The case where N = S 1 is somehow special ; one may attempt to answer these questions by lifting the maps u ∈ X. Here is a strategy: given u ∈ W s,p (Ω; S 1 ), one may try to find some ϕ ∈ W s,p (Ω; R) such that u = e iϕ . Then, hopefully, the path t ∈ [0, 1] → e itϕ will connect continuously u 0 ≡ 1 to u.

Moreover, if ϕ j are smooth R-valued functions on Ω such that ϕ j → ϕ in W s,p , then, hopefully, the smooth maps e iϕ j converge to u in W s,p (Ω; S 1 ).

We are thus naturally led to the study of the mapping

W s,p (Ω) ∋ ψ → f (ψ)
for "reasonable" functions f (e.g., f (x) = e ix -1), where Ω is either a smooth bounded domain or Ω = R n and s ≥ 1.

In a forthcoming paper [12], we will apply Theorem 1 to settle the above mentioned questions about W s,p (Ω; S 1 ) when s ≥ 1.

Another motivation for analysing composition and products in fractional Sobolev spaces comes from the study of nonlinear evolution equations (e.g. Schrödinger equation) in H s spaces; see e.g. T. Kato [START_REF] Kato | On nonlinear Schrödinger equations. II. H s solutions and unconditional well-posedness[END_REF] and the references therein. In fact, the Appendix in [START_REF] Kato | On nonlinear Schrödinger equations. II. H s solutions and unconditional well-posedness[END_REF] contains a result which is a special case of the Runst-Sickel lemma about products: it coincides with Lemma 5 below when q = 2.

Remark 1. The reader may wonder why we impose the additional condition u ∈ W 1,sp . At least for the case we are interested in, i.e. f (x) = e ix -1, this condition is also necessary in order to conclude that f (ψ) ∈ W s,p (R n ).

Indeed, assume that ψ ∈ W s,p and (e iψ -1) ∈ W s,p . Then (e iψ -1) ∈ W s,p ∩ L ∞ =⇒ (e iψ -1) ∈ W 1,sp (by Gagliardo-Nirenberg, see Corollary 2 below). Therefore, ie iψ Dψ ∈ L sp , so that Dψ ∈ L sp . Thus ψ ∈ W 1,sp . Remark 2. There is a vast literature about composition, starting with the result of Moser [START_REF] Moser | A rapidly convergent iteration method and nonlinear differential equations[END_REF] asserting that f (ψ) ∈ W m,p when ψ ∈ W m,p ∩L ∞ , f ∈ R and m is an integer. (See the historical comments at the end of section V). Unfortunately, for the application we have in mind, the lifting ϕ of an arbitrary u ∈ W s,p (Ω; S 1 ) need not belong to L ∞ . However, if s ≥ 1 and if the lifting ϕ exists in W s,p (Ω; R), it must belong to W 1,sp , by the above remark.

Surprisingly, Theorem 1 is new, but it is closely related and implies two earlier results having a similar flavour; see Adams-Frazier [START_REF] Adams | Composition operators on potential spaces[END_REF] and Runst-Sickel [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], Theorem 1, p. 345, and Remark 1, p. 348. Remark 3. When s is an integer, the proof of Theorem 1 is very easy via the standard Gagliardo-Nirenberg inequality [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] (e.g. W k,p ∩ L ∞ ⊂ W ℓ,q , with ℓ < k, ℓq = kp). When s > 1, s is not an integer, our proof is quite involved. The standard form of the Gagliardo-Nirenberg inequality (e.g. W s,p ∩ L ∞ ⊂ W σ,q , with σ < s, σq = sp) does not suffice. We rely on a "microscopic" improvement (due to T. Runst [START_REF] Runst | Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type[END_REF]) of the Gagliardo-Nirenberg inequality, in the Triebel-Lizorkin scale, namely W s,p ∩ L ∞ ⊂ F σ q,ν for every ν. We present in Section III a more general form of the Gagliardo-Nirenberg inequality due to Oru [START_REF] Oru | Rôle des oscillations dans quelques problèmes d'analyse non-linéaire[END_REF]; see also P. Gérard, Y. Meyer and F. Oru [START_REF] Gérard | Inégalités de Sobolev précisées[END_REF] for a special case. We combine this with an important estimate on products of functions in the Triebel-Lizorkin spaces, due to T. Runst and W. Sickel (see [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF] and Section IV).

It would be interesting to find a more elementary argument which avoids this excursion into the F s p,q scale. The paper is organized as follows. In Section II we recall the definition of the Triebel-Lizorkin spaces F s p,q , their connection with the classical function spaces and some results needed in the proof of Theorem 1. In Section III we recall the general form of the Gagliardo-Nirenberg inequality, due to Oru [START_REF] Oru | Rôle des oscillations dans quelques problèmes d'analyse non-linéaire[END_REF]. Section IV deals with the Runst-Sickel lemma. This beautiful result contains all the usual statements about products in fractional Sobolev spaces: e.g., it implies that if u, v ∈ W s,p ∩ L ∞ then uv ∈ W s,p ∩ L ∞ , and if s ≥ 1, then uDv ∈ W s-1,p . More consequences of the Runst-Sickel lemma are presented in Section VI. Theorem 1 is proved in Section V.
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II. Triebel-Lizorkin spaces and maximal inequalities

We start by recalling the Littlewood-Paley decomposition of temperate distributions. Let ψ 0 ∈ C ∞ 0 (R n ) be such that 0 ≤ ψ 0 ≤ 1, ψ 0 (ξ) = 1 for |ξ| ≤ 1, ψ 0 (ξ) = 0 for |ξ| ≥ 2. Set ψ j (ξ) = ψ 0 (2 -j ξ) -ψ 0 (2 -j+1 ξ), j ≥ 1, and ϕ j = F -1 (ψ j ), j ≥ 0. Thus [START_REF] Adams | Composition operators on potential spaces[END_REF] ϕ j (x) = 2 nj ϕ 0 (2 j x) -2 n(j-1) ϕ 0 (2 j-1 x), j ≥ 1, and

k≤j ϕ k (x) = 2 nj ϕ 0 (2 j x), j ≥ 0. For f ∈ S ′ , set f j = f ⋆ ϕ j . We have f = j≥0 f j in S ′ . Definition ([34], 2.3.1). For -∞ < s < ∞, 0 < p ≤ ∞, 0 < q ≤ ∞, set F s p,q = {f ∈ S ′ ; f F s p,q = 2 sj f j (x) ℓ q L p (R n ) < ∞}. (2) 
For 0 < p < ∞ or p = q = ∞, these are the standard Triebel-Lizorkin spaces F s p,q [START_REF] Triebel | Theory of function spaces[END_REF]. We have added the ˜to avoid confusions in the exceptional cases where they do not coincide. When 0 < p < ∞, different choices of ψ 0 yield equivalent quasi-norms ( [START_REF] Triebel | Theory of function spaces[END_REF], 2.3.5). The usual function spaces are special cases of these Triebel-Lizorkin spaces ( [START_REF] Triebel | Theory of function spaces[END_REF]):

a) L p = F 0 p,2 , 1 < p < ∞; b) W m,p = F m p,2 , m = 1, 2, ..., 1 < p < ∞; c) W s,p = F s p,p , 0 < s < ∞, s non-integer, 1 ≤ p < ∞; d) L s,p = F s p,2 , s ∈ R, 1 < p < ∞; e) L ∞ ⊂ F 0 ∞,∞ , i.e., (3) sup 
j,x |f j (x)| ≤ C f L ∞ .
In this list, when 1 ≤ p < ∞, 0 < s < ∞, s non-integer, the W s,p are the Sobolev-Slobodeckij spaces. An equivalent norm on these spaces may be obtained as follows: let

s = k + σ, k integer, 0 < σ < 1. Then (4) f p W s,p ∼ f p L p + D k f p L p + R n R n |D k f (x) -D k f (y)| p |x -y| n+σp dx dy ([ 34 
], 2.6.1). These spaces also coincide with the Besov spaces B s p,p (recall that s is not an integer). We warn the reader that, for p = 2, the spaces W s,p do not coincide with the Bessel potential spaces L s,p .

We will often use the trivial fact that, for fixed s and p, the space F s p,q increases with q.

The following result is well-known:

Lemma 1 ([35]). Let 0 < s < ∞, 1 < p < ∞, 1 < q < ∞. For every j ≥ 0, let f j ∈ S ′ be such that supp F (f j ) ⊂ B 2 j+2 . Then (5) j f j F s p,q ≤ C 2 sj f j (x) ℓ q L p (R n ) .
In the H s -spaces (p = q = 2), this result is proved in [START_REF] Chemin | Fluides parfaits incompressibles[END_REF], p. 21. We postpone the proof of Lemma 1 after the discussion of some maximal inequalities. Recall that, for any f ∈ L 1 loc , the maximal function M f is defined by

M f (x) = sup r>0 1 |B r (x)| B r (x)
|f (y)|dy.

For t > 0, set, for ϕ : R n → R,

(6) ϕ t (x) = t -n ϕ(x/t), x ∈ R n .
We recall some classical inequalities Lemma 2. We have: a) ( [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF], p. 13) for 1 < p ≤ ∞ and any function f , [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF], p. 55) for 1 < p < ∞, 1 < q < ∞, and any sequence of function (f j ), ( 8) [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF], p. 57) for any fixed ϕ ∈ S and any function f ,

(7) M f L p ∼ f L p ; b) ([
M f j (x) ℓ q L p (R n ) ≤ C f j (x) ℓ q L p (R n ) ; c) ([
(9) |f ⋆ ϕ t (x)| ≤ C M f (x), ∀t > 0, ∀x ∈ R n .
By ( 1), ( 2) and ( 9) we obtain the following Corollary 1. For every f ∈ L 1 loc we have

(10) |f j (x)| ≤ C M f (x), j ≥ 0, x ∈ R n , (11) 
| j≤k f j (x)| ≤ C M f (x), k ≥ 0, x ∈ R n .
We now return to the Proof of Lemma 1. With f = j f j , we have

f k =   j f j   k =   j≥k-3 f j   k = j≥k-3 (f j ) k . Therefore f F s p,q = 2 sk j≥k-3 (f j ) k (x) ℓ q L p (R n ) = k 2 sqk j≥k-3 (f j ) k (x) q 1/q L p (R n ) ≤ C k 2 sqk j≥k-3 (f j ) k (x) q (j -k + 4) 2q 1/q L p (R n )
, by the Hölder inequality with exponents q and q ′ = q q -1 applied to the inner sum. We obtain, using [START_REF] Brezis | Topology and Sobolev spaces[END_REF], that

f F s p,q ≤ C j k≤j+3 2 sqk (j -k + 4) 2q |M f j (x)| q 1/q L p (R n ) ≤ C j 2 sqj |M f j (x)| q 1/q L p (R n ) = C 2 sj M f j (x) ℓ q L p (R n ) (12) 
.

The desired conclusion is a consequence of ( 8) and (12).

III. A "microscopic" improvement of the Gagliardo-Nirenberg inequality

The main result of this section is that, in the Gagliardo-Nirenberg type inequalities for the spaces F s p,q , there is a gain in the "microscopic" parameter q; this gain is also called sometimes "precised" or "improved" Sobolev inequalities. Let us explain what we mean. In the context of Besov spaces, a typical Gagliardo-Nirenberg inequality asserts that

B s p,r ∩ L ∞ ⊂ B s/2 2p,2r , for 0 < s < ∞, 0 < p < ∞, 0 < r ≤ ∞
(see, e.g. [START_REF] Runst | Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type[END_REF], Lemma 2, p. 331).

Here, the value 2r of the microscopic parameter is optimal in general. By contrast, in the scale of F -spaces we have, given 0

< s < ∞, 0 < p < ∞, 0 < r ≤ ∞, F s p,r ∩ L ∞ ⊂ F s/2 2p,q for every 0 < q ≤ ∞ ([31], Lemma 1, p. 329).
A more general version of this phenomenon, due to Oru [START_REF] Oru | Rôle des oscillations dans quelques problèmes d'analyse non-linéaire[END_REF], is the following. Let

-∞ < s 1 < s 2 < ∞, 0 < q 1 , q 2 ≤ ∞, 0 < p 1 , p 2 ≤ ∞, 0 < θ < 1, and define s = θs 1 + (1 -θ)s 2 1 p = θ p 1 + 1 -θ p 2 .
Lemma 3. Under the above hypotheses we have, for every 0 < q ≤ ∞,

(13) f F s p,q ≤ C f θ F s 1 p 1 ,q 1 f 1-θ F s 2 p 2 ,q 2
, where C depends on s i , p i , θ and q.

For the convenience of the reader, we reproduce the proof of Oru, since it is not yet published.

Before proving Lemma 3, we state some interesting consequences:

Corollary 2. We have a) for 0 ≤ s 1 < s 2 < ∞, 1 < p 1 < ∞, 1 < p 2 < ∞, s = θs 1 + (1 -θ)s 2 , 1 p = θ p 1 + 1 -θ p 2 , ( 14 
) f W s,p ≤ C f θ W s 1 ,p 1 f 1-θ W s 2 ,p 2 ; b) ([31], Lemma 1, p. 329) for 0 < s < ∞, 1 < p < ∞, 0 < q ≤ ∞, (15) 
f F θs p/θ,q ≤ C f θ W s,p f 1-θ L ∞ .
In particular, we have

c) for 0 < s < ∞, 1 < p < ∞, 0 < θ < 1, (16) f W θs,p/θ ≤ C f θ W s,p f 1-θ L ∞ .
Remark 4. Inequality ( 14) is a special case of (13), with q = 2 when s is an integer, q = p otherwise, and similarly for q 1 and q 2 . Inequality ( 15) is a consequence of (13) for s 1 = 0 θ replaced by 1 -θ, p 1 = q 1 = ∞, s 2 = s, q 2 = 2 if s is an integer, q 2 = p otherwise. Here one uses in addition the fact that 16) is a special case of (15). Remark 5. There is something intriguing about inequality [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF]. It is trivial when s < 1 (with C = 1) if one takes the usual Gagliardo norm [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF]. It is also straightforward when both s and θs are integers. We do not know any elementary (i.e., without the Littlewood-Paley machinery) proof when s = 1. It would be of interest to establish [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF] with control of the constant C, in particular when s ր 1. In view of the results in [START_REF] Bourgain | Another look at Sobolev spaces, in Optimal Control and Partial Equations[END_REF], one may expect an inequality of the form

f F 0 ∞,∞ ≤ C f L ∞ (inequality (3) above). Finally, (
f W s/2,2p ≤ C(p)(1 -s) 1/2p f 1/2 W s,p f 1/2 L ∞ as s ր 1,
if we take the Gagliardo norms (4). Remark 6. Inequality (15) may be viewed as an improvement of ( 16), since for 0 < q < min{2, p/θ} we have F θs p/θ,q ⊂ W θs,p/θ , F θs p/θ,q =W θs,p/θ . This improvement seems microscopic, however in our situation it is magnified and it plays a central role. A similar (microscopic) improvement of the Sobolev embeddings in the framework of Lorentz spaces which is magnified by the Trudinger inequality is presented in [START_REF] Brezis | A note on limiting cases of Sobolev embeddings and convolution inequalities[END_REF], [START_REF] Brezis | Laser beams and limiting cases of Sobolev inequality[END_REF]. Remark 7. We call the attention of the reader to the fact that some inequalities à la Gagliardo-Nirenberg are wrong, e.g., W 1,1 ∩ L ∞ is not contained in W θ,1/θ for 0 < θ < 1; see [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], Remark D.1.

We now turn to the proof of Lemma 3. It relies on the following inequality:

Lemma 4. Let -∞ < s 1 < s 2 < ∞, 0 < q < ∞, 0 < θ < 1, and set s = θs 1 + (1 -θ)s 2 .
Then for every sequence (a j ) we have

(17) 2 sj a j ℓ q ≤ C 2 s 1 j a j θ ℓ ∞ 2 s 2 j a j 1-θ ℓ ∞ .
Remark 8. A special case of ( 17) is implicit in the proof of Theorem 1, p. 328, in [START_REF] Runst | Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type[END_REF]. For similar inequalities, see also [START_REF] Triebel | Theory of function spaces[END_REF], Theorem 2.7.1 or [START_REF] Jawerth | Some observations on Besov and Lizorkin-Triebel spaces[END_REF].

Proof of Lemma 4. Let C 1 = sup 2 s 1 j |a j |, C 2 = sup 2 s 2 j |a j |, so that C 1 ≤ C 2 .
We may assume C 1 > 0. Since s 1 < s 2 , there is some

j 0 > 0 such that min C 1 2 s 1 j , C 2 s s 2 j =      C 1 2 s 1 j , j ≤ j 0 C 2 2 s 2 j , j > j 0 . Since C 1 2 s 1 j 0 ≤ C 2 2 s 2 j 0 and C 2 2 s 1 (j 0 +1) ≤ C 1 2 s 1 (j 0 +1) we find that (18) C 2 ∼ C 1 2 (s 2 -s 1 )j 0 . Therefore (19) 2 s 1 j a j θ ℓ ∞ 2 s 2 j a j 1-θ ℓ ∞ ∼ C 1 2 (s 2 -s 1 )j 0 (1-θ) .
On the other hand, we have

a j ≤ min C 1 2 s 1 j , C 2 s s 2 j , so that (20) a j ≤ C 1 2 s 1 j for 0 ≤ j ≤ j 0 , a j ≤ C 2 2 s 2 j for j > j 0 .
It then follows that

2 sj a j ℓ q ≤   j≤j 0 C q 1 2 (s-s 1 )jq + j>j 0 C q 2 2 (s-s 2 )jq   1/q ≤ C   j≤j 0 C q 1 2 (s-s 1 )jq + j>j 0 C q 1 2 -θ(s 2 -s 1 )jq+(s 2 -s 1 )j 0 q   1/q , so that 2 sj a j ℓ q ≤ C C 1 2 (s 2 -s 1 )j 0 (1-θ)   j≤j 0 2 -(1-θ)(s 2 -s 1 )(j 0 -j)q + j>j 0 2 -θ(s 2 -s 1 )(j-j 0 )q   1/q .
Finally, we find that (21) 2 sj a j ℓ q ≤ C C 1 2 (s 2 -s 1 )j 0 (1-θ) , and ( 17) follows from ( 19) and ( 21).

Proof of Lemma 3. Since a j ℓ ∞ ≤ a j ℓ q , 0 < q ≤ ∞, we find that the r.h.s. of ( 13) is

≥ C f θ F s 1 p 1 ,∞ f 1-θ F s 2 p 2 ,∞
.

On the other hand,

f F s p,∞ ≤ f F s p,q
, 0 < q < ∞. It therefore suffices to prove (13) in the special case 0 < q < ∞, q 1 = q 2 = ∞.

In this case, we have

f F s p,q = 2 s j f j (x) ℓ q L p (R n ) (22) 
≤ (by ( 17))

≤ C 2 s 1 j f j (x) θ ℓ ∞ 2 s 2 j f j (x) 1-θ ℓ ∞ L p (R n )
.

Using the Hölder inequality, ( 22) yields

f F s p,q ≤ C 2 s 1 j f j (x) ℓ ∞ θ L p 1 (R n ) 2 s 2 j f j (x) ℓ ∞ 1-θ L p 2 (R n ) = C f θ F s 1 p 1 ,∞ f 1-θ F s 2 p 2 ,∞
.

The proof of Lemma 3 is complete.

Remark 9. While talking about microscoping improvements in the F -scale, we call the attention of the reader to the following "improved" Sobolev embedding: ([19] or [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], p. 31).

W s,p ֒→ F σ r,q for every 0 < q ≤ ∞ if 0 ≤ σ < s and 1 r = 1 p - s -σ n > 0 (see

IV. The Runst-Sickel lemma

For the convenience of the reader, we split the statement into two parts; the first one contains the fundamental estimate, the other one deals with the continuity of the product.

Let 0 < s < ∞, 1 < q < ∞, 1 < p 1 ≤ ∞, 1 < p 2 ≤ ∞, 1 < r 1 ≤ ∞, 1 < r 2 ≤ ∞ be such that (23) 0 < 1 p = 1 p 1 + 1 r 2 = 1 p 2 + 1 r 1 < 1.
Lemma 5 ([32], p. 345). We have, for f ∈ F s p 1 ,q ∩ L r 1 and g ∈ F s p 2 ,q ∩ L r 2 , (24)

f g F s p,q ≤ C M f (x) 2 sj g j (x) ℓ q L p (R n ) + M g(x) 2 sj f j (x) ℓ q L p (R n ) and (25) f g F s p,q ≤ C f F s p 1 ,q g L r 2 + g F s p 2,q f L r 1 .
Proof. We start by noting that (25) follows from [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF]. Indeed, using the Hölder inequality we find

M f (x) 2 sj g j (x) ℓ q L p (R n ) + M g(x) 2 sj f j (x) ℓ q L p (R n ) ≤ 2 sj g j (x) ℓ q L p 2 (R n ) M f (x) L r 1 (R n ) + 2 sj f j (x) ℓ q L p 1 (R n ) M g(x) L r 2 (R n ) ≤ C( f F s p 1 ,q g L r 2 + g F s p 2 ,q f L r 1 )
, by [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]. We turn to the proof of [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF]. It relies on Lemma 1 which is valid since 1 < p < ∞ and 1 < q < ∞. We have

f g = k G k + j F j ,
where

G k = j≤k f j g k , F j = k<j g k f j . Since supp F (F j ) ⊂ B 2 j+2 and supp F (G k ) ⊂ B 2 k+2 , Lemma 1 yields (26) f g F s p,q ≤ C(A + B), with A = 2 sk G k (x) ℓ q L p (R n ) , B = 2 sk F j (x) ℓ q L p (R n ) .
We estimate, e.g., A:

A = 2 sk   j≤k f j (x)   g k (x) ℓ q L p (R n ) (27) 
≤ by ( 11)

C M f j (x) 2 sk g k (x) ℓ q L p (R n ) .
We obtain [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] by combining ( 26), ( 27) and the similar estimate for B.

We state the continuity part of this result in the three possible situations:

Corollary 3. We have that: a) for 1 < q < ∞, 0 < s < ∞, 1 < p 1 < ∞, 1 < p 2 < ∞, 1 < r 1 < ∞, 1 < r 2 < ∞, 0 < 1 p = 1 p 1 + 1 r 2 = 1 p 2 + 1 r 1 < 1, the map F s p 1 ,q ∩ L r 1 × F s p 2 ,q ∩ L r 2 ∋ (f, g) → f g ∈ F s p,q is continuous; b) for 1 < q < ∞, 0 < s < ∞, 1 < p < ∞, if f ℓ → f in F s p,q , f ℓ L ∞ ≤ C g ℓ → g in F s p,q , g ℓ L ∞ ≤ C then f ℓ g ℓ → f g in F s p,q ; c) for 1 < q < ∞, 0 < s < ∞, 1 < p 1 < ∞, 1 < r < ∞, 1 < p < ∞ such that 1 p = 1 p 1 + 1 r , if f ℓ → f in F s p 1 ,q , f ℓ L ∞ ≤ C g ℓ → g in F s p,q ∩ L r , then f ℓ g ℓ → f g in F s
p,q . Proof. a) follows directly from [START_REF] Mizohata | Lectures on the Cauchy problem[END_REF]. Some care is needed when one of the r ′ j s is ∞. We treat, e.g., case c). It clearly suffices to prove the following two assertions:

(i) if f ℓ → 0 in F s p 1 ,q and f ℓ L ∞ ≤ C, then f ℓ g → 0 for each g ∈ F s p,q ∩ L r . (ii) if g ℓ → 0 in F s p,q ∩ L r , f ℓ F s p 1 ,q ≤ C, f ℓ L ∞ ≤ C, then f ℓ g ℓ → 0.
Assertion (ii) is clear from [START_REF] Mizohata | Lectures on the Cauchy problem[END_REF]. We prove (i) using [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF]. We have ( 28)

f ℓ g F s p,q ≤ C f ℓ F s p 1 ,q g L r + M f ℓ (x) 2 sj g j (x) ℓ q L p (R n ) ≤ o(1) + C M f ℓ (x) 2 sj g j (x) ℓ q L p (R n )
.

Finally, by [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF], the Runst-Sickel Lemma 5 and Corollary 3c), we obtain that

f ′ (u)Du ∈ F s-1 p,p = W s-1,p and that if u ℓ → u in W s,p ∩ W 1,sp , then f ′ (u ℓ )Du ℓ → f ′ (u)Du in W s-1,p .
Remark 10. The same proof yields the following variant of Theorem 1.

Theorem 1". Assume 1 < s < ∞, s non integer, 1 < p < ∞, 1 < q < ∞. Then, for every f ∈ R, the map

F s p,q ∩ W 1,sp ∋ u → f (u) ∈ F s p,q
is well-defined and continuous.

Remark 11. There is a natural strategy for proving Theorem 1: assume, e.g., that 1 < s < 2 and try to prove that f ′ (u)Du ∈ W s-1,p . Set s = 1 + σ. On the one hand, we have Du ∈ W σ,p ∩ L (1+σ)p . On the other hand, since u ∈ W 1,(1+σ)p , we find that f ′ (u) ∈ W 1,(1+σ)p ∩ L ∞ . By the "standard" Gagliardo-Nirenberg inequality, we obtain f ′ (u) ∈ W σ, 1+σ σ p ∩ L ∞ . The conclusion of Theorem 1 would follow if we can prove that

(34) U ∈ W σ,p ∩ L (1+σ)p V ∈ W σ, 1+σ σ p ∩ L ∞ =⇒ U V ∈ W σ,p .
Using the Gagliardo norm (4), we have to estimate (35)

R n R n |U (x + h)V (x + h) -U (x)V (x)| p |h| n+σp dx dh ≤ C R n R n |V (x)| p |U (x + h) -U (x)| p |h| n+σp dx dh + R n R n |U (x)| p |V (x + h) -V (x)| p |h| n+σp dx dh ≤ C V p L ∞ U p W σ,p + R n R n |U (x)| p |V (x + h) -V (x)| p |h| n+σp dx dh .
It is natural to estimate the last integral in (34) using the Hölder inequality with exponents 1 + σ and 1 + σ σ . We find

U V p W σ,p ≤ C V p L ∞ U p W σ,p + V p W σ, 1+σ σ p R n R n |U (x)| (1+σ)p |h| n dx dh 1 1+σ
.

Unfortunately, the last integral diverges, but we are "close" to convergence. In fact, we suspect that (34) is wrong.

It is here that the microscopic improvement of the Gagliardo-Nirenberg inequality Lemma 3, combined with the Runst-Sickel Lemma 5, magically saves the proof. We make use, in an essential way, of the additional information that V = f ′ (u) ∈ F σ 1+σ σ p,p .

We conclude this section with a brief survey of earlier results dealing with composition. a) if 0 < s ≤ 1, 1 < p < ∞, f (0) = 0, f Lipschitz, then u ∈ W s,p =⇒ f (u) ∈ W s,p (trivial for s < 1; see [START_REF] Marcus | Nemytskij operators on Sobolev spaces[END_REF] and [START_REF] Marcus | Complete characterization of functions which act via superposition on Sobolev spaces[END_REF] 

for s = 1); b) if s = n/p, 1 < p < ∞, f ∈ R, where m = s, if s is an integer [s] + 1, otherwise , then u ∈ W s,p =⇒ f (u) ∈ W s,p .
This result is explicitely stated in [START_REF] Brezis | Composition in fractional Sobolev spaces[END_REF]; G. Bourdaud has pointed out that it may also be derived from a result of T. Runst and W. Sickel, see p. 345 in [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], combined with a result in [START_REF] Jawerth | Some observations on Besov and Lizorkin-Triebel spaces[END_REF] which asserts that, when s = n/p, W s,p ֒→ F θs p/θ,q for 0 < θ < 1 and every 0 < q < ∞ (see Remark 9 above); [START_REF] Mizohata | Lectures on the Cauchy problem[END_REF] for p = 2 and [START_REF] Peetre | Interpolation of Lipschitz operators and metric spaces[END_REF] for the general case; d) if 1 < s < n/p, we have to impose additional restrictions on u. Indeed, if 1 + 1/p < s < n/p, the only C 2 f 's that act on W s,p are of the form f (t) = ct; see [START_REF] Dahlberg | A note on Sobolev spaces, in Harmonic Analysis in Euclidean Spaces[END_REF] for s integer and [START_REF] Runst | Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type[END_REF], Theorem 3.2, p. 319, for a general s. For 1 < s < n/p, it follows from Remark 1 in the Introduction that R does not act on W s,p , since [START_REF] Peetre | Interpolation of Lipschitz operators and metric spaces[END_REF], [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF]; e) an improvement is that, for f as above and 0 < σ < 1 we have u ∈ W s,p ∩ W σ,sp/σ =⇒ f (u) ∈ W s,p ; see [START_REF] Brezis | Composition in fractional Sobolev spaces[END_REF]. This result implies the previous one, since W s,p ∩ L ∞ ֒→ W σ,sp/σ (by Corollary 2); f) a finer result asserts that, for f as above, we have u ∈ W s,p ∩ F 1 sp,q (with q ≤ 2 sufficiently small depending on s and p) =⇒ f (u) ∈ W s,p ; see [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], Theorem 1, p. 345. This hypothesis on u is weaker than the previous one, since W s,p ∩ W σ,sp/σ ֒→ F 1 sp,q for all q > 0, by Lemma 3. This result is contained in Theorem 1, since F 1 sp,q ֒→ W 1,sp = F 1 sp,2

c) if s > n/p, 1 < p < ∞, f (0) = 0 and f ∈ C m , then u ∈ W s,p =⇒ f (u) ∈ W s,p ; see
W s,p ⊂ W 1,sp . A standard additional condition on u is u ∈ L ∞ : if f (0) = 0 and f ∈ C m , then u ∈ W s,p ∩ L ∞ =⇒ f (u) ∈ W s,p ; see
as soon as q ≤ 2 (recall that F s p,q increases with q). However, when p ≤ 2 or 1 < s < 2, Runst and Sickel point out in Remark 1, p. 348 that the above smallness condition on q is precisely q ≤ 2. This means that Runst and Sickel had established Theorem 1 when p ≤ 2 or 1 < s < 2; g) in the framework of Bessel potential spaces L s,p = {f = G s ⋆ g ; g ∈ L p , Ĝs (ξ) = (1 + |ξ| 2 ) -s/2 } = F s p,2 , there are various similar results about composition, starting with [START_REF] Meyer | Régularité des solutions des équations aux dérivées partielles non linéaires[END_REF], [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] when s > n/p, [START_REF] Rauch | Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension[END_REF], [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser[END_REF] and [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for H s ∩ L ∞ when s ≥ 1. The ultimate result for s ≥ 1 was obtained by Adams-Frazier in [START_REF] Adams | Composition operators on potential spaces[END_REF]: if 1 ≤ s < ∞, 1 < p < ∞, f ∈ R, then u ∈ L s,p ∩ L 1,sp =⇒ f (u) ∈ L s,p . This is a special case (q = 2) of Theorem 1" since L 1,sp = W 1,sp . h) Other questions concerning composition in Sobolev spaces have been investigated e.g. in [START_REF] Bourdaud | Le calcul fonctionnel dans les espaces de Sobolev[END_REF], [START_REF] Bourdaud | Fonctions qui opèrent sur les espaces de Sobolev[END_REF], [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF].

VI. More about products

In this last Section, we state some natural results about products which may be derived from the Runst-Sickel lemma.

Let 1 < p < ∞, 0 < s < ∞, 1 < r < ∞, 0 < θ < 1, 1 < t < ∞ be such that 1 r + θ t = 1 p .

Lemma 6. For f ∈ W s,t ∩ L ∞ , g ∈ W θs,p ∩ L r , we have f g ∈ W θs,p and (36)

f g W θs,p ≤ C f L ∞ g W θs,p + g L r f θ W s,t f 1-θ L ∞ .
In the special case s > 1, θ = s -1 s , we have r = sp and we obtain the following Corollary 4. If 1 < s < ∞, 1 < p < ∞ and f ∈ W s,p ∩ L ∞ , g ∈ W s-1,p ∩ L sp , then f g ∈ W s-1,p and (37)

f g W s-1,p ≤ C f L ∞ g W s-1,p + g L sp f 1-1/s W s,p f 1/s L ∞ .
In particular, if f, g ∈ W s,p ∩ L ∞ , then Dg ∈ W s-1,p ∩ L sp , so that Corollary 4 contains as a special case the following result Corollary 5 ([7], Lemma 2). If 1 < s < ∞, 1 < p < ∞ and f, g ∈ W s,p ∩ L ∞ , then f Dg ∈ W s-1,p . Remark 12. Clearly, Corollary 5 implies the well-known assertion that W s,p ∩ L ∞ is an algebra.

Proof of Lemma 6. Let q = 2 if θs is an integer, q = p otherwise. By [START_REF] Dahlberg | A note on Sobolev spaces, in Harmonic Analysis in Euclidean Spaces[END_REF], we find that f ∈ F θs t/θ,q and (38)

f F θs t/θ,q ≤ C f θ W s,t f 1-θ L ∞ .
From the Runst-Sickel lemma, we deduce that f g ∈ F θs p,q and f g W θs,p = f g F θs p ,q ≤ C f L ∞ g F θs p,q

+ g L r f F θs t/θ,q ≤ C f L ∞ g W θs,p + g L r f θ W s,t f 1-θ L ∞ .
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Set

F ℓ (x) = M f ℓ (x) 2 sj g j (x) ℓ q .

Then clearly [START_REF] Peetre | Interpolation of Lipschitz operators and metric spaces[END_REF] |F ℓ (x)| ≤ C 2 sj g j (x) ℓ q ∈ L p .

On the other hand, F s p 1 ,q ֒→ L p 1 (see, e.g., [START_REF] Triebel | Theory of function spaces[END_REF], 2.3.2, or [START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations[END_REF], Proposition 2.2.1, p. 29). It follows from the maximal inequality [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] that M f ℓ → 0 in L p 1 and, up to a subsequence, that M f ℓ → 0 a.e. Then (i) follows from ( 28) and ( 29) by dominated convergence.

V. Proof of Theorem 1

The conclusion is well-known when s is an integer (this uses the standard Gagliardo-Nirenberg inequalities).

Assume s non integer. Clearly, the map

is well-defined and continuous, since f (0) = 0, f is Lipschitz and W s,p ֒→ L p . Thus it suffices to prove that the map

is well-defined and continuous. With m = [s] + 1 ≥ 2, we obtain, using [START_REF] Chemin | Fluides parfaits incompressibles[END_REF], that the inclusion

is continuous. Applying Theorem 1 to the integer s = m -1 ≥ 1, we find that

On the other hand, we clearly have that

Using [START_REF] Runst | Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type[END_REF] and the Gagliardo-Nirenberg type inequality (15) (with q = p, s = m -1,

), we obtain [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF] if u ℓ → u in W s,p ∩ W 1,sp , then f ′ (u ℓ ) → f ′ (u) in F s-1 sp s-1 ,p and f ′ (u ℓ ) L ∞ ≤ C.