

psin § — 7cos §
(B.1)

with dji = (psin§ — 7cos §)dpdfdr and
Do = {(p,0,7) €R?,p>0,0 € [0,27), 7 € (0, ptan $)}.
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C Model operators

Proposition C.1 Let $),, be defined on L2(R,t2dt) by

1, 5 9 w?
Ny = —t—26tt 8t+t + t72

The eigenmodes of $,, are (15, §2),>1 given by
)
©=dn—24V1+4w?,  §.(t) = PY(t?) e /2,
with PY a polynomial function of degree n — 1.
Proof: We recognize partially in $),, the radial part of the harmonic oscillator. We

first conjugate the operator ., by t7et*/2 with a good choice for 7. We have

t—76t2/255w(t76—t2/2u) = —0%u +2 (t —(v+ 1)1) O+ (2v 4 3)u + (W —y(v + 1))%2

We cancel the term in t=2 by choosing

—14+ V14 4w?
V= .
2

This choice leads to deal with the following operator acting on L2(£20+ Ve~ d¢):
1
£ RGP = 92 + <2t —(1+V1+ 4w2)t> O+ 24+ V1 + dw?.
The change of variables = t? transforms the operator on

V1+ 4w?
—4r83+4<r—1—;w> Or + 2+ V1 + dw?,

acting on L2(R,, 7™ e~"dr). This operator is symmetric and stabilizes the polynomial
functions of degree at most n — 1. Therefore it can be diagonalized on R,,_1[X] and by
identification, we determine a sequence of eigenpairs (4n — 2 + /1 + 4w?, P¥), with P¥
a polynomial function of degree n — 1. Since the family (PY) is total, the spectrum is
completely determined. |

Corollary C.2 The eigenmodes of the operator

~ 1 1
H = —ﬁattQat + ?l@,
defined on L2(Ry,t>dt) are given by
[n _ 2*5/2(471 . 1)7 fn(t) — 275/4112(275/4%) — 275/4P£(275/4t)67t2/27/2.

Proof: It is enough to apply Proposition C.1 with w = 0 and make the change of
variable ¢ = 275/4¢. [
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Corollary C.3 Let T(a) be the Neumann realization on L2(P, dji) (dii = t2pdtdfdyp):

1 2 —5,2 1
T(Oé) = —?6tt 815 + 27t — ma@SO(a@

We denote by 1,(c) the n-th eigenvalue of T(a). Then, for all N > 1, there exists ay
such that y
Vi1<n <N, Vace(0,ay), [ (a) = L.

Proof: Let us first realize the change of variable t = 275/4¢ the operator T () reads
T(a) =22 (- Lowa, 12— 1 _a,00
(a) = ot t+t—m Py | -

Let us denote by (ck)r>1 the increasing sequence of the eigenvalues of —éﬁwcp(?@ on
L%((0,4),de). We notice that ¢; = 0 and that ¢ > 0 for k > 2. The spectrum of
% () is then given by
> 1 c
_ k
sp(T(a)) = 27°/2 U sp <—t28tt28t + 2 4 a2t2> .
k=1

Applying Proposition C.1 with w = /¢i/a, we deduce

sp(T(a)) = {2_5/2 <4n—2—|— 1+4§§> n>1k> 1}.

This implies that the lowest eigenvalues of T(«) are the lowest eigenvalues of the operator
—t720,t20; + 27°t2, that is to say [, as soon as « is small enough. |
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