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SELF-ADJOINT EXTENSIONS OF DISCRETE MAGNETIC SCHR ÖDINGER OPERATORS

Using the concept of intrinsic metric on a locally finite weighted graph, we give sufficient conditions for the magnetic Schrödinger operator to be essentially self-adjoint. The present paper is an extension of some recent results proven in the context of graphs of bounded degree.

Introduction and the main results

1.1. The setting. Let V be a countably infinite set. We assume that V is equipped with a measure µ : V → (0, ∞). Let b : V × V → [0, ∞) be a function such that (i) b(x, y) = b(y, x), for all x, y ∈ V ;

(ii) b(x, x) = 0, for all x ∈ V ;

(iii) deg(x) := ♯ {y ∈ V : b(x, y) > 0} < ∞, for all x ∈ V . Here, ♯ S denotes the number of elements in the set S.

Vertices x, y ∈ V with b(x, y) > 0 are called neighbors, and we denote this relationship by x ∼ y. We call the triple (V, b, µ) a locally finite weighted graph. We assume that (V, b, µ) is connected, that is, for any x, y ∈ V there exists a path γ joining x and y. Here, γ is a sequence x 0 , x 2 , . . . , x n ∈ V such that x = x 0 , y = x n , and x j ∼ x j+1 for all 0 ≤ j ≤ n -1.

1.2. Intrinsic metric. Following [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] we define a pseudo metric to be a map d : V ×V → [0, ∞) such that d(x, y) = d(y, x), for all x, y ∈ V ; d(x, x) = 0, for all x ∈ V ; and d(x, y) satisfies the triangle inequality. A pseudo-metric d = d σ is called a path pseudo-metric if there exists a map σ : V × V → [0, ∞) such that σ(x, y) = σ(y, x), for all x, y ∈ V ; σ(x, y) > 0 if and only if x ∼ y; and d σ = inf{l σ (γ) : γ = (x 0 , x 1 , . . . , x n ), n ≥ 1, is a path connecting x and y}, where the length l σ of the path γ = (x 0 , x 1 , . . . , x n ) is given by

l σ (γ) = n-1 i=0 σ(x i , x i+1 ). (1.1)
As in [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] we make the following definitions.
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Definition 1.3. (i) A pseudo metric d on (V, b, µ) is called intrinsic if 1 µ(x) y∈V b(x, y)(d(x, y)) 2 ≤ 1, for all x ∈ V.

(ii) An intrinsic path pseudo metric d = d σ on (V, b, µ) is called strongly intrinsic if 1 µ(x) y∈V b(x, y)(σ(x, y)) 2 ≤ 1, for all x ∈ V.

Remark 1.4. On a locally finite graph (V, b, µ), the formula

σ 1 (x, y) = b(x, y) -1/2 min µ(x) deg(x) , µ(y) deg(y) 1/2 , with x ∼ y, (1.2) 
where deg(x) is as in property (iii) of b(x, y), defines a strongly intrinsic path metric; see [15, Example 2.1].

1.5. Cauchy boundary. For a path metric d = d σ on V , we denote the metric completion by ( V , d). As in [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] we define the Cauchy boundary ∂ C V as follows:

∂ C V := V \V . Note that (V, d) is metrically complete if and only if ∂ C V is empty. For a path metric d = d σ on V and x ∈ V , we define D(x) := inf z∈∂ C V d σ (x, z). (1.3) 1.6. Inner product.
In what follows, C(V ) is the set of complex-valued functions on V , and C c (V ) is the set of finitely supported elements of C(V ). By ℓ 2 µ (V ) we denote the space of functions f ∈ C(V ) such that

f 2 := x∈V µ(x)|f (x)| 2 < ∞, (1.4) 
where | • | denotes the modulus of a complex number.

In particular, the space ℓ 2 µ (V ) is a Hilbert space with the inner product

(f, g) := x∈V µ(x)f (x)g(x).
(1.5) 1.7. Laplacian operator. We define the formal Laplacian ∆ b,µ :

C(V ) → C(V ) on (V, b, µ) by the formula (∆ b,µ u)(x) = 1 µ(x) y∈V b(x, y)(u(x) -u(y)). (1.6)
1.8. Magnetic Schrödinger operator. We fix a phase function θ : V × V → [-π, π] such that θ(x, y) = -θ(y, x) for all x , y ∈ V , and denote θ x,y := θ(x, y). We define the formal magnetic Laplacian ∆ b,µ;θ :

C(V ) → C(V ) on (V, b, µ) by the formula (∆ b,µ;θ u)(x) = 1 µ(x) y∈V b(x, y)(u(x) -e iθx,y u(y)). (1.7)
We define the formal magnetic Schrödinger operator H : C(V ) → C(V ) by the formula

Hu := ∆ b,µ;θ u + W u, (1.8) 
where W : V → R.

1.9. Statements of the results. We are ready to state our first result.

Theorem 1. Assume that (V, b, µ) is a locally finite, weighted, and connected graph. Let d = d σ be an intrinsic path metric on V such that (V, d) is not metrically complete. Assume that there exists a constant C such that

W (x) ≥ 1 2(D(x)) 2 -C, for all x ∈ V, (1.9) 
where D(x) is as in (1.3). Then H is essentially self-adjoint on C c (V ).

Remark 1.10. It is possible to find µ, b, and a potential

W satisfying W (x) ≥ k 2(D(x)) 2 with 0 < k < 1, such that H = ∆ b,µ + W is not essentially self-adjoint; see [2, Section 5.3.2].
If the graph (V, b, µ) has a special type of covering, the condition (1.9) on W can be relaxed with the help of "effective potential," as seen in the next theorem. First, we give a description of this special type of covering. In what follows, for a graph (V, b, µ), we define the set of unoriented edges as E := {{x, y} : x, y ∈ V and b(x, y) > 0}. Sometimes, when we want to emphasize the set E, instead of G = (V, b, µ) we will use the notation G = (V, E).

Definition 1.11. Let m ∈ N. A good covering of degree m of G = (V, E) is a family G l = (V l , E l ) l∈L of finite connected sub-graphs of G so that (i) V = ∪ l∈L V l ; (ii) for any {x, y} ∈ E, 0 < #{l ∈ L | {x, y} ∈ E l } ≤ m.
Remark 1.12. It is known that a graph with bounded vertex degree admits a good covering; see [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF]Proposition 2.2]. The graph in Example 5.1 below does not have a bounded vertex degree. Note that this graph has a good covering of degree m = 2.

Assume that (V, b, µ) has a good covering (V l , E l ) l∈L . Let θ l be the restriction of θ to V l × V l . Let ∆ (l) 1,µ;θ be as in (1.7) with V = V l , θ = θ l , and b ≡ 1. Then ∆ (l) 1,µ;θ is a bounded and non-negative self-adjoint operator in ℓ 2 µ (V l ). Let p l denote the lowest eigenvalue of ∆ (l) 1,µ;θ . With these notations, for a graph (V, b, µ) and the phase function θ, we define the effective potential corresponding to a good covering (V l , E l ) l∈L of degree m as follows:

W e (x) := 1 m {l∈L | x∈V l } p l inf {y,z}∈E l b(y, z).
(1.10)

We now state our second result.

Theorem 2. Assume that (V, b, µ) is a locally finite, weighted, and connected graph. Assume that (V, b, µ) has a good covering (V l , E l ) l∈L . Let d = d σ be an intrinsic path metric on V such that (V, d) is not metrically complete. Assume that there exists a constant C such that

W e (x) + W (x) ≥ 1 2(D(x)) 2 -C, for all x ∈ V, (1.11) 
where W e is as in (1.10) and D(x) is as in (1.3). Then H is essentially self-adjoint on C c (V ).

In the setting of metrically complete graphs, we have the following result:

Theorem 3. Assume that (V, b, µ) be a locally finite, weighted, and connected graph. Let d σ be a strongly intrinsic path metric on V . Let q : V → [1, ∞) be a function satisfying

|q -1/2 (x) -q -1/2 (y)| ≤ Kσ(x, y), for all x, y ∈ V such that x ∼ y, (1.12) 
where K is a constant. Let H be as in (1.8) with W :

V → R satisfying W (x) ≥ -q(x), for all x ∈ V. (1.13) Let σ q (x, y) = min{q -1/2 (x), q -1/2 (y)} • σ(x, y) (1.14)
and let d σq be the path metric corresponding to σ q . Assume that (V, d σq ) is metrically complete. Then H is essentially self-adjoint on C c (V ).

1.13. Some comments on the existing literature. The notion of intrinsic metric allows us to remove the bounded vertex degree assumption present in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II[END_REF][START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF][START_REF] Milatovic | A Sears-type self-adjointness result for discrete magnetic Schrödinger operators[END_REF]. More specifically, Theorem 1 extends [2, Theorem 4.2], which was proven in the context of graphs of bounded vertex degree for the operator ∆ b,µ + W , with ∆ b,µ as in (1.6). Theorem 2 is an extension of [3, Theorem 3.1], which was proven in the context of graphs of bounded vertex degree for the operator ∆ b,µ;θ . In this regard, the first two results of the present paper answer a question posed in [3, Section 5]. Theorem 3 extends [20, Theorem 1], which was proven in the context of graphs of bounded vertex degree for the operator ∆ b,µ;θ +W with W as in (1.13). We should also mention that in the context of locally finite graphs (with an assumption on b and µ originating from [START_REF] Masamune | A Liouville property and its application to the Laplacian of an infinite graph[END_REF]), a sufficient condition for the essential self-adjointness of a semi-bounded from below operator ∆ b,µ;θ + W is given in [START_REF] Milatovic | Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs[END_REF]Theorem 1.2]. Another sufficient condition for the essential self-adjointness of ∆ b,µ;θ + W is given in [9, Proposition 2.2]: Let (V, b, µ) be a locally finite weighted graph. Let W : V → R and δ > 0. Take λ ∈ R so that

{x ∈ V : λ + Deg(x) + W (x) = 0} = ∅, (1.15) 
where Deg(x) denotes the "weighted degree"

Deg(x) := 1 µ(x) y∈V b(x, y), x ∈ V. (1.16)
Suppose that for every sequence of vertices {y 1 , y 2 , . . . } such that y j ∼ y j+1 , j ≥ 1, the following property holds:

∞ n=1 ((a n ) 2 µ(y n )) = ∞, where a n := n-1 j=1 δ Deg(y j ) + 1 + λ + W (y j ) Deg(y j ) , n ≥ 2, (1.17)
and The recent study [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] is concerned with the operator ∆ b,µ as in (1.6), with property (iii) of b (see Section 1.1 above) replaced by the following more general condition:

a 1 := 1. Then ∆ b,µ;θ + W is essentially self-adjoint on C c (V ). Note that [9,
y∈V b(x, y) < ∞, for all x ∈ V.
Using the notion of intrinsic distance d with finite jump size, the authors of [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] show that if the weighted degree (1.16) is bounded on balls defined with respect to any such distance d, then ∆ b,µ is essentially self-adjoint. In the context of a locally finite graph, the authors of [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] show that if the graph is metrically complete in any intrinsic path metric with finite jump size, then ∆ b,µ is essentially self-adjoint. In the metrically incomplete case, one of the results of [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] shows that if the Cauchy boundary has finite capacity, then ∆ b,µ has a unique Markovian extension if and only if the Cauchy boundary is polar (here, "Cauchy boundary is polar" means that the Cauchy boundary has zero capacity). Another result of [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] shows that if the upper Minkowski codimension of the Cauchy boundary is greater than 2, then the Cauchy boundary is polar. Additionally, we should mention that the authors of [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF] prove Hopf-Rinow-type theorem for locally finite weighted graphs with a path pseudo metric.

In recent years, various authors have developed independently the concept of intrinsic metric on a graph. The definition given in the present paper can be traced back to the work [START_REF] Frank | Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory[END_REF]. For applications of intrinsic metrics in various contexts, see, for instance, [START_REF] Bauer | Cheeger inequalities for unbounded graph Laplacians[END_REF][START_REF] Folz | Gaussian upper bounds for heat kernels of continuous time simple random walks[END_REF][START_REF] Folz | Volume growth and stochastic completeness of graphs[END_REF][START_REF] Folz | Volume growth and spectrum for general graph Laplacians[END_REF][START_REF] Grigor'yan | On stochastic completeness of jump processes[END_REF][START_REF] Haeseler | Volume growth and bounds for the essential spectrum for Dirichlet forms[END_REF][START_REF] Huang | On uniqueness class for a heat equation on graphs[END_REF][START_REF] Huang | A note on the volume growth criterion for stochastic completeness of weighted graphs[END_REF][START_REF] Masamune | Conservation property of symmetric jump processes[END_REF].

With regard to the problem of self-adjoint extensions of adjacency, (magnetic) Laplacian and Schrödinger-type operators on infinite graphs, we should mention that there has been a lot of interest in this area in the past few years. For references to the literature on this topic, see, for instance, [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators II[END_REF][START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF][START_REF] Golénia | Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians[END_REF][START_REF] Haeseler | Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions[END_REF][START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF][START_REF] Masamune | A Liouville property and its application to the Laplacian of an infinite graph[END_REF][START_REF] Milatovic | A Sears-type self-adjointness result for discrete magnetic Schrödinger operators[END_REF][START_REF] Torki-Hamza | Laplaciens de graphes infinis I Graphes métriquement complets[END_REF].

Proof of Theorem 1

In this section, we modify the proof of [2, Theorem 4.2]. Throughout the section, we assume that the hypotheses of Theorem 1 are satisfied. We begin with the following lemma, whose proof is given in [START_REF] De Verdière | Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields[END_REF]Lemma 3.3].

Lemma 2.1. Let H be as in (1.8), let v ∈ ℓ 2 µ (V ) be a weak solution of Hv = 0, and let f ∈ C c (V ) be a real-valued function. Then the following equality holds:

(f v, H(f v)) = 1 2 x∈V y∼x b(x, y) Re [e -iθ(x,y) v(x)v(y)](f (x) -f (y)) 2 . (2.1)
The key ingredient in the proof of Theorem 1 is the Agmon-type estimate given in the next lemma, whose proof, inspired by an idea of [START_REF] Nenciu | On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in R n[END_REF], is based on the technique developed in [START_REF] De Verdière | Confining quantum particles with a purely magnetic field[END_REF] for magnetic Laplacians on an open set with compact boundary in R n . Lemma 2.2. Let λ ∈ R and let v ∈ ℓ 2 µ (V ) be a weak solution of (Hλ)v = 0. Assume that that there exists a constant c 1 > 0 such that, for all u ∈ C c (V ),

(u, (H -λ)u) ≥ 1 2 x∈V max 1 D(x) 2 , 1 µ(x)|u(x)| 2 + c 1 u 2 .
(2.2)

Then v ≡ 0.
Proof. Let ρ and R be numbers satisfying 0 < ρ < 1/2 and 1 < R < +∞. For any ǫ > 0, we define the function

f ǫ : V → R by f ǫ (x) = F ǫ (D(x))
, where D(x) is as in (1.3) and F ǫ : R + → R is the continuous piecewise affine function defined by

F ǫ (s) =                  0 for s ≤ ǫ ρ(s -ǫ)/(ρ -ǫ) for ǫ ≤ s ≤ ρ s for ρ ≤ s ≤ 1 1 for 1 ≤ s ≤ R R + 1 -s for R ≤ s ≤ R + 1 0 for s ≥ R + 1
We first note that by the definition of F ǫ and continuity of D(x), the support of f ǫ is compact. Now by [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF]Lemma A.3(b)] it follows that the support of f ǫ finite. Using Lemma 2.1 with Hλ in place of H, the inequality

Re [e -iθ(x,y) v(x)v(y)] ≤ 1 2 (|v(x)| 2 + |v(y)| 2 ),
and Definition 1.3(i) we have

(f ǫ v, (H -λ)(f ǫ v)) ≤ 1 2 x∈V y∼x b(x, y)|v(x)| 2 (f ǫ (x) -f ǫ (y)) 2 ≤ ρ 2 2(ρ -ǫ) 2 x∈V y∼x |v(x)| 2 b(x, y)(d(x, y)) 2 ≤ ρ 2 2(ρ -ǫ) 2 x∈V µ(x)|v(x)| 2 , (2.3) 
where the second inequality uses the fact that f ǫ is a β-Lipschitz function with β = ρ/(ρǫ).

On the other hand, using the definition of f ǫ and the assumption (2.2) we have

(f ǫ v, (H -λ)(f ǫ v)) ≥ 1 2 ρ≤D(x)≤R µ(x)|v(x)| 2 + c 1 f ǫ v 2 .
(2.4)

We now combine (2.4) and (2.3) to get

1 2 ρ≤D(x)≤R µ(x)|v(x)| 2 + c 1 f ǫ v 2 ≤ ρ 2 2(ρ -ǫ) 2 x∈V µ(x)|v(x)| 2 .
We fix ρ and R, and let ǫ → 0+. After that, we let ρ → 0+ and R → +∞. As a result, we get v ≡ 0.

Conclusion of the proof of Theorem

1. Since ∆ b,µ;θ | Cc(V ) is a non-negative operator, for all u ∈ C c (V ), we have (u, Hu) ≥ x∈V µ(x)W (x)|u(x)| 2 ,
and, hence, by assumption (1.9) we get:

(u, (H -λ)u) ≥ 1 2 x∈V 1 D(x) 2 µ(x)|u(x)| 2 -(λ + C) u 2 ≥ 1 2 x∈V max 1 D(x) 2 , 1 µ(x)|u(x)| 2 -(λ + C + 1/2) u 2 .
(

Choosing, for instance, λ = -C -3/2 in (2.5) we get the inequality (2.2) with c 1 = 1. Thus, (H-λ)| Cc(V ) with λ = -C-3/2 is a symmetric operator satisfying (u, (H-λ)u) ≥ u 2 , for all u ∈ C c (V ). In this case, it is known (see [START_REF] Reed | Methods of Modern Mathematical Physics II: Fourier analysis, self-adjointness[END_REF]Theorem X.26]) that the essential selfadjointness of (Hλ)| Cc(V ) is equivalent to the following statement: if v ∈ ℓ 2 µ (V ) satisfies (Hλ)v = 0, then v = 0. Thus, by Lemma 2.2, the operator (Hλ)| Cc(V ) is essentially self-adjoint. Hence, H| Cc(V ) is essentially self-adjoint.

Proof of Theorem 2

Throughout the section, we assume that the hypotheses of Theorem 2 are satisfied. We begin with the following lemma. Lemma 3.1. Let (V l , E l ) l∈L be a good covering of degree m of (V, b, µ), let H be as in (1.8), and let W e be as in (1.10). Then, for all u ∈ C c (V ) we have

(u, Hu) ≥ x∈V µ(x)(W e (x) + W (x))|u(x)| 2 .
(3.1)

Proof. It is well known that (u, Hu) = {x,y}∈E b(x, y)|u(x) -e iθ(x,y) u(y)| 2 + x∈V µ(x)W (x)|u(x)| 2 ,
where E is the set of unoriented edges of (V, b, µ). Thus, using the definition of the covering (V l , E l ) l∈L of degree m and the definition of p l we have

(u, Hu) ≥ 1 m l∈L {x,y}∈E l b(x, y)|u(x) -e iθ(x,y) u(y)| 2 + x∈V µ(x)W (x)|u(x)| 2 ≥ 1 m l∈L   inf {y,z}∈E l b(y, z) p l x∈V l µ(x)|u(x)| 2   + x∈V µ(x)W (x)|u(x)| 2 ,
which together with (1.10) gives (3.1).

Conclusion of the proof of Theorem 2. By Lemma 3.1 and assumption (1.11), for all u ∈ C c (V ) we have

(u, (H -λ)u) ≥ x∈V µ(x)(W e (x) + W (x) -λ)|u(x)| 2 ≥ 1 2 x∈V max 1 D(x) 2 , 1 µ(x)|u(x)| 2 -(C + λ + 1/2) u 2 .
From hereon we proceed in the same way as in the the proof of Theorem 1.

Proof of Theorem 3

In this section we modify the proof of [20, Theorem 1], which is based on the technique of [START_REF] Shubin | Essential self-adjointness for magnetic Schrödinger operators on non-compact manifolds[END_REF] in the context of Riemannian manifolds. Throughout the section, we assume that the hypotheses of Theorem 3 are satisfied.

We begin with the definitions of minimal and maximal operators associated with the expression (1.8). We define the operator H min by the formula H min u := Hu, for all u ∈ Dom(H min ) := C c (V ). As W is real-valued, it follows easily that the operator H min is symmetric in ℓ 2 µ (V ). We define H max := (H min ) * , where T * denotes the adjoint of operator T . Additionally, we define

D := {u ∈ ℓ 2 µ (V ) : Hu ∈ ℓ 2 µ (V )}.
Then, the following hold: Dom(H max ) = D and H max u = Hu for all u ∈ D; see, for instance, [START_REF] Milatovic | A Sears-type self-adjointness result for discrete magnetic Schrödinger operators[END_REF]Section 3] or [START_REF] Torki-Hamza | Laplaciens de graphes infinis I Graphes métriquement complets[END_REF]Section 3] for details. Furthermore, by [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]Problem V.3.10], the operator H min is essentially self-adjoint if and only if

(H max u, v) = (u, H max v), for all u , v ∈ Dom(H max ). (4.1)
In the setting of graphs of bounded vertex degree, the following proposition was proven in [20, Proposition 12].

Proposition 4.1. If u ∈ Dom(H max ), then x,y∈V b(x, y) min{q -1 (x), q -1 (y)}|u(x) -e iθx,y u(y)| 2 ≤ 4( Hu u + (K 2 + 1) u 2 ), (4.2)
where H is as in (1.8) and K is as in (1.12).

Before proving Proposition 4.1, we define a sequence of cut-off functions. Let d σ and d σq be as in the hypothesis of Theorem 3. Fix x 0 ∈ V and define

χ n (x) := 2n -d σ (x 0 , x) n ∨ 0 ∧ 1, x ∈ V, n ∈ Z + . (4.3) Denote B σ n (x 0 ) := {x ∈ V : d σ (x 0 , x) ≤ n}. (4.4)
The sequence {χ n } n∈Z + satisfies the following properties:

(i) 0 ≤ χ n (x) ≤ 1, for all x ∈ V ; (ii) χ n (x) = 1 for x ∈ B σ n (x 0
) and χ n (x) = 0 for x / ∈ B σ 2n (x 0 ); (iii) for all x ∈ V , we have lim n→∞ χ n (x) = 1; (iv) the functions χ n have finite support; and (v) the functions χ n satisfy the inequality 

|χ n (x) -χ n (y)| ≤ σ(x,
. Since q ≥ 1 it follows that B σ 2n (x 0 ) ⊆ B σq 2n (x 0
). Thus, property (iv) is a consequence of property (ii) and the finiteness of

B σq 2n (x 0 ).
Proof of Proposition 4.1. Let u ∈ Dom(H max ) and let φ ∈ C c (V ) be a real-valued function. Define

I :=   x,y∈V b(x, y)|u(x) -e iθx,y u(y)| 2 ((φ(x)) 2 + (φ(y)) 2 )   1/2 . ( 4.5) 
We will first show that

I 2 ≤ 4|(φ 2 Hu, u)| + 4(φ 2 qu, u) + √ 2I   x,y∈V b(x, y)(φ(x) -φ(y)) 2 |(u(x) + e iθx,y u(y)| 2   1/2 . ( 4.6) 
To do this, we first note that

I 2 = 4(φ 2 Hu, u) -4(φ 2 W u, u) + x,y∈V b(x, y)(e iθx,y u(y) -u(x))(e -iθx,y u(y) + u(x))((φ(x)) 2 -(φ(y)) 2 ), (4.7) 
which can be checked by expanding the terms under summations on both sides of the equality and using the properties b(x, y) = b(y, x) and θ(x, y) = -θ(y, x). The details of this computation can be found in the proof of [START_REF] Milatovic | A Sears-type self-adjointness result for discrete magnetic Schrödinger operators[END_REF]Proposition 12]. The inequality (4.6) is obtained from (4.7) by using (1.13), the factorization

(φ(x)) 2 -(φ(y)) 2 = (φ(x) -φ(y))(φ(x) + φ(y)),
Cauchy-Schwarz inequality, and

(φ(x) + φ(y)) 2 ≤ 2(φ 2 (x) + φ 2 (y)).
Let χ n be as in (4.3) and let q be as in (1.13). Define

φ n (x) := χ n (x)q -1/2 (x). (4.8) 
By property (iv) of χ n it follows that φ n has finite support. By property (i) of χ n and since q ≥ 1, we have

0 ≤ φ n (x) ≤ q -1/2 (x) ≤ 1, for all x ∈ V. (4.9) 
By property (iii) of χ n we have

lim n→∞ φ n (x) = q -1/2 (x), for all x ∈ V. (4.10) 
By (1.12), properties (i) and (v) of χ n , and the inequality q ≥ 1, we have

|φ n (x) -φ n (y)| ≤ 1 n + K σ(x, y), for all x ∼ y, (4.11) 
where K is as in (1.12). We will also use the inequality

|e iθx,y u(y) + u(x)| 2 ≤ 2(|u(x)| 2 + |u(y)| 2 ). (4.12) 
By (4.11), (4.12), and Definition 1.3(ii), we get

  x,y∈V b(x, y)(φ n (x) -φ n (y)) 2 |(u(x) + e iθx,y u(y)| 2   1/2 ≤ √ 2 1 n + K   x,y∈V b(x, y)(σ(x, y)) 2 (|u(x)| 2 + |u(y)| 2 )   1/2 = 2 1 n + K   x,y∈V b(x, y)(σ(x, y)) 2 |u(x)| 2   1/2 ≤ 2 1 n + K x∈V µ(x)|u(x)| 2 1/2 (4.13) 
By (4.6) with φ = φ n , (4.13), and (4.9), we obtain

I 2 n ≤ 4 Hu u + 4 u 2 + 2 √ 2I n 1 n + K u , (4.14) 
for all u ∈ Dom(H max ), where I n is as in (4.5) with φ = φ n .

Using the inequality ab ≤ a 2 4 + b 2 with a = √ 2I n in the third term on the right-hand side of (4.14) and rearranging, we obtain

I 2 n ≤ 8 Hu u + 1 n + K 2 + 1 u 2 . (4.15)
Letting n → ∞ in (4.15) and using (4.10) together with Fatou's lemma, we get

x,y∈V b(x, y)|u(x)e iθx,y u(y)| 2 (q -1 (x) + q -1 (y))

≤ 8 Hu u + (K 2 + 1) u 2 . (4.16)
Since 2 min{q -1 (x), q -1 (y)} ≤ q -1 (x) + q -1 (y), for all x, y ∈ V, the inequality (4.2) follows directly from (4.16).

Continuation of the proof of Theorem 3. Our final goal is to prove (4.1). Let d σq be as in the hypothesis of Theorem 3. Fix x 0 ∈ V and define

P (x) := d σq (x 0 , x), x ∈ V. (4.17) 
In what follows, for a function f : V → R we define f + (x) := max{f (x), 0}. Let u , v ∈ Dom(H max ), let s > 0, and define

J s := x∈V 1 - P (x) s + (Hu)(x)v(x) -u(x)(Hv)(x) µ(x), (4.18) 
where P is as in (4.17) and H is as in (1.8). Since (V, d σq ) is a complete metric space, by [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF]Theorem A.1] it follows that the set U s := {x ∈ V : P (x) ≤ s} is finite. Thus, for all s > 0, the summation in (4.18) is performed over finitely many vertices.

The following lemma follows easily from the definition of J s and the dominated convergence theorem; see the proof of [START_REF] Milatovic | A Sears-type self-adjointness result for discrete magnetic Schrödinger operators[END_REF]Lemma 13] for details. Lemma 4.2. Let J s be as in (4.18). Then

lim s→+∞ J s = (Hu, v) -(u, Hv). (4.19) 
In what follows, for u ∈ Dom(H max ), define

T u :=   x,y∈V b(x, y) min{q -1 (x), q -1 (y)}|u(x) -e iθx,y u(y)| 2   1/2 . (4.20)
Note that T u is finite by Proposition 4.1.

Lemma 4.3. Let u, v ∈ Dom(H max ), let T u and T v be as in (4.20), and let J s be as in (4.18). Then

|J s | ≤ 1 2s ( v T u + u T v ). ( 4 

.21)

Proof. A computation shows that 2J s =

x,y∈V

(1 -P (x)/s) + -(1 -P (y)/s) + b(x, y) (e -iθx,y v(y)v(x))u(x)

-(e iθx,y u(y)u(x))v(x) ,

which, together with the triangle inequality and property

|f + (x) -g + (x)| ≤ |f (x) -g(x)|,
leads to the following estimate:

2|J s | ≤ 1 s x,y∈V b(x, y)|P (x) -P (y)| |e iθx,y v(y) -v(x)||u(x)| +|e iθx,y u(y) -u(x)||v(x)| . (4.22) 
By (4.17) and (1.14), for all x ∼ y we have The end of the proof of Theorem 3. Let u ∈ Dom(H max ) and v ∈ Dom(H max ). By the definition of H max , it follows that Hu ∈ ℓ 2 µ (V ) and Hv ∈ ℓ 2 µ (V ). Letting s → +∞ in (4.21) and using the finiteness of T u and T v , it follows that J s → 0 as s → +∞. This, together with (4.19), shows (4.1).

|P (x) -P (y)| ≤ d σq (x, y) ≤ σ q (x, y) = min{q -1/2 (x), q -1/2 (y)} • σ(x, y). ( 4 

Examples

In this section we give some examples that illustrate the main results of the paper. In what follows, for x ∈ R, the notation ⌈x⌉ denotes the smallest integer N such that N ≥ x. Additionally, ⌊x⌋ denotes the greatest integer N such that N ≤ x.

Example 5.1. In this example we consider the graph G = (V, E) whose vertices x j,k are arranged in a "triangular" pattern so that the first row contains x 1,1 ; for 2 ≤ j ≤ 4, the j-th row contains x j,1 and x j,2 ; for 5 ≤ j ≤ 9, the j-th row contains x j,1 , x j,2 , and x j,3 ; for 10 ≤ j ≤ 16, the j-th row contains x j,1 , x j,2 , x j,3 , and x j,4 ; and so on. There are two types of edges in the graph: (i) for every j ≥ 1, we have x j,1 ∼ x j+1,k for all 1 ≤ k ≤ ⌈(j + 1) 1/2 ⌉; (ii) for every j ≥ 2, we have the "horizontal" edges x j,k ∼ x j,k+1 , for all 1 ≤ k ≤ ⌈j 1/2 ⌉ -1. Clearly, G does not have a bounded vertex degree.

Let T = (V T , E T ) be the subgraph of G whose set of edges E T consists of type-(i) edges of G described above. Note that T is a spanning tree of G. Additionally, note that for every type-(ii) edge e of G the following are true: (i) e / ∈ E T and (ii) there is a unique 3-cycle (a cycle with 3 vertices) that contains e. Thus, by [3, Lemma 2.2], the corresponding 3-cycles, which we enumerate by {C l } l∈Z + , form a basis for the space of cycles of G. Furthermore, by Definition 1.11, the family {C l = (V l , E l )} l∈Z + is a good covering of degree m = 2 of G. Following [3, Proposition 2.4(i)] and [3, Lemma 2.9], we define the phase function θ : V l × V l → [-π, π] satisfying the following properties: (i) if an edge {x, y} belongs to E l \E T , we have θ(x, y) = -θ(y, x); (ii) if {x, y} ∈ E T , we have θ(x, y) = 0; and (iii) p l = |1e iπ/3 | 2 = 1, where p l is as in (1.10) with G l replaced by C l .

With this choice of p l and using the good covering {C l } l∈Z + of degree m = 2, the definition of the effective potential (1.10) simplifies to Let {b j } j∈Z + be an increasing sequence of positive numbers. We define (i) b(x, y) = b j if x ∼ y and x is in the j-th row and y is in the (j + 1)-st row; (ii) b(x, y) = b j if x ∼ y and x and y are both in the (j + 1)-st row; (iii) b(x, y) = 0, otherwise. With this choice of b(x, y), we have W e (x 1,1 ) = b 1 /2. Additionally, since b j is an increasing sequence of positive numbers, using (5.1) it is easy to see that if a vertex x is in the j-th row, then W e (x) ≥ 1 2 b j-1 , for all j ≥ 2.

(5.2) Let 0 < β < 3/4, and set µ(x) := j -2β if the vertex x is in the j-th row. Let α > 0 satisfy α + 2β > 3/2, and set b j := j α , for all j ∈ Z + . With this choice of b(x, y) and µ(x), let σ 1 (x, y) be as in (1.2) and let d σ 1 be the intrinsic path metric associated with σ 1 as in Section 1.2. As there are ⌊ √ j⌋ + 3 edges departing from the vertex x j,1 , we have σ 1 (x j,1 ; x j+1,1 ) = j -α/2 (j + 1) -β (⌊ j + 1⌋ + 3) -1/2 , for all j ∈ Z + .

(5.3)

Additionally, note that the path γ = (x 1,1 ; x 2,1 ; x 3,1 ; . . . ) is a geodesic with respect to the path metric d σ 1 , that is, d σ 1 (x 1,1 ; x j,1 ) = l σ 1 (x 1,1 ; x 2,1 ; . . . ; x j,1 ) for all j ∈ Z + , where l σ 1 is as in (1.1). Since α + 2β > 3/2, it follows that ∞ j=1 j -α/2 (j + 1) -β (⌊ j + 1⌋ + 3) -1/2 < ∞;

hence, by [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF]Theorem A.1] the space (V, d σ 1 ) is not metrically complete. Let D(x) be as in (1.3) corresponding to d σ 1 . If a vertex x is in the n-th row, using (5.3) and ⌊ j + 1⌋ + 3 ≤ 3 j + 1, for all j ∈ Z + , we have

D(x) ≥ 1 √ 3 
∞ k=n (j + 1) -β-α/2-1/4 ≥ (n + 1) -β-α/2+3/4 √ 3(β + α/2 -3/4) ,

. 23 )

 23 To obtain (4.21), we combine (4.22) and (4.23) and use Cauchy-Schwarz inequality together with Definition 1.3(ii).

W

  e (x) := 1 2 {l∈L | x∈V l } inf {y,z}∈E l b(y, z).(5.1)

  Proposition 2.2] allows potentials that are unbounded from below. We mention that Example 5.1 below describes a situation where Theorem 2 is applicable, while neither [19, Theorem 1.2] nor [9, Proposition 2.2] is applicable. Additionally, Example 5.2 below describes a situation where Theorem 3 is applicable, while neither [19, Theorem 1.2] nor [9, Proposition 2.2] is applicable.
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which leads to 1 2D(x) 2 ≤ 3(4β + 2α -3) 2 (n + 1) 2β+α-3/2 32 , (5.4) for all vertices x in the n-th row, where n ≥ 1. Define W (x) = -n 2β+α-3/2 for all vertices x in the n-th row, where n ≥ 1. Using (5.2) and W e (x 1,1 ) = b 1 /2, together with (5.4) and the assumption 0 < β < 3/4, it follows that there exists a constant C > 0 (depending on α and β) such that (1.11) is satisfied. Thus, by Theorem 2 the operator ∆ b,µ;θ + W is essentially self-adjoint on C c (V ). Clearly, Theorem 2 is also applicable in the case W (x) = 0 for all x ∈ V , that is, the operator ∆ b,µ;θ is essentially self-adjoint on C c (V ). A calculation shows that µ and b in this example do not satisfy [19, Assumption A]; hence, we cannot use [START_REF] Milatovic | Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs[END_REF]Theorem 1.2].

We will now show that under more restrictive assumption 1/2 < β < 3/4, we cannot apply [9, Proposition 2.2] to this example with W (x) ≡ 0. To see this, using (1.16) and the fact that among the ⌊ √ j⌋ + 3 edges departing from the vertex j,1 , there are ⌊ √ j⌋ + 1 edges with weight b j and 2 edges with weight b j-1 , we first note that Deg(x 1,1 ) = 2, Deg(x j,1 ) = j 2β ((⌊ j⌋ + 1)j α + 2(j -1) α ), for all j ≥ 2.

Let λ ∈ R be such that (1.15) is satisfied, with W (x) ≡ 0. Let δ > 0 and let a n be as in (1.17) corresponding to the path γ = (x 1,1 ; x 2,1 ; x 3,1 ; . . . ), the potential W ≡ 0, δ > 0, and λ. Then

Using Raabe's test, it can be checked that the series on the right hand side of this equality converges. (Here, we used the more restrictive assumption 1/2 < β < 3/4.) Hence, looking at (1.17), we see that [9, Proposition 2.2] cannot be used in this example.

Example 5.2. Consider the graph whose vertices are arranged in a "triangular" pattern so that x 1,1 is in the first row, x 2,1 and x 2,2 are in the second row, x 3,1 , x 3,2 , and x 3,3 are in the third row, and so on. The vertex x 1,1 is connected to x 2,1 and x 2,2 . The vertex x 2,i , where i = 1, 2, is connected to every vertex x 3,j , where j = 1, 2, 3. The pattern continues so that each of k vertices in the k-th row is connected to each of k + 1 vertices in the (k + 1)-st row. Note that for all k ≥ 1 and j ≥ 1 we have deg(x k,j ) = 2k, where deg(x) is as in (1.2). Let µ(x) = k 1/2 for every vertex x in the k-th row, and let b(x, y) ≡ 1 for all vertices x ∼ y. Following (1.2), for every vertex x in the k-th row and every vertex y in the (k + 1)-st row, define

For all vertices x in the k-th row, define W (x) = -2k 1/2 and q(x) = 2k. Clearly, the inequality (1.13) is satisfied. With this choice of q, following (1.14), for every vertex x in the k-th row and every vertex y in the (k + 1)-st row, define

by [START_REF] Huang | A note on self-adjoint extensions of the Laplacian on weighted graphs[END_REF]Theorem A.1] it follows that the space (V, d σq ) is metrically complete. Additionally, it is easily checked that (1.12) is satisfied with K = 1. Therefore, by Theorem 3 the operator ∆ b,µ + W is essentially self-adjoint on C c (V ). Furthermore, it is easy to see that for every c ∈ R, there exists a function u ∈ C c (V ) such that the inequality

is not satisfied. Thus, the operator ∆ b,µ + W is not semi-bounded from below, and we cannot use [START_REF] Milatovic | Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs[END_REF]Theorem 1.2]. It turns out that [9, Proposition 2.2] is not applicable in this example. To see this, using (1.16) we first note that Deg(x k,j ) = 2k 1/2 , for all k ≥ 1 and all j ≥ 1. Let λ ∈ R be such that (1.15) is satisfied, with W as in this example. Let a n be as in (1.17) corresponding to the path γ = (x 1,1 ; x 2,1 ; x 3,1 ; . . . ), the potential W (x k,1 ) = -2k 1/2 , δ > 0, and λ. Then a 1 = 1, and for n ≥ 2 we have

4 n-1 (n -1)! .

Using ratio test, it can be checked that the series on the right hand side of this equality converges.

Hence, looking at (1.17), we see that [9, Proposition 2.2] cannot be used in this example.
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