ON SOME QUESTIONS OF TOPOLOGY FOR S 1 -VALUED FRACTIONAL SOBOLEV SPACES HAIM BREZIS (1), (2) AND PETRU MIRONESCU (3) 

I. Introduction

The purpose of this paper is to describe the homotopy classes (i.e., path-connected components) of the space W s,p (Ω; S 1 ). Here, 0 < s < ∞, 1 < p < ∞, Ω is a smooth, bounded, connected open set in R N and W s,p (Ω; S 1 ) = { u ∈ W s,p (Ω; S 1 ); |u| = 1 a.e.}.

Our main results are

Theorem 1. If sp < 2, then W s,p (Ω; S 1 ) is path-connected.

Theorem 2. If sp 2, then W s,p (Ω; S 1 ) and C 0 ( Ω; S 1 ) have the same homotopy classes in the sense of [START_REF] Brezis | Topology and Sobolev spaces[END_REF]. More precisely: a) each u ∈ W s,p (Ω; S 1 ) is W s,p -homotopic to some v ∈ C ∞ ( Ω; S 1 ); b) two maps u, v ∈ C ∞ ( Ω; S 1 ) are C 0 -homotopic if and only if they are W s,p -homotopic.

Here a simple consequence of the above results Corollary 1. If 0 < s < ∞, 1 < p < ∞ and Ω is simply connected, then W s,p (Ω; S 1 ) is path-connected. Indeed, when sp < 2 this is the content of Theorem 1. When sp 2, we use a) of Theorem 2 to connect u 1 , u 2 ∈ W s,p (Ω; S 1 ) to v 1 , v 2 ∈ C ∞ ( Ω; S 1 ); since Ω is simply connected, we may write v j = e iϕ j for ϕ j ∈ C ∞ ( Ω; R) and then we connect

v 1 to v 2 via e i [(1-t)ϕ 1 +tϕ 2 ] .
When M is a compact connected manifold, the study of the topology of W 1,p (Ω; M ) was initiated in Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF] (see also White [26] for some related questions). In particular, these authors proved Theorems 1 and 2 in the special case s = 1. The analysis of homotopy

Typeset by A M S-T E X 1 classes for an arbitrary manifold M and s = 1 was subsequently tackled by Hang -Lin [START_REF] Hang | Topology of Sobolev mappings II[END_REF]. The passage to W s,p introduces two additional difficulties: a) when s is not an integer, the W s,p norm is not "local"; b) when s 2 (or more generally s > 1 + 1 p ), gluing two maps in W s,p does not yield a map in W s,p .

In our proofs, we exploit in an essential way the fact that the target manifold is S 1 . (The case of a general target is widely open.) In particular, we use the existence of a lifting of W s,p unimodular maps when s 1 and sp 2 (see Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]). Another important tool is the following Composition Theorem (Brezis -Mironescu [START_REF] Brezis | composition and products in fractional Sobolev spaces[END_REF]). If f ∈ C ∞ (R; R) has bounded derivatives and s 1, then ϕ -→ f • ϕ is continuous from W s,p ∩ W 1,sp into W s,p . Remark 1. A very elegant and straightforward proof of this Composition Theorem has been given by V.Maz'ya and T.Shaposhnikova [START_REF] Maz | An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces[END_REF].

A related question is the description, when sp 2, of the homotopy classes of W s,p (Ω; S 1 ) in terms of lifting. Here is a partial result Theorem 3. We have a) if s 1, N 3, and 2 sp < N , then [u] s,p = {ue iϕ ; ϕ ∈ W s,p (Ω; R) ∩ W 1,sp (Ω; R)}; b) if sp N , then [u] s,p = {ue iϕ ; ϕ ∈ W s,p (Ω; R)}.

Theorem 3 is due to Rubinstein -Sternberg [START_REF] Rubinstein | Homotopy classification of minimizers of the Ginzurg-Landau energy and the existence of permanent currents[END_REF] in the special case where s = 1, p = 2 and Ω is the solid torus in R 3 . When 0 < s < 1, N 3 and 2 sp < N , there is no such simple description of [u] s,p . For instance, using the "non-lifting" results in Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], it is easy to see that [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] s,p ⊃ = {e iϕ ; ϕ ∈ W s,p (Ω; R)}.

Here is an example: if

N = 3, Ω = B 1 , 0 < s < 1, 1 < p < ∞, 2 sp < 3, then a) u(x) = e 1/|x| α ∈ [1] s,p ;
b) there is no ϕ ∈ W s,p (B 1 ; R) such that u = e iϕ for α satisfying 3-sp p α < 3-sp sp . However, we conjecture the following result Conjecture 1. Assume that 0 < s < 1, 1 < p < ∞, N 3 and 2 sp < N . Then [u] s,p = u{e iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p . We will prove below (see Corollary 2) that "half" of Conjecture 1 holds, namely

[u] s,p ⊃ u{e iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p .
In a different but related direction, we establish some partial results concerning the density of C ∞ ( Ω; S 1 ) into W s,p (Ω; S 1 ).

Theorem 4. We have, for 0 < s < ∞, 1 < p < ∞:

a) if sp < 1, then C ∞ ( Ω; S 1 ) is dense in W s,p (Ω; S 1 ); b) if 1 sp < 2, N 2, then C ∞ ( Ω; S 1 ) is not dense in W s,p (Ω; S 1 ); c) if sp N , then C ∞ ( Ω; S 1 ) is dense in W s,p (Ω; S 1 ); d) if s 1 and sp 2, then C ∞ ( Ω; S 1 ) is dense in W s,p (Ω; S 1 ).
There is only one missing case for which we make the following

Conjecture 2. If 0 < s < 1, 1 < p < ∞, N 3, 2 sp < N , then C ∞ ( Ω; S 1 ) is dense in W s,p (Ω; S 1 ).
This problem is open even when Ω is a ball in R 3 . We will prove below the equivalence of Conjectures 1 and 2.

Parts of Theorem 4 were already known. Part a) is due to Escobedo [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF]; so is part b), but in this case the idea goes back to Schoen -Uhlenbeck [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF] (see also Bourgain -Brezis -Mironescu [START_REF] Bourgain | On the structure of the space H 1/2 with values into the circle[END_REF]). For s = 1, part c) is due to Schoen -Uhlenbeck [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF]; their argument can be adapted to the general case (see, e.g., Brezis -Nirenberg [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF] or Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF]). The only new result is part d). The proof relies heavily on the Composition Theorem and Theorems 2 and 3. We do not know any direct proof of d). We also mention that for s = 1 and Ω = B 1 , Theorem 4 was established by Bethuel -Zheng [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF]. For a general compact connected manifold M and for s = 1, the question of density of C ∞ ( Ω; M ) into W 1,p (Ω; M ) was settled by Bethuel [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] and Hang -Lin [START_REF] Hang | Topology of Sobolev mappings II[END_REF]. Remark 2. In Theorems 2 and 4, one may replace Ω by a manifold with or without boundary. The statements are unchanged. However, the argument in the proof of Theorem 1 does not quite go through to the case of a manifold without boundary. Nevertheless, we make the following Conjecture 3. Let Ω be a manifold without boundary with dim Ω 2. Then W s,p (Ω; M ) is path-connected for every 0 < s < ∞, 1 < p < ∞ with sp < 2, and for every compact connected manifold M .

Note that the condition dim Ω 2 is necessary, since W s,p (S 1 ; S 1 ) is not path-connected when sp 1.

Finally, we investigate the local path-connectedness of W s,p (Ω; S 1 ). Our main result is

Theorem 5. Let 0 < s < ∞, 1 < p < ∞. Then W s,p (Ω; S 1 ) is locally path-connected.
Consequently, the homotophy classes coincide with the connected components and they are open and closed.

The heart of the matter in the proof is the following

Claim. Let 0 < s < ∞, 1 < p < ∞.
Then there is some δ > 0 such that, if ||u-1|| W s,p < δ, then u may be connected to 1 in W s,p .

As a consequence of Theorem 5, we have

Corollary 2. Let 0 < s < 1, 1 < p < ∞. Then [u] s,p ⊃ {ue iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p = u {e iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p .
Equality in Corollary 2 follows from the well-known fact that W s,p ∩ L ∞ is an algebra. The inclusion is a consequence of the fact that, clearly, we have Proof. By Corollary 2, we have

[u] s,p ⊃ u{e iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p .
We prove that the reverse inclusion follows from Conjecture 1. By Proposition 1 a) below, we may take u = 1. Let v ∈ [1] s,p . By Theorem 5, there is some

ε > 0 such that ||v -w|| W s,p < ε ⇒ w ∈ [1] s,p . Let (w n ) ⊂ C ∞ ( Ω; S 1 ) be such that w n → v in W s,p
and ||w n -v|| W s,p < ε. By Theorem 2 b), we obtain that w n and 1 are homotopic in C 0 ( Ω; S 1 ). Thus w n = e iϕ n for some globally defined smooth ϕ n . Hence

v ∈ {e iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p .
Conversely, assume that Conjecture 2 holds. Let u ∈ W s,p (Ω; S 1 ). By Theorem 2 a), there is some w ∈ C ∞ ( Ω; S 1 ) such that w ∈ [u] s,p . By Proposition 1 b), we have u w ∈

[1] s,p . Thus u w ∈ {e iϕ ; ϕ ∈ W s,p (Ω; R)} W s,p , so that clearly u w ∈ {e iϕ ; ϕ ∈ C ∞ ( Ω; R)} W s,p . Finally, u ∈ {we iϕ ; ϕ ∈ C ∞ ( Ω; R)} W s,p
, i.e. u may be approximated by smooth maps.

In the same vein, we raise the following Open Problem 1. Let Ω be a manifold with or without boundary. Is W s,p (Ω; M ) locally path-connected for every s, p and every compact manifold M ?

The case s = 1 can be settled using the methods of Hang -Lin [START_REF] Hang | Topology of Sobolev mappings II[END_REF]. We will return to this question in a subsequent work; see Brezis -Mironescu [11].

The reader who is looking for more open problems may also consider the following Open Problem 2. Let Ω ⊂ R 2 be a smooth bounded domain. Assume 0 < s < ∞, 1 < p < ∞ and 1 sp < 2 (this is the range where C ∞ ( Ω; S 1 ) is not dense in W s,p (Ω; S 1 )). Set R 0 = {u ∈ W s,p (Ω; S 1 ); u is smooth except a finite number of points}.

(Here, the number and location of singular points is left free). Is R 0 dense in W s,p (Ω; S 1 )?

Comment. R 0 is known to be dense in W s,p (Ω; S 1 ) in many cases, e.g.:

a) s = 1 and 1 p < 2; see Bethuel-Zheng [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF] b) s = 1 -1/p and 2 < p < 3; see Bethuel [START_REF] Bethuel | Approximation in trace spaces defined between manifolds[END_REF] c) s = 1/2 and p = 2; see Rivière [START_REF] Rivière | Dense subsets of H 1/2 (S 2 ; S 1 )[END_REF].

The paper is organized as follows Lemma 1. Let 0 < σ < 1, 1 < p < ∞, σp < 1. Then any v ∈ W σ,p (∂ω; S 1 ) has an extension w ∈ W σ+1/p,p (ω; S 1 ).

The proof is given in Appendix A; see Lemma A.1. It relies heavily on the lifting results in Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF].

Returning to the proof of Case 2, with w given by Lemma 1, set

ũ =      u, in Ω w, in ω a, in R n \ (Ω ∪ ω)
.

Clearly, ũ ∈ W s,p loc (R N ; S 1 ) and ũ is constant outside some compact set. As in the proof of Theorem 6, we may use ũ to connect u to a, since once more we have sp < N .

Case 3: sp = 1, N 2
The idea is the same as in the previous case; however, there is an additional difficulty, since in the limiting case s = 1/p the trace theory is delicate -in particular, tr W 1/p,p = L p (unless p = 1). Instead of trace, we work with a notion of "good restriction" developed in Appendix B; when s = 1/2, p = 2, the space of functions in H 1/2 having 0 as good restriction on the boundary coincides with the space H 1/2 00 of Lions -Magenes [START_REF] Lions | Problèmes aux limites non homogènes[END_REF] (see Theorem 11.7, p. 72).

Our aim is to prove that any u ∈ W 1/p,p (Ω; S 1 ) can be connected to a constant a ∈ S 1 .

Step 1: we connect u ∈ W 1/p,p (Ω; S 1 ) to some u 1 ∈ W 1/p,p (Ω; S 1 ) having a good restriction on ∂Ω Let ε > 0 be such that the projection Π onto ∂Ω be well-defined and smooth in the set {x ∈ R N ; dist (x, ∂Ω) < 2ε)}. For 0 < δ < ε, set Σ δ = {x ∈ Ω; dist (x, ∂Ω) = δ}. By Fubini, for a.e. 0 < δ < ε , we have [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] u| P δ ∈ W 1/p,p (Σ δ ) and

Σ δ Ω |u(x) -u(y)| p |x -y| N +1 dy ds x < ∞.
By Lemma B.5, this implies that u has a good restriction on Σ δ , and that Rest u| P δ = u| P δ a.e. on Σ δ . Let any 0 < δ < ε satisfying (1). For 0 < λ < δ, let Ψ λ be the smooth inverse of Π| P λ : Σ λ → ∂Ω. Let also Ω λ = {x ∈ Ω; dist (x, ∂Ω) > λ}. Consider a continuous family of diffeomorphisms Φ t : Ω → Ω tδ , 0 t 1, such that Φ 0 = id and Φ

t | ∂Ω = Ψ tδ . Then t → u • Φ t is a homotopy in W 1/p,p . Moreover, if u t = u • Φ t , then u 0 = u and u 1 | ∂Ω = u| P δ • Ψ δ | ∂Ω . By (1)
, u 1 has a good restriction on ∂Ω.

Step 2: we extend

u 1 to R N Let ω = {x ∈ R N \ Ω; dist (x; ∂Ω) < ε}. As in Case 2, we fix some a ∈ S 1 and set v = u 1 , on ∂Ω a, on Λ .
Clearly, v ∈ W 1/p,p (∂ω), so that v ∈ W σ,p (∂ω) for 0 < σ < 1/p. We fix any 0 < σ < 1/p. By Lemma 1, there is some w ∈ W σ+1/p,p (ω; S 1 ) such that w| ∂ω = v. We define

ũ1 =      u 1 , in Ω w, in ω a, in R N \(Ω ∪ ω)
.

We claim that ũ1 ∈ W

1/p,p loc (R N ; S 1 ). Obviously, ũ ∈ W 1/p,p loc (R N \Ω). It remains to check that ũ1 ∈ W 1/p,p (Ω ∪ ω). This is a consequence of Lemma 2. Let 0 < s < 1, 1 < p < ∞, sp 1 and ρ > s. Let u 1 ∈ W s,p (Ω) and w ∈ W ρ,p (ω). Assume that u 1 has a good restriction Rest u 1 | ∂Ω on ∂Ω and that tr w| ∂Ω = Rest u 1 | ∂Ω . Then the map u 1 , in Ω w, in ω belongs to W s,p (Ω ∪ ω).
Clearly, in the proof of Lemma 2 it suffices to consider the case of a flat boundary. When Ω = (-1, 1) N -1 × (0, 1) and ω = (-1, 1) N -1 × (-1, 0), the proof of Lemma 2 is presented in Appendix B; see Lemma B.4.

Returning to Case 3 and applying Lemma 2 with s = 1/p, ρ = σ + 1/p, we obtain that ũ1 ∈ W 1/p,p loc (R N ). As in the two previous cases, this means that u 1 is W 1/p,p -homotopic to a constant.

Case 4: 1 sp < 2, N = 1
In this case, Ω is an interval. Recall the following result proved in Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] (Theorem 1): if Ω is an interval and sp 1, then for each u ∈ W s,p (Ω; S 1 ) there is some ϕ ∈ W s,p (Ω; R) such that u = e iϕ . Recall also that, when sp N , then C ∞ (R; R) functions f with bounded derivatives operate on W s,p ; that is, the map ϕ → f •ϕ is continuous from W s,p into itself (see, e.g., Peetre [START_REF] Peetre | Interpolation of Lipschitz operators and metric spaces[END_REF] for sp > N , Runst -Sickel [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], Corollary 2 and Remark 5 in Section 5.3.7 or Brezis -Mironescu [START_REF] Brezis | Composition in fractional Sobolev spaces[END_REF] when sp = N ; this is also a consequence of the Composition Theorem). By combining these two results, we find that the homotopy t → e i(1-t)ϕ connects u = e iϕ to 1.

The proof of Theorem 1 is complete.

III. Proof of Theorems 2 and 3

We start with some useful remarks. For u ∈ W s,p (Ω; S 1 ), let [u] s,p denote its homotopy class in W s,p .

Proposition 1. Let 0 < s < ∞, 1 < p < ∞. For u, v ∈ W s,p (Ω; S 1 ), we have a) u[v] s,p = [uv] s,p ; b) [u] s,p = [v] s,p ⇔ [uv] s,p = [1] s,p ; c) [u] s,p [v] s,p = [uv] s,p .
The proof relies on two well-known facts:

W s,p ∩ L ∞ is an algebra; moreover, if u n → u, v n → v in W s,p and ||u n || L ∞ C, ||v n || L ∞ C, then u n v n → uv in W s,p . Here is, for example, the proof of c) (using a)). Let first u 1 ∈ [u] s,p , v 1 ∈ [v] s,p . If U, V are homotopies connecting u 1 to u and v 1 to v, then U V connects u 1 v 1 to uv; thus [u] s,p [v] s,p ⊂ [uv] s,p . Conversely, if w ∈ [uv] s,p , then w ∈ u[v] s,p (by a)), so that wū ∈ [v] s,p . Therefore, w = u(wū) ∈ [u] s,p [v] s,p .
We next recall the degree theory for W s,p maps; see Brezis -Li -Mironescu -Nirenberg [START_REF] Brezis | Degree and Sobolev spaces[END_REF] for the general case, White [START_REF] Triebel | Theory of function spaces[END_REF] when s = 1 or Rubinstein -Sternberg [START_REF] Rivière | Dense subsets of H 1/2 (S 2 ; S 1 )[END_REF] for the space H 1 (Ω; S 1 ) and Ω the solid torus in R 3 . Let 0 < s < ∞, 1 < p < ∞ be such that sp 2. Let u ∈ W s,p (S 1 × Λ; S 1 ), where Λ is some open connected set in R k . Clearly, for a.e. λ ∈ Λ, u (•, λ) ∈ W s,p (S 1 ; S 1 ). For any such λ, u (•, λ) is continuous, so that it has a winding number (degree) deg u (•, λ) . The main result in [START_REF] Brezis | Degree and Sobolev spaces[END_REF] asserts that, if sp 2, then this degree is constant a.e. and stable under W s,p convergence.

In the particular case where s 1, there is a formula

deg (u(•, λ)) = 1 2π S 1 u (x, λ) ∧ ∂u ∂τ (x, λ) ds x , where u ∧ v = u 1 v 2 -u 2 v 1 .
It then follows that, if s 1 and sp 2, we have

deg (u| S 1 ×Λ ) = Λ S 1 u(x, λ) ∧ ∂u ∂τ (x, λ) ds x dλ.
Clearly, the above result extends to domains which are diffeomorphic to S 1 × Λ. In the sequel, we are interested in the following particular case: let Γ be a simple closed smooth curve in Ω and, for small ε > 0, let Γ ε be the ε-tubular neighborhood of Γ. We fix an orientation on Γ.

Let Φ : S 1 × B ε → Γ ε be a diffeomorphism such that Φ| S 1 ×{0} : S 1 × {0} → Γ be an orientation preserving diffeomorphism; here B ε is the ball of radius ε in R N -1 . Then we may define deg (u|

Γ ε ) = deg (u • Φ| S 1 ×B ε ); this integer is stable under W s,p convergence.
We now prove b) of Theorem 2, which we restate as

Proposition 2. Let 0 < s < ∞, 1 < p < ∞, sp 2. Let u, v ∈ C ∞ ( Ω; S 1 ). Then [u] s,p = [v] s,p if and only if u and v are C 0 -homotopic.
Proof. Using Proposition 1, we may assume v = 1. Suppose first that u ∈ C ∞ ( Ω; S 1 ) and 1 are C 0 -homotopic. Then u and 1 are W s,p -homotopic. Indeed, when s = 1, this is proved in Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF], Proposition A.1; however, their proof works without modification for any s. We sketch an alternative proof: since u and 1 are C 0 -homotopic, there is some

ϕ ∈ C ∞ ( Ω; R) such that u = e iϕ . Then t → e i (1-t) ϕ connects u to 1 in W s,p .
Conversely, assume that the smooth map u is W s,p -homotopic to 1. By continuity of the degree, we then have deg (u|

Γ ε ) = 0 for each Γ. Since u is smooth, we obtain 0 = deg (u| Γ ε ) = deg (u| Γ ) = 1 2π Γ u ∧ ∂u ∂τ ds.
Thus the closed form X = u ∧ Du has the property that Γ X • τ ds = 0 for any simple closed smooth curve Γ. By the general form of the Poincaré lemma, there is some ϕ ∈ C ∞ ( Ω; R) such that X = Dϕ. One may easily check that u = e i(ϕ+C) for some constant C. Then t → e i(1-t) (ϕ+C) connects u to 1 in C 0 ( Ω; S 1 ).

We now turn to the proof of the remaining assertions in Theorems 2 and 3.

Case 1: sp N, N 2

Step 1:

each u ∈ W s,p (Ω; S 1 ) can be connected to a smooth map v ∈ C ∞ ( Ω; S 1 )
This is proved in Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF], Proposition A.2, for s = 1 and p N ; their arguments apply to any s and any p such that sp N . The main idea originates in the paper Schoen -Uhlenbeck [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF]; see also Brezis -Nirenberg [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF], [START_REF] Brezis | Degree Theory and BMO, Part II: Compact manifolds with boundaries[END_REF].

Step 2: we have

[u] s,p = {ue iϕ ; ϕ ∈ W s,p (Ω; R)} Let ϕ ∈ W s,p (Ω; R). Then t -→ ue i(1-t)ϕ connects ue iϕ to u in W s,p . (Recall that, if f ∈ C ∞ (R; R)
has bounded derivatives and sp N , then the map ϕ → f • ϕ is continuous from W s,p into itself.) This proves "⊃". To prove the reverse inclusion, by Proposition 1, it suffices to show that [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] s,p ⊂ {e iϕ ; ϕ ∈ W s,p (Ω; R) }.

Let v ∈ [1] s,p . For each x ∈ Ω, let B x ⊂ Ω be a ball containing x. We recall the following lifting result from Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] (Theorem 2): if U is simply connected in R N and sp N , then for each w ∈ W s,p (U ; S 1 ) there is some ψ ∈ W s,p (U ; R) such that w = e iψ . Thus, for each x ∈ Ω there is some ϕ x ∈ W s,p (B x ; R) such that v| B x = e iϕ x . Note that , in B x ∩ B y , we have ϕ x -ϕ y ∈ W s,p (B x ∩ B y ; 2πZ). Therefore, ϕ x -ϕ y ∈ V M O (B x ∩ B y ; 2πZ), since sp N . It then follows that ϕ x -ϕ y is constant a.e. on B x ∩ B y ; see Brezis -Nirenberg [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF], Section I.5.

By a standard continuation argument, we may thus define a (multi-valued) argument ϕ for v in the following way: fix some x 0 ∈ Ω. For any x ∈ Ω, let γ be a simple smooth path from x 0 to x. Then, for ε > 0 sufficiently small, there is a unique function

ϕ γ ∈ W s,p (γ ε ; R) such that v| γ ε = e iϕ γ and ϕ γ | B ε (x 0 ) = ϕ x 0 | B ε (x 0 ) ; here, γ ε is the ε-tubular neighborhood of γ. We then set ϕ| B ε (x) = ϕ γ | B ε (x) .
We actually claim that ϕ is single-valued. This follows from

Lemma 3. Assume that 0 < s < ∞, 1 < p < ∞, sp N, N 2. If w ∈ W s,p (S 1 × B 1 ; S 1 ) is such that deg (w| S 1 ×B 1 ) = 0, then there is some ψ ∈ W s,p (S 1 × B 1 ) such that w = e iψ .
Here, B 1 is the unit ball in R N -1 . The proof of Lemma 3 is presented in Appendix C; see Lemma C.1.

Returning to the claim that ϕ is single-valued, we have that deg (v| Γ ε ) = 0 for each Γ, since v ∈ [1] s,p . By Lemma 3, a standard argument implies that ϕ is single-valued.

The proof of Theorems 2 and 3 when sp N is complete.

Case 2: s 1, 1 < p < ∞, N 3, 2 sp < N Step 1: we have [u] s,p = {ue iϕ ; ϕ ∈ W s,p (Ω; R) ∩ W 1,sp (Ω; R)}
For "⊃", we use the Composition Theorem mentioned in the Introduction, which implies that t → ue i(1-t)ϕ connects ue iϕ to u in W s,p .

For "⊂" it suffices to prove that [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] 

s,p ⊂ {e iϕ ; ϕ ∈ W s,p (Ω; R) ∩ W 1,sp (Ω; R)}. We proceed as in Case 1, Step 2. Let v ∈ [1] s,p .
The corresponding lifting result we use is the following (see Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Lemma 4): if s 1, sp 2 and U is simply connected in R N , then for each w ∈ W s,p (U ; S 1 ) there is some ψ ∈ W s,p (U ; R) ∩ W 1,sp (U ; R) such that w = e iψ . As in Case 1, for each x there is some ϕ

x ∈ W s,p (B x ; R) ∩W 1,sp (B x ; R) such that v| B x = e iϕ x . Since ϕ x -ϕ y ∈ W 1,1 (B x ∩B y ; 2πZ),
we find that ϕ x -ϕ y is constant ae. on B x ∩ B y (see [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Theorem B.1.). These two ingredients allow the construction of a multi-valued phase ϕ ∈ W s,p ∩ W 1,sp for v. To prove that ϕ is actually single-valued, we rely on

Lemma 4. Assume that s 1, 1 < p < ∞, N 3, 2 sp < N . If w ∈ W s,p (S 1 × B 1 ; S 1 ) is such that deg (w| S 1 × B 1 ) = 0, then there is some ψ ∈ W s,p (S 1 × B 1 ; R) ∩ W 1,sp (S 1 × B 1 ; R) such that v = e iψ .
The proof of Lemma 4 is given in Appendix C; see Lemma C.2.

The proof of Step 1 is complete.

Step 2: assume s 1, 1 < p < ∞, sp 2; then, for each u ∈ W s,p (Ω; S 1 ), there is some [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Lemmas D.1 and D.2). Let ϕ ∈ W s,p (Ω; R) ∩ W 1,sp (Ω; R) be any solution of ∆ϕ = div X in Ω. By the Composition Theorem, we then have e -iϕ ∈ W s,p (Ω; S 1 ), and thus v = ue -iϕ ∈ W s,p (Ω; S 1 ). We claim that v ∈ C ∞ (Ω; S 1 ). Indeed, let B be any ball in Ω. Since s 1 and sp 2, there is some ψ ∈ W s,p (B; R) ∩ W 1,sp (B; R) such that u| B = e iψ . It then follows that X| B = Dψ. Thus ∆ϕ = ∆ψ in B, i.e., ψ -ϕ is harmonic in B. Since in B we have v = ue -iϕ = e i(ψ-ϕ) , we obtain that v ∈ C ∞ (B), so that the claim follows.

v ∈ W s,p (Ω; S 1 ) ∩ C ∞ (Ω; S 1 ) such that v ∈ [u] s,p Consider the form X = u ∧ Du. Then X ∈ W s-1,p (Ω) ∩ L sp (Ω) (see Bourgain -Brezis -Mironescu
Using Step 1 and the equality v = ue -iϕ , we obtain that v ∈ [u] s,p .

Step 3: for each u ∈ W s,p (Ω; S 1 ), there is some

w ∈ C ∞ ( Ω; S 1 ) such that w ∈ [u] s,p
In view of Step 2, it suffices to consider the case where u ∈ W s,p (Ω; S 1 ) ∩ C ∞ (Ω; S 1 ) . We use the same homotopy as in Step 1, Case 3, in the proof of Theorem 1: t → u • Φ t , where Φ t is a continuous family of diffeomorphisms Φ t : Ω → Ω tδ such that Φ 0 = id.

Clearly, v = u • Φ 1 ∈ C ∞ ( Ω; S 1 ).
The conclusions of Theorems 2 and 3 when s 1, 1 < p < ∞, N 3, 2 sp < N follow from Proposition 2 and Steps 1 and 3.

We now complete the proof of Theorem 2 with

Case 3: 0 < s < 1, 1 < p < ∞, N 3, 2 sp < N
In this case, all we have to prove is that, for each u ∈ W s,p (Ω; S 1 ) , there is some v ∈ C ∞ ( Ω; S 1 ) such that v ∈ [u] s,p . The ideas we use in the proof are essentially due to Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF] (see §1.3, "Filling" a hole).

We may assume that u is defined in a neighborhood O of Ω; this is done by extending u by reflections across the boundary of Ω-the extended map is still in W s,p since 0 < s < 1. We next define a good covering of Ω: let ε > 0 be small enough; for x ∈ R N , we set

C x N = {x + εl + (0, ε) N ; l ∈ Z N and x + εl + (0, ε) N ⊂ O}.
Define also C x j , j = 1, ..., N -1, by backward induction : C x j is the union of faces of cubes in C x j+1 . By Fubini, for a.e. x ∈ R N , we have u| C x j ∈ W s,p , j = 1, ..., N -1, in the following sense: since 1/p < s < 1, we have tr u| C x N -1 ∈ W s-1/p,p for all x. However, for a.e. x, we have the better property tr u| C x N -1 = u| C x N -1 ∈ W s,p . For any such x, we have tr u|

C x N -1 C x N -2
∈ W s-1/p,p , but once more for a.e. such x we have the better property

tr u| C x N -1 C x N -2 = u| C x N -2 ∈ W s,p
, and so on. (See Appendix E for a detailed discussion). We fix any x having the above property and we drop from now on the superscript x.

Step 1: we connect u to some smoother map u 1 Let k = [sp], so that 2 k N -1. Since u| C k ∈ W s,p and sp k, there is a neighborhood ω of C k in C k+1 and an extension ũ ∈ W s+1/p,p (ω; S 1 ) of u| C k . This extension is first obtained in each cube C ⊂ C k+1 starting from u| ∂C (see Brezis -Nirenberg [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF], Appendix 3, for the existence of such an extension). We next glue together all these extensions to obtain ũ; ũ belongs to W s+1/p,p since 1/p < s + 1/p < 1 + 1/p. Moreover, the explicit construction in [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF] yields some ũ ∈ C ∞ (ω\C k ). We next extend ũ to C k+1 in the following way: for each C ⊂ C k+1 , let Σ C be a convex smooth hypersurface in C ∩ ω. Since Σ C is k-dimensional and k 2, ũ| Σ C may be extended smoothly in the interior of Σ C as an S 1 -valued map (here, we use the fact that π k (S 1 ) = 0). Let ũC be such an extension. Then the map v = ũ, outside the Σ C 's ũC , inside Σ C belongs to W s+1/p,p (C k+1 ). To summarize, we have found some v ∈ W s+1/p,p (C k+1 ; S 1 ) such that v|

C k = u| C k .
Pick any s < s 1 < min {s + 1/p, 1} and let p 1 be such that s 1 p 1 = sp + 1 (note that 1 < p 1 < ∞). By Gagliardo -Nirenberg (see, e.g., Runst [START_REF] Runst | Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type[END_REF], Lemma 1, p.329 or Brezis -Mironescu [START_REF] Brezis | composition and products in fractional Sobolev spaces[END_REF], Corollary 3), we have

W s+1/p,p ∩ L ∞ ⊂ W s 1 ,p 1 . Thus v ∈ W s 1 ,p 1 (C k+1 ).
We complete the construction of the smoother map u 1 in the following way:

if k = N -1, then v is defined in C N and we set u 1 = v; if k < N -1, we extend v to C N with the help of Lemma 5. Let 0 < s 1 < ∞, 1 < p 1 < ∞, 1 < s 1 p 1 < N, [s 1 p 1 ] j < N . Then any v ∈ W s 1 ,p 1 (C j ; S 1 ) has an extension u 1 ∈ W s 1 ,p 1 (C N ; S 1 ) such that u 1 | C l ∈ W s 1 ,p 1 for l = j, ..., N -1.
When s 1 = 1, Lemma 5 is due to Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF], Section 1.3, "Filling" a hole; for the general case, see Lemma D.3 in Appendix D.

We summarize what we have done so far: if k = [sp], then there are some s 1 , p 1 such that s < s 1 < 1, 1 < p 1 < ∞, s 1 p 1 = sp + 1 and a map u 1 ∈ W s 1 ,p 1 (C N ; S 1 ) such that u 1 | C j ∈ W s 1 ,p 1 , j = k, ..., N -1 and u 1 | C k = u| C k . By Gagliardo -Nirenberg and the Sobolev embeddings, we have in particular u 1 | C j ∈ W s,p , j = k, ..., N -1. Finally, u and u 1 are W s,p -homotopic by

Lemma 6. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N, [sp] j < N . If u| C l ∈ W s,p , u 1 | C l ∈ W s,
p , l = j, ..., N , and u| C j = u 1 | C j , then u and u 1 are W s,p -homotopic.

The case s = 1 is due to Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF]; the proof of Lemma 6 in the general case is presented in the Appendix D-see Lemma D.4.

Step 2: induction on [sp]

If k = [sp] = N -1, we have connected in the previous step u to u 1 ∈ W s 1 ,p 1 (C N ; S 1 ), where s < s 1 < 1, 1 < p 1 < ∞ and s 1 p 1 = sp + 1 N . Using Case 1 (i.e., sp N ) from this section, u 1 may be connected in W s 1 ,p 1 (and thus in W s,p , by Gagliardo -Nirenberg and the Sobolev embeddings) to some v ∈ C ∞ ( Ω; S 1 ). This case is complete.

If k = [sp] = N -2, then [s 1 p 1 ] = N -1.
By the previous case, u 1 can be connected in W s 1 ,p 1 (and thus in W s,p ) to some v ∈ C ∞ ( Ω; S 1 ). Clearly, the general case follows by induction.

The proof of Theorems 2 and 3 is complete.

We end this section with two simple consequences of the above proofs; these results supplement the description of the homotopy classes.

Corollary 4. Let 0 < s < ∞, 1 < p < ∞, sp 2, N 2. For u, v ∈ W s,p (Ω; S 1 ) , we have [u] s,p = [v] s,p ⇔ deg (u| Γ ε ) = deg (v| Γ ε ) for every Γ. Corollary 5. Let 0 < s 1 , s 2 < ∞, 1 < p 1 , p 2 < ∞, s 1 p 1 2, s 2 p 2 2, N 2. For u, v ∈ W s 1 ,p 1 (Ω; S 1 ) ∩ W s 2 ,p 2 (Ω; S 1 ) , we have [u] s 1 ,p 1 = [v] s 1 ,p 1 ⇔ [u] s 2 ,p 2 = [v] s 2 ,p 2 .
Clearly, Corollary 5 follows from Corollary 4. As for Corollary 4, let

u 1 , v 1 ∈ C ∞ ( Ω; S 1 ) be such that [u 1 ] s,p = [u] s,p and [v 1 ] s,p = [v] s,p . Then, by Theorem 2 b), (2) [u] s,p = [v] s,p ⇔ [u 1 ] s,p = [v 1 ] s,p ⇔ [u 1 ] C 0 = [v 1 ] C 0 ⇔ deg (u 1 | Γ ) = deg (v 1 | Γ ), ∀Γ.
Moreover, we have

(3) deg (u 1 | Γ ) = deg (v 1 | Γ ) ⇔ deg (u 1 | Γ ε ) = deg (v 1 | Γ ε ) ⇔ deg (u| Γ ε ) = deg (v| Γ ε ), ∀Γ,
by standard properties of the degree.

We obtain Corollary 4 by combining ( 2) and (3).

IV. Proof of Theorem 4

According to the discussion in the Introduction, we only have to prove part d). Let s 1, 1 < p < ∞, N 3, 2 sp < N . Let u ∈ W s,p (Ω; S 1 ) . By Theorem 2 a), there is some v ∈ C ∞ ( Ω; S 1 ) such that v ∈ [u] s,p . By Theorem 3 b), there is some 1,sp . By the Composition Theorem, the sequence of smooth maps (ve -iϕ n ) converges to u in W s,p (Ω; S 1 ) .

ϕ ∈ W s,p (Ω; R) ∩ W 1,sp (Ω; R) such that v = ue iϕ . Let (ϕ n ) ⊂ C ∞ ( Ω; R) be such that ϕ n → ϕ in W s,p ∩ W
The proof of Theorem 4 is complete.

V. Proof of Theorem 5

We start this section with a discussion on the stability of the degree: recall that if sp 2, then deg (u| Γ ε ) is well-defined and stable under W s,p convergence. However, while the condition sp 2 is optimal for the existence of the degree (see Brezis -Li -Mironescu -Nirenberg [START_REF] Brezis | Degree and Sobolev spaces[END_REF], Remark 1), the stability of the degree of W s,p maps holds under (the weaker assumption of) W s 1 ,p 1 convergence, where s 1 p 1 1. This property and Corollary 4 suggest the following generalization of Theorem 5

Theorem 7. Let 0 < s < ∞, 1 < p < ∞, 0 < s 1 < s, 1 < p 1 < ∞, 1 s 1 p 1 sp.
Then for each u ∈ W s,p (Ω; S 1 ) there is some δ > 0 such that {v ∈ W s,p (Ω; S 1 ) ; ||v -u|| W s 1 ,p 1 < δ} ⊂ [u] s,p . Note that W s,p (Ω; S 1 ) ⊂ W s 1 ,p 1 (Ω; S 1 ) , by Gagliardo -Nirenberg and the Sobolev embeddings, so that Theorem 5 follows from Theorem 7 when sp 2 (when sp < 2, there is nothing to prove, by Theorem 1).

Proof of Theorem 7

Step 1: reduction to special values of s, s 1 , p, p 1

We claim that it suffices to prove Theorem 7 when

(4) 0 < s 1 < s < 1 -(N -1)/p, 1 < p < ∞, 1 < p 1 < ∞, sp = 2, s 1 p 1 = 1, N 2.
Indeed, assume Theorem 7 proved for all the values of s, s 1 , p, p 1 satisfying (4). Let 0 < s 0 < ∞, 1 < p 0 < ∞, N 2 be such that s 0 p 0 2 (when N = 1 or s 0 p 0 < 2, there is nothing to prove). Let u ∈ W s 0 ,p 0 and let s, s 1 , p, p 1 satisfy (4) and the additional condition s < s 0 . By Gagliardo -Nirenberg and the Sobolev embeddings, there is some δ 0 > 0 such that [START_REF] Bourgain | On the structure of the space H 1/2 with values into the circle[END_REF] M ={v ∈ W s 0 ,p 0 (Ω; S 1 ) ; ||v -u|| W s 0 ,p 0 < δ 0 } ⊂ {v ∈ W s,p (Ω; S 1 ) ; ||v -u|| W s 1 ,p 1 < δ}.

By the special case of Theorem 7, we have v ∈ M ⇒ v ∈ [u] s,p . By Corollary 5, we obtain M ⊂ [u] s 0 ,p 0 , i.e., [u] s 0 ,p 0 is open.

In conclusion, it suffices to prove Theorem 7 under assumption (4). Moreover, by Proposition 1 we may assume u = 1.

Step 2: construction of a good covering We fix a small neighborhood O of Ω. By reflections across the boundary of Ω, we may associate to each u ∈ W s,p (Ω; S 1 ) an extension ũ ∈ W s,p (O; S 1 ) satisfying [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF] ||ũ -

ṽ|| W s,p (O) C 1 ||u -v|| W s,p (Ω)
and ( 7)

||ũ -ṽ|| W s 1 ,p 1 (O) C 1 ||u -v|| W s 1 ,p 1 (Ω) .
In this section, C 1 , C 2 , ... denote constants independent of u, v, ....

We fix some small ε > 0. By Lemma E.2 in Appendix E, for each v ∈ W s,p (Ω; S 1 ) there is some x ∈ R N (depending possibly on v) such that the covering C x N has the properties [START_REF] Brezis | Degree and Sobolev spaces[END_REF] v| C x j ∈ W s,p , j = 1, ..., N -1 and

(9) ||v| C x 1 -1|| W s 1 ,p 1 (C x 1 ) C 2 ||v -1|| W s 1 ,p 1 (O) C 2 C 1 ||v -1|| W s 1 ,p 1 (Ω)
(the last inequality follows from ( 7)).

While x may depend on v, the covering C x N has two features independent of v: [START_REF] Brezis | composition and products in fractional Sobolev spaces[END_REF] the number of squares in C x 2 has a uniform upper bound K;

if C 1 , C 2 are two squares in C x 2 ,
there is a path of squares in C x 2 each one having an edge in common with its neighbours, connecting (11)

C 1 to C 2 .
Step 3: choice of δ We rely on Lemma 7. Let C = (0, ε) 2 and 0 < s 1 < 1, 1 < p 1 < ∞, s 1 p 1 = 1. Then for each δ 1 > 0 there is some δ 2 > 0 such that every map v ∈ W s 1 ,p 1 (∂C; S 1 ) satisfying [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF] ||v -1|| W s 1 ,p 1 (∂C) < δ 2 has a lifting ϕ ∈ W s 1 ,p 1 (∂C; R) such that

(13) ||ϕ|| W s 1 ,p 1 (∂C) < δ 1 .
Clearly, in Lemma 7, C may be replaced by the unit disc. For the unit disc, the proof of Lemma 7 is given in Appendix C; see Lemma C.3.

In particular, if [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF] holds, then we have [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF] ||ϕ|| L 1 (∂C) < C 3 δ 1 for some C 3 independent of the δ ′ s.

We now take δ 1 such that (15)

δ 1 < πε/C 3 .
With δ 2 provided by Lemma 7, we choose

(16) δ = min {δ 2 /C 0 , δ 2 /C 1 C 2 }.
Step 4: construction of a global lifting for v|

C x 1 Let v ∈ W s,p (Ω; S 1 ) satisfy ||v -1|| W s 1 ,p 1 < δ. Since δ δ 2 /C 1 C 2 , (9) 
implies that the conclusion of Lemma 7 holds for v| ∂C and every square C in C x 2 . Thus, for every C ∈ C x 2 , v| ∂C has a lifting ϕ C satisfying ( 14) and ϕ C ∈ W s 1 ,p 1 (∂C).

We claim that ϕ C ∈ W s,p (∂C). The statement being local, it suffices to prove that ϕ C ∈ W s,p (L), where L is the union of three edges in ∂C. Since L is Lipschitz homeomorphic with an interval, by Theorem 1 in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] there is some ψ ∈ W s,p (L) such that v = e iψ in L (here we use 0 < s < 1 and sp = 2 1). In L, we have ψ -ϕ C ∈ (W s,p + W s 1 ,p 1 ) (L; 2πZ); thus ψ -ϕ C is constant a.e. in L (see [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Remark B.3), so that the claim follows.

Since sp > 1 and v| C x 1 ∈ W s,p , ϕ C ∈ W s,p , we may redefine v| C x 1 and ϕ C on null sets in order to have continuous functions. We claim that the function ϕ(y) = ϕ C (y), if y ∈ C is well-defined on C x 1 (and thus continuous and W s,p ). By (11), it suffices to prove that, if b) the map

w 1 = u, in Ω + ṽ, in Ω - belongs to W s,p (Ω); c) the map w 2 = u -ṽ, in Ω + 0,
in Ω - belongs to W s,p (Ω).

Proof. Recall that, if U is a smooth or cube-like domain, then an equivalent (semi-) norm on W s,p (U ) is given by

(B.2) f -→    N j=1 ∞ 0 {x∈U ; x+te j ∈U } f (x + te j ) -f (x)| p t sp+1 dxdt    1/p
(see, e.g., Triebel [START_REF] Triebel | Theory of function spaces[END_REF]).

Clearly, both b) and c) imply that v ∈ W s,p (Q). Conversely, for v ∈ W s,p (Q) we have to prove the equivalence of (B.1), b) and c). We consider the norm given by (B.2). Taking into account the fact that w 1 , w 2 belong to W s,p in Ω + and Ω -, we see that

(B.3) w 1 ∈ W s,p (Ω) ⇔ J = Ω + 0 -1 |u(x) -ṽ(x)| p (x N -t) sp+1 dtdx < ∞ and (B.4) w 2 ∈ W s,p (Ω) ⇔ J < ∞.
The lemma follows from the obvious inequality 1 -2 -sp sp I J 1 sp I.

We now assume in addition that sp 1 and derive the following Corollary B.1. Let 0 < s < 1, 1 < p < ∞ be such that sp 1. Then, for every u ∈ W s,p (Ω + ) we have a) for each 0 t 0 < 1, there is at most one function v defined on Q such that the maps

w t 0 1 = u, in Q × (t 0 , 1) ṽ, in Q × (-1, t 0 )
and

w t 0 2 = u -ṽ, in Q × (t 0 , 1) 0, in Q × (-1, t 0 ) belong to W s,p (Ω);
b) for a.e. 0 t 0 < 1, the function v = u (•, t 0 ) has the property that w t 0 1 , w t 0 2 ∈ W s,p (Ω).

(As usual, the uniqueness of v is understood a.e.)

The above corollary suggests the following Definition: let 0 < s < 1, 1 < p < ∞, sp 1, 0 t 0 < 1. Let u ∈ W s,p (Ω + ) and let v be a function defined on Q. Then v is the downward good restriction of u to {x N = t 0 } if w t 0 1 , w t 0 2 ∈ W s,p (Ω); we then write v = Rest u| - x N =t 0 . Similarly, for 0 < t 0 < 1 we may define an upward good restriction Rest u| +

x N =t 0 = v as the unique function v defined on Q satisfying the two equivalent conditions a)

W t 0 1 = ṽ, in Q × (t 0 , 1) u, in Q × (0, t 0 ) ∈ W s,p (Ω + ) and b) W t 0 2 = 0, in Q × (t 0 , 1) u -ṽ, in Q × (0, t 0 ) ∈ W s,p (Ω + ).
If v is both an upward and a downward good restriction, we call it a good restriction and we write v = Rest u| x N =t 0 .

Corollary B.2. Let 0 < s < 1, 1 < p < ∞, sp 1. Let u ∈ W s,p (Ω + ).
Then, for a.e. 0 < t 0 < 1, we have Rest u| x N =t 0 = u (•, t 0 ).

Remark B.1. If sp > 1, then functions u ∈ W s,p (Ω + ) have traces for all 0 t 0 1. However, these traces need not be good restrictions. Here is an example: For N = 2, one may prove that the map x → (x -1/2e 1 )/|x -1/2e 1 | belongs to W s,p (Ω) if 0 < s < 1, 1 < p < ∞, sp < 2. However, if sp > 1, its trace

tr u| x 2 =0 = 1, if x 1 > 1/2 -1, if x 1 < 1/2
does not belong to W s,p (0, 1), so that it is not a good restriction.

Remark B.2. In the limiting case s = 1/p, functions in W s,p do not have traces. However, they do have good restrictions a.e.

Here is yet another simple consequence of Lemma B.1

Corollary B.3. Let 0 < s < 1, 1 < p < ∞, sp 1. Let u ± ∈ W s,p (Ω ± ) be such that Rest u + | - x N =0 = Rest u -| + x N =0 .
Then the map

w = u + , in Ω + u -,
in Ω - belongs to W s,p .

The following results explain the connections between good restrictions and traces.

Lemma B.2. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u ∈ W s,p (Ω + ). Assume that there exists v = Rest u| - x N =0 . Then v = tr u| x N =0 .
Proof. Let w = u -ṽ, in Ω + 0, in Ω - . By Lemma B.1, we have w ∈ W s,p (Ω). By trace theory and continuity of the trace, we have 0 = tr w| x N =0 , so that tr u| x N =0 = v.

Lemma B.3. Let 0 < s < 1, 1 < p < ∞, sp 1. Let u ∈ W s+1/p,p (Ω + ). Then, considered as a W s,p function, u has a good downward restriction to {x N = 0} which coincides with tr u| x N =0 .

Proof. Let v = tr u| x N =0 . Then v ∈ W s,p (Q), by the trace theory. By Lemma B.1, it remains to prove that (B.5)

Ω + |u(x) -ṽ(x)| p x sp N dx < ∞.
Assume first that s + 1/p = 1. Then (B.5) follows from the well-known Hardy inequality

(B.6) Q 1 0 |u(x ′ , t) -u(x ′ , 0)| p t p dtdx C Du p L p , ∀u ∈ W 1,p (Ω + ).
Consider now the case where s + 1/p = 1. Let σ = s + 1/p. We are going to prove that (B.7)

Ω + |u(x) -ṽ(x)| p x sp N dx C u p W σ,p
for some convenient equivalent (semi-) norm on W σ,p . It is useful to consider the norm (B.8)

f →    N j=1 ∞ 0 {x∈U ; x+te j ∈U, x+2te j ∈U } |f (x + 2te j ) -2f (x + te j ) + f (x)| p t σp+1 dxdt    1/p
(see, e.g., Triebel [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF]).

For any

x ′ ∈ Q such that u x ′ = u(x ′ , •) ∈ W σ,p (0, 1), the map f x ′ (t) = u(x ′ , t), if t > 0 v(x ′ ), if t < 0
belongs to W σ,p (-1, 1), by standard trace theory. Moreover, for any such x ′ we have (B.9)

f x ′ p W σ,p (-1,1) C u x ′ p W σ,p (0,1) , i.e. ∞ 0 {h∈(-1,1); h+t∈(-1,1), h+2t∈(-1,1)} |f x ′ (h + 2t) -2f x ′ (h + t) + f x ′ (h)| p t σp+1 dhdt C ∞ 0 {h∈(0,1); h+t∈(0,1), h+2t∈(0,1)} |u x ′ (h + 2t) -2u x ′ (h + t) + u x ′ (h)| p t σp+1 dhdt.
In particular, (B.10)

I = 1/2 0 -t -2t |f x ′ (h + 2t) -2f x ′ (h + t) + f x ′ (h)| p t σp+1 dhdt C u x ′ p W σ,p . Since (B.11) I C 1/3 0 |u(x ′ , t) -v(x ′ )| p t σp dt = C 1/3 0 |u(x ′ , t) -v(x ′ )| p t sp+1 dt,
we find that (B.12)

1/3 0 |u(x ′ , t) -v(x ′ )| p t sp+1 dt C u x ′ p W σ,p .
On the other hand, we clearly have (B.13)

1 1/3 |u(x ′ , t) -v(x ′ )| p t sp+1 dt C u x ′ p L p + C|v(x ′ )| p .
By combining (B.12), (B.13) and integrating with respect to x ′ , we obtain (B.7). The proof of Lemma B.3 is complete.

A simple consequence of Lemma B.3 is the following

Lemma B.4. Let 0 < s < 1, 1 < p < ∞, sp 1 and ρ > s. Let u 1 ∈ W s,p (Ω + ) and u 2 ∈ W ρ,p (Ω -). Assume that u 1 has a good downward restriction v = Rest u 1 | - x N =0 and that v = tr u 2 | x N =0 . Then the map w = u 1 , in Ω + u 2 ,
in Ω - variable t. Indeed, for a.e. x ∈ B 1 , we have u ∈ W s,p (S 1 ×{x}; S 1 ) and deg (u| S 1 ×{x} ) = 0. In particular, for any such x the map u| S 1 ×{x} has a continuous lifting η x . On the other hand, for a.e. x ∈ B 1 we have ψ x = ψ(•, x) ∈ W s,p loc (R×{x}; R). Thus, with λ x (t) = η x (e it ), we find that for a.e. x ∈ B 1 the function ψ x -λ x is continuous and 2πZ -valued; therefore it is a constant. Since λ x is 2π-periodic, so is ψ x for a.e. x ∈ B 1 . We obtain that ψ is 2π-periodic in the variable t. Thus the map ϕ : S 1 × B 1 → R, ϕ(e it , x) = ψ(t, x) is well-defined and belongs to W s,p (S 1 × B 1 ; R). Moreover, we clearly have u = e iϕ .

In the same vein, we have

Lemma C.2. Let s 1, 1 < p < ∞, N 3, 2 sp < N . Let u ∈ W s,p (S 1 × B 1 ; S 1 ) be such that deg (u| S 1 ×B 1 ) = 0. Then there is some ϕ ∈ W s,p (S 1 ×B 1 ; R)∩W 1,sp (S 1 ×B 1 ; R) such that u = e iϕ .
The proof is similar to that of Lemma C.1; one has to use Lemma 4 in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] instead of Theorem 2 in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF].

Lemma C.3. Let 1 < p < ∞ and δ 1 > 0. Then there is some δ 2 > 0 such that every v ∈ W 1/p,p (S 1 ; S 1 ) satisfying v -1 W 1/p,p (S 1 ) < δ 2 has a global lifting ϕ ∈ W 1/p,p (S 1 ; R) such that ϕ W 1/p,p (S 1 ) < δ 1 .
Proof. Recall that if I is an interval, then every w ∈ W 1/p,p (I; S 1 ) has a lifting ψ ∈ W 1/p,p (I; R) (see Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Theorem 1). Moreover, this lifting may be chosen to be (locally) continuous with respect to w, i.e. for every w 0 ∈ W 1/p,p (I; S 1 ) there is some δ 0 > 0 such that in the set {w; w -w 0 W 1/p,p (I;S 1 ) < δ 0 } there is a lifting w → ψ continuous for the W 1/p,p norm. (This assertion can be established using the same argument as in Step 7 of the proof of Theorem 4 in Brezis -Nirenberg [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]; it can also be derived from the explicit construction of ψ in the proof of Theorem 1 in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]; see also Boutet de Monvel-Berthier -Georgescu -Purice [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF] when p = 2).

Let I = [-2π, 2π]. To each v ∈ W 1/p,p (S 1 ; S 1 ) we associate the map w ∈ W 1/p,p (I; S 1 ), w(t) = v(e it ). By the above considerations, for every δ 3 > 0 there is some δ 4 > 0 such that, if v -1 W 1/p,p (S 1 ) < δ 4 , then w has a lifting ψ such that ψ W 1/p,p (I) < δ 3 . We claim that ψ is 2π-periodic if δ 3 is small enough. Indeed, the function ξ(t) = ψ(t -2π) -ψ(t) belongs to W 1/p,p ([0, 2π]; 2πZ), so that ξ is constant a.e. (see [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Theorem B.1). Since ξ L 1 ψ L 1 < Cδ 3 , we have ξ = 0 (i.e. ψ is 2π-periodic) if Cδ 3 < 2π.

Thus, for δ 3 small enough, the map ϕ(e it ) = ψ(t) is well-defined, belongs to W 1/p,p and satisfies ϕ W 1/p,p (S 1 ) < δ 1 and u = e iϕ .

Appendix D. Filling a hole -the fractional case

We adapt to fractional Sobolev spaces the technique of Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF], Section 1.3.

The first two results are preparations for the proofs of Lemmas 5,6 and 8 (see Lemmas D.3, D.4 and D.5 below).

Lemma D.1. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N . Let C = (-1, 1) N and u ∈ W s,p (∂C). Then ũ ∈ W s,p (C); here, ũ(x) = u(x/|x|) and | | is the L ∞ norm in R N . Moreover, the map u → ũ is continuous from W s,p (∂C) into W s,p (C).

Proof. Clearly, we have ũ L p (C) C 0 u L p (∂C) . Thus it suffices to prove, for the Gagliardo semi-norms in W s,p , the inequality Corollary E.1. Let 0 < s < 1, 1 < p < ∞, sp > 1. Let u ∈ W s,p . Then, for a.e.

x ∈ C N , tr u| C N -1 (x) ∈ W s,p . Moreover, for a.e. x ∈ C N , tr u| C N -1 (x) has a trace on C N -2 (x) which belongs to W s,p , and so on.

Proof of Lemma E.2. In order to avoid long computations, we treat only the case j = 1, N = 2. The general case does not bring any additional difficulty. Let C ∈ C 1 (x); denote its lower (resp. upper, left, right) edge by C l (resp. C u , C L , C R ). By (E.1), we have u| C l ∈ W s,p for a.e. x ∈ C 2 and, for x in a fat set, C∈C 1 (x) u p (here, we take the usual Gagliardo norm in W s,p (R 2 )). We have The proof of Lemma E.2 is complete.
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When sp < 1, we have the following more general result Theorem 6. If s > 0, 1 < p < ∞, sp < 1 and M is a compact manifold, then W s,p (Ω; M ) is path-connected.

Proof. Fix some a ∈ M . For u ∈ W s,p (Ω; M ), let ũ = u, in Ω a, in R N \Ω .

Since sp < 1, we have ũ ∈ W s,p loc (R N ; M ). Let U (t, x) = ũ (x/(1-t)), 0 t < 1, x ∈ Ω and U (1, x) ≡ a. Then clearly U ∈ C ([0, 1]; W s,p (Ω; M )) and U connects u to the constant a (here we use only sp < N ).

Case 2: 1 < sp < 2, N 2

In this case one could adapt the tools developed in Brezis -Li [START_REF] Brezis | Topology and Sobolev spaces[END_REF], but we prefer a more direct approach.

Let ε > 0 be such that the projection onto ∂Ω be well-defined and smooth in the region {x ∈ R N ; dist (x, ∂Ω) < 2ε}. Let ω = {x ∈ R N \ Ω; dist (x, ∂Ω) < ε}. We have ∂ω = ∂Ω ∪ Λ, where Λ = {x ∈ R N \Ω; dist (x, ∂Ω) = ε}.

Since 1 < sp < 2, we have 1/p < s < 1+1/p; thus, for u ∈ W s,p we have tr u ∈ W s-1/p,p . Let u ∈ W s,p (Ω; S 1 ). Fix some a ∈ S 1 and define v ∈ W s-1/p,p (∂ω; S 1 ) by v = tr u, on ∂ω a, on Λ .

We use the following extension result. (The first result of this kind is due to Hardt -Kinderlehrer -Lin [START_REF] Hardt | Stable defects of minimizers of constrained variational principles[END_REF]; it corresponds to our lemma when σ = 1 -1/p, p < 2.)

by [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF]. It follows that

which implies l = 0 by ( 15) and ( 16).

In conclusion, v| C x 1 has a global lifting ϕ ∈ W s,p (C x 1 ; R).

Step 5: construction of a good extension w of v| C x 1 Let ϕ 2 ∈ W s+1/p,p (C x 2 ; R) be an extension of ϕ, ϕ 3 ∈ W s+2/p,p (C x 3 ; R) an extension of ϕ 2 , and so on; let ϕ N ∈ W s+(N -1)/p,p (C x N ; R) be the final extension. Note that these extensions exist since s < 1 + (N -1)/p, so that trace theory applies. We set w = e iϕ N ∈ W s+(N -1)/p,p (C x N ; S 1 ). Since (s + (N -1)/p) • p = N + 1 > N , we obtain by Theorem 3 that w ∈ [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] s+(N -1)/p,p . By Corollary 5, we also have w ∈ [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] s,p .

We complete the proof of Theorem 7 by proving

We rely on the following variant of Lemma 6 Lemma 8. Let 0 < s < 1, 1 < p < ∞, 1 < sp < N, [sp] j < N . Let v, w ∈ W s,p (C N ; S 1 ) be such that v| C l ∈ W s,p , w| C l ∈ W s,p , l = j, ..., N -1. Assume that v| C j and w| C j are W s,p -homotopic. Then v and w are W s,p -homotopic.

The proof of Lemma 8 is given Appendix D; see Lemma D.5.

When N 3, we are going to apply Lemma 8 with j = 2. In order to prove that v| C 2 and w| C 2 are W s,p -homotopic, it suffices to find, for each C ∈ C 2 , a homotopy U C from v| C to w| C preserving the boundary condition on ∂C; we next glue together these homotopies (this works since 0 < s < 1). We construct U C using the lifting: since sp = 2 = dim C and C is simply connected, by Theorem 2 in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] there is some ψ ∈ W s,p (C; R) such that v = e iψ in C. By taking traces, we find that v| ∂C = e itr ψ = e iϕ C ; thus tr ψ -ϕ C ∈ (W s-1/p,p + W s,p )(∂C; 2πZ). Therefore, tr ψ -ϕ C is constant a.e., by Remark B.3 in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]. We may assume that tr

When N = 2, the above argument proves directly (i.e., without the help of Lemma 8) that w ∈ [v] s,p .

The proof of Theorem 7 is complete.

Appendix A. An extension lemma

In this appendix, we investigate, in a special case, the question whether a map in W σ,p (∂ω; S 1 ) admits an extension in W σ+1/p,p (ω; S 1 ).

Let ω be a smooth bounded domain in R N . Then every v ∈ W σ,p (∂ω; S 1 ) has an extension w ∈ W σ+1/p,p (ω; S 1 ).

Proof. We distinguish two cases: σ 1 -1/p and σ > 1 -1/p.

Case σ 1-1/p: since σp < 1, v may be lifted in W σ,p (see Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]), i.e. there is some ψ ∈ W σ,p (∂ω; R) such that v = e iψ . Let ϕ ∈ W σ+1/p,p (ω; R) be an extension of ψ. Then w = e iϕ ∈ W σ+1/p,p (ω; S 1 ) (since σ + 1/p 1 and x → e ix is Lipchitz). Clearly, w has all the required properties.

Case σ > 1 -1/p: the argument is similar, but somewhat more involved. The proof in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] actually yields a lifting which is better than W σ,p ; more specifically, this lifting ψ belongs to W tσ,p/t for 0 < t 1, see Remark 2, p.41, in the above reference. On the other hand, since σ > 1 -1/p, we have t = p/(σp + 1) < 1. For this choice of t, we obtain that v has a lifting ψ ∈ W σ,p ∩ W 1-1/(σp+1),σp+1 . This ψ has an extension ϕ ∈ W σ+1/p,p ∩ W 1,σp+1 . By the Composition Theorem stated in the Introduction, the map w = e iϕ belongs to W σ+1/p,p (ω; S 1 ). Clearly, we have tr w = v.

Remark A.1. The special case p < 2 and σ = 1 -1/p was originally treated by Hardt -Kinderlehrer -Lin [START_REF] Hardt | Stable defects of minimizers of constrained variational principles[END_REF] via a totally different method. Their argument extends to the case p < 2 and σp < 1, but does not seem to apply when p 2.

Appendix B. Good restrictions

In this appendix, we describe a natural substitute for the trace theory when s = 1/p; it is known that the standard trace theory is not defined in this limiting case.

For simplicity, we consider mainly the case of a flat boundary. However, we state Lemma B.5 (used in the proof of Theorem 1) for a general domain. We start by introducing some

Then for u ∈ W s,p (Ω + ) and for any function v defined on Q, the following assertions are equivalent:

Proof. Let u 3 ∈ W s+1/p,p (Ω -) be an extension of v. Then w = w 1 + w 2 , where

By Lemma B.3 and the assumption

. By Corollary B.3, we find that w 1 ∈ W s,p (Ω). It remains to prove that w 2 ∈ W s,p (Ω). Let σ = min {ρ, s + 1/p, 1}. Then w 2 ∈ W σ,p (Ω), by standard trace theory. Thus w 2 ∈ W s,p (Ω). u| Σ δ ∈ W 1/p,p (Σ δ ) and

b) for any such δ, u has a good restriction to Σ δ which coincides (a.e. on Σ δ ) with u| Σ δ .

Appendix C. Global lifting

In this appendix, we investigate the existence of a global lifting in some domains with non-trival topology.

Here, B 1 is the unit ball in R N -1 .

, where "loc" refers only to the variable t. By Theorem 2 in Bourgain -Brezis -Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], there is some ψ ∈ W s,p loc (R × B 1 ; R) such that v = e iψ . We claim that ψ is 2π-periodic in the On the other hand, we have (D.6)

We obtain (D. The proof of Lemma D.1 is complete.

Proof. Let u = v| ∂C . It clearly suffices to prove the lemma in the special case w = ũ. In this case, let, for 0 t < 1,

and g = f -ũ. Then f, ũ ∈ W s,p loc (R N ), so that g ∈ W s,p loc (R N ). Since g = 0 outside C, we actually have g ∈ W s,p (R N ). Thus

We introduce a useful notation: let u ∈ W s 1 ,p 1 (C k ), where 0 < s 1 < 1, 1 < p 1 < ∞, 1 < s 1 p 1 < N . We extend, for each C ∈ C k+1 , u| ∂C to C as in Lemma D.1. Let ũ be the map obtained by gluing these extensions. We next extend ũ to C k+2 in the same manner, and so on, until we obtain a map defined in

Proof. We take u 1 = H j (v). We may use repeatedly Lemma D.1, since for l = j + 1, ..., N we have 1 < s 1 p 1 < l.

Proof. We argue by backward induction on j. If j = N -1, then for each C ∈ C N Lemma D.2 provides a W s,p -homotopy of u| C and u 1 | C preserving the boundary condition. By gluing together these homotopies we find that u and u 1 are W s,p -homotopic (here we use 1/p < s < 1). Suppose now that the conclusion of the lemma holds for j + 1; we prove it for j, assuming that j [sp]. By assumption, u and H j+1 (u| C j+1 ) are W s,p -homotopic, and so are u 1 and H j+1 (u 1 | C j+1 ). It suffices therefore to prove that v = H j+1 (u| C j+1 ) and 

The proof of Lemma D.4 is complete.

) be such that v| C l ∈ W s,p , w| C l ∈ W s,p , l = j, ..., N -1. Assume that v| C j and w| C j are W s,p -homotopic. Then v and w are W s,p -homotopic.

Proof. By Lemma D.4, v and H j (v| C j ) (respectively w and H j (w| C j )) are W s,phomotopic. If U connects v| C j to w| C j in W s,p , then as in the proof of Lemma D.4, we obtain that t → H j (U (t)) connects H j (v| C j ) to H j (w| C j ) in W s,p . Thus v and w are W s,p -homotopic.

Appendix E. Slicing with norm control

In this section, we prove the existence of good coverings for W s,p maps. The arguments are rather standard.

Without loss of generality, we may consider maps defined in R N . Throughout this section, we assume ε = 1, i.e. we consider a covering with cubes of size 1. We start by introducing some useful notations: for x ∈ C N = (0, 1) N and for j = 1, ..., N -1, let

For a fixed set Λ ⊂ {1, .., N } such that |Λ| = j, let also (see, e.g., Triebel [START_REF] Schoen | Boundary regularity and the Dirichlet problem for harmonic maps[END_REF]). An obvious computation yields, for the usual Gagliardo (semi-) norm on C Λ j (x), Lemma E.1. Let 0 < s < 1, 1 < p < ∞ and u ∈ W s,p . Then C |u| p j , ∀x ∈ A.

Remark E.1. Here, u| C j (x) are restrictions, not traces. However, when sp > 1 we may replace restrictions by traces, by a standard argument. We obtain