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I. Introduction

Our main result is the following: let 1 ≤ s <∞, 1 < p <∞, and let

m =

{

s, if s is an integer

[s] + 1, otherwise.

Set

R = {f ∈ Cm(R) ; f(0) = 0, f, f ′, ..., f (m) ∈ L∞(R)}.

Theorem 1. For every f ∈ R the map ψ 7→ f(ψ) is well-defined and continuous from
W s,p(Rn) ∩W 1,sp(Rn) into W s,p(Rn).

An immediate consequence of Theorem 1 is

Theorem 1’. Let Ω be a smooth bounded domain in R
n and f ∈ Cm be such that

f, f ′, ..., f (m) ∈ L∞. Then the map

W s,p(Ω) ∩W 1,sp(Ω) ∋ u 7→ f(u) ∈W s,p(Ω)

is well-defined and continuous.

Our original motivation in proving Theorem 1 comes from the study of properties of
the space

X = W s,p(Ω;S1) = {u ∈W s,p(Ω;R2) ; |u| = 1 a.e.}.

Here, 0 < s <∞, 1 < p <∞ and Ω is a smooth bounded simply connected domain in R
n.

In particular, one may ask whether X is path-connected and whether C∞(Ω;S1) is dense in
X . Several results concerning the first question were obtained in [10] (and subsequently in
[18]) for the spacesW 1,p(M ;N), whereM , N are compact oriented Riemannian manifolds.
The second question was studied in [3], [4] and [18] for the spaces W 1,p(M ;N) and in [16]
for the spaces W s,p(M ;Sk).
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The case where N = S1 is somehow special ; one may attempt to answer these
questions by lifting the maps u ∈ X . Here is a strategy: given u ∈ W s,p(Ω;S1), one may
try to find some ϕ ∈W s,p(Ω;R) such that u = eiϕ. Then, hopefully, the path

t ∈ [0, 1] 7→ eitϕ

will connect continuously u0 ≡ 1 to u.
Moreover, if ϕj are smooth R-valued functions on Ω such that ϕj → ϕ in W s,p, then,

hopefully, the smooth maps eiϕj converge to u in W s,p(Ω;S1).
We are thus naturally led to the study of the mapping

W s,p(Ω) ∋ ψ 7→ f(ψ)

for “reasonable” functions f (e.g., f(x) = eix − 1), where Ω is either a smooth bounded
domain or Ω = R

n and s ≥ 1.
In a forthcoming paper [12], we will apply Theorem 1 to settle the above mentioned

questions about W s,p(Ω;S1) when s ≥ 1.
Another motivation for analysing composition and products in fractional Sobolev

spaces comes from the study of nonlinear evolution equations (e.g. Schrödinger equa-
tion) in Hs spaces; see e.g. T. Kato [20] and the references therein. In fact, the Appendix
in [20] contains a result which is a special case of the Runst-Sickel lemma about products:
it coincides with Lemma 5 below when q = 2.

Remark 1. The reader may wonder why we impose the additional condition u ∈W 1,sp. At
least for the case we are interested in, i.e. f(x) = eix − 1, this condition is also necessary
in order to conclude that f(ψ) ∈W s,p(Rn).

Indeed, assume that ψ ∈ W s,p and (eiψ − 1) ∈ W s,p. Then (eiψ − 1) ∈ W s,p ∩
L∞ =⇒ (eiψ − 1) ∈ W 1,sp (by Gagliardo-Nirenberg, see Corollary 2 below). Therefore,
ieiψDψ ∈ Lsp, so that Dψ ∈ Lsp. Thus ψ ∈W 1,sp.

Remark 2. There is a vast literature about composition, starting with the result of Moser
[26] asserting that f(ψ) ∈Wm,p when ψ ∈ Wm,p∩L∞, f ∈ R andm is an integer. (See the
historical comments at the end of section V). Unfortunately, for the application we have
in mind, the lifting ϕ of an arbitrary u ∈ W s,p(Ω;S1) need not belong to L∞. However,
if s ≥ 1 and if the lifting ϕ exists in W s,p(Ω;R), it must belong to W 1,sp, by the above
remark.

Surprisingly, Theorem 1 is new, but it is closely related and implies two earlier results
having a similar flavour; see Adams-Frazier [1] and Runst-Sickel [32], Theorem 1, p. 345,
and Remark 1, p. 348.

Remark 3. When s is an integer, the proof of Theorem 1 is very easy via the standard
Gagliardo-Nirenberg inequality [27] (e.g. W k,p ∩ L∞ ⊂W ℓ,q, with ℓ < k, ℓq = kp). When
s > 1, s is not an integer, our proof is quite involved. The standard form of the Gagliardo-
Nirenberg inequality (e.g. W s,p ∩ L∞ ⊂ W σ,q, with σ < s, σq = sp) does not suffice. We
rely on a “microscopic” improvement (due to T. Runst [31]) of the Gagliardo-Nirenberg
inequality, in the Triebel-Lizorkin scale, namely W s,p∩L∞ ⊂ F̃ σq,ν for every ν. We present
in Section III a more general form of the Gagliardo-Nirenberg inequality due to Oru [28];
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see also P. Gérard, Y. Meyer and F. Oru [17] for a special case. We combine this with
an important estimate on products of functions in the Triebel-Lizorkin spaces, due to T.
Runst and W. Sickel (see [32] and Section IV).

It would be interesting to find a more elementary argument which avoids this excursion
into the F̃ sp,q scale.

The paper is organized as follows. In Section II we recall the definition of the Triebel-
Lizorkin spaces F̃ sp,q, their connection with the classical function spaces and some results
needed in the proof of Theorem 1. In Section III we recall the general form of the Gagliardo-
Nirenberg inequality, due to Oru [28]. Section IV deals with the Runst-Sickel lemma. This
beautiful result contains all the usual statements about products in fractional Sobolev
spaces: e.g., it implies that if u, v ∈ W s,p ∩ L∞ then uv ∈ W s,p ∩ L∞, and if s ≥ 1, then
uDv ∈ W s−1,p. More consequences of the Runst-Sickel lemma are presented in Section
VI. Theorem 1 is proved in Section V.

Plan

Section I. Introduction
Section II. Triebel-Lizorkin spaces and maximal inequalities
Section III. A microscopic improvement of the Gagliardo-Nirenberg inequality
Section IV. The Runst-Sickel lemma
Section V. Proof of Theorem 1
Section VI. More about products

II. Triebel-Lizorkin spaces and maximal inequalities

We start by recalling the Littlewood-Paley decomposition of temperate distributions.
Let ψ0 ∈ C∞

0 (Rn) be such that 0 ≤ ψ0 ≤ 1, ψ0(ξ) = 1 for |ξ| ≤ 1, ψ0(ξ) = 0 for |ξ| ≥ 2.
Set ψj(ξ) = ψ0(2

−jξ)− ψ0(2
−j+1ξ), j ≥ 1, and ϕj = F−1(ψj), j ≥ 0.

Thus

(1) ϕj(x) = 2njϕ0(2
jx)− 2n(j−1)ϕ0(2

j−1x), j ≥ 1,

and

(2)
∑

k≤j

ϕk(x) = 2njϕ0(2
jx), j ≥ 0.

For f ∈ S′, set fj = f ⋆ ϕj . We have f =
∑

j≥0

fj in S′.

Definition ([34], 2.3.1). For −∞ < s <∞, 0 < p ≤ ∞, 0 < q ≤ ∞, set

F̃ sp,q = {f ∈ S′ ; ‖f‖F̃ s
p,q

=

∥

∥

∥

∥

‖2sjfj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

<∞}.

For 0 < p <∞ or p = q = ∞, these are the standard Triebel-Lizorkin spaces F sp,q [34]. We
have added the˜to avoid confusions in the exceptional cases where they do not coincide.
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When 0 < p < ∞, different choices of ψ0 yield equivalent quasi-norms ([34], 2.3.5). The
usual function spaces are special cases of these Triebel-Lizorkin spaces ([34]):

a) Lp = F̃ 0
p,2, 1 < p <∞;

b) Wm,p = F̃mp,2, m = 1, 2, ..., 1 < p <∞;

c) W s,p = F̃ sp,p, 0 < s <∞, s non-integer, 1 ≤ p <∞;

d) Ls,p = F̃ sp,2, s ∈ R, 1 < p <∞;

e) L∞ ⊂ F̃ 0
∞,∞, i.e.,

(3) sup
j,x

|fj(x)| ≤ C‖f‖L∞ .

In this list, when 1 ≤ p < ∞, 0 < s < ∞, s non-integer, the W s,p are the Sobolev-
Slobodeckij spaces. An equivalent norm on these spaces may be obtained as follows: let
s = k + σ, k integer, 0 < σ < 1. Then

(4) ‖f‖pW s,p ∼ ‖f‖pLp + ‖Dkf‖pLp +

∫

Rn

∫

Rn

|Dkf(x)−Dkf(y)|p

|x− y|n+σp
dx dy

([34], 2.6.1). These spaces also coincide with the Besov spaces Bsp,p (recall that s is not
an integer). We warn the reader that, for p 6= 2, the spaces W s,p do not coincide with the
Bessel potential spaces Ls,p.

We will often use the trivial fact that, for fixed s and p, the space F̃ sp,q increases with
q.

The following result is well-known:

Lemma 1 ([35]). Let 0 < s <∞, 1 < p <∞, 1 < q <∞. For every j ≥ 0, let f j ∈ S′ be
such that supp F(f j) ⊂ B2j+2 . Then

(5)
∥

∥

∑

j

f j
∥

∥

F̃ s
p,q

≤ C

∥

∥

∥

∥

‖2sjf j(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

.

In the Hs-spaces (p = q = 2), this result is proved in [14], p. 21. We postpone the
proof of Lemma 1 after the discussion of some maximal inequalities. Recall that, for any
f ∈ L1

loc, the maximal function Mf is defined by

Mf(x) = sup
r>0

1

|Br(x)|

∫

Br(x)

|f(y)|dy.

For t > 0, set, for ϕ : Rn → R,

(6) ϕt(x) = t−nϕ(x/t), x ∈ R
n.

We recall some classical inequalities
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Lemma 2. We have:
a) ([33], p. 13) for 1 < p ≤ ∞ and any function f ,

(7) ‖Mf‖Lp ∼ ‖f‖Lp ;

b) ([33], p. 55) for 1 < p <∞, 1 < q <∞, and any sequence of function (f j),

(8)
∥

∥‖Mf j(x)‖ℓq
∥

∥

Lp(Rn)
≤ C

∥

∥‖f j(x)‖ℓq
∥

∥

Lp(Rn)
;

c) ([33], p. 57) for any fixed ϕ ∈ S and any function f ,

(9) |f ⋆ ϕt(x)| ≤ CMf(x), ∀t > 0, ∀x ∈ R
n.

By (1), (2) and (9) we obtain the following

Corollary 1. For every f ∈ L1
loc we have

(10) |fj(x)| ≤ CMf(x), j ≥ 0, x ∈ R
n,

(11) |
∑

j≤k

fj(x)| ≤ CMf(x), k ≥ 0, x ∈ R
n.

We now return to the

Proof of Lemma 1. With f =
∑

j

f j , we have

fk =





∑

j

f j





k

=





∑

j≥k−3

f j





k

=
∑

j≥k−3

(f j)k.

Therefore

‖f‖F̃ s
p,q

=

∥

∥

∥

∥

∥

∥

∥

∥2sk
∑

j≥k−3

(f j)k(x)
∥

∥

ℓq

∥

∥

∥

∥

∥

∥

Lp(Rn)

=

∥

∥

∥

∥

∥

∥

(

∑

k

2sqk
∣

∣

∑

j≥k−3

(f j)k(x)
∣

∣

q)1/q

∥

∥

∥

∥

∥

∥

Lp(Rn)

≤ C

∥

∥

∥

∥

∥

∥

(

∑

k

2sqk
∑

j≥k−3

∣

∣(f j)k(x)
∣

∣

q
(j − k + 4)2q

)1/q

∥

∥

∥

∥

∥

∥

Lp(Rn)

,
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by the Hölder inequality with exponents q and q′ =
q

q − 1
applied to the inner sum. We

obtain, using (10), that

(12)

‖f‖F̃ s
p,q

≤ C

∥

∥

∥

∥

∥

∥

(

∑

j

∑

k≤j+3

2sqk(j − k + 4)2q|Mf j(x)|q
)1/q

∥

∥

∥

∥

∥

∥

Lp(Rn)

≤ C

∥

∥

∥

∥

∥

∥

(

∑

j

2sqj|Mf j(x)|q
)1/q

∥

∥

∥

∥

∥

∥

Lp(Rn)

= C

∥

∥

∥

∥

‖2sjMf j(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

.

The desired conclusion is a consequence of (8) and (12).

III. A ”microscopic” improvement of the Gagliardo-Nirenberg inequality

The main result of this section is that, in the Gagliardo-Nirenberg type inequalities
for the spaces F̃ sp,q, there is a gain in the “microscopic” parameter q; this gain is also called
sometimes ”precised” or ”improved” Sobolev inequalities. Let us explain what we mean.
In the context of Besov spaces, a typical Gagliardo-Nirenberg inequality asserts that

Bsp,r ∩ L
∞ ⊂ B

s/2
2p,2r, for 0 < s <∞, 0 < p <∞, 0 < r ≤ ∞

(see, e.g. [31], Lemma 2, p. 331).
Here, the value 2r of the microscopic parameter is optimal in general. By contrast, in

the scale of F̃ -spaces we have, given 0 < s <∞, 0 < p <∞, 0 < r ≤ ∞,

F̃ sp,r ∩ L
∞ ⊂ F̃

s/2
2p,q for every 0 < q ≤ ∞

([31], Lemma 1, p. 329).
A more general version of this phenomenon, due to Oru [28], is the following. Let

−∞ < s1 < s2 <∞, 0 < q1, q2 ≤ ∞, 0 < p1, p2 ≤ ∞, 0 < θ < 1, and define

s = θs1 + (1− θ)s2

1

p
=

θ

p1
+

1− θ

p2
.

Lemma 3. Under the above hypotheses we have, for every 0 < q ≤ ∞,

(13) ‖f‖F̃ s
p,q

≤ C‖f‖θ
F̃

s1
p1,q1

‖f‖1−θ
F̃

s2
p2,q2

,

where C depends on si, pi, θ and q.
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For the convenience of the reader, we reproduce the proof of Oru, since it is not yet
published.

Before proving Lemma 3, we state some interesting consequences:

Corollary 2. We have
a) for 0 ≤ s1 < s2 <∞, 1 < p1 <∞, 1 < p2 <∞,

s = θs1 + (1− θ)s2,
1

p
=

θ

p1
+

1− θ

p2
,

(14) ‖f‖W s,p ≤ C‖f‖θW s1,p1 ‖f‖
1−θ
W s2,p2 ;

b) ([31], Lemma 1, p. 329) for 0 < s <∞, 1 < p <∞, 0 < q ≤ ∞,

(15) ‖f‖F̃ θs
p/θ,q

≤ C‖f‖θW s,p‖f‖1−θL∞ .

In particular, we have
c) for 0 < s <∞, 1 < p <∞, 0 < θ < 1,

(16) ‖f‖W θs,p/θ ≤ C‖f‖θW s,p‖f‖1−θL∞ .

Remark 4. Inequality (14) is a special case of (13), with q = 2 when s is an integer, q = p
otherwise, and similarly for q1 and q2. Inequality (15) is a consequence of (13) for s1 = 0
θ replaced by 1− θ, p1 = q1 = ∞, s2 = s, q2 = 2 if s is an integer, q2 = p otherwise. Here
one uses in addition the fact that ‖f‖F̃ 0

∞,∞
≤ C‖f‖L∞ (inequality (3) above). Finally, (16)

is a special case of (15).

Remark 5. There is something intriguing about inequality (16). It is trivial when s < 1
(with C = 1) if one takes the usual Gagliardo norm (4). It is also straightforward when
both s and θs are integers. We do not know any elementary (i.e., without the Littlewood-
Paley machinery) proof when s = 1. It would be of interest to establish (16) with control
of the constant C, in particular when sր 1. In view of the results in [8], one may expect
an inequality of the form

‖f‖W s/2,2p ≤ C(p)(1− s)1/2p‖f‖
1/2
W s,p‖f‖

1/2
L∞ as sր 1,

if we take the Gagliardo norms (4).

Remark 6. Inequality (15) may be viewed as an improvement of (16), since for 0 <
q < min{2, p/θ} we have F̃ θsp/θ,q ⊂ W θs,p/θ, F̃ θsp/θ,q 6=W

θs,p/θ. This improvement seems
microscopic, however in our situation it is magnified and it plays a central role. A similar
(microscopic) improvement of the Sobolev embeddings in the framework of Lorentz spaces
which is magnified by the Trudinger inequality is presented in [13], [9].

7



Remark 7. We call the attention of the reader to the fact that some inequalities à la
Gagliardo-Nirenberg are wrong, e.g., W 1,1 ∩ L∞ is not contained in W θ,1/θ for 0 < θ < 1;
see [7], Remark D.1.

We now turn to the proof of Lemma 3. It relies on the following inequality:

Lemma 4. Let −∞ < s1 < s2 < ∞, 0 < q < ∞, 0 < θ < 1, and set s = θs1 + (1− θ)s2.
Then for every sequence (aj) we have

(17) ‖2sjaj‖ℓq ≤ C‖2s1jaj‖
θ
ℓ∞‖2s2jaj‖

1−θ
ℓ∞ .

Remark 8. A special case of (17) is implicit in the proof of Theorem 1, p. 328, in [31]. For
similar inequalities, see also [34], Theorem 2.7.1 or [19].

Proof of Lemma 4. Let C1 = sup 2s1j |aj|, C2 = sup 2s2j |aj|, so that C1 ≤ C2. We may
assume C1 > 0. Since s1 < s2, there is some j0 > 0 such that

min

{

C1

2s1j
,
C2

ss2j

}

=











C1

2s1j
, j ≤ j0

C2

2s2j
, j > j0.

Since
C1

2s1j0
≤

C2

2s2j0
and

C2

2s1(j0+1)
≤

C1

2s1(j0+1)
we find that

(18) C2 ∼ C12
(s2−s1)j0 .

Therefore

(19) ‖2s1jaj‖
θ
ℓ∞‖2s2jaj‖

1−θ
ℓ∞ ∼ C12

(s2−s1)j0(1−θ).

On the other hand, we have aj ≤ min

{

C1

2s1j
,
C2

ss2j

}

, so that

(20) aj ≤
C1

2s1j
for 0 ≤ j ≤ j0, aj ≤

C2

2s2j
for j > j0.

It then follows that

‖2sjaj‖ℓq ≤





∑

j≤j0

Cq12
(s−s1)jq +

∑

j>j0

Cq22
(s−s2)jq





1/q

≤ C





∑

j≤j0

Cq12
(s−s1)jq +

∑

j>j0

Cq12
−θ(s2−s1)jq+(s2−s1)j0q





1/q

,
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so that

‖2sjaj‖ℓq ≤ C C12
(s2−s1)j0(1−θ)





∑

j≤j0

2−(1−θ)(s2−s1)(j0−j)q +
∑

j>j0

2−θ(s2−s1)(j−j0)q





1/q

.

Finally, we find that

(21) ‖2sjaj‖ℓq ≤ C C12
(s2−s1)j0(1−θ),

and (17) follows from (19) and (21).

Proof of Lemma 3. Since ‖aj‖ℓ∞ ≤ ‖aj‖ℓq , 0 < q ≤ ∞, we find that the r.h.s. of (13) is

≥ C‖f‖θ
F̃

s1
p1,∞

‖f‖1−θ
F̃

s2
p2,∞

.

On the other hand, ‖f‖F̃ s
p,∞

≤ ‖f‖F̃ s
p,q

, 0 < q < ∞. It therefore suffices to prove (13) in

the special case 0 < q <∞, q1 = q2 = ∞.
In this case, we have

(22)

‖f‖F̃ s
p,q

=

∥

∥

∥

∥

‖2sjfj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

≤ (by (17))

≤ C

∥

∥

∥

∥

‖2s1jfj(x)‖
θ
ℓ∞‖2s2jfj(x)‖

1−θ
ℓ∞

∥

∥

∥

∥

Lp(Rn)

.

Using the Hölder inequality, (22) yields

‖f‖F̃ s
p,q

≤ C

∥

∥

∥

∥

‖2s1jfj(x)‖ℓ∞

∥

∥

∥

∥

θ

Lp1(Rn)

∥

∥

∥

∥

‖2s2jfj(x)‖ℓ∞

∥

∥

∥

∥

1−θ

Lp2 (Rn)

= C‖f‖θ
F̃

s1
p1,∞

‖f‖1−θ
F̃

s2
p2,∞

.

The proof of Lemma 3 is complete.

Remark 9. While talking about microscoping improvements in the F̃ -scale, we call the
attention of the reader to the following “improved” Sobolev embedding:

W s,p →֒ F̃ σr,q for every 0 < q ≤ ∞

if 0 ≤ σ < s and
1

r
=

1

p
−
s− σ

n
> 0 (see ([19] or [32], p. 31).

IV. The Runst-Sickel lemma
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For the convenience of the reader, we split the statement into two parts; the first one
contains the fundamental estimate, the other one deals with the continuity of the product.

Let 0 < s < ∞, 1 < q < ∞, 1 < p1 ≤ ∞, 1 < p2 ≤ ∞, 1 < r1 ≤ ∞, 1 < r2 ≤ ∞ be
such that

(23) 0 <
1

p
=

1

p1
+

1

r2
=

1

p2
+

1

r1
< 1.

Lemma 5 ([32], p. 345). We have, for f ∈ F̃ sp1,q ∩ L
r1 and g ∈ F̃ sp2,q ∩ L

r2 ,

(24) ‖fg‖F̃ s
p,q

≤ C

(

∥

∥

∥

∥

Mf(x)‖2sjgj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

+

∥

∥

∥

∥

Mg(x)‖2sjfj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

)

and

(25) ‖fg‖F̃ s
p,q

≤ C

(

‖f‖F̃ s
p1,q

‖g‖Lr2 + ‖g‖F̃ s
p2,q

‖f‖Lr1

)

.

Proof. We start by noting that (25) follows from (24). Indeed, using the Hölder inequality
we find

∥

∥

∥

∥

Mf(x)‖2sjgj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

+

∥

∥

∥

∥

Mg(x)‖2sjfj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

≤

∥

∥

∥

∥

‖2sjgj(x)‖ℓq

∥

∥

∥

∥

Lp2(Rn)

‖Mf(x)‖Lr1(Rn) +

∥

∥

∥

∥

‖2sjfj(x)‖ℓq

∥

∥

∥

∥

Lp1(Rn)

‖Mg(x)‖Lr2(Rn)

≤ C(‖f‖F̃ s
p1,q

‖g‖Lr2 + ‖g‖F̃ s
p2,q

‖f‖Lr1 ),

by (7).
We turn to the proof of (24). It relies on Lemma 1 which is valid since 1 < p < ∞

and 1 < q <∞. We have

fg =
∑

k

Gk +
∑

j

Fj ,

where Gk =
(

∑

j≤k

fj
)

gk, Fj =
(

∑

k<j

gk
)

fj . Since supp F(Fj) ⊂ B2j+2 and supp F(Gk) ⊂

B2k+2 , Lemma 1 yields

(26) ‖fg‖F̃ s
p,q

≤ C(A+B),

with
A =

∥

∥‖2skGk(x)‖ℓq
∥

∥

Lp(Rn)
,

B =
∥

∥‖2skFj(x)‖ℓq
∥

∥

Lp(Rn)
.

10



We estimate, e.g., A:

(27)
A =

∥

∥

∥

∥

∥

∥

‖2sk





∑

j≤k

fj(x)



 gk(x)‖ℓq

∥

∥

∥

∥

∥

∥

Lp(Rn)

≤ by (11)

C
∥

∥Mfj(x)‖2
skgk(x)‖ℓq

∥

∥

Lp(Rn)
.

We obtain (24) by combining (26), (27) and the similar estimate for B.

We state the continuity part of this result in the three possible situations:

Corollary 3. We have that:
a) for 1 < q < ∞, 0 < s < ∞, 1 < p1 < ∞, 1 < p2 < ∞, 1 < r1 < ∞, 1 < r2 < ∞,

0 <
1

p
=

1

p1
+

1

r2
=

1

p2
+

1

r1
< 1, the map

(

F̃ sp1,q ∩ L
r1
)

×
(

F̃ sp2,q ∩ L
r2
)

∋ (f, g) 7→ fg ∈ F̃ sp,q

is continuous;

b) for 1 < q <∞, 0 < s <∞, 1 < p <∞, if
{

f ℓ → f in F̃ sp,q, ‖f ℓ‖L∞ ≤ C

gℓ → g in F̃ sp,q, ‖gℓ‖L∞ ≤ C

then f ℓgℓ → fg in F̃ sp,q;

c) for 1 < q <∞, 0 < s <∞, 1 < p1 <∞, 1 < r <∞, 1 < p <∞ such that
1

p
=

1

p1
+

1

r
,

if
{

f ℓ → f in F̃ sp1,q, ‖f ℓ‖L∞ ≤ C

gℓ → g in F̃ sp,q ∩ L
r,

then f ℓgℓ → fg in F̃ sp,q.

Proof. a) follows directly from (25).
Some care is needed when one of the r′js is ∞. We treat, e.g., case c). It clearly

suffices to prove the following two assertions:

(i) if f ℓ → 0 in F̃ sp1,q and ‖f ℓ‖L∞ ≤ C, then f ℓg → 0 for each g ∈ F̃ sp,q ∩ L
r.

(ii) if gℓ → 0 in F̃ sp,q ∩ L
r, ‖f ℓ‖F̃ s

p1,q
≤ C, ‖f ℓ‖L∞ ≤ C, then f ℓgℓ → 0.

Assertion (ii) is clear from (25). We prove (i) using (24). We have

(28)

‖f ℓg‖F̃ s
p,q

≤ C

(

‖f ℓ‖F̃ s
p1,q

‖g‖Lr +

∥

∥

∥

∥

Mf ℓ(x)‖2sjgj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

)

≤ o(1) + C

∥

∥

∥

∥

Mf ℓ(x)‖2sjgj(x)‖ℓq

∥

∥

∥

∥

Lp(Rn)

.
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Set
F ℓ(x) =Mf ℓ(x)‖2sjgj(x)‖ℓq .

Then clearly

(29) |F ℓ(x)| ≤ C‖2sjgj(x)‖ℓq ∈ Lp.

On the other hand, F̃ sp1,q →֒ Lp1 (see, e.g., [34], 2.3.2, or [32], Proposition 2.2.1, p. 29). It

follows from the maximal inequality (7) that Mf ℓ → 0 in Lp1 and, up to a subsequence,
that Mf ℓ → 0 a.e. Then (i) follows from (28) and (29) by dominated convergence.

V. Proof of Theorem 1

The conclusion is well-known when s is an integer (this uses the standard Gagliardo-
Nirenberg inequalities).

Assume s non integer. Clearly, the map

W s,p ∩W 1,sp ∋ u 7→ f(u) ∈ Lp

is well-defined and continuous, since f(0) = 0, f is Lipschitz and W s,p →֒ Lp.
Thus it suffices to prove that the map

W s,p ∩W 1,sp ∋ u 7→ D(f(u)) = f ′(u)Du ∈ W s−1,p

is well-defined and continuous.
With m = [s] + 1 ≥ 2, we obtain, using (14), that the inclusion

(30) W s,p ∩W 1,sp →֒ Wm−1, sp
m−1 ∩W 1,sp

is continuous. Applying Theorem 1 to the integer s = m− 1 ≥ 1, we find that

(31)
if uℓ → u inW s,p ∩W 1,sp, then f ′(uℓ) → f ′(u) in F̃m−1

sp
m−1

,2
=Wm−1, sp

m−1

and ‖f ′(uℓ)‖L∞ ≤ C.

On the other hand, we clearly have that

(32) if uℓ → u inW s,p ∩W 1,sp, then Duℓ → Du in W s−1,p ∩ Lsp = F̃ s−1
p,p ∩ Lsp.

Using (31) and the Gagliardo-Nirenberg type inequality (15) (with q = p, s = m− 1,

θ =
s− 1

m− 1
, p =

sp

m− 1
), we obtain

(33) if uℓ → u in W s,p ∩W 1,sp, then f ′(uℓ) → f ′(u) in F̃ s−1
sp

s−1
,p
and ‖f ′(uℓ)‖L∞ ≤ C.

12



Finally, by (32), (33), the Runst-Sickel Lemma 5 and Corollary 3c), we obtain that
f ′(u)Du ∈ F̃ s−1

p,p =W s−1,p and that

if uℓ → u inW s,p ∩W 1,sp, then f ′(uℓ)Duℓ → f ′(u)Du inW s−1,p.

Remark 10. The same proof yields the following variant of Theorem 1.

Theorem 1”. Assume 1 < s <∞, s non integer, 1 < p <∞, 1 < q <∞. Then, for every
f ∈ R, the map

F̃ sp,q ∩W
1,sp ∋ u 7→ f(u) ∈ F̃ sp,q

is well-defined and continuous.

Remark 11. There is a natural strategy for proving Theorem 1: assume, e.g., that 1 <
s < 2 and try to prove that f ′(u)Du ∈ W s−1,p. Set s = 1 + σ. On the one hand,
we have Du ∈ W σ,p ∩ L(1+σ)p. On the other hand, since u ∈ W 1,(1+σ)p, we find that
f ′(u) ∈ W 1,(1+σ)p ∩ L∞. By the “standard” Gagliardo-Nirenberg inequality, we obtain

f ′(u) ∈W σ, 1+σ
σ p ∩ L∞. The conclusion of Theorem 1 would follow if we can prove that

(34)
U ∈W σ,p ∩ L(1+σ)p

V ∈W σ, 1+σ
σ p ∩ L∞

}

=⇒ UV ∈W σ,p.

Using the Gagliardo norm (4), we have to estimate

(35)

∫

Rn

∫

Rn

|U(x+ h)V (x+ h) − U(x)V (x)|p

|h|n+σp
dx dh

≤ C

(
∫

Rn

∫

Rn

|V (x)|p|U(x+ h)− U(x)|p

|h|n+σp
dx dh

+

∫

Rn

∫

Rn

|U(x)|p|V (x+ h)− V (x)|p

|h|n+σp
dx dh

)

≤ C

(

‖V ‖pL∞‖U‖pWσ,p +

∫

Rn

∫

Rn

|U(x)|p|V (x+ h)− V (x)|p

|h|n+σp
dx dh

)

.

It is natural to estimate the last integral in (34) using the Hölder inequality with exponents

1 + σ and
1 + σ

σ
. We find

‖UV ‖pWσ,p ≤ C

(

‖V ‖pL∞‖U‖pWσ,p + ‖V ‖p
Wσ,

1+σ
σ

p

(
∫

Rn

∫

Rn

|U(x)|(1+σ)p

|h|n
dx dh

)

1
1+σ

)

.

Unfortunately, the last integral diverges, but we are “close” to convergence. In fact, we
suspect that (34) is wrong.

It is here that the microscopic improvement of the Gagliardo-Nirenberg inequality
Lemma 3, combined with the Runst-Sickel Lemma 5, magically saves the proof. We make
use, in an essential way, of the additional information that V = f ′(u) ∈ F σ1+σ

σ p,p
.
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We conclude this section with a brief survey of earlier results dealing with composition.
a) if 0 < s ≤ 1, 1 < p <∞, f(0) = 0, f Lipschitz, then

u ∈W s,p =⇒ f(u) ∈W s,p (trivial for s < 1; see [21] and [22] for s = 1);

b) if s = n/p, 1 < p <∞, f ∈ R, where m =

{

s, if s is an integer

[s] + 1, otherwise
,

then u ∈W s,p =⇒ f(u) ∈W s,p.
This result is explicitely stated in [11]; G. Bourdaud has pointed out that it may also

be derived from a result of T. Runst and W. Sickel, see p. 345 in [32], combined with a
result in [19] which asserts that, when s = n/p, W s,p →֒ F̃ θsp/θ,q for 0 < θ < 1 and every

0 < q <∞ (see Remark 9 above);

c) if s > n/p, 1 < p <∞, f(0) = 0 and f ∈ Cm, then u ∈ W s,p =⇒ f(u) ∈ W s,p; see [25]
for p = 2 and [29] for the general case;

d) if 1 < s < n/p, we have to impose additional restrictions on u. Indeed, if 1+ 1/p < s <
n/p, the only C2f ’s that act on W s,p are of the form f(t) = ct; see [15] for s integer and
[31], Theorem 3.2, p. 319, for a general s. For 1 < s < n/p, it follows from Remark 1 in
the Introduction that R does not act on W s,p, since W s,p 6⊂W 1,sp. A standard additional
condition on u is u ∈ L∞: if f(0) = 0 and f ∈ Cm, then u ∈W s,p ∩ L∞ =⇒ f(u) ∈W s,p;
see [29], [16];

e) an improvement is that, for f as above and 0 < σ < 1 we have u ∈W s,p ∩W σ,sp/σ =⇒
f(u) ∈ W s,p; see [11]. This result implies the previous one, since W s,p ∩ L∞ →֒ W σ,sp/σ

(by Corollary 2);

f) a finer result asserts that, for f as above, we have u ∈ W s,p ∩ F̃ 1
sp,q (with q ≤ 2

sufficiently small depending on s and p) =⇒ f(u) ∈ W s,p; see [32], Theorem 1, p. 345.
This hypothesis on u is weaker than the previous one, since W s,p∩W σ,sp/σ →֒ F̃ 1

sp,q for all

q > 0, by Lemma 3. This result is contained in Theorem 1, since F̃ 1
sp,q →֒ W 1,sp = F̃ 1

sp,2

as soon as q ≤ 2 (recall that F̃ sp,q increases with q). However, when p ≤ 2 or 1 < s < 2,
Runst and Sickel point out in Remark 1, p. 348 that the above smallness condition on q is
precisely q ≤ 2. This means that Runst and Sickel had established Theorem 1 when p ≤ 2
or 1 < s < 2;

g) in the framework of Bessel potential spaces

Ls,p = {f = Gs ⋆ g ; g ∈ Lp, Ĝs(ξ) = (1 + |ξ|2)−s/2} = F̃ sp,2,

there are various similar results about composition, starting with [23], [24] when s > n/p,
[30], [2] and [14] for Hs ∩ L∞ when s ≥ 1. The ultimate result for s ≥ 1 was obtained by
Adams-Frazier in [1]: if 1 ≤ s < ∞, 1 < p < ∞, f ∈ R, then u ∈ Ls,p ∩ L1,sp =⇒ f(u) ∈
Ls,p. This is a special case (q = 2) of Theorem 1” since L1,sp =W 1,sp.

h) Other questions concerning composition in Sobolev spaces have been investigated e.g.
in [5], [6], [32].
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VI. More about products

In this last Section, we state some natural results about products which may be derived
from the Runst-Sickel lemma.

Let 1 < p <∞, 0 < s <∞, 1 < r <∞, 0 < θ < 1, 1 < t <∞ be such that

1

r
+
θ

t
=

1

p
.

Lemma 6. For f ∈W s,t ∩ L∞, g ∈ W θs,p ∩ Lr, we have fg ∈W θs,p and

(36) ‖fg‖W θs,p ≤ C
(

‖f‖L∞‖g‖W θs,p + ‖g‖Lr‖f‖θW s,t‖f‖1−θL∞

)

.

In the special case s > 1, θ =
s− 1

s
, we have r = sp and we obtain the following

Corollary 4. If 1 < s < ∞, 1 < p < ∞ and f ∈ W s,p ∩ L∞, g ∈ W s−1,p ∩ Lsp, then
fg ∈W s−1,p and

(37) ‖fg‖W s−1,p ≤ C
(

‖f‖L∞‖g‖W s−1,p + ‖g‖Lsp‖f‖
1−1/s
W s,p ‖f‖

1/s
L∞

)

.

In particular, if f, g ∈ W s,p ∩ L∞, then Dg ∈ W s−1,p ∩ Lsp, so that Corollary 4
contains as a special case the following result

Corollary 5 ([7], Lemma 2). If 1 < s < ∞, 1 < p < ∞ and f, g ∈ W s,p ∩ L∞, then
f Dg ∈W s−1,p.

Remark 12. Clearly, Corollary 5 implies the well-known assertion that W s,p ∩ L∞ is an
algebra.

Proof of Lemma 6. Let q = 2 if θs is an integer, q = p otherwise. By (15), we find that
f ∈ F̃ θst/θ,q and

(38) ‖f‖F̃ θs
t/θ,q

≤ C‖f‖θW s,t‖f‖1−θL∞ .

From the Runst-Sickel lemma, we deduce that fg ∈ F̃ θsp,q and

‖fg‖W θs,p = ‖fg‖F̃ θs
p ,q ≤ C

(

‖f‖L∞‖g‖F̃ θs
p,q

+ ‖g‖Lr‖f‖F̃ θs
t/θ,q

)

≤ C
(

‖f‖L∞‖g‖W θs,p + ‖g‖Lr‖f‖θW s,t‖f‖1−θL∞

)

.
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[21] M. Marcus and V.J. Mizel, Nemytskij operators on Sobolev spaces, Arch. Rat. Mech.
Anal. 51 (1973), 347–370.

[22] M. Marcus and V.J. Mizel, Complete characterization of functions which act via su-
perposition on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187–218.

16
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