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Theorem 1. Assume f ∈ W 1,p (Ω), 1 ≤ p < ∞ and let ρ ∈ L 1 (R n ), ρ ≥ 0. Then Ω Ω |f (x) -f (y)| p |x -y| p ρ(x -y)dxdy ≤ C f p W 1,p ρ L 1
where C depends only on p and Ω.

Next, we take a sequence (ρ n ) of radial mollifiers, i.e.

ρ n (x) = ρ n (|x|)

ρ n ≥ 0, ρ n (x)dx = 1 lim n→∞ δ ∞
ρ n (r)r n-1 dr = 0 for every δ > 0.

Theorem 2. Assume f ∈ L p (Ω), 1 < p < ∞. Then

lim n→∞ Ω Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dxdy = K p,N f p W 1,p ,
with the convention that f W 1,p = ∞ if f / ∈ W 1,p . Here K p,N depends only on p and N .

When p = 1 we have the following variants Theorem 3. Assume f ∈ W 1,1 . Then

lim n→∞ Ω Ω |f (x) -f (y)| |x -y| ρ n (x -y)dxdy = K 1,N f W 1,1
where K 1,N depends only on N .

Theorem 3'. Assume f ∈ L 1 (Ω). Then f ∈ BV (Ω) if and only if

lim inf n→∞ Ω Ω |f (x) -f (y)| |x -y| ρ n (x -y)dxdy < ∞,
and then

C 1 f BV ≤ lim inf n→∞ Ω Ω |f (x) -f (y)| |x -y| ρ n (x -y)dxdy ≤ lim sup n→∞ Ω Ω |f (x) -f (y)| |x -y| ρ n (x -y)dxdy ≤ C 2 f BV . (1) 
Here C 1 and C 2 depend only on Ω, and

f BV = Ω |∇f | = Sup    Ω f divϕ ϕ ∈ C ∞ 0 (Ω; R N ), |ϕ(x)| ≤ 1 on Ω    .
Remark 1. In dimension N = 1 we can prove that for every f ∈ BV

lim n→∞ Ω Ω |f (x) -f (y)| |x -y| ρ n (x -y)dxdy = K 1,1 Ω |∇f |,
where K 1,1 is the same constant as in Theorem 3. We do not know whether the same conclusion holds when N ≥ 2 (even for a special sequence of mollifiers).

Here are some simple consequences of the above results (and their proofs), where K denotes various constants depending only on p and N .

Corollary 1. Assume f ∈ W 1,p (Ω) with 1 ≤ p < ∞. Then Ω |f (x) -f (y)| p |x -y| p ρ n (x -y) dy -→ K p,N |∇f (x)| p in L 1 (Ω). Corollary 2. Assume f ∈ L p , 1 < p < ∞. Then lim ε→0 ε f p W 1-ε,p = K f p W 1,p . Corollary 3. Assume f ∈ L p , 1 < p < ∞. Then lim ε→0 ε N |x-y|<ε |f (x) -f (y)| p |x -y| p dxdy = K f p W 1,p . Corollary 4. Assume f ∈ L p , 1 < p < ∞. Then lim ε→0 1 |logε| |x-y|>ε |f (x) -f (y)| p |x -y| N+p dxdy = K f p W 1,p .
Remark 2. P. Mironescu and I. Shafrir [] have studied related limits, e.g., when N = 1 and f ∈ BV (0, 1)

lim ε→0 1 |logε| |x-y|>ε |f (x) -f (y)| 2 |x -y| 2 dxdy.
The case where f ∈ BV (Ω) is not fully satisfactory; we have only partial results, for example

Corollary 5. Assume f ∈ L 1 . Then C 1 f BV ≤ lim inf ε→0 ε Ω Ω |f (x) -f (y)| |x -y| N+1-ε dxdy ≤ lim sup ε→0 ε Ω Ω |f (x) -f (y)| |x -y| N+1-ε dxdy ≤ C 2 f BV .
Remark 3. In particular when f = χ A is the characteristic function of a measurable set A having finite perimeter, then

χ A BV ≤ C lim inf ε→0 ε Ω\A A dxdy |x -y| N+1-ε
and in view of the isoperimetric inequality

|A||Ω \ A| (N-1)/2N ≤ C lim inf ε→0 ε Ω\A A dxdy |x -y| N+1-ε If A is a measurable subset of Ω ⊂ R N , N ≥ 1, such that Ω\A A dxdy |x -y| N+1 < ∞,
then either |A| = 0 or |Ω \ A| = 0. This fact was already established in Bourgain, Brezis and Mironescu [START_REF] Adams | Sobolev spaces[END_REF] (Appendix B) with a different proof (see also Bourgain, Brezis and Mironescu [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] and Brezis []).

Proofs

Proof of Theorem 1. By standard extension we may always assume that f ∈ W 1,p (R N ) and then there is some constant C = C(p, N ) such that (2)

R N |f (x + h) -f (x)| p dx 1/p ≤ |h| f W 1,p (R N ) ≤ C|h| f W 1,p (Ω) ,
for all f ∈ W 1.p and h ∈ R N (see, e.g., Brezis [], Proposition IX.3). By (2), we obtain

Ω Ω |f (x) -f (y)| p |x -y| p ρ(x -y)dxdy ≤ R N 1 |h| p R N |f (x + h) -f (x)|dxdh p ≤ C p f p W 1,p R n ρ(h)dh = C p f p W 1,p ρ 1 L .
Proof of Theorem 2. For f ∈ L p , let

F n (x, y) = |f (x) -f (y)| |x -y| ρ 1/p n (x -y).
Assuming first that f ∈ W 1,p , we have to prove that

(3) lim n→∞ F n p L p = K f p W 1,p ,
for some K = K p,N . By Theorem 1, we have, for any n and f, g

∈ W 1,p , (4) 
F n -G n L p ≤ C f -g W 1,p ,
for some constant C independent of n, f and g. Therefore it suffices to establish (3) for f in some dense subset of W 1,p , e.g., for f ∈ C 2 ( Ω).

Fix some f ∈ C 2 ( Ω). Then

|f (x) -f (y)| |x -y| = |(∇f )(x) • x -y |x -y| + 0(|x -y|).
For each fixed x ∈ Ω,

Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dy = |x-y|<dist(x,∂Ω) |f (x) -f (y)| p |x -y| p ρ n (x -y)dy + |x-y|≥dist(x,∂Ω) |f (x) -(y)| p |x -y| p ρ n (x -y)dy. (5) 
Clearly, the last integral in (5) tends to 0 as n → ∞. On the other hand, with R = dist(x, ∂Ω), we have

|y-x|<R |f (x) -f (y)| p |x -y| p ρ n (x -y)dy = R 0 ρ n (r) |y-x|=r (∇f )(x). x -y |x -y| p + (|x -y|) p ds y dr = R 0 ρ n (r) |ω|=r (|(∇f )(x) • ω |ω| | p + 0(r p ))ds w dr = R 0 |S N-1 |K|∇f (x)| p r N-1 ρ n (r)dr + 0( R 0 r n+p-1 ρ n (r)dr),
where

K = K p,n = ω∈S n-1 |ω N | p ds ω /|S n-1 | = ω∈S N -1 |ω N | p ds ω Therefore, (6) 
Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dy -→ K|∇f (x)| p , ∀x ∈ Ω. If L is such that |f (x) -f (y)| ≤ L|x -y|, ∀x, y ∈ Ω, then (7) 
Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dy ≤ L p , ∀x ∈ Ω.
Hence (3) for f ∈ C 2 ( Ω) follows by dominated convergence from ( 6) and (7).

In order to complete the proof of Theorem 2, to suffices to prove that, if f ∈ L p and lim inf

n→∞ Ω Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dxdy < ∞, then f ∈ W 1,p .
Recall that, for some C 1 > 0,

f W 1,p ≤ C 1 sup Ω f ∂ i ϕ ; ϕ ∈ C ∞ 0 (Ω), ϕ L p1 ≤ 1, i = 1, ..., N .
Fix some ϕ ∈ C ∞ 0 (Ω) and some i ∈ {1, ..., n} and consider the functions

x H n -→ (y-x)•e i ≥0 f (x) -f (y) |x -y| ρ n (x -y)ϕ(y)dy.
On the one hand, we have

Ω |H n (x)|dx ≤ Ω Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dxdy 1/p Ω Ω ρ n (x -y)|ϕ(x -y)| p ′ dxdy 1/p = ϕ L p ′ Ω Ω f (x) -f (y)| p |x -y| p ρ n (x-)dxdy 1/p . (8)
As above,

H n (x) n→∞ -→ f (x) (∇ϕ)(x) • ωds ω = {ω ∈ S N-1 , •ω i ≥ 0}f (x)(∇ϕ)(x)• ωds ω = C 2 f (x)(∇ϕ) • e i = C 2 f (x)∂ i ϕ(x), {w ∈ § N-1 ; w i ≥ 0}
for some C 2 > 0 depending only on N .

Therefore, by combining (8) and(9) we find

| Ω f (x)∂ i ϕ(x)dx| ≤ C 3 lim inf n→∞ Ω Ω |f (x) -f (y)| p |x -y| p ρ n (x -y)dxdy 1/p ϕ L p ,
for any ϕ ∈ C ∞ 0 (Ω). The proof of Theorem 2 is complete.

Proof of Corollary 1. The conclusion is clear when f ∈ C 2 ( Ω). For a general ∈ W 1,p , the statement follows by density using [START_REF] Brezis | Analyse fontionnelle[END_REF].

The proof of Theorem 3 is the same as the first part of the proof of Theorem 2, since smooth functions are dense in W 1,1 .

Proof of Theorem 3. The last inequality in (1) is proved as in Theorem 1. The first inequality in ( 1) is proved as in the second part of the proof of Theorem 2 (using duality).

Finally, we return to Remark 1 and prove that , for f ∈ L 1 ((0, 1)), ( 10) lim

n→∞ 1 0 1 0 |f (x) -f (y)| |x -y| ρ n (x -y)dxdy = f BV Clearly, if f ∈ BV ((0, 1)), then |f (x + h) -f (x)|dx ≤ |h| f BV ,
and therefore, as in the proof of Theorem 1, (11) lim sup

n→∞ 1 0 1 0 |f (x) -f (y)| |x -y| ρ n (x -y)dxdy ≤ f BV . Assume now that f ∈ L 1 is such that lim inf n→∞ 1 0 1 0 |f (x) -f (y)| |x -y| ρ n (x -y)dxdy < ∞
Then, for any fixed ϕ ∈ C ∞ 0 ((0, 1)) with |ϕ| ≤ 1, we have

1 0 1 0 |f (x) -f (y)| |x -y| ρ n (x -y)dxdy ≤ 1 0 1 0 f (x) -f (y) y -x ρ n (x -y)ϕ(y)dy = 1 0 1 0 f (x)ρ n (x -y) ϕ(y) -ϕ(x) y -x dydx. (12)
As in the proof of Theorem 3, we find that

1 0 f (x)ϕ ′ (x)dx ≤ lim inf n→∞ 1 0 1 0 |f (x) -f (y)| |x -y| ρ n (x -y)dxdy, ∀ϕ ∈ C ∞ 0 (Ω) with|ϕ| ≤ 1. ( 13 
)
Equality (10) follows from (11) and (13).

The case of a sequence (f n )

In the previous sections, f was a fixed function. Throughout this section, we assume that (f n ) is a sequence of L p functions satisying the uniform estimate ( 14)

Ω Ω |f n (x) -f n (y)| p |x -y| p ρ n (x -y)dxdy ≤ C 0 ,
where Ω is a smooth bounded domain in R N , 1 ≤ p < ∞, and (ρ n ) is a sequence of radial mollifiers. Without loss of generality, we may also assume the normalization condition (15) Ω f n (x)dx = 0, ∀n.

Theorem 4. Assume ( 14), ( 15) and

(16) For each n, the function t ∈ (0, ∞) → ρ n (t)is non-increasing.
Then the sequence (f n ) is relatively compact in L p and (up to a subsequence) we may assume that

f n → f in L p . Moreover, a) if 1 < p < ∞, then f ∈ W 1,p and f p W 1,p ≤ C(p, Ω)C 0 ; b) if p = 1, then f ∈ BV and f BV ≤ C(Ω)C 0 .
Remark 4. In view of Theorems 2 and 3, the additional assumption (16) may seem artificial. Actually, it is possible to slightly weaken (16); for example we may assume

(17) ρ n (t) ≥ C 1 ρ n (s), ∀ n, ∀t ≤ s,
Form some C 1 independent of n, t, s.

However, the conclusions of Theorem 4 fail for bf general ρ ′ n s. We shall give below a counterexample where the sequence (f n ) need not be relatively compact in L p (Counterexample 2).

Here are two examples of interest

Corollary 6. For 1 ≤ p < ∞, let (f ε ) be a family of L p functions such that |x-y|<ε |f ε (x) -f ε (y)| p |x -y| p dxdy ≤ C 0 ε N .
Then, up to a subsequence,

(f ε) converges in L p to some f ∈ W 1,p ( for1 < p < ∞) or f ∈ BV ( forp = 1). Corollary 7. For1 < p < ∞, let f ε ∈ W 1-ε,p . Assume that ε f ε p W 1-ε,p ≤ C 0 .
Then, up to a subsequence, (f ε) converges in L p (and, in fact, in W 1-δ,p , for all δ > 0) to some f ∈ W 1,p .

Proof of Theorem 4

The heart of the proof consists of showing that (f n ) is relatively compact in L p . The rest is done as in the second part of the proof of Theorem 2.

Without loss of generality, we may assume that Ω = R N and that supp f n ⊂ B, a ball in R N of diameter 1. This can be achieved by extendeing each function f n by reflection across the boundary in a neighborhood of ∂Ω. Using the monotonicity assumption (16), we see that assumption (14) still holds.

In order to prove compactness in L p , we rely on the Riesz-Fréchet-Kolmogorov theorem(see, e.g., Brezis [], Théorème IV.25) or rather its proof: let, for δ > 0, Φ δ be the mollifier

Φ δ = 1 |B δ (0)| χ B δ (0) . Then (f n ) is relatively compact in L p (Ω) if and only if (18) f n L p ≤ C and (19) lim δ→0 (lim sup n→∞ f n -f n * Φ δ L p ) = 0.
For each n and t > 0, let

F n (t) = ω∈S N -1 R N |f n (x + tω) -f n (x)| p dxdσ = 1 t N-1 |h|=t R N |f n (x + h) -f n (x)| p dxdσ.
Unsing the triangle inequality, we obtain (20)

F n (2t) ≤ 2 p F n (t).
In terms of F n , assumption (14) can be expressed as (21)

1 0 t N-1 F n (t) t p ρ n (t)dt ≤ C 0 . We claim that (22) |f n (x)| p dx ≤ C 1 0 t N-1 F n (t)dt and (23) |f n (x) -(f n * Φ δ )(x)| p dx ≤ Cδ -N δ 0 t N-1 F n (t)dt,
for some C independent of n and δ.

We prove for example (23):

|f n (x) -(f n * Φ δ )(x)| p dx = |f n (x) - 1 |S N-1 |δ n |y-x|<δ f n (y)dy|dx p = 1 (|S N-1 |δ N ) p | |y-x|<δ (f n (x) -f n (y))dy| p dx ≤ 1 |S N-1 | δ -N |y-x|<δ |f n (x) -f n (y)| p dxdy = 1 |S N-1 | δ -N |h|<δ ( |f n (x + h) -f n (x)| p dx)dh = Cδ -N δ 0 t N-1 F n (t)dt.
The proof of ( 22) is similar, since

f n (x) = f n (x)- B f r (y)dy.
We are going to establish below the key inequality

(24) δ -N δ 0 t N-1 F n (t) t p dt ≤ C( δ 0 t N-1 F n (t) t p ρ n (t)dt)/( |x|<δ ρ n (x)dx).
Assume (24) has been moved, then we proceed as follows since.

lim

N→∞ |x|<δ ρ n (x)dx = 1,
by combining ( 14) with (24) we find

(25) δ -N δ 0 ddt N-1 F n (t) t p dt ≤ C for n ≥ n δ .
In particular, we have

(26) δ -N δ 0 t N-1 F n (t)dt ≤ Cδ p for n ≥ n δ
Inequalities (18), (19)-and thus the conclusion of Theorem 4-follow from ( 22), ( 23) and (26).

It remains to establish inquality (24). Note that it is a particular case (g(t) = F n (t) t p , h(t) = ρ n (t)) of the following varian of an inequality due to Chebyshev:

Lemma. Let g, h : (0, δ) → R + . Assume that g(t) ≤ g(t/2), t ∈ (0, δ), and that h is non-increasing.

Then, for some C = C(N ) > 0,

δ 0 t N-1 g(t)h(t)dt ≥ Cδ -N δ 0 t N-1 g(t)dt δ 0 t N-1 h(t)dt.
Proof of the lemma: It suffices to consider the case δ = 1; the general case follows by scaling. We have

1 0 t N-1 g(t)h(t)dt = j≥0 1/2 j 1/2 j+1 t N-1 g(t)h(t)dt = j≥0 1 2 Nj 1 1/2 S N-1 g( s 2 j )h( s 2 j )ds = 1 1/2 j≥0 1 2 Nj g( s 2 j )h( s 2 j )ds, ( 27 
)
and a similar equality holds for 1 0 t N-1 g(t)dt. We recall the classical Chebyshev inequality: if G, H : X → R, u a positive measure on X and (G(x)-G(y))(H(x)-H(y)) ≥ 0, ∀x, y ∈ X,then In particular, if α j ≥ 0 and the sequences (a j ), (b j ) have the same nonotonicity, then (28) α j a j b j ≥ 1 α j α j a j α j b j .

Since for each s ∈ (1/2, 1), the sequence (g( s 2 j )) and (h( s 2 j ) are non-decreasing, (28) with

α j = 1 2 N j yields (29) j≥0 1 2 Nj g( s 2 j )h( s 2 j ) ≥ C j≥0 1 2 Nj g( s 2 j ) j≥0 1 2 N j h( s 2 j ).
Now clearly, for each s ∈ (1/2, 1) and each j ≥ 1,

1 2 Nj h( s 2 j ) ≥ 1 2 Nj h( s 2 j ) ≥ C 1/2 j-1 t N-1 h(t)dt,
for some C independent of j, so that 1/2 j (30)

j≥0 1 2 Nj h( s 2 j ) ≥ C 1 0 t N-1 h(t)dt.
It follows from (2g) and (30) that (31)

j≥0 1 2 Nj g( s 2 j )h( s 2 j ) ≥ C 1 0 t N-1 h(t)dt j≥0 1 2 Nj g( s 2 j ).
Inserting (31) into (27), we find

1 0 t N-1 g(t)j(t)dt ≥ C 1 0 t N-1 j(t)dt 1 1/2 j≥0 1 2 Nj g( s 2 j )ds = C 1 0 t N-1 h(t)dt 1 0 g(t)dt.
the proof of Theorem4 is complete.

Returning to Corollary7, we still have to prove that, for any δ > 0, we have ε > 0

f ε W 1-s,p ≤ C
Considering the same functions f ε(t), as above (relative to the parameter ε instead of n we have to prove that (32)

1 0 F ε(t) t (1-δ)p+1 dt ≤ C, for smallε > 0, under the assumption (33) ε 1 0 F ε(t) t (1-ε)p+1 dt ≤ C.
the proof is similar to that of the Lemma, so we just sketch it. We start by rewritting (32) and (33) as (34)

1 0 1 t 1-sp F ε(t) t p dt ≤ C and (35) 1 0 1 t 1-sp F ε(t) t p ε t (s-ε)p dt ≤ C.
We continue as in the proof of the lemma, with g(t) = F ε(t) t p and h(t) = ε t (s-ε)p , and take 0 < ε < δ.

We finally find (36)

1 0 1 t 1-sp F ε(t) t p ε t ( s -ε)p dt ≥ C 1 0 1 t 1-sp F ε(t) t p dt
for some C depending possibly on S, but not on ε. We take Ω = (0, 1).

Fix some function f ∈ L p loc (R), non-constant, periodical of period 1, such that Finally, the functions f n = ng n satisfy the desired inequality (37) and f -N -L p ∼ n.

Counterexample 2: the sequence (g n ) constructed above is bounded in l p , is not relatively compact in L p , and yet it satisfies 

Remark 5 .

 5 If we renorm the W s,p (Ω) spaces by yields |f | p W σ,p ≤ C|f | p W s,p .0 < σ < s ≤ 1 for some constant C independent of s and σ. Counterexample 1: a sequence (f n ) unbounded in L p and a sequence of radial mollifiers(ρ n ) such that (37) Ω Ω |f n (x) -f n (y)| p |x -y| p ρ n (x -y)dxdy ≤ C.

1 0fp = 1 0 1 0 1 2 n such that 1 0 1 n -δ n , 1 n 1 n -δ n ,- 1 n

 111111111 (x)dx = 0( e.g. , f (x) = sin (2πx)).Define g n (x) = f (nx),so that g n p L |f (x)| p dx = C.Clearly,|g n (x = 1 n ) -g n (x)| p dx = 0.Since that translations are continous in l p , we may find some 0 < δ n <|g n (x + h) -g n (x)| p dx ≤ 1 n2p for |h ± 1 n | < δ n . Let ρ -N = 1 4δ n (χ +δ n ) + χ (-=δ n ) ). Then clearly Ω Ω |g n (x) -g n (y)| |x -y| p ρ n (x -y)dxdy ≤ C n p .

  Ω Ω |g n (x) -g n (y)| p |x -y| p ρ n (x -y)dxdy ≤ C.