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ANOTHER LOOK AT SOBOLEV SPACES

JEAN BOURGAIN(1), HAIM BREZIS(2),(3), AND PETRU MIRONESCU(4)

Dedicated to Alain Bensoussan with esteem and affection

1. Introduction

Our initial concern was to study the limiting behavior of the norms of fractional Sobolev
spaces W s,p, 0 < s < 1, 1 < p < ∞ as s → 1. Recall that a commonly used (semi) norm
on W s,p is given by

‖f‖pW s,p =

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|N+sp
dxdy

where Ω is a smooth bounded domain in RN (see e.g. Adams[1]). A well-known “defect”
of this scale of norms is that ‖f‖W s,p does not converge, as s ր 1, to ‖f‖W 1,p, given by
the (semi) norm

‖f‖pW 1,p =

∫

Ω

|∇f |pdx,

where | | denotes the euclidean norm.

In fact, it is clear that if f is any smooth nonconstant function, then ‖f‖W s,p → ∞ as
s ր 1. The factor(1− s)1/p in front of ‖f‖W s,p ”rectifies” the situation (see Corollary 2
and Remark 5). This analysis has led us to a new characterization of the Sobolev space
W 1,p, 1 < p < ∞.

The first observation is
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Theorem 1. Assume f ∈ W 1,p(Ω), 1 ≤ p < ∞ and let ρ ∈ L1(Rn), ρ ≥ 0. Then

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρ(x− y)dxdy ≤ C‖f‖pW 1,p‖ρ‖L1

where C depends only on p and Ω.

Next, we take a sequence (ρn) of radial mollifiers, i.e.

ρn(x) = ρn(|x|)

ρn ≥ 0,

∫

ρn(x)dx = 1

lim
n→∞

δ
∫

∞

ρn(r)r
n−1dr = 0 for every δ > 0.

Theorem 2. Assume f ∈ Lp(Ω), 1 < p < ∞. Then

lim
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dxdy = Kp,N‖f‖pW 1,p,

with the convention that ‖f‖W 1,p = ∞ if f /∈ W 1,p. Here Kp,N depends only on p and N .

When p = 1 we have the following variants

Theorem 3. Assume f ∈ W 1,1. Then

lim
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy = K1,N‖f‖W 1,1

where K1,N depends only on N .

Theorem 3’. Assume f ∈ L1(Ω). Then f ∈ BV (Ω) if and only if

lim inf
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy < ∞,

and then
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C1‖f‖BV ≤ lim inf
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy

≤ lim sup
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy ≤ C2‖f‖BV .(1)

Here C1 and C2 depend only on Ω, and

‖f‖BV =

∫

Ω

|∇f | = Sup







∫

Ω

fdivϕ ϕ ∈ C∞
0 (Ω;RN ), |ϕ(x)| ≤ 1 on Ω







.

Remark 1. In dimension N = 1 we can prove that for every f ∈ BV

lim
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy = K1,1

∫

Ω

|∇f |,

where K1,1 is the same constant as in Theorem 3. We do not know whether the same
conclusion holds when N ≥ 2 (even for a special sequence of mollifiers).

Here are some simple consequences of the above results (and their proofs), where K
denotes various constants depending only on p and N .

Corollary 1. Assume f ∈ W 1,p(Ω) with 1 ≤ p < ∞. Then

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y) dy −→ Kp,N |∇f(x)|p in L1(Ω).

Corollary 2. Assume f ∈ Lp, 1 < p < ∞. Then

lim
ε→0

ε ‖f‖p
W 1−ε,p = K ‖f‖pW 1,p.

Corollary 3. Assume f ∈ Lp, 1 < p < ∞. Then

lim
ε→0

εN
∫∫

|x−y|<ε

|f(x)− f(y)|p

|x− y|p
dxdy = K‖f‖pW 1,p.
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Corollary 4. Assume f ∈ Lp, 1 < p < ∞. Then

lim
ε→0

1

|logε|

∫∫

|x−y|>ε

|f(x)− f(y)|p

|x− y|N+p
dxdy = K‖f‖pW 1,p.

Remark 2. P. Mironescu and I. Shafrir [] have studied related limits, e.g., when N = 1 and
f ∈ BV (0, 1)

lim
ε→0

1

|logε|

∫∫

|x−y|>ε

|f(x)− f(y)|2

|x− y|2
dxdy.

The case where f ∈ BV (Ω) is not fully satisfactory; we have only partial results, for
example

Corollary 5. Assume f ∈ L1. Then

C1‖f‖BV ≤ lim inf
ε→0

ε

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|N+1−ε
dxdy

≤ lim sup
ε→0

ε

∫

Ω

∫

Ω

|f(x)− f(y)|

|x− y|N+1−ε
dxdy ≤ C2‖f‖BV .

Remark 3. In particular when f = χA is the characteristic function of a measurable set A
having finite perimeter, then

‖χA‖BV ≤ C lim inf
ε→0

ε

∫

Ω\A

∫

A

dxdy

|x− y|N+1−ε

and in view of the isoperimetric inequality

(

|A||Ω \A|
)(N−1)/2N

≤ C lim inf
ε→0

ε

∫

Ω\A

∫

A

dxdy

|x− y|N+1−ε

If A is a measurable subset of Ω ⊂ RN , N ≥ 1, such that

∫

Ω\A

∫

A

dxdy

|x− y|N+1
< ∞,
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then either |A| = 0 or |Ω \ A| = 0. This fact was already established in Bourgain, Brezis
and Mironescu [1] (Appendix B) with a different proof (see also Bourgain, Brezis and
Mironescu [2] and Brezis []).

2. Proofs

Proof of Theorem 1. By standard extension we may always assume that f ∈ W 1,p(RN )
and then there is some constant C = C(p,N) such that

(2)
(

∫

RN

|f(x+ h)− f(x)|pdx
)1/p

≤ |h|‖f‖W 1,p(RN ) ≤ C|h|‖f‖W 1,p(Ω),

for all f ∈ W 1.p and h ∈ RN (see, e.g., Brezis [], Proposition IX.3). By (2), we obtain

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρ(x− y)dxdy ≤

∫

RN

1

|h|p

∫

RN

|f(x+ h)− f(x)|dxdhp

≤ Cp‖f‖pW 1,p

∫

Rn

ρ(h)dh = Cp‖f‖pW 1,p‖ρ‖
1
L.

Proof of Theorem 2. For f ∈ Lp, let

Fn(x, y) =
|f(x)− f(y)|

|x− y|
ρ1/pn (x− y).

Assuming first that f ∈ W 1,p, we have to prove that

(3) lim
n→∞

‖Fn‖
p
Lp = K‖f‖pW 1,p,

for some K = Kp,N .

By Theorem 1, we have, for any n and f, g ∈ W 1,p,

(4) ‖Fn −Gn‖Lp ≤ C‖f − g‖W 1,p,

for some constant C independent of n, f and g. Therefore it suffices to establish (3) for f
in some dense subset of W 1,p, e.g., for f ∈ C2(Ω̄).

Fix some f ∈ C2(Ω̄). Then

|f(x)− f(y)|

|x− y|
= |(∇f)(x) ·

x− y

|x− y|

∣

∣+ 0(|x− y|).
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For each fixed x ∈ Ω,

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dy =

∫

|x−y|<dist(x,∂Ω)

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dy +

∫

|x−y|≥dist(x,∂Ω)

|f(x)− (y)|p

|x− y|p
ρn(x− y)dy.

(5)

Clearly, the last integral in (5) tends to 0 as n → ∞. On the other hand, with R =
dist(x, ∂Ω), we have

∫

|y−x|<R

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dy

=

R
∫

0

ρn(r)

∫

|y−x|=r

(
∣

∣(∇f)(x).
x− y

|x− y|

∣

∣

p
+ (|x− y|)p

)

dsydr

=

∫ R

0

ρn(r)

∫

|ω|=r

(|(∇f)(x) ·
ω

|ω|
|p + 0(rp))dswdr

=

∫ R

0

|SN−1|K|∇f(x)|prN−1ρn(r)dr + 0(

∫ R

0

rn+p−1ρn(r)dr),

where K = Kp,n =

∫

ω∈Sn−1

|ωN |pdsω/|S
n−1| =�

∫

ω∈SN−1

|ωN |pdsω

Therefore,

(6)

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dy −→ K|∇f(x)|p, ∀x ∈ Ω.

If L is such that |f(x)− f(y)| ≤ L|x− y|, ∀x, y ∈ Ω, then

(7)

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dy ≤ Lp, ∀x ∈ Ω.
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Hence (3) for f ∈ C2(Ω̄) follows by dominated convergence from (6) and (7).

In order to complete the proof of Theorem 2, to suffices to prove that, if f ∈ Lp and

lim inf
n→∞

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dxdy < ∞,

then f ∈ W 1,p.

Recall that, for some C1 > 0,

‖f‖W 1,p ≤ C1sup
{

∫

Ω

f∂iϕ ;ϕ ∈ C∞
0 (Ω), ‖ϕ‖Lp1 ≤ 1, i = 1, ..., N

}

.

Fix some ϕ ∈ C∞
0 (Ω) and some i ∈ {1, ..., n} and consider the functions

x
Hn7−→

∫

(y−x)·ei≥0

f(x)− f(y)

|x− y|
ρn(x− y)ϕ(y)dy.

On the one hand, we have

∫

Ω

|Hn(x)|dx ≤

(

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dxdy

)1/p (

∫

Ω

∫

Ω

ρn(x− y)|ϕ(x− y)|p
′

dxdy
)1/p

= ‖ϕ‖Lp′

(

∫

Ω

∫

Ω
f(x)− f(y)|p

|x− y|p
ρn(x−)dxdy

)1/p
.(8)

As above,

Hn(x)
n→∞
7−→ f(x) �

∫

(∇ϕ)(x) · ωdsω = {ω ∈ SN−1, ·ωi ≥ 0}f(x)(∇ϕ)(x)· �

∫

ωdsω

= C2f(x)(∇ϕ) · ei

= C2f(x)∂iϕ(x), {w ∈ §N−1;wi ≥ 0}

for some C2 > 0 depending only on N .

Therefore, by combining (8) and(9) we find

|

∫

Ω

f(x)∂iϕ(x)dx| ≤ C3 lim inf
n→∞

(

∫

Ω

∫

Ω

|f(x)− f(y)|p

|x− y|p
ρn(x− y)dxdy

)1/p
‖ϕ‖Lp ,
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for any ϕ ∈ C∞
0 (Ω).

The proof of Theorem 2 is complete.

Proof of Corollary 1. The conclusion is clear when f ∈ C2(Ω̄). For a general ∈ W 1,p,
the statement follows by density using (4).

The proof of Theorem 3 is the same as the first part of the proof of Theorem 2, since
smooth functions are dense in W 1,1.

Proof of Theorem 3. The last inequality in (1) is proved as in Theorem 1. The first
inequality in (1) is proved as in the second part of the proof of Theorem 2 (using duality).

Finally, we return to Remark 1 and prove that , for f ∈ L1((0, 1)),

(10) lim
n→∞

1
∫

0

1
∫

0

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy = ‖f‖BV

Clearly, if f ∈ BV ((0, 1)), then

∫

|f(x+ h)− f(x)|dx ≤ |h|‖f‖BV ,

and therefore, as in the proof of Theorem 1,

(11) lim sup
n→∞

1
∫

0

1
∫

0

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy ≤ ‖f‖BV .

Assume now that f ∈ L1 is such that

lim inf
n→∞

1
∫

0

1
∫

0

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy < ∞

Then, for any fixed ϕ ∈ C∞
0 ((0, 1)) with |ϕ| ≤ 1, we have

1
∫

0

1
∫

0

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy ≤

1
∫

0

1
∫

0

f(x)− f(y)

y − x
ρn(x− y)ϕ(y)dy =

1
∫

0

1
∫

0

f(x)ρn(x− y)
ϕ(y)− ϕ(x)

y − x
dydx.(12)
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As in the proof of Theorem 3, we find that

1
∫

0

f(x)ϕ′(x)dx ≤

lim inf
n→∞

1
∫

0

1
∫

0

|f(x)− f(y)|

|x− y|
ρn(x− y)dxdy,

∀ϕ ∈ C∞
0 (Ω) with|ϕ| ≤ 1.(13)

Equality (10) follows from (11) and (13).

3. The case of a sequence (fn)

In the previous sections, f was a fixed function. Throughout this section, we assume
that (fn) is a sequence of Lp functions satisying the uniform estimate

(14)

∫

Ω

∫

Ω

|fn(x)− fn(y)|
p

|x− y|p
ρn(x− y)dxdy ≤ C0,

where Ω is a smooth bounded domain in RN , 1 ≤ p < ∞, and (ρn) is a sequence of radial
mollifiers. Without loss of generality, we may also assume the normalization condition

(15)

∫

Ω

fn(x)dx = 0, ∀n.

Theorem 4. Assume (14), (15) and

(16) For eachn, the function t ∈ (0,∞) 7→ ρn(t)is non-increasing.

Then the sequence (fn) is relatively compact in Lp and (up to a subsequence) we may
assume that fn → f in Lp. Moreover,

a) if 1 < p < ∞, then f ∈ W 1,p and ‖f‖pW 1,p ≤ C(p,Ω)C0;

b) if p = 1, then f ∈ BV and ‖f‖BV ≤ C(Ω)C0.

Remark 4. In view of Theorems 2 and 3, the additional assumption (16) may seem artificial.
Actually, it is possible to slightly weaken (16); for example we may assume
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(17) ρn(t) ≥ C1ρn(s), ∀n, ∀t ≤ s,

Form some C1 independent of n, t, s.

However, the conclusions of Theorem 4 fail for bf general ρ′ns. We shall give below a coun-
terexample where the sequence (fn) need not be relatively compact in Lp (Counterexample
2).

Here are two examples of interest

Corollary 6. For 1 ≤ p < ∞, let (fε) be a family of Lp functions such that

∫∫

|x−y|<ε

|fε(x)− fε(y)|
p

|x− y|p
dxdy ≤ C0ε

N .

Then, up to a subsequence, (fε) converges in Lp to some f ∈ W 1,p( for1 < p <
∞) or f ∈ BV ( forp = 1).

Corollary 7. For1 < p < ∞, let fε ∈ W 1−ε,p. Assume that

ε‖fε‖p
W 1−ε,p ≤ C0.

Then, up to a subsequence, (fε) converges in Lp (and, in fact, in W 1−δ,p, for all δ > 0)
to some f ∈ W 1,p.

Proof of Theorem 4

The heart of the proof consists of showing that (fn) is relatively compact in Lp. The rest
is done as in the second part of the proof of Theorem 2.

Without loss of generality, we may assume that Ω = RN and that supp fn ⊂ B, a ball
in RN of diameter 1. This can be achieved by extendeing each function fn by reflection
across the boundary in a neighborhood of ∂Ω. Using the monotonicity assumption (16),
we see that assumption (14) still holds.

In order to prove compactness in Lp, we rely on the Riesz-Fréchet-Kolmogorov the-
orem(see, e.g., Brezis [], Théorème IV.25) or rather its proof: let, for δ > 0, Φδ be the
mollifier

Φδ =
1

|Bδ(0)|
χBδ(0).

Then (fn) is relatively compact in Lp(Ω) if and only if
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(18) ‖fn‖Lp ≤ C

and

(19) lim
δ→0

(lim sup
n→∞

‖fn − fn ∗ Φδ‖Lp) = 0.

For each n and t > 0, let

Fn(t) =

∫

ω∈SN−1

∫

RN

|fn(x+ tω)− fn(x)|
pdxdσ =

1

tN−1

∫

|h|=t

∫

RN

|fn(x+ h)− fn(x)|
pdxdσ.

Unsing the triangle inequality, we obtain

(20) Fn(2t) ≤ 2pFn(t).

In terms of Fn, assumption (14) can be expressed as

(21)

1
∫

0

tN−1Fn(t)

tp
ρn(t)dt ≤ C0.

We claim that

(22)

∫

|fn(x)|
pdx ≤ C

1
∫

0

tN−1Fn(t)dt

and

(23)

∫

|fn(x)− (fn ∗Φδ)(x)|
pdx ≤ Cδ−N

δ
∫

0

tN−1Fn(t)dt,
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for some C independent of n and δ.

We prove for example (23):

∫

|fn(x)− (fn ∗ Φδ)(x)|
pdx =

∫

|fn(x)−
1

|SN−1|δn

∫

|y−x|<δ

fn(y)dy|dx
p

=
1

(|SN−1|δN )p

∫

|

∫

|y−x|<δ

(fn(x)− fn(y))dy|
pdx

≤
1

|SN−1|
δ−N

∫∫

|y−x|<δ

|fn(x)− fn(y)|
pdxdy

=
1

|SN−1|
δ−N

∫

|h|<δ

(

∫

|fn(x+ h)− fn(x)|
pdx)dh

= Cδ−N

δ
∫

0

tN−1Fn(t)dt.

The proof of (22) is similar, since

fn(x) = fn(x)− �

∫

B

fr(y)dy.

We are going to establish below the key inequality

(24) δ−N

δ
∫

0

tN−1Fn(t)

tp
dt ≤ C(

δ
∫

0

tN−1Fn(t)

tp
ρn(t)dt)/(

∫

|x|<δ

ρn(x)dx).

Assume (24) has been moved, then we proceed as follows since.

lim
N→∞

∫

|x|<δ

ρn(x)dx = 1,

by combining (14) with (24) we find

(25) δ−N

δ
∫

0

ddtN−1Fn(t)

tp
dt ≤ C for n ≥ nδ.
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In particular, we have

(26) δ−N

δ
∫

0

tN−1Fn(t)dt ≤ Cδp for n ≥ nδ

Inequalities (18), (19)– and thus the conclusion of Theorem 4– follow from (22), (23)
and (26).

It remains to establish inquality (24). Note that it is a particular case (g(t) = Fn(t)
tp

, h(t) =
ρn(t)) of the following varian of an inequality due to Chebyshev:

Lemma. Let g, h : (0, δ) → R+. Assume that g(t) ≤ g(t/2), t ∈ (0, δ), and that h is
non-increasing.

Then, for some C = C(N) > 0,

δ
∫

0

tN−1g(t)h(t)dt ≥ Cδ−N

δ
∫

0

tN−1g(t)dt

δ
∫

0

tN−1h(t)dt.

Proof of the lemma: It suffices to consider the case δ = 1;

the general case follows by scaling. We have

1
∫

0

tN−1g(t)h(t)dt =
∑

j≥0

1/2j

∫

1/2j+1

tN−1g(t)h(t)dt

=
∑

j≥0

1

2Nj

1
∫

1/2

SN−1g(
s

2j
)h(

s

2j
)ds

=

1
∫

1/2

∑

j≥0

1

2Nj
g(

s

2j
)h(

s

2j
)ds,(27)

and a similar equality holds for
1
∫

0

tN−1g(t)dt. We recall the classical Chebyshev inequality:

if

G,H : X → R, u a positive measure onX and (G(x)−G(y))(H(x)−H(y)) ≥ 0, ∀x, y ∈
X ,then
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∫

x

GHdµ ≥
1

|x|

∫

(

x)Gdµ

∫

(

x)Hdµ.

In particular, if αj ≥ 0 and the sequences (aj), (bj) have the same nonotonicity, then

(28)
∑

αjajbj ≥
1

∑

αj

∑

αjaj
∑

αjbj.

Since for each s ∈ (1/2, 1), the sequence (g( s
2j )) and (h( s

2j ) are non-decreasing, (28) with

αj =
1

2Nj yields

(29)
∑

j≥0

1

2Nj
g(

s

2j
)h(

s

2j
) ≥ C

∑

j≥0

1

2Nj
g(

s

2j
)
∑

j≥0

1

2N j
h(

s

2j
).

Now clearly, for each s ∈ (1/2, 1) and each j ≥ 1,

1

2Nj
h(

s

2j
) ≥

1

2Nj
h(

s

2j
) ≥ C

1/2j−1

∫

tN−1h(t)dt,

for some C independent of j, so that 1/2j

(30)
∑

j≥0

1

2Nj
h(

s

2j
) ≥ C

∫ 1

0

tN−1h(t)dt.

It follows from (2g) and (30) that

(31)
∑

j≥0

1

2Nj
g(

s

2j
)h(

s

2j
) ≥ C

∫ 1

0

tN−1h(t)dt
∑

j≥0

1

2Nj
g(

s

2j
).

Inserting (31) into (27), we find

∫ 1

0

tN−1g(t)j(t)dt ≥ C

∫ 1

0

tN−1j(t)dt

∫ 1

1/2

∑

j≥0

1

2Nj
g(

s

2j
)ds

= C

∫ 1

0

tN−1h(t)dt

∫ 1

0

g(t)dt.

the proof of Theorem4 is complete.

Returning to Corollary7, we still have to prove that, for any δ > 0, we have ε > 0

‖fε‖W 1−s,p ≤ C
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Considering the same functions fε(t), as above (relative to the parameter ε instead of n
we have to prove that

(32)

∫ 1

0

Fε(t)

t(1−δ)p+1
dt ≤ C, for smallε > 0,

under the assumption

(33) ε

∫ 1

0

Fε(t)

t(1−ε)p+1
dt ≤ C.

the proof is similar to that of the Lemma, so we just sketch it. We start by rewritting (32)
and (33) as

(34)

1
∫

0

1

t1−sp

Fε(t)

tp
dt ≤ C

and

(35)

1
∫

0

1

t1−sp

Fε(t)

tp
ε

t(s−ε)p
dt ≤ C.

We continue as in the proof of the lemma, with

g(t) =
Fε(t)

tp
and h(t) =

ε

t(s−ε)p
, and take 0 < ε < δ.

We finally find

(36)

1
∫

0

1

t1−sp

Fε(t)

tp
ε

t(s− ε)p
dt ≥ C

1
∫

0

1

t1−sp

Fε(t)

tp
dt

for some C depending possibly on S, but not on ε.

Remark 5. If we renorm the W s,p(Ω) spaces by

|f |pW s,p =
{

{

(1− s)‖f‖pW s,p , 0 < s < 1

‖f‖pW 1,p , s = 1,

the above computation yields

|f |pWσ,p ≤ C|f |pW s,p .0 < σ < s ≤ 1 for
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some constant C independent of s and σ.

Counterexample 1: a sequence (fn) unbounded in Lp and a sequence of radial mollifiers(ρn)
such that

(37)

∫

Ω

∫

Ω

|fn(x)− fn(y)|
p

|x− y|p
ρn(x− y)dxdy ≤ C.

We take Ω = (0, 1).

Fix some function f ∈ Lp
loc(R), non-constant, periodical of period 1, such that

1
∫

0

f(x)dx = 0( e.g. , f(x) = sin (2πx)).

Define gn(x) = f(nx),so that ‖gn‖
p
Lp =

1
∫

0

|f(x)|pdx = C.

Clearly,
1
∫

0

|gn(x = 1
n
)− gn(x)|

pdx = 0. Since that translations are continous in lp, we may

find some 0 < δn < 1
2n

such that
1
∫

0

|gn(x+ h)− gn(x)|
pdx ≤ 1

n2p
for |h± 1

n
| < δn.

Let ρ−N = 1
4δn

(χ 1
n
−δn,

1
n
+δn) + χ(− 1

n
−δn,−

1
n
=δn)).

Then clearly
∫

Ω

∫

Ω

|gn(x)− gn(y)|

|x− y|p
ρn(x− y)dxdy ≤

C

np
.

Finally, the functions fn = ngn satisfy the desired inequality (37) and ‖f −N‖ − Lp ∼ n.

Counterexample 2: the sequence (gn) constructed above is bounded in lp, is not rela-
tively compact in Lp, and yet it satisfies

∫

Ω

∫

Ω

|gn(x)− gn(y)|
p

|x− y|p
ρn(x− y)dxdy ≤ C.
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