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ON SOME QUESTIONS OF TOPOLOGY FOR

S1-VALUED FRACTIONAL SOBOLEV SPACES

HAIM BREZIS(1),(2) AND PETRU MIRONESCU(3)

I. Introduction

The purpose of this paper is to describe the homotopy classes (i.e., path-connected
components) of the space W s,p (Ω;S1). Here, 0 < s < ∞, 1 < p < ∞, Ω is a smooth,
bounded, connected open set in RN and

W s,p (Ω;S1) = {u ∈W s,p (Ω;S1); |u| = 1 a.e.}.

Our main results are

Theorem 1. If sp < 2, then W s,p (Ω;S1) is path-connected.

Theorem 2. If sp > 2, then W s,p (Ω;S1) and C0 (Ω̄;S1) have the same homotopy classes
in the sense of [7]. More precisely:

a) each u ∈W s,p (Ω;S1) is W s,p-homotopic to some v ∈ C∞ (Ω̄;S1);

b) two maps u, v ∈ C∞ (Ω̄;S1) are C0-homotopic if and only if they are W s,p-homotopic.

Here a simple consequence of the above results

Corollary 1. If 0 < s < ∞, 1 < p < ∞ and Ω is simply connected, then W s,p (Ω;S1) is
path-connected.

Indeed, when sp < 2 this is the content of Theorem 1. When sp > 2, we use a) of
Theorem 2 to connect u1, u2 ∈ W s,p (Ω;S1) to v1, v2 ∈ C∞ (Ω̄;S1); since Ω is simply
connected, we may write vj = eiϕj for ϕj ∈ C∞ (Ω̄; R) and then we connect v1 to v2 via

ei [(1−t)ϕ1+tϕ2].

When M is a compact connected manifold, the study of the topology ofW 1,p (Ω;M) was
initiated in Brezis - Li [7] (see also White [26] for some related questions). In particular,
these authors proved Theorems 1 and 2 in the special case s = 1. The analysis of homotopy
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classes for an arbitrary manifold M and s = 1 was subsequently tackled by Hang - Lin
[15]. The passage to W s,p introduces two additional difficulties:

a) when s is not an integer, the W s,p norm is not “local”;

b) when s > 2 (or more generally s > 1 + 1
p ), gluing two maps in W s,p does not yield a

map in W s,p.

In our proofs, we exploit in an essential way the fact that the target manifold is S1.
(The case of a general target is widely open.) In particular, we use the existence of a lifting
of W s,p unimodular maps when s > 1 and sp > 2 (see Bourgain - Brezis - Mironescu [4]).
Another important tool is the following

Composition Theorem (Brezis - Mironescu [10]). If f ∈ C∞ (R; R) has bounded
derivatives and s > 1, then ϕ 7−→ f ◦ ϕ is continuous from W s,p ∩W 1,sp into W s,p.

Remark 1. A very elegant and straightforward proof of this Composition Theorem has
been given by V.Maz’ya and T.Shaposhnikova [18].

A related question is the description, when sp > 2, of the homotopy classes ofW s,p (Ω;S1)
in terms of lifting. Here is a partial result

Theorem 3. We have

a) if s > 1, N > 3, and 2 6 sp < N , then

[u]s,p = {ueiϕ;ϕ ∈W s,p (Ω; R) ∩W 1,sp (Ω; R)};

b) if sp > N , then
[u]s,p = {ueiϕ;ϕ ∈W s,p (Ω; R)}.

Theorem 3 is due to Rubinstein - Sternberg [21] in the special case where s = 1, p = 2
and Ω is the solid torus in R3.

When 0 < s < 1, N > 3 and 2 6 sp < N , there is no such simple description of [u]s,p.
For instance, using the “non-lifting” results in Bourgain - Brezis - Mironescu [4], it is easy
to see that

[1]s,p ⊃
6=
{eiϕ;ϕ ∈W s,p (Ω; R)}.

Here is an example: if N = 3, Ω = B1, 0 < s < 1, 1 < p <∞, 2 6 sp < 3, then

a) u(x) = e1/|x|
α

∈ [1]s,p;

b) there is no ϕ ∈W s,p (B1; R) such that u = eiϕ

for α satisfying 3−sp
p 6 α < 3−sp

sp .

However, we conjecture the following result
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Conjecture 1. Assume that 0 < s < 1, 1 < p <∞, N > 3 and 2 6 sp < N . Then

[u]s,p = u{eiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

.

We will prove below (see Corollary 2) that “half” of Conjecture 1 holds, namely

[u]s,p ⊃ u{eiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

.

In a different but related direction, we establish some partial results concerning the
density of C∞ (Ω̄;S1) into W s,p (Ω;S1).

Theorem 4. We have, for 0 < s <∞, 1 < p <∞:

a) if sp < 1, then C∞ (Ω̄;S1) is dense in W s,p (Ω;S1);

b) if 1 6 sp < 2, N > 2, then C∞ (Ω̄;S1) is not dense in W s,p (Ω;S1);

c) if sp > N , then C∞ (Ω̄;S1) is dense in W s,p (Ω;S1);

d) if s > 1 and sp > 2, then C∞ (Ω̄;S1) is dense in W s,p (Ω;S1).

There is only one missing case for which we make the following

Conjecture 2. If 0 < s < 1, 1 < p < ∞, N > 3, 2 6 sp < N , then C∞ (Ω̄;S1) is dense
in W s,p (Ω;S1).

This problem is open even when Ω is a ball in R3. We will prove below the equivalence of
Conjectures 1 and 2.

Parts of Theorem 4 were already known. Part a) is due to Escobedo [14]; so is part b),
but in this case the idea goes back to Schoen - Uhlenbeck [24] (see also Bourgain - Brezis
- Mironescu [5]). For s = 1, part c) is due to Schoen - Uhlenbeck [24]; their argument
can be adapted to the general case (see, e.g., Brezis - Nirenberg [12] or Brezis - Li [7]).
The only new result is part d). The proof relies heavily on the Composition Theorem
and Theorems 2 and 3. We do not know any direct proof of d). We also mention that
for s = 1 and Ω = B1, Theorem 4 was established by Bethuel - Zheng [3]. For a general
compact connected manifold M and for s = 1, the question of density of C∞ (Ω̄;M) into
W 1,p (Ω;M) was settled by Bethuel [1] and Hang - Lin [15].

Remark 2. In Theorems 2 and 4, one may replace Ω by a manifold with or without
boundary. The statements are unchanged. However, the argument in the proof of Theorem
1 does not quite go through to the case of a manifold without boundary. Nevertheless, we
make the following
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Conjecture 3. Let Ω be a manifold without boundary with dim Ω > 2. Then W s,p (Ω;M)
is path-connected for every 0 < s < ∞, 1 < p < ∞ with sp < 2, and for every compact
connected manifold M .

Note that the condition dim Ω > 2 is necessary, sinceW s,p (S1;S1) is not path-connected
when sp > 1.

Finally, we investigate the local path-connectedness of W s,p (Ω;S1). Our main result is

Theorem 5. Let 0 < s < ∞, 1 < p < ∞. Then W s,p (Ω;S1) is locally path-connected.
Consequently, the homotophy classes coincide with the connected components and they are
open and closed.

The heart of the matter in the proof is the following

Claim. Let 0 < s <∞, 1 < p <∞. Then there is some δ > 0 such that, if ||u−1||W s,p < δ,
then u may be connected to 1 in W s,p.

As a consequence of Theorem 5, we have

Corollary 2. Let 0 < s < 1, 1 < p <∞. Then

[u]s,p ⊃ {ueiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

= u {eiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

.

Equality in Corollary 2 follows from the well-known fact that W s,p ∩L∞ is an algebra.
The inclusion is a consequence of the fact that, clearly, we have

[u]s,p ⊃ {ueiϕ; ϕ ∈W s,p (Ω; R)}

and of the closedness of the homotopy classes.

Another consequence of Theorem 5 is

Corollary 3. Conjecture 1 ⇔ Conjecture 2.

Proof. By Corollary 2, we have

[u]s,p ⊃ u{eiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

.

We prove that the reverse inclusion follows from Conjecture 1. By Proposition 1 a) below,
we may take u = 1. Let v ∈ [1]s,p. By Theorem 5, there is some ε > 0 such that
||v − w||W s,p < ε ⇒ w ∈ [1]s,p. Let (wn) ⊂ C∞ (Ω̄;S1) be such that wn → v in W s,p
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and ||wn − v||W s,p < ε. By Theorem 2 b), we obtain that wn and 1 are homotopic in
C0 (Ω̄;S1). Thus wn = eiϕn for some globally defined smooth ϕn. Hence

v ∈ {eiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

.

Conversely, assume that Conjecture 2 holds. Let u ∈ W s,p (Ω;S1). By Theorem 2 a),
there is some w ∈ C∞ (Ω̄;S1) such that w ∈ [u]s,p. By Proposition 1 b), we have uw̄ ∈

[1]s,p. Thus uw̄ ∈ {eiϕ;ϕ ∈W s,p (Ω; R)}
W s,p

, so that clearly uw̄ ∈ {eiϕ;ϕ ∈ C∞(Ω̄; R)}
W s,p

.

Finally, u ∈ {weiϕ;ϕ ∈ C∞ (Ω̄; R)}
W s,p

, i.e. u may be approximated by smooth maps.

In the same vein, we raise the following

Open Problem 1. Let Ω be a manifold with or without boundary. Is W s,p (Ω;M) locally
path-connected for every s, p and every compact manifold M?

The case s = 1 can be settled using the methods of Hang - Lin [15]. We will return to
this question in a subsequent work; see Brezis - Mironescu [11].

The reader who is looking for more open problems may also consider the following

Open Problem 2. Let Ω ⊂ R2 be a smooth bounded domain. Assume 0 < s <∞,
1 < p <∞ and 1 6 sp < 2 (this is the range where C∞ (Ω̄;S1) is not dense inW s,p (Ω;S1)).
Set

R0 = {u ∈W s,p (Ω;S1);u is smooth except a finite number of points}.

(Here, the number and location of singular points is left free). Is R0 dense in W s,p (Ω;S1)?

Comment. R0 is known to be dense in W s,p (Ω;S1) in many cases, e.g.:

a) s = 1 and 1 6 p < 2; see Bethuel-Zheng [3]

b) s = 1 − 1/p and 2 < p < 3; see Bethuel [2]

c) s = 1/2 and p = 2; see Rivière [20].

The paper is organized as follows

I. Introduction

II. Proof of Theorem 1

III. Proof of Theorems 2 and 3

IV. Proof of Theorem 4

V. Proof of Theorem 5
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Appendix A. An extension lemma

Appendix B. Good restrictions

Appendix C. Global lifting

Appendix D. Filling a hole - the fractional case

Appendix E. Slicing with norm control

II. Proof of Theorem 1

Case 1: sp < 1

When sp < 1, we have the following more general result

Theorem 6. If s > 0, 1 < p <∞, sp < 1 and M is a compact manifold, then W s,p (Ω;M)
is path-connected.

Proof. Fix some a ∈M . For u ∈W s,p (Ω;M), let

ũ =

{

u, in Ω

a, in RN\Ω
.

Since sp < 1, we have ũ ∈W s,p
loc (RN ;M). Let U (t, x) = ũ (x/(1−t)), 0 6 t < 1, x ∈ Ω and

U (1, x) ≡ a. Then clearly U ∈ C ([0, 1];W s,p (Ω;M)) and U connects u to the constant a
(here we use only sp < N).

Case 2: 1 < sp < 2, N > 2

In this case one could adapt the tools developed in Brezis - Li [7], but we prefer a more
direct approach.

Let ε > 0 be such that the projection onto ∂Ω be well-defined and smooth in the
region {x ∈ RN ; dist (x, ∂Ω) < 2ε}. Let ω = {x ∈ RN\Ω̄; dist (x, ∂Ω) < ε}. We have
∂ω = ∂Ω ∪ Λ, where Λ = {x ∈ RN\Ω; dist (x, ∂Ω) = ε}.

Since 1 < sp < 2, we have 1/p < s < 1+1/p; thus, for u ∈W s,p we have tr u ∈W s−1/p,p.
Let u ∈W s,p (Ω;S1). Fix some a ∈ S1 and define v ∈W s−1/p,p (∂ω;S1) by

v =

{

tr u, on ∂ω

a, on Λ
.

We use the following extension result. (The first result of this kind is due to Hardt -
Kinderlehrer - Lin [16]; it corresponds to our lemma when σ = 1 − 1/p, p < 2.)
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Lemma 1. Let 0 < σ < 1, 1 < p < ∞, σp < 1. Then any v ∈ W σ,p (∂ω;S1) has an
extension w ∈W σ+1/p,p (ω;S1).

The proof is given in Appendix A; see Lemma A.1. It relies heavily on the lifting results
in Bourgain - Brezis - Mironescu [4].

Returning to the proof of Case 2, with w given by Lemma 1, set

ũ =











u, in Ω

w, in ω

a, in Rn\ (Ω ∪ ω)

.

Clearly, ũ ∈W s,p
loc (RN ;S1) and ũ is constant outside some compact set. As in the proof

of Theorem 6, we may use ũ to connect u to a, since once more we have sp < N .

Case 3: sp = 1, N > 2

The idea is the same as in the previous case; however, there is an additional difficulty,
since in the limiting case s = 1/p the trace theory is delicate - in particular, trW 1/p,p 6= Lp

(unless p = 1). Instead of trace, we work with a notion of “good restriction” developed
in Appendix B; when s = 1/2, p = 2, the space of functions in H1/2 having 0 as good

restriction on the boundary coincides with the space H
1/2
00 of Lions - Magenes [17] (see

Theorem 11.7, p. 72).

Our aim is to prove that any u ∈W 1/p,p (Ω;S1) can be connected to a constant a ∈ S1.

Step 1: we connect u ∈ W 1/p,p (Ω;S1) to some u1 ∈ W 1/p,p (Ω;S1) having a good
restriction on ∂Ω

Let ε > 0 be such that the projection Π onto ∂Ω be well-defined and smooth in the set
{x ∈ RN ; dist (x, ∂Ω) < 2ε)}. For 0 < δ < ε, set Σδ = {x ∈ Ω; dist (x, ∂Ω) = δ}. By
Fubini, for a.e. 0 < δ < ε , we have

(1) u|P
δ
∈W 1/p,p (Σδ) and

∫

Σδ

∫

Ω

|u(x) − u(y)|p

|x− y|N+1
dy dsx <∞.

By Lemma B.5, this implies that u has a good restriction on Σδ, and that Rest u|P
δ

=

u|P
δ

a.e. on Σδ.

Let any 0 < δ < ε satisfying (1). For 0 < λ < δ, let Ψλ be the smooth inverse of
Π|P

λ
: Σλ → ∂Ω. Let also Ωλ = {x ∈ Ω; dist (x, ∂Ω) > λ}. Consider a continuous

family of diffeomorphisms Φt : Ω̄ → Ωtδ, 0 6 t 6 1, such that Φ0 = id and Φt|∂Ω = Ψtδ.
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Then t 7→ u ◦ Φt is a homotopy in W 1/p,p. Moreover, if ut = u ◦ Φt, then u0 = u and
u1|∂Ω = u|P

δ
◦ Ψδ|∂Ω. By (1), u1 has a good restriction on ∂Ω.

Step 2: we extend u1 to RN

Let ω = {x ∈ RN\Ω̄; dist (x; ∂Ω) < ε}. As in Case 2, we fix some a ∈ S1 and set

v =

{

u1, on ∂Ω

a, on Λ
.

Clearly, v ∈W 1/p,p (∂ω), so that v ∈W σ,p (∂ω) for 0 < σ < 1/p. We fix any 0 < σ < 1/p.
By Lemma 1, there is some w ∈W σ+1/p,p (ω;S1) such that w|∂ω = v. We define

ũ1 =











u1, in Ω

w, in ω

a, in RN\(Ω ∪ ω)

.

We claim that ũ1 ∈ W
1/p,p
loc (RN ;S1). Obviously, ũ ∈ W

1/p,p
loc (RN\Ω). It remains to check

that ũ1 ∈W 1/p,p (Ω ∪ ω). This is a consequence of

Lemma 2. Let 0 < s < 1, 1 < p < ∞, sp > 1 and ρ > s. Let u1 ∈ W s,p(Ω) and
w ∈ W ρ,p(ω). Assume that u1 has a good restriction Rest u1|∂Ω on ∂Ω and that
tr w|∂Ω = Rest u1|∂Ω. Then the map

{

u1, in Ω

w, in ω

belongs to W s,p (Ω ∪ ω).

Clearly, in the proof of Lemma 2 it suffices to consider the case of a flat boundary.
When Ω = (−1, 1)N−1 × (0, 1) and ω = (−1, 1)N−1 × (−1, 0), the proof of Lemma 2 is
presented in Appendix B; see Lemma B.4.

Returning to Case 3 and applying Lemma 2 with s = 1/p, ρ = σ + 1/p, we obtain that

ũ1 ∈ W
1/p,p
loc (RN ). As in the two previous cases, this means that u1 is W 1/p,p-homotopic

to a constant.

Case 4: 1 6 sp < 2, N = 1

In this case, Ω is an interval. Recall the following result proved in Bourgain - Brezis -
Mironescu [4] (Theorem 1): if Ω is an interval and sp > 1, then for each u ∈ W s,p(Ω;S1)
there is some ϕ ∈ W s,p (Ω; R) such that u = eiϕ. Recall also that, when sp > N , then
C∞ (R; R) functions f with bounded derivatives operate onW s,p; that is, the map ϕ 7→ f◦ϕ
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is continuous from W s,p into itself (see, e.g., Peetre [19] for sp > N , Runst - Sickel [23],
Corollary 2 and Remark 5 in Section 5.3.7 or Brezis - Mironescu [9] when sp = N ; this is
also a consequence of the Composition Theorem). By combining these two results, we find
that the homotopy t 7→ ei(1−t)ϕ connects u = eiϕ to 1.

The proof of Theorem 1 is complete.

III. Proof of Theorems 2 and 3

We start with some useful remarks. For u ∈W s,p (Ω;S1), let [u]s,p denote its homotopy
class in W s,p.

Proposition 1. Let 0 < s <∞, 1 < p <∞. For u, v ∈W s,p (Ω;S1), we have

a) u[v]s,p = [uv]s,p;

b) [u]s,p = [v]s,p ⇔ [uv̄]s,p = [1]s,p;

c) [u]s,p [v]s,p = [uv]s,p.

The proof relies on two well-known facts: W s,p ∩ L∞ is an algebra; moreover, if un →
u, vn → v in W s,p and ||un||L∞ 6 C, ||vn||L∞ 6 C, then un vn → uv in W s,p. Here is, for
example, the proof of c) (using a)). Let first u1 ∈ [u]s,p, v1 ∈ [v]s,p. If U, V are homotopies
connecting u1 to u and v1 to v, then UV connects u1 v1 to uv; thus [u]s,p [v]s,p ⊂ [uv]s,p.
Conversely, if w ∈ [uv]s,p, then w ∈ u[v]s,p (by a)), so that wū ∈ [v]s,p. Therefore,
w = u(wū) ∈ [u]s,p [v]s,p.

We next recall the degree theory for W s,p maps; see Brezis - Li - Mironescu - Nirenberg
[8] for the general case, White [25] when s = 1 or Rubinstein - Sternberg [20] for the
space H1 (Ω;S1) and Ω the solid torus in R3. Let 0 < s < ∞, 1 < p < ∞ be such that
sp > 2. Let u ∈ W s,p (S1 × Λ;S1), where Λ is some open connected set in Rk. Clearly,
for a.e. λ ∈ Λ, u (·, λ) ∈W s,p (S1;S1). For any such λ, u (·, λ) is continuous, so that it has
a winding number (degree) deg

(

u (·, λ)
)

. The main result in [8] asserts that, if sp > 2,
then this degree is constant a.e. and stable under W s,p convergence.

In the particular case where s > 1, there is a formula

deg (u(·, λ)) =
1

2π

∫

S1

u (x, λ) ∧
∂u

∂τ
(x, λ) dsx,

where u ∧ v = u1 v2 − u2 v1. It then follows that, if s > 1 and sp > 2, we have

deg (u|S1×Λ) = �

∫

Λ

�

∫

S1

u(x, λ) ∧
∂u

∂τ
(x, λ) dsxdλ.
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Clearly, the above result extends to domains which are diffeomorphic to S1 ×Λ. In the
sequel, we are interested in the following particular case: let Γ be a simple closed smooth
curve in Ω and, for small ε > 0, let Γε be the ε-tubular neighborhood of Γ. We fix an
orientation on Γ.

Let Φ : S1 × Bε → Γε be a diffeomorphism such that Φ|S1×{0} : S1 × {0} → Γ be an

orientation preserving diffeomorphism; here Bε is the ball of radius ε in RN−1. Then we
may define deg (u|Γε

) = deg (u ◦Φ|S1×Bε
); this integer is stable under W s,p convergence.

We now prove b) of Theorem 2, which we restate as

Proposition 2. Let 0 < s < ∞, 1 < p < ∞, sp > 2. Let u, v ∈ C∞ (Ω̄;S1). Then
[u]s,p = [v]s,p if and only if u and v are C0- homotopic.

Proof. Using Proposition 1, we may assume v = 1. Suppose first that u ∈ C∞ (Ω̄;S1)
and 1 are C0-homotopic. Then u and 1 are W s,p-homotopic. Indeed, when s = 1, this is
proved in Brezis - Li [7], Proposition A.1; however, their proof works without modification
for any s. We sketch an alternative proof: since u and 1 are C0-homotopic, there is some
ϕ ∈ C∞ (Ω̄; R) such that u = eiϕ. Then t 7→ ei (1−t)ϕ connects u to 1 in W s,p.

Conversely, assume that the smooth map u is W s,p-homotopic to 1. By continuity of
the degree, we then have deg (u|Γε) = 0 for each Γ. Since u is smooth, we obtain

0 = deg (u|Γε
) = deg (u|Γ) =

1

2π

∫

Γ

u ∧
∂u

∂τ
ds.

Thus the closed form X = u∧Du has the property that
∫

Γ

X ·τds = 0 for any simple closed

smooth curve Γ. By the general form of the Poincaré lemma, there is some ϕ ∈ C∞ (Ω̄; R)
such that X = Dϕ. One may easily check that u = ei(ϕ+C) for some constant C. Then
t 7→ ei(1−t) (ϕ+C) connects u to 1 in C0 (Ω̄;S1).

We now turn to the proof of the remaining assertions in Theorems 2 and 3.

Case 1: sp > N, N > 2

Step 1: each u ∈W s,p (Ω;S1) can be connected to a smooth map v ∈ C∞ (Ω̄;S1)

This is proved in Brezis - Li [7], Proposition A.2, for s = 1 and p > N ; their arguments
apply to any s and any p such that sp > N . The main idea originates in the paper Schoen
- Uhlenbeck [23]; see also Brezis - Nirenberg [12], [13].

Step 2: we have [u]s,p = {ueiϕ;ϕ ∈W s,p (Ω; R)}

Let ϕ ∈ W s,p (Ω; R). Then t 7−→ uei(1−t)ϕ connects ueiϕ to u in W s,p. (Recall that, if
f ∈ C∞ (R; R) has bounded derivatives and sp > N , then the map ϕ 7→ f ◦ϕ is continuous



ON SOME QUESTIONS OF TOPOLOGY FOR S1-VALUED FRACTIONAL SOBOLEV SPACES11

from W s,p into itself.) This proves “⊃”. To prove the reverse inclusion, by Proposition 1,
it suffices to show that [1]s,p ⊂ {eiϕ ;ϕ ∈W s,p (Ω; R) }.

Let v ∈ [1]s,p. For each x ∈ Ω, let Bx ⊂ Ω be a ball containing x. We recall the following
lifting result from Bourgain - Brezis - Mironescu [4] (Theorem 2): if U is simply connected
in RN and sp > N , then for each w ∈ W s,p (U ;S1) there is some ψ ∈ W s,p (U ; R)
such that w = eiψ. Thus, for each x ∈ Ω there is some ϕx ∈ W s,p (Bx; R) such that
v|Bx

= eiϕx . Note that , in Bx ∩By, we have ϕx − ϕy ∈ W s,p (Bx ∩By; 2πZ). Therefore,
ϕx − ϕy ∈ VMO (Bx ∩ By; 2πZ), since sp > N . It then follows that ϕx − ϕy is constant
a.e. on Bx ∩By; see Brezis - Nirenberg [12], Section I.5.

By a standard continuation argument, we may thus define a (multi-valued) argument ϕ
for v in the following way: fix some x0 ∈ Ω. For any x ∈ Ω, let γ be a simple smooth path
from x0 to x. Then, for ε > 0 sufficiently small, there is a unique function ϕγ ∈W s,p (γε; R)
such that v|γε = eiϕ

γ

and ϕγ |Bε(x0) = ϕx0
|Bε(x0); here, γε is the ε-tubular neighborhood

of γ. We then set
ϕ|Bε(x) = ϕγ |Bε(x).

We actually claim that ϕ is single-valued. This follows from

Lemma 3. Assume that 0 < s < ∞, 1 < p < ∞, sp > N, N > 2. If w ∈ W s,p (S1 ×
B1;S

1) is such that deg (w|S1×B1
) = 0, then there is some ψ ∈W s,p (S1 ×B1) such that

w = eiψ.

Here, B1 is the unit ball in RN−1. The proof of Lemma 3 is presented in Appendix C;
see Lemma C.1.

Returning to the claim that ϕ is single-valued, we have that deg (v|Γε) = 0 for each Γ,
since v ∈ [1]s,p. By Lemma 3, a standard argument implies that ϕ is single-valued.

The proof of Theorems 2 and 3 when sp > N is complete.

Case 2: s > 1, 1 < p <∞, N > 3, 2 6 sp < N

Step 1: we have [u]s,p = {ueiϕ;ϕ ∈W s,p (Ω; R) ∩W 1,sp (Ω; R)}

For “⊃”, we use the Composition Theorem mentioned in the Introduction, which implies
that t 7→ uei(1−t)ϕ connects ueiϕ to u in W s,p.

For “⊂” it suffices to prove that [1]s,p ⊂ {eiϕ;ϕ ∈ W s,p (Ω; R) ∩W 1,sp (Ω; R)}. We
proceed as in Case 1, Step 2. Let v ∈ [1]s,p. The corresponding lifting result we use
is the following (see Bourgain - Brezis - Mironescu [4], Lemma 4): if s > 1, sp > 2
and U is simply connected in RN , then for each w ∈ W s,p (U ;S1) there is some ψ ∈
W s,p (U ; R) ∩W 1,sp (U ; R) such that w = eiψ. As in Case 1, for each x there is some ϕx ∈
W s,p (Bx; R) ∩W 1,sp (Bx; R) such that v|Bx

= eiϕx . Since ϕx − ϕy ∈W 1,1 (Bx∩By; 2πZ),
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we find that ϕx − ϕy is constant ae. on Bx ∩ By (see [4], Theorem B.1.). These two
ingredients allow the construction of a multi-valued phase ϕ ∈ W s,p ∩W 1,sp for v. To
prove that ϕ is actually single-valued, we rely on

Lemma 4. Assume that s > 1, 1 < p < ∞, N > 3, 2 6 sp < N . If w ∈ W s,p (S1 ×
B1;S

1) is such that deg (w|S1 ×B1
) = 0, then there is some ψ ∈ W s,p (S1 × B1; R) ∩

W 1,sp (S1 × B1; R) such that v = eiψ.

The proof of Lemma 4 is given in Appendix C; see Lemma C.2.

The proof of Step 1 is complete.

Step 2: assume s > 1, 1 < p < ∞, sp > 2; then, for each u ∈ W s,p (Ω;S1), there is
some v ∈W s,p (Ω;S1) ∩ C∞ (Ω;S1) such that v ∈ [u]s,p

Consider the form X = u∧Du. Then X ∈W s−1,p (Ω) ∩Lsp (Ω) (see Bourgain - Brezis
- Mironescu [4], Lemmas D.1 and D.2). Let ϕ ∈W s,p (Ω; R) ∩W 1,sp (Ω; R) be any solution
of ∆ϕ = div X in Ω. By the Composition Theorem, we then have e−iϕ ∈ W s,p (Ω;S1),
and thus v = ue−iϕ ∈W s,p (Ω;S1). We claim that v ∈ C∞ (Ω;S1). Indeed, let B be any
ball in Ω. Since s > 1 and sp > 2, there is some ψ ∈W s,p (B; R) ∩W 1,sp (B; R) such that
u|B = eiψ. It then follows that X|B = Dψ. Thus ∆ϕ = ∆ψ in B, i.e., ψ−ϕ is harmonic
in B. Since in B we have v = ue−iϕ = ei(ψ−ϕ), we obtain that v ∈ C∞(B), so that the
claim follows.

Using Step 1 and the equality v = ue−iϕ, we obtain that v ∈ [u]s,p.

Step 3: for each u ∈W s,p (Ω;S1), there is some w ∈ C∞ (Ω̄;S1) such that w ∈ [u]s,p

In view of Step 2, it suffices to consider the case where u ∈W s,p (Ω;S1) ∩C∞ (Ω;S1) .
We use the same homotopy as in Step 1, Case 3, in the proof of Theorem 1: t 7→ u ◦ Φt,
where Φt is a continuous family of diffeomorphisms Φt : Ω̄ → Ωtδ such that Φ0 = id.
Clearly, v = u ◦ Φ1 ∈ C∞ (Ω̄;S1).

The conclusions of Theorems 2 and 3 when s > 1, 1 < p < ∞, N > 3, 2 6 sp < N
follow from Proposition 2 and Steps 1 and 3.

We now complete the proof of Theorem 2 with

Case 3: 0 < s < 1, 1 < p <∞, N > 3, 2 6 sp < N

In this case, all we have to prove is that, for each u ∈ W s,p (Ω;S1) , there is some
v ∈ C∞ (Ω̄;S1) such that v ∈ [u]s,p. The ideas we use in the proof are essentially due to
Brezis - Li [7] (see §1.3, “Filling” a hole).

We may assume that u is defined in a neighborhood O of Ω̄; this is done by extending u
by reflections across the boundary of Ω- the extended map is still in W s,p since 0 < s < 1.
We next define a good covering of Ω: let ε > 0 be small enough; for x ∈ RN , we set

CxN =
⋃

{x+ εl + (0, ε)N ; l ∈ ZN and x+ εl + (0, ε)N ⊂ O}.
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Define also Cxj , j = 1, ..., N − 1, by backward induction : Cxj is the union of faces of cubes
in Cxj+1.

By Fubini, for a.e. x ∈ RN , we have u|Cx
j
∈ W s,p, j = 1, ..., N − 1, in the following

sense: since 1/p < s < 1, we have tr u|Cx
N−1

∈ W s−1/p,p for all x. However, for a.e.

x, we have the better property tr u|Cx
N−1

= u|Cx
N−1

∈ W s,p. For any such x, we have

tr
(

u|Cx
N−1

)

∣

∣

Cx
N−2

∈ W s−1/p,p, but once more for a.e. such x we have the better property

tr
(

u|Cx
N−1

)

∣

∣

Cx
N−2

= u|Cx
N−2

∈W s,p, and so on. (See Appendix E for a detailed discussion).

We fix any x having the above property and we drop from now on the superscript x.

Step 1: we connect u to some smoother map u1

Let k = [sp], so that 2 6 k 6 N − 1. Since u|Ck
∈ W s,p and sp > k, there is a

neighborhood ω of Ck in Ck+1 and an extension ũ ∈W s+1/p,p (ω;S1) of u|Ck
. This extension

is first obtained in each cube C ⊂ Ck+1 starting from u|∂C (see Brezis - Nirenberg [12],
Appendix 3, for the existence of such an extension). We next glue together all these
extensions to obtain ũ; ũ belongs to W s+1/p,p since 1/p < s + 1/p < 1 + 1/p. Moreover,
the explicit construction in [12] yields some ũ ∈ C∞ (ω\Ck). We next extend ũ to Ck+1 in
the following way: for each C ⊂ Ck+1, let ΣC be a convex smooth hypersurface in C ∩ ω.
Since ΣC is k-dimensional and k > 2, ũ|ΣC

may be extended smoothly in the interior of
ΣC as an S1-valued map (here, we use the fact that πk (S1) = 0). Let ũC be such an
extension. Then the map

v =

{

ũ, outside the ΣC ’s

ũC , inside ΣC

belongs to W s+1/p,p (Ck+1). To summarize, we have found some v ∈ W s+1/p,p (Ck+1;S
1)

such that v|Ck
= u|Ck

.

Pick any s < s1 <min {s + 1/p, 1} and let p1 be such that s1p1 = sp + 1 (note that
1 < p1 <∞). By Gagliardo - Nirenberg (see, e.g., Runst [22], Lemma 1, p.329 or Brezis -
Mironescu [10], Corollary 3), we have W s+1/p,p ∩ L∞ ⊂W s1,p1 . Thus v ∈W s1,p1 (Ck+1).

We complete the construction of the smoother map u1 in the following way: if k = N−1,
then v is defined in CN and we set u1 = v; if k < N − 1, we extend v to CN with the help
of

Lemma 5. Let 0 < s1 < ∞, 1 < p1 < ∞, 1 < s1p1 < N, [s1p1] 6 j < N . Then any
v ∈ W s1,p1 (Cj ;S

1) has an extension u1 ∈ W s1,p1 (CN ;S1) such that u1|Cl
∈ W s1,p1 for

l = j, ..., N − 1.

When s1 = 1, Lemma 5 is due to Brezis - Li [7], Section 1.3, “Filling” a hole; for the
general case, see Lemma D.3 in Appendix D.
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We summarize what we have done so far: if k = [sp], then there are some s1, p1 such
that s < s1 < 1, 1 < p1 < ∞, s1p1 = sp + 1 and a map u1 ∈ W s1,p1 (CN ;S1) such that
u1|Cj

∈ W s1,p1 , j = k, ..., N − 1 and u1|Ck
= u|Ck

. By Gagliardo - Nirenberg and the
Sobolev embeddings, we have in particular u1|Cj

∈ W s,p, j = k, ..., N − 1. Finally, u and
u1 are W s,p- homotopic by

Lemma 6. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N, [sp] 6 j < N . If u|Cl
∈ W s,p, u1|Cl

∈
W s,p, l = j, ..., N , and u|Cj

= u1|Cj
, then u and u1 are W s,p-homotopic.

The case s = 1 is due to Brezis - Li [7]; the proof of Lemma 6 in the general case is
presented in the Appendix D- see Lemma D.4.

Step 2: induction on [sp]

If k = [sp] = N − 1, we have connected in the previous step u to u1 ∈ W s1,p1 (CN ;S1),
where s < s1 < 1, 1 < p1 < ∞ and s1p1 = sp+ 1 > N . Using Case 1 (i.e., sp > N) from
this section, u1 may be connected in W s1,p1 (and thus in W s,p, by Gagliardo - Nirenberg
and the Sobolev embeddings) to some v ∈ C∞ (Ω̄;S1). This case is complete.

If k = [sp] = N − 2, then [s1p1] = N − 1. By the previous case, u1 can be connected
in W s1,p1 (and thus in W s,p) to some v ∈ C∞ (Ω̄;S1). Clearly, the general case follows by
induction.

The proof of Theorems 2 and 3 is complete.

We end this section with two simple consequences of the above proofs; these results
supplement the description of the homotopy classes.

Corollary 4. Let 0 < s < ∞, 1 < p < ∞, sp > 2, N > 2. For u, v ∈ W s,p (Ω;S1) , we
have [u]s,p = [v]s,p ⇔ deg (u|Γε

) = deg (v|Γε
) for every Γ.

Corollary 5. Let 0 < s1, s2 < ∞, 1 < p1, p2 < ∞, s1p1 > 2, s2p2 > 2, N > 2. For
u, v ∈W s1,p1 (Ω;S1) ∩W s2,p2 (Ω;S1) , we have [u]s1,p1 = [v]s1,p1 ⇔ [u]s2,p2 = [v]s2,p2 .

Clearly, Corollary 5 follows from Corollary 4. As for Corollary 4, let u1, v1 ∈ C∞ (Ω̄;S1)
be such that [u1]s,p = [u]s,p and [v1]s,p = [v]s,p. Then, by Theorem 2 b),

(2) [u]s,p = [v]s,p ⇔ [u1]s,p = [v1]s,p ⇔ [u1]C0 = [v1]C0 ⇔ deg (u1|Γ) = deg (v1|Γ), ∀Γ.

Moreover, we have

(3) deg (u1|Γ) = deg (v1|Γ) ⇔ deg (u1|Γε
) = deg (v1|Γε

) ⇔ deg (u|Γε
) = deg (v|Γε

), ∀Γ,

by standard properties of the degree.
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We obtain Corollary 4 by combining (2) and (3).

IV. Proof of Theorem 4

According to the discussion in the Introduction, we only have to prove part d). Let
s > 1, 1 < p < ∞, N > 3, 2 6 sp < N . Let u ∈ W s,p (Ω;S1) . By Theorem 2 a),
there is some v ∈ C∞ (Ω̄;S1) such that v ∈ [u]s,p. By Theorem 3 b), there is some
ϕ ∈ W s,p (Ω; R) ∩W 1,sp (Ω; R) such that v = ueiϕ. Let (ϕn) ⊂ C∞ (Ω̄; R) be such that
ϕn → ϕ in W s,p ∩W 1,sp. By the Composition Theorem, the sequence of smooth maps
(ve−iϕn) converges to u in W s,p (Ω;S1) .

The proof of Theorem 4 is complete.

V. Proof of Theorem 5

We start this section with a discussion on the stability of the degree: recall that if
sp > 2, then deg (u|Γε

) is well-defined and stable under W s,p convergence. However, while
the condition sp > 2 is optimal for the existence of the degree (see Brezis - Li - Mironescu
- Nirenberg [8], Remark 1), the stability of the degree of W s,p maps holds under (the
weaker assumption of) W s1,p1 convergence, where s1p1 > 1. This property and Corollary
4 suggest the following generalization of Theorem 5

Theorem 7. Let 0 < s < ∞, 1 < p < ∞, 0 < s1 < s, 1 < p1 < ∞, 1 6 s1p1 6 sp. Then
for each u ∈W s,p (Ω;S1) there is some δ > 0 such that

{v ∈W s,p (Ω;S1) ; ||v − u||W s1,p1 < δ} ⊂ [u]s,p.

Note that W s,p (Ω;S1) ⊂ W s1,p1 (Ω;S1) , by Gagliardo - Nirenberg and the Sobolev
embeddings, so that Theorem 5 follows from Theorem 7 when sp > 2 (when sp < 2, there
is nothing to prove, by Theorem 1).

Proof of Theorem 7

Step 1: reduction to special values of s, s1, p, p1

We claim that it suffices to prove Theorem 7 when

(4) 0 < s1 < s < 1 − (N − 1)/p, 1 < p <∞, 1 < p1 <∞, sp = 2, s1p1 = 1, N > 2.

Indeed, assume Theorem 7 proved for all the values of s, s1, p, p1 satisfying (4). Let 0 <
s0 < ∞, 1 < p0 < ∞, N > 2 be such that s0p0 > 2 (when N = 1 or s0p0 < 2, there
is nothing to prove). Let u ∈ W s0,p0 and let s, s1, p, p1 satisfy (4) and the additional



16 HAIM BREZIS(1),(2) AND PETRU MIRONESCU(3)

condition s < s0. By Gagliardo - Nirenberg and the Sobolev embeddings, there is some
δ0 > 0 such that

(5)
M ={v ∈W s0,p0 (Ω;S1) ; ||v − u||W s0,p0 < δ0} ⊂

{v ∈W s,p (Ω;S1) ; ||v − u||W s1,p1 < δ}.

By the special case of Theorem 7, we have v ∈M ⇒ v ∈ [u]s,p. By Corollary 5, we obtain
M ⊂ [u]s0,p0 , i.e., [u]s0,p0 is open.

In conclusion, it suffices to prove Theorem 7 under assumption (4). Moreover, by
Proposition 1 we may assume u = 1.

Step 2: construction of a good covering

We fix a small neighborhood O of Ω̄. By reflections across the boundary of Ω, we may
associate to each u ∈W s,p (Ω;S1) an extension ũ ∈W s,p(O;S1) satisfying

(6) ||ũ− ṽ||W s,p(O) 6 C1 ||u− v||W s,p(Ω)

and

(7) ||ũ− ṽ||W s1,p1 (O) 6 C1||u− v||W s1,p1 (Ω).

In this section, C1, C2, ... denote constants independent of u, v, ....

We fix some small ε > 0. By Lemma E.2 in Appendix E, for each v ∈W s,p (Ω;S1) there
is some x ∈ RN (depending possibly on v) such that the covering CxN has the properties

(8) v|Cx
j
∈W s,p, j = 1, ..., N − 1

and

(9) ||v|Cx
1
− 1||W s1,p1 (Cx

1 ) 6 C2||v − 1||W s1,p1 (O) 6 C2C1||v − 1||W s1,p1 (Ω)

(the last inequality follows from (7)).

While x may depend on v, the covering CxN has two features independent of v:

(10) the number of squares in Cx2 has a uniform upper bound K;

if C1, C2 are two squares in Cx2 , there is a path of squares in Cx2

each one having an edge in common with its neighbours, connecting(11)

C1 to C2.

Step 3: choice of δ

We rely on
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Lemma 7. Let C = (0, ε)2 and 0 < s1 < 1, 1 < p1 < ∞, s1p1 = 1. Then for each δ1 > 0
there is some δ2 > 0 such that every map v ∈W s1,p1 (∂C;S1) satisfying

(12) ||v − 1||W s1,p1 (∂C) < δ2

has a lifting ϕ ∈W s1,p1 (∂C; R) such that

(13) ||ϕ||W s1,p1 (∂C) < δ1.

Clearly, in Lemma 7, C may be replaced by the unit disc. For the unit disc, the proof
of Lemma 7 is given in Appendix C; see Lemma C.3.

In particular, if (12) holds, then we have

(14) ||ϕ||L1 (∂C) < C3δ1

for some C3 independent of the δ′s.

We now take δ1 such that

(15) δ1 < πε/C3.

With δ2 provided by Lemma 7, we choose

(16) δ = min {δ2/C0, δ2/C1C2}.

Step 4: construction of a global lifting for v|Cx
1

Let v ∈W s,p (Ω;S1) satisfy ||v−1||W s1,p1 < δ. Since δ 6 δ2/C1C2, (9) implies that the
conclusion of Lemma 7 holds for v|∂C and every square C in Cx2 . Thus, for every C ∈ Cx2 ,
v|∂C has a lifting ϕC satisfying (14) and ϕC ∈W s1,p1 (∂C).

We claim that ϕC ∈W s,p (∂C). The statement being local, it suffices to prove that ϕC ∈
W s,p (L), where L is the union of three edges in ∂C. Since L is Lipschitz homeomorphic
with an interval, by Theorem 1 in [4] there is some ψ ∈ W s,p (L) such that v = eiψ in L
(here we use 0 < s < 1 and sp = 2 > 1). In L, we have ψ−ϕC ∈ (W s,p+W s1,p1) (L; 2πZ);
thus ψ − ϕC is constant a.e. in L (see [4], Remark B.3), so that the claim follows.

Since sp > 1 and v|Cx
1
∈ W s,p, ϕC ∈ W s,p, we may redefine v|Cx

1
and ϕC on null sets in

order to have continuous functions. We claim that the function ϕ(y) = ϕC(y), if y ∈ C is
well-defined on Cx1 (and thus continuous and W s,p). By (11), it suffices to prove that, if
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C1, C2 are squares in Cx2 having the edge E in common, then ϕC1 = ϕC2 on E . Clearly, on
E we have ϕC2 = ϕC1 + 2lπ for some l ∈ Z. Thus

||ϕC1 + 2lπ||L1 (E) = ||ϕC2 ||L1 (E) < C3δ1,

by (14). It follows that

(17) 2|l|πε = ||2lπ||L1 (E) 6 ||ϕC1 ||L1 (E) + C3δ1 < 2C3δ1,

which implies l = 0 by (15) and (16).

In conclusion, v|Cx
1

has a global lifting ϕ ∈W s,p (Cx1 ; R).

Step 5: construction of a good extension w of v|Cx
1

Let ϕ2 ∈ W s+1/p,p (Cx2 ; R) be an extension of ϕ, ϕ3 ∈ W s+2/p,p (Cx3 ; R) an extension
of ϕ2, and so on; let ϕN ∈ W s+(N−1)/p,p (CxN ; R) be the final extension. Note that these
extensions exist since s < 1 + (N − 1)/p, so that trace theory applies. We set w = eiϕN ∈
W s+(N−1)/p,p (CxN ;S1). Since (s + (N − 1)/p) · p = N + 1 > N , we obtain by Theorem 3
that w ∈ [1]s+(N−1)/p,p. By Corollary 5, we also have w ∈ [1]s,p.

We complete the proof of Theorem 7 by proving

Step 6: w ∈ [v]s,p

We rely on the following variant of Lemma 6

Lemma 8. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N, [sp] 6 j < N . Let v, w ∈
W s,p (CN ;S1) be such that v|Cl

∈W s,p, w|Cl
∈W s,p, l = j, ..., N −1. Assume that v|Cj and

w|Cj
are W s,p-homotopic. Then v and w are W s,p-homotopic.

The proof of Lemma 8 is given Appendix D; see Lemma D.5.

When N > 3, we are going to apply Lemma 8 with j = 2. In order to prove that v|C2

and w|C2
are W s,p-homotopic, it suffices to find, for each C ∈ C2, a homotopy UC from v|C

to w|C preserving the boundary condition on ∂C; we next glue together these homotopies
(this works since 0 < s < 1). We construct UC using the lifting: since sp = 2 = dim
C and C is simply connected, by Theorem 2 in [4] there is some ψ ∈ W s,p (C; R) such
that v = eiψ in C. By taking traces, we find that v|∂C = eitr ψ = eiϕC ; thus tr ψ − ϕC
∈ (W s−1/p,p +W s,p)(∂C; 2πZ). Therefore, tr ψ − ϕC is constant a.e., by Remark B.3 in
[4]. We may assume that tr ψ = ϕC = tr ϕ2. Then t 7−→ ei((1−t)ψ+tϕ2) is the desired
homotopy UC .

When N = 2, the above argument proves directly (i.e., without the help of Lemma 8)
that w ∈ [v]s,p.

The proof of Theorem 7 is complete.
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Appendix A. An extension lemma

In this appendix, we investigate, in a special case, the question whether a map in
W σ,p (∂ω;S1) admits an extension in W σ+1/p,p (ω;S1).

Lemma A.1. Let 0 < σ < 1, 1 < p < ∞, σp < 1, N > 2. Let ω be a smooth bounded
domain in RN . Then every v ∈W σ,p (∂ω;S1) has an extension w ∈W σ+1/p,p (ω;S1).

Proof. We distinguish two cases: σ 6 1 − 1/p and σ > 1 − 1/p.

Case σ 6 1−1/p: since σp < 1, v may be lifted in W σ,p (see Bourgain - Brezis - Mironescu
[4]), i.e. there is some ψ ∈ W σ,p (∂ω; R) such that v = eiψ. Let ϕ ∈ W σ+1/p,p (ω; R) be
an extension of ψ. Then w = eiϕ ∈ W σ+1/p,p (ω;S1) (since σ + 1/p 6 1 and x 7→ eix is
Lipchitz). Clearly, w has all the required properties.

Case σ > 1− 1/p: the argument is similar, but somewhat more involved. The proof in [4]
actually yields a lifting which is better than W σ,p; more specifically, this lifting ψ belongs
to W tσ,p/t for 0 < t 6 1, see Remark 2, p.41, in the above reference. On the other hand,
since σ > 1 − 1/p, we have t = p/(σp+ 1) < 1. For this choice of t, we obtain that v has
a lifting ψ ∈W σ,p ∩W 1−1/(σp+1),σp+1. This ψ has an extension ϕ ∈W σ+1/p,p ∩W 1,σp+1.
By the Composition Theorem stated in the Introduction, the map w = eiϕ belongs to
W σ+1/p,p (ω;S1). Clearly, we have tr w = v.

Remark A.1. The special case p < 2 and σ = 1 − 1/p was originally treated by Hardt -
Kinderlehrer - Lin [16] via a totally different method. Their argument extends to the case
p < 2 and σp < 1, but does not seem to apply when p > 2.

Appendix B. Good restrictions

In this appendix, we describe a natural substitute for the trace theory when s = 1/p; it
is known that the standard trace theory is not defined in this limiting case.

For simplicity, we consider mainly the case of a flat boundary. However, we state Lemma
B.5 (used in the proof of Theorem 1) for a general domain. We start by introducing some

Notations: let Q = (0, 1)N−1, Ω+ = Q × (0, 1), Ω− = Q × (−1, 0), Ω = Ω+ ∪ Ω− =
Q× (−1, 1). If v is a function defined on Q, we set ṽ (x′, t) = v(x) for (x′, t) ∈ Ω.

Lemma B.1. Let 0 < s < 1, 1 < p < ∞. Then for u ∈ W s,p (Ω+) and for any function
v defined on Q, the following assertions are equivalent:

a) v ∈W s,p (Q) and

(B.1) I =

∫

Ω+

|u(x) − ṽ(x)|p

xspN
dx <∞;
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b) the map w1 =

{

u, in Ω+

ṽ, in Ω−

belongs to W s,p (Ω);

c) the map w2 =

{

u− ṽ, in Ω+

0, in Ω−

belongs to W s,p (Ω).

Proof. Recall that, if U is a smooth or cube-like domain, then an equivalent (semi-)
norm on W s,p (U) is given by

(B.2) f 7−→







N
∑

j=1

∫ ∞

0

∫

{x∈U ; x+tej∈U}

f(x+ tej) − f(x)|p

tsp+1
dxdt







1/p

(see, e.g., Triebel [25]).

Clearly, both b) and c) imply that v ∈W s,p (Q). Conversely, for v ∈W s,p (Q) we have
to prove the equivalence of (B.1), b) and c). We consider the norm given by (B.2). Taking
into account the fact that w1, w2 belong to W s,p in Ω+ and Ω−, we see that

(B.3) w1 ∈W s,p (Ω) ⇔ J =

∫

Ω+

∫ 0

−1

|u(x) − ṽ(x)|p

(xN − t)sp+1
dtdx <∞

and

(B.4) w2 ∈W s,p (Ω) ⇔ J <∞.

The lemma follows from the obvious inequality

1 − 2−sp

sp
I 6 J 6

1

sp
I.

We now assume in addition that sp > 1 and derive the following

Corollary B.1. Let 0 < s < 1, 1 < p < ∞ be such that sp > 1. Then, for every
u ∈W s,p (Ω+) we have

a) for each 0 6 t0 < 1, there is at most one function v defined on Q such that the maps

wt01 =

{

u, in Q × (t0, 1)

ṽ, in Q × (−1, t0)

and

wt02 =

{

u− ṽ, in Q × (t0, 1)

0, in Q × (−1, t0)
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belong to W s,p (Ω);

b) for a.e. 0 6 t0 < 1, the function v = u (·, t0) has the property that wt01 , w
t0
2 ∈W s,p (Ω).

(As usual, the uniqueness of v is understood a.e.)

The above corollary suggests the following

Definition: let 0 < s < 1, 1 < p < ∞, sp > 1, 0 6 t0 < 1. Let u ∈ W s,p (Ω+) and let v
be a function defined on Q. Then v is the downward good restriction of u to {xN = t0}
if wt01 , w

t0
2 ∈ W s,p (Ω); we then write v = Rest u|−xN=t0 . Similarly, for 0 < t0 < 1 we may

define an upward good restriction Rest u|+xN=t0 = v as the unique function v defined on Q
satisfying the two equivalent conditions

a) W t0
1 =

{

ṽ, in Q × (t0, 1)

u, in Q × (0, t0)
∈W s,p (Ω+)

and

b) W t0
2 =

{

0, in Q × (t0, 1)

u− ṽ, in Q × (0, t0)
∈W s,p (Ω+).

If v is both an upward and a downward good restriction, we call it a good restriction and
we write v = Rest u|xN=t0 .

Corollary B.2. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u ∈ W s,p (Ω+). Then, for a.e.
0 < t0 < 1, we have Rest u|xN=t0 = u (·, t0).

Remark B.1. If sp > 1, then functions u ∈ W s,p (Ω+) have traces for all 0 6 t0 6 1.
However, these traces need not be good restrictions. Here is an example: For N = 2, one
may prove that the map x 7→ (x− 1/2e1)/|x− 1/2e1| belongs to W s,p (Ω) if 0 < s < 1,
1 < p <∞, sp < 2. However, if sp > 1, its trace

tr u|x2=0 =

{

1, if x1 > 1/2

−1, if x1 < 1/2

does not belong to W s,p (0, 1), so that it is not a good restriction.

Remark B.2. In the limiting case s = 1/p, functions inW s,p do not have traces. However,
they do have good restrictions a.e.

Here is yet another simple consequence of Lemma B.1

Corollary B.3. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u± ∈ W s,p (Ω±) be such that
Rest u+|

−
xN=0 = Rest u−|

+
xN=0.

Then the map w =

{

u+, in Ω+

u−, in Ω−

belongs to W s,p.

The following results explain the connections between good restrictions and traces.
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Lemma B.2. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u ∈ W s,p (Ω+). Assume that there
exists v = Rest u|−xN=0. Then v = tr u|xN=0.

Proof. Let w =

{

u− ṽ, in Ω+

0, in Ω−

. By Lemma B.1, we have w ∈W s,p (Ω). By trace

theory and continuity of the trace, we have 0 = tr w|xN=0, so that tr u|xN=0 = v.

Lemma B.3. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u ∈ W s+1/p,p (Ω+). Then,
considered as a W s,p function, u has a good downward restriction to {xN = 0} which
coincides with tr u|xN=0.

Proof. Let v = tr u|xN=0. Then v ∈W s,p (Q), by the trace theory. By Lemma B.1, it
remains to prove that

(B.5)

∫

Ω+

|u(x) − ṽ(x)|p

xspN
dx <∞.

Assume first that s+ 1/p = 1. Then (B.5) follows from the well-known Hardy inequality

(B.6)

∫

Q

∫ 1

0

|u(x′, t) − u(x′, 0)|p

tp
dtdx 6 C‖Du‖pLp , ∀u ∈W 1,p (Ω+).

Consider now the case where s+ 1/p 6= 1. Let σ = s+ 1/p. We are going to prove that

(B.7)

∫

Ω+

|u(x) − ṽ(x)|p

xspN
dx 6 C‖u‖pWσ,p

for some convenient equivalent (semi-) norm on W σ,p. It is useful to consider the norm
(B.8)

f 7→







N
∑

j=1

∫ ∞

0

∫

{x∈U ; x+tej∈U, x+2tej∈U}

|f(x+ 2tej) − 2f(x+ tej) + f(x)|p

tσp+1
dxdt







1/p

(see, e.g., Triebel [24]).

For any x′ ∈ Q such that ux′ = u(x′, ·) ∈W σ,p (0, 1), the map

fx′(t) =

{

u(x′, t), if t > 0

v(x′), if t < 0



ON SOME QUESTIONS OF TOPOLOGY FOR S1-VALUED FRACTIONAL SOBOLEV SPACES23

belongs to W σ,p (−1, 1), by standard trace theory. Moreover, for any such x′ we have

(B.9) ‖fx′‖pWσ,p (−1,1) 6 C‖ux′‖pWσ,p (0,1),

i.e.
∫ ∞

0

∫

{h∈(−1,1);h+t∈(−1,1), h+2t∈(−1,1)}

|fx′(h+ 2t) − 2fx′(h+ t) + fx′(h)|p

tσp+1
dhdt 6

C

∫ ∞

0

∫

{h∈(0,1);h+t∈(0,1), h+2t∈(0,1)}

|ux′(h+ 2t) − 2ux′(h+ t) + ux′(h)|p

tσp+1
dhdt.

In particular,

(B.10) I =

∫ 1/2

0

∫ −t

−2t

|fx′(h+ 2t) − 2fx′(h+ t) + fx′(h)|p

tσp+1
dhdt 6 C‖ux′‖pWσ,p.

Since

(B.11) I > C

∫ 1/3

0

|u(x′, t) − v(x′)|p

tσp
dt = C

∫ 1/3

0

|u(x′, t) − v(x′)|p

tsp+1
dt,

we find that

(B.12)

∫ 1/3

0

|u(x′, t) − v(x′)|p

tsp+1
dt 6 C‖ux′‖pWσ,p .

On the other hand, we clearly have

(B.13)

∫ 1

1/3

|u(x′, t) − v(x′)|p

tsp+1
dt 6 C‖ux′‖pLp + C|v(x′)|p.

By combining (B.12), (B.13) and integrating with respect to x′, we obtain (B.7). The
proof of Lemma B.3 is complete.

A simple consequence of Lemma B.3 is the following

Lemma B.4. Let 0 < s < 1, 1 < p < ∞, sp > 1 and ρ > s. Let u1 ∈ W s,p (Ω+) and
u2 ∈W ρ,p (Ω−). Assume that u1 has a good downward restriction v = Rest u1|

−
xN=0 and

that v = tr u2|xN=0. Then the map

w =

{

u1, in Ω+

u2, in Ω−
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belongs to W s,p(Ω).

Proof. Let u3 ∈W s+1/p,p (Ω−) be an extension of v. Then w = w1 + w2, where

w1 =

{

u1, in Ω+

u3, in Ω−

and

w2 =

{

0, in Ω+

u2 − u3, in Ω−

.

By Lemma B.3 and the assumption v = Rest u1|
−
xN=0, we have Rest u1|

−
xN=0 =

Rest u3|
+
xN=0. By Corollary B.3, we find that w1 ∈ W s,p (Ω). It remains to prove that

w2 ∈ W s,p (Ω). Let σ = min {ρ, s + 1/p, 1}. Then w2 ∈ W σ,p (Ω), by standard trace
theory. Thus w2 ∈W s,p (Ω).

We conclude this section by stating the following precised form of Corollary B.1, b) in
the case of a general boundary. We use the same notations as in the proof of Theorem 1,
Case 4.

Lemma B.5. Let u ∈W 1/p,p (Ω). Then

a) for a.e. 0 < δ < ε we have

(B.14) u|Σδ
∈W 1/p,p (Σδ) and

∫

Σδ

∫

Ω

|u(x) − u(y)|p

|x− y|N+1
dydsx <∞;

b) for any such δ, u has a good restriction to Σδ which coincides (a.e. on Σδ) with u|Σδ
.

Appendix C. Global lifting

In this appendix, we investigate the existence of a global lifting in some domains with
non-trival topology.

Lemma C.1. Let 0 < s < ∞, 1 < p < ∞, sp > N,N > 2. Let u ∈ W s,p (S1 × B1;S
1)

be such that deg (u|S1×B1
) = 0. Then there is some ϕ ∈ W s,p (S1 × B1;S

1) such that
u = eiϕ.

Here, B1 is the unit ball in RN−1.

Proof. Let v : R × B1 → S1, v(t, x) = u(eit, x). Then v ∈ W s,p
loc (R × B1;S

1), where
“loc” refers only to the variable t. By Theorem 2 in Bourgain - Brezis - Mironescu [4], there
is some ψ ∈ W s,p

loc (R × B1; R) such that v = eiψ. We claim that ψ is 2π-periodic in the
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variable t. Indeed, for a.e. x ∈ B1, we have u ∈W s,p (S1×{x};S1) and deg (u|S1×{x}) = 0.
In particular, for any such x the map u|S1×{x} has a continuous lifting ηx. On the other

hand, for a.e. x ∈ B1 we have ψx = ψ(·, x) ∈W s,p
loc (R×{x}; R). Thus, with λx(t) = ηx(e

it),
we find that for a.e. x ∈ B1 the function ψx−λx is continuous and 2πZ -valued; therefore
it is a constant. Since λx is 2π-periodic, so is ψx for a.e. x ∈ B1. We obtain that ψ
is 2π-periodic in the variable t. Thus the map ϕ : S1 × B1 → R, ϕ(eit, x) = ψ(t, x) is
well-defined and belongs to W s,p (S1 ×B1; R). Moreover, we clearly have u = eiϕ.

In the same vein, we have

Lemma C.2. Let s > 1, 1 < p < ∞, N > 3, 2 6 sp < N . Let u ∈ W s,p (S1 × B1;S
1) be

such that deg (u|S1×B1
) = 0. Then there is some ϕ ∈W s,p (S1×B1; R)∩W 1,sp (S1×B1; R)

such that u = eiϕ.

The proof is similar to that of Lemma C.1; one has to use Lemma 4 in [4] instead of
Theorem 2 in [4].

Lemma C.3. Let 1 < p < ∞ and δ1 > 0. Then there is some δ2 > 0 such that every
v ∈W 1/p,p (S1;S1) satisfying ‖v−1‖W 1/p,p(S1) < δ2 has a global lifting ϕ ∈W 1/p,p (S1; R)

such that ‖ϕ‖W 1/p,p(S1) < δ1.

Proof. Recall that if I is an interval, then every w ∈ W 1/p,p (I;S1) has a lifting ψ ∈
W 1/p,p (I; R) (see Bourgain - Brezis - Mironescu [4], Theorem 1). Moreover, this lifting may
be chosen to be (locally) continuous with respect to w, i.e. for every w0 ∈ W 1/p,p(I;S1)
there is some δ0 > 0 such that in the set

{w; ‖w − w0‖W 1/p,p(I;S1) < δ0}

there is a lifting w 7→ ψ continuous for the W 1/p,p norm. (This assertion can be established
using the same argument as in Step 7 of the proof of Theorem 4 in Brezis - Nirenberg [12];
it can also be derived from the explicit construction of ψ in the proof of Theorem 1 in [4];
see also Boutet de Monvel-Berthier - Georgescu - Purice [6] when p = 2).

Let I = [−2π, 2π]. To each v ∈W 1/p,p (S1;S1) we associate the map w ∈W 1/p,p (I;S1),
w(t) = v(eit). By the above considerations, for every δ3 > 0 there is some δ4 > 0 such that,
if ‖v − 1‖W 1/p,p(S1) < δ4, then w has a lifting ψ such that ‖ψ‖W 1/p,p(I) < δ3. We claim

that ψ is 2π-periodic if δ3 is small enough. Indeed, the function ξ(t) = ψ(t − 2π) − ψ(t)
belongs to W 1/p,p([0, 2π]; 2πZ), so that ξ is constant a.e. (see [4], Theorem B.1). Since
‖ξ‖L1 6 ‖ψ‖L1 < Cδ3, we have ξ = 0 (i.e. ψ is 2π-periodic) if Cδ3 < 2π.

Thus, for δ3 small enough, the map ϕ(eit) = ψ(t) is well-defined, belongs to W 1/p,p and
satisfies ‖ϕ‖W 1/p,p(S1) < δ1 and u = eiϕ.

Appendix D. Filling a hole - the fractional case
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We adapt to fractional Sobolev spaces the technique of Brezis - Li [7], Section 1.3.

The first two results are preparations for the proofs of Lemmas 5,6 and 8 (see Lemmas
D.3, D.4 and D.5 below).

Lemma D.1. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N . Let C = (−1, 1)N and u ∈
W s,p (∂C). Then ũ ∈ W s,p (C); here, ũ(x) = u(x/|x|) and | | is the L∞ norm in RN .
Moreover, the map u 7→ ũ is continuous from W s,p (∂C) into W s,p (C).

Proof. Clearly, we have ‖ũ‖Lp(C) 6 C0‖u‖Lp(∂C). Thus it suffices to prove, for the
Gagliardo semi-norms in W s,p, the inequality

(D.1) ‖ũ‖pW s,p(C) 6 C1(‖u‖
p
W s,p(∂C) + ‖u‖pLp(∂C)).

We have

(D.2)

∫

C

∫

C

|ũ(x) − ũ(y)|p

|x− y|N+sp
dxdy =

∫ 1

0

∫ 1

0

∫

∂C

∫

∂C

|u(x) − u(y)|p

|τx− σy|N+sp
τN−1σN−1dsxdsydτdσ.

We claim that

(D.3) I =

∫ 1

0

∫ 1

0

τN−1σN−1

|τx− σy|N+sp
dτdσ 6 C2/|x− y|N+sp.

Indeed,

(D.4)

I =

∫ 1

0

∫ 1/τ

0

τN−1(λτ)N−1

|τx− λτy|N+sp
dλdτ =

∫ 1

0

∫ 1/τ

0

τN−sp−1 λN−1

|x− λy|N+sp
dλdτ 6 I1 + I2,

where I1 =
∫ 1

0

∫ 2

0
and I2 =

∫ 1

0

∫ ∞

2
.

On the one hand, we have

(D.5)

I1 =

∫ 1

0

∫ 2

0

τN−sp−1 λN−1

|x− λy|N+sp
dλdτ

6 C3

∫ 1

0

∫ 2

0

τN−sp−1 λN−1

|x− y|N+sp
dλdτ 6 C4/|x− y|N+sp.
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On the other hand, we have

(D.6)

I2 =

∫ 1

0

∫ ∞

2

τN−sp−1 λN−1

|x− λy|N+sp
dλdτ

6 C5

∫ 1

0

∫ ∞

2

τN−sp−1 λN−1

λN+sp
dλdτ = C5

∫ 1

0

∫ ∞

2

τN−sp−1λ−sp−1 dλdτ 6 C6.

We obtain (D.3) by combining (D.4), (D.5) and (D.6). Finally, (D.1) follows from (D.2)
and (D.3).

The proof of Lemma D.1 is complete.

Lemma D.2. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N . Let v, w ∈ W s,p (C;S1) be such
that v|∂C = w|∂C ∈ W s,p (∂C). Then, there is a homotopy U ∈ C0([0, 1];W s,p (C;S1))
such that U(0, ·) = v, U(1, ·) = w and U(t, ·)|∂C = v|∂C ,∀t ∈ [0, 1].

Proof. Let u = v|∂C . It clearly suffices to prove the lemma in the special case w = ũ.
In this case, let, for 0 6 t < 1,

U(t, x) =

{

v(x/(1 − t)), if |x| 6 1 − t

ũ(x), if 1 − t < |x| 6 1
;

set U(1, ·) = ũ. Clearly, U ∈ C0([0, 1);W s,p (C;S1)). It remains to prove that U(t, ·) → ũ
as t→ 1. Let

f(x) =

{

v(x), if |x| 6 1

ũ(x), if |x| > 1

and g = f − ũ. Then f, ũ ∈W s,p
loc (RN ), so that g ∈W s,p

loc (RN ). Since g = 0 outside C, we
actually have g ∈W s,p (RN ). Thus

‖U(t, ·) − ũ‖pW s,p(C) = ‖g(·/(1 − t))‖pW s,p(C) 6

‖g(·/(1 − t))‖p
W s,p(RN )

= (1 − t)N−sp‖g‖p
W s,p(RN )

→ 0

as t→ 1. The proof of Lemma D.2 is complete.

We introduce a useful notation: let u ∈W s1,p1 (Ck), where 0 < s1 < 1, 1 < p1 <∞, 1 <
s1p1 < N . We extend, for each C ∈ Ck+1, u|∂C to C as in Lemma D.1. Let ũ be the map
obtained by gluing these extensions. We next extend ũ to Ck+2 in the same manner, and
so on, until we obtain a map defined in CN ; call it Hk(u).

Lemma D.3. Let 0 < s1 < 1, 1 < p1 < ∞, 1 < s1p1 < N, [s1p1] 6 j < N . Then every
v ∈ W s1,p1 (Cj ;S

1) has an extension u1 ∈ W s1,p1 (CN ;S1) such that u1|Cl
∈ W s1,p1 for

l = j, ..., N − 1.

Proof. We take u1 = Hj(v). We may use repeatedly Lemma D.1, since for l =
j + 1, ..., N we have 1 < s1p1 < l.
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Lemma D.4. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N, [sp] 6 j < N . If u|Cl
∈

W s,p, u1|Cl
∈W s,p, l = j, ..., N − 1, and u|Cj

= u1|Cj
, then u and u1 are W s,p-homotopic.

Proof. We argue by backward induction on j. If j = N − 1, then for each C ∈ CN
Lemma D.2 provides a W s,p-homotopy of u|C and u1|C preserving the boundary condition.
By gluing together these homotopies we find that u and u1 are W s,p-homotopic (here we
use 1/p < s < 1). Suppose now that the conclusion of the lemma holds for j+ 1; we prove
it for j, assuming that j > [sp]. By assumption, u and Hj+1(u|Cj+1

) are W s,p-homotopic,
and so are u1 and Hj+1(u1|Cj+1

). It suffices therefore to prove that v = Hj+1(u|Cj+1
) and

v1 = Hj+1(u1|Cj+1
) are W s,p-homotopic. For each C ∈ Cj+1, we have v|∂C = v1|∂C =

u|∂C = u1|∂C . By Lemma D.2, v|C and v1|C are connected by a homotopy preserving
the trace on ∂C. Gluing together these homotopies, we find that v|Cj+1

and v1|Cj+1
are

W s,p-homotopic. If U connects v|Cj+1
to v1|Cj+1

, then Lemma D.1 used repeatedly implies

that t 7→ Hj+1(U(t)) connects in W s,p (CN ;S1) the map Hj+1 (v|Cj+1
) to Hj+1 (v1|Cj+1

),
i.e., v to v1.

The proof of Lemma D.4 is complete.

Lemma D.5. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N, [sp] 6 j < N . Let v, w ∈
W s,p (CN ;S1) be such that v|Cl

∈W s,p, w|Cl
∈W s,p, l = j, ..., N − 1. Assume that v|Cj

and
w|Cj

are W s,p-homotopic. Then v and w are W s,p-homotopic.

Proof. By Lemma D.4, v and Hj(v|Cj
) (respectively w and Hj(w|Cj

)) are W s,p-
homotopic. If U connects v|Cj to w|Cj in W s,p, then as in the proof of Lemma D.4,
we obtain that t 7→ Hj(U(t)) connects Hj(v|Cj ) to Hj(w|Cj ) in W s,p. Thus v and w are
W s,p-homotopic.

Appendix E. Slicing with norm control

In this section, we prove the existence of good coverings for W s,p maps. The arguments
are rather standard.

Without loss of generality, we may consider maps defined in RN . Throughout this
section, we assume ε = 1, i.e. we consider a covering with cubes of size 1. We start by
introducing some useful notations: for x ∈ CN = (0, 1)N and for j = 1, ..., N − 1, let

Cj =
⋃

{ j
∑

k=1

tk eik +

N−j
∑

l=1

λlejl ; tk ∈ R, λl ∈ Z, {eik} ∪ {ejl} = {e1, ...eN}

}

and Cj(x) = x + Cj . (With the notations introduced in Section 3, we have Cj(x) = Cxj
when Ω = RN ).
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For a fixed set Λ ⊂ {1, .., N} such that |Λ| = j, let also

CΛ
j =

{

∑

i∈Λ

tiei +
∑

j /∈Λ

λjej ; ti ∈ R, λj ∈ Z

}

,

so that
Cj = ∪{CΛ

j ; Λ ⊂ {1, ..., N}, |Λ| = j},

and with obvious notations

Cj(x) = ∪{CΛ
j (x); Λ ⊂ {1, ..., N}, |Λ| = j}.

Instead of considering a fixed (semi-) norm on W s,p, 0 < s < 1, 1 < p < ∞, it is
convenient to consider a family of equivalent norms

|f |pj =
∑

Λ⊂{1,...,N}
|Λ|=j

∫

RN

∫

Rj

|f(x+
∑

i∈Λ tiei) − f(x)|p

|t|j+sp
dtdx

(see, e.g., Triebel [24]). An obvious computation yields, for the usual Gagliardo
(semi-) norm on CΛ

j (x),

Lemma E.1. Let 0 < s < 1, 1 < p <∞ and u ∈W s,p. Then

∑

Λ⊂{1,...,N}
|Λ|=j

∫

CN

‖u‖p
W s,p (CΛ

j (x))
dx 6 |u|pj

for some C independent of u.

We next define the norm ‖u‖W s,p (Cj(x)) by the formula

‖u‖pW s,p (Cj(x))
=

∑

C∈Cj+1(x)

‖u‖pW s,p (∂C).

Lemma E.2. Let 0 < s < 1, 1 < p <∞. Then, for u ∈W s,p, we have

a) for a.e. x ∈ CN , u|Cj(x) ∈W s,p
loc , j = 1, ..., N − 1;

b) there is a fat set (i.e., with positive measure) A ⊂ CN such that

(E.2) ‖u‖pW s,p (Cj(x))
6 C |u|pj , ∀x ∈ A.

Remark E.1. Here, u|Cj(x) are restrictions, not traces. However, when sp > 1 we may
replace restrictions by traces, by a standard argument. We obtain
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Corollary E.1. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u ∈ W s,p. Then, for a.e.
x ∈ CN , tr u|CN−1(x) ∈ W s,p. Moreover, for a.e. x ∈ CN , tr u|CN−1(x) has a trace on
CN−2(x) which belongs to W s,p, and so on.

Proof of Lemma E.2. In order to avoid long computations, we treat only the case
j = 1, N = 2. The general case does not bring any additional difficulty. Let C ∈ C1(x);
denote its lower (resp. upper, left, right) edge by Cl (resp. Cu, CL, CR). By (E.1), we have
u|Cl ∈ W s,p for a.e. x ∈ C2 and, for x in a fat set,

∑

C∈C1(x)
‖u‖p

W s,p(Cl)
6 const. |u|p1.

Similar statements hold for the other edges.

It remains to control the cross - integrals in the Gagliardo norm, e.g. to prove

(E.3) I =

∫

C2

∑

C∈C1(x)

∫

Cl

∫

CL

|u(y) − u(z)|p

|y − z|2+sp
dydz 6 const. ‖u‖pW s,p

(here, we take the usual Gagliardo norm in W s,p (R2)). We have

I =

∫

C2

∑

m∈Z2

∫ 1

0

∫ 1

0

|u(x+m1e1 +m2e2 + τe1) − u(x+m1e1 +m2e2 + σe2)|
p

|τe1 − σe2|2+sp
dσdτdx

=

∫

R2

∫ 1

0

∫ 1

0

|u(y + τe1) − u(y + σe2)|
p

|τe1 − σe2|2+sp
dσdτdy

=

∫

R2

∫ 1

0

∫ 1

0

|u(z) − u(z − τe1 + σe2)|
p

|τe1 − σe2|2+sp
dσdτdz

6

∫

R2

∫

R2

|u(z + h) − u(z)|p

|h|2+sp
dhdz = ‖u‖pW s,p .

The proof of Lemma E.2 is complete.
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