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LIFTING IN SOBOLEV SPACES

JEAN BoURGAIN(Y)| HaiM Brezis(?):(3) AND PETRU MIRONESCU (Y

Introduction.

Let © C R™ be a (smooth) bounded domain which is connected and simply connected.
Given a function u : Q — St (ie., u: Q — C and |u(z)| = 1 a.e.) we may write pointwise

u(x) = et (@)

for some function ¢ : 2 — R. The objective is to find a lifting ¢ “as regular as u permits.”
For example, if u is continuous one may choose ¢ to be continuous and if u € C* one
may also choose ¢ to be C*. A more delicate result asserts that if w € VMO (= vanishing
means oscillation), then one may choose ¢ to be also VMO (see R. Coifman and Y. Meyer
[1] and H. Brezis and L. Nirenberg [1]). In this paper we study the question of lifting in the
framework of the Sobolev spaces WP with 0 < s < co and 1 < p < oco. The motivation
comes from problems of the Ginzburg-Landau type where one considers questions such as
Min [ |Vu|? in the class of functions u : @ — S! (see e.g. F. Bethuel, H. Brezis and F.
Hélein [1}).

The first result in that direction is

Theorem (F. Bethuel and X. Zheng [1]). Assume
uwe WhP(Q;8Y)  with p > 2,

then u may be written as u = €' for some p € WHP({;R).

Surprisingly the restriction p > 2 is optimal in any dimension n > 2, i.e., given any
p < 2 there is some u € WP which cannot be lifted by a ¢ € WP (such examples will
be given later; see Section 4).

We address the same questions in all Sobolev spaces W*P. Here is a summary of our
main results:

Theorem 1. Assumen =1,0 < s < oo and 1 < p < oco. Then the answer to the lifting
question in W*P is always positive.

Typeset by AMS-TEX
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Theorem 2. Assumen > 2,0< s < 1and1 < p < oo. The answer to the lifting question
in W#%P js:
a) positive if sp < 1,
b) negative if 1 < sp < n,
¢) positive if sp > n.
Theorem 3. Assume n > 2,1 < s < oo and 1 < p < oo. The answer to the lifting
question in W*P js:
a) negative if sp < 2,
b) positive if sp > 2.

In these statements “positive” means that every u € W*P(Q;S!) may be written as
u = e'¥ for some ¢ € W*P(Q;R) and “negative” means that for some u’s in W*P(§; Sh
there is no ¢ € W*P(Q;R) such that u = e'¥.

As a simple consequence of the theorems when p = 2, i.e., for H® = W*2, we have
Corollary 1. When n = 1 the answer to the lifting problem in H® is always positive.
When n > 2 the answer to the lifting problem in H® is:
a) positive if 0 < s < 1/2,
b) negative if 1/2 < s < 1,
c¢) positive if s > 1.

The proof of Theorems 1 and 2 when sp < 1 turns out to be quite involved (even for
the H® case, s < 1/2, and even when n = 1). It relies on a characterization, due to G.
Bourdaud [1] (see also the earlier paper of R. Devore and V. A. Popov [1]), of the W*P
space when sp < 1; for the convenience of the reader, and also because we make use of
sharp estimates, we have presented a proof in a separate section, Appendix A.

In view of the Corollary for n > 2, a function u € HY/?(Q; S') need not have a lifting
@ € HY?(Q;R); however, it has a lifting ¢ in H*, Vs < 1/2. We prove (see Appendix E)

Theorem 4. Assume @ is a cube in R",n > 1. For every u € H*(Q; SY) with0 < s <1/2
one may find a ¢ in H® such that u = e'¥ and satisfying the (optimal) estimate

Il < C(1—28)72 )z
with C independent of u and independent of s (for s near 1/2).

Such an estimate is useful in deriving bounds for the Ginzburg-Landau functional when
the boundary condition belongs to H'/2. For example, let Q be a cube of R™,n > 1, and
let Q = Q x (0,1). For any function g € H'/?(Q;C), set

H;(Q = {u(z,t): Q@ —C ;/Q \Vu|*dzdt < oo and u(z,0) = g(x) on Q},

1 1
B(w) =5 [ Vel + 35 [ (ul =12



LIFTING IN SOBOLEV SPACES 3

where V denotes the full gradient (in (z,1)).
Theorem 5. For every g € H'/2(Q; S') we have, for e > 0,

— ] 2
E. = uehl/jllilr(lﬂ) E.(u) < Clog(1/e)|lgll 71,2

where C' is independent of € and of g.
For variants of Theorem 5, see Remark 8 in Section 5.

The plan of the paper is the following:

1. Proof of Theorems 1 and 2 when sp < 1

Proof of Theorem 1 when sp > 1 and of Theorem 2 when sp > n
Proof of Theorem 3 when sp > 2

Examples of obstruction in Theorems 2 and 3

ANl

Control of lifting in the H*-norm for s < % and application to Ginzburg-Landau
Appendix A. A characterization of W*P({2;R) when sp < 1

Appendix B. Functions in W*P({); Z) are constant when sp > 1

Appendix C. Composition in fractional Sobolev spaces

Appendix D. Gagliardo-Nirenberg inequalities and products in fractional Sobolev spaces

Appendix E. Behaviour of the H®-norms of lifting for s < % Proof of Theorem 4
Appendix F. Martingale representation and lifting in H*"P

1. Proof of Theorems 1 and 2 when sp < 1.

Here, the assumption that €2 is simply connected is not needed since we may always
extend the given function by a constant outside €2; the resulting function still belongs to
W#P since sp < 1 (this is a well-known fact, see e.g. Lions-Magenes [1], Section 1.11 when
p = 2 and the references therein; it is also a consequence of the characterization of W#?
in Appendix A). Thus, we may assume that {2 = (0,1)" and we use the same notation as
in Appendix A.

Let u € W*P(; S1). For each j = 0,1,..., consider the function U; € &; defined by
Ej(u)(z) i
U(z) = { B if Ej(u)(x) # 0
! if 15 (u) () = 0.

Clearly U; — u a.e. on  (since Ej(u) — u a.e. and |u| =1 a.e.) For each j =0,1,... we
construct a real-valued function ¢; € &; such that

(1.1) e =U; on ,
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(1.2) i — i1l < ClU; —Uj-a|  on (L

Note that (1.2) can be achieved by induction on j, for example with C' = 7 /2.
On the other hand, observe that for every £, n,( € C with |(| = 1, we have

£ _n _ _
(1.3) : W\smc El+1¢—nl)

with the convention that § = 1 (consider separately the case where |£[,|n| > 1/2 and the
case where either |£| < 1/2 or |n| < 1/2).

Applying (1.3) to & = E;(u)(z), n = Ej_1(u)(x) and { = u(z) we obtain a.e. on 2
(1.4) Uj = Uj—1| < 4(Ju — Ej(u)| + [u — Ej 1 (u)]).

Combining this with (1.2) yields

(1.5) loj — wj—1] < C(lu— Ej(u)| + [u — Ej—1(u)])

and thus

(1.6) Z 2P || — pj—1|lf» < CZ 2 ||u — E;(u)||,.
i>1 >0

Applying Theorem A.1 and Corollary A.1 in Appendix A, we conclude that ¢; — ¢ in LP
with ¢ € W*P, ¥ = u, and

(1.7) [ellwer < Cllullwe.

We may always assume (by adding to ¢ an integer multiple of 27) that

|/4p|§27r.
Q

Thus, we have constructed a function ¢ € W*? such that ¥ = u and

(1.8) lellze + lleliwer < OO+ lullwsr).

Remark 1. One should observe the linear dependence while in the continuous case there
is no bound whatsoever for ||p||L~ in terms of ||u||1; see also Remark 3 where we show
that there is no bound for ¢ in H'/2 in terms for ||u||z1/2> in one dimension despite the
fact that every v € H'/? has a (unique) lifting in H/2.

Remark 2. The function ¢ constructed above also belongs to every L9, q < co. This may
be easily seen by observing that u € WP N L> C W1 for every o < s with oq = sp (by
the Gagliardo-Nirenberg inequality, see Appendix D). Therefore ¢ belongs to every such
W4, Choosing o close to zero we obtain a ¢ which is arbitrarily large.
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2. Proof of Theorem 1 when sp > 1 and of Theorem 2 when sp > n.

When sp > 1 in Theorem 1 or sp > n in Theorem 2, u is continuous by the Sobolev
imbedding theorem and, locally, we may consider ¢ = —ilogu which is well-defined and
singlevalued. To conclude, we rely on a lemma about composition:

Lemma 1. Assumen >1, 0 <s<ooand1l <p < oo. Let v € W*P(Q)N L> () and let
® € C. Then ® o v € W*?(Q).

The proof is very simple when 0 < s < 1 (using the definition of W*P? and the fact that
® is Lipschitz on the range of v). This lemma is also well-known when s is an integer,
with the help of the Gagliardo-Nirenberg inequality. When s > 1 is not an integer the
argument is more delicate; we refer to Escobedo [1] and Lemma C.1 in Appendix C.

We now turn to the proof of Theorem 1 when s = 1/p; the proof of Theorem 2 when
s = n/p is identical and we omit it. Set [ = Q = (0,1).

By standard trace theory there is some @ € W*+1/PP(12; R?) such that
u(x,0) = u(x).
Since u takes its values into S* one may expect that, near I x {0}, @ takes its values “close”

to S'. This is not true for a general extension %. However, special extensions have that

property. For example

Tty
iz y) = — / u(t)dt

2y Ju—y
(u is extended by symmetry to the interval (=2, +2)) has the property that @ € Ws+1/p:»,
and moreover, |t(z,y)| — 1 uniformly in = as y — 0. This is a consequence of the
fact that W*P C VMO in the limiting case of the Sobolev imbedding (see e.g. Boutet de
Monvel-Berthier, Georgescu and Purice [1],[2], Brezis and Nirenberg [1]). Similarly, any
harmonic extension @ of u in I? has also the same property (see Brezis and Nirenberg [2],
Appendix 3). If we consider v = @/|@| in a neighborhood w of I x {0} in I? we have an
extension v of u such that
v e WsH/Pp(y: 51,

Here, we have used again Lemma 1.

Let us now explain how to complete the proof of the theorem when p = 2,
i.e., u € HY/?(I;S'). From the above discussion we have some extension v of u, with
ve H (w; SY).

Applying the theorem of Bethuel and Zheng we may write
v=eY
for some 1 € H'(w;R) and then ¢ = 1), has the required properties.

We now turn to the general case. Here, we shall use the following lemma about products
in fractional Sobolev spaces. Its proof is presented in Appendix D when = R”™ (see
Lemma D.2). The case of a smooth domain 2 follows by extending the functions to R".
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Lemma 2. Assume s> 1and1 < p < oo. Let
frg € WP(Q;R) N L™ (4 R)
where 2 is a smooth bounded domain in R"™. Then

fDg € WS 1P(Q).

Proof of Theorem 1 completed. We recall that there is a neighborhood @ of I x {0} in I?
and an extension v of u such that

v e Wet/Pr(Q; gt
Applying once more the same construction we find some
w e W@y, sty

where U is a neighborhood of @ x {0} in @ x I. (This construction is possible since
(s+1/p)p = 2, so that we are again in a limiting case for the Sobolev imbedding and thus
v € VMO. Iterating this construction we find some

Ce W5+(k/p),p(G; s
where G is a domain in R¥T1. Consider the first integer £ > 1 such that
s+ (k/p) = 1.
This choice of k£ implies that

s+l <1, j=0,1,... k-1,
p

so that, at each step, standard trace theory applies (recall that a function in W*? has an
extension in W*+1/PP provided s is not an integer).

. From the Gagliardo-Nirenberg inequality (see Lemma D.1) we have
¢ e WhFL(@; sh.
Applying the theorem of Bethuel and Zheng, we may write
(2.1) ¢=¢e"
for some ¢ € WHF+1(G;R). Differentiating (2.1) we find

Dy = —i(DC.
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By Lemma 2 we have

and hence
N= W5+(k/p),p(G)'

Taking back traces we obtain
o =1, € W>P(I)

and
u = e'?.

Remark 3. In one dimension we have established that every v € H'/2(Q;S') admits a
lifting € H'/2(Q; S1). Moreover, this lifting is unique modulo an additive constant (see
Appendix B) and the map u — ¢ is continuous from H'/? into H'/? (this can be established
using the same argument as in Step 7 of the proof of Theorem 4 in Brezis-Nirenberg [1]).
Surprisingly there is no bound whatsoever for ||| ;12 in terms of ||ul|g1/2. Here is
an example of a sequence (p,) such that ||on||gi1/2 — +oo while |[e| g1z < C. On
Q = (—1,+1) consider the sequence of functions ¢,, defined by

0 for —1<x<0
on(z) = 2mnx for0<z<1/n
2 for 1/n <z < 1.

Clearly ||¢n| z1/2 — +oo (since ¢, — @ = 1(g1) in L? and ¢ does not belong to H'/?).
In fact, a more precise computation left to the reader shows that |¢y| g1z > c(logn)/?
with ¢ > 0. On the other hand the reader will easily check (for example by scaling) that
|e#m — 1||z71/2 remains bounded. The same conclusion holds when H'/? is replaced by
W/PP with any p, 1 < p < 00.

Remark 4. As we have just pointed out there is no control of ¢ in HY? in terms of e*¥

in H'/2. There is, however, (in dimension one), an estimate for (p — 490) in the space
H'/2 £ Wb, equipped with its usual norm, in terms of ||€*?|| 1/2. Here is the argument,
working for simplicity with periodic functions. We may also assume (by density) that
¢ is smooth. Observe that the dual of HY2 + Wbt is H-/2 n W~1%. Given any

T e H'2AnW=5* write T = ¢ + ¢ for some ¢ € H'/?2 N L and some constant c.
Then

(T, o~ /90> = (', p— /90> =~ ¢").

But if we set u = €', then ¢’ = —iuu’ and thus

(T, o~ /90>| = [, quu’)| = [, ipu)| < [ull gz 0wl goe.
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Recall that H'/2 N L™ is an algebra (see e.g. Appendix D) and that

[Yull gz < CA[Wge + 9l ) (lull gz + llullze)
< CIT ([ gr-2/20w 200 ([[ul[ 22 +1).

We conclude that

l— /‘PHHU?—i—WlJ < Cllullgrrz((full gz +1).

The same estimate holds in higher dimensions if u belongs to the closure of C*°({); S1)
in H'/2(Q; S1); however, the argument is much more delicate and will be presented in our
forthcoming paper, Bourgain, Brezis and Mironescu [1].

3. Proof of Theorem 3 when sp > 2.

The case s = 1 in Theorem 3 coincides with the theorem of Bethuel and Zheng. For the
sake of completeness we present a proof which is simpler than the original one (see also
Carbou [1] for a similar idea).

Proof of the Bethuel-Zheng theorem. The idea is to assume that ¢ is known and to derive
some consequences. Writing v = uj + tue  with u; = cos¢ and ugs = sin ¢ we have

Duy = —(singp)Dp = —us Dy

and

Dug = (cos p)Dp = ui Dep.
Hence
(3.1) Dy = uyDus — usDuy.

The strategy is now to find ¢ by solving (3.1) with the help of a generalized form of
Poincaré’s lemma,

Lemma 3. Let1 < p < oo and let f € LP(Q;R™). The following properties are equivalent:
a) there is some ¢ € W1P(Q; R) such that

[ = Dy,

Ofi _ 0f;
833]' 8331

Vi,j, 1<4,j<n



LIFTING IN SOBOLEV SPACES 9

in the sense of distributions, i.e.,

[t =[5 vvecr@,

We emphasize that the assumption that €2 is simply connected is needed in this lemma.

Proof of Lemma 3. The implication a) = b) is obvious. To prove the converse, let f be
the extension of f by 0 outside  and let f. = p. x f where (p.) is a sequence of mollifiers.
The f.’s satisfy (3.2) on every compact subset of  (for € sufficiently small). In particular,
on every smooth simply connected domain w C €2 with compact closure in €, there is a
function 1. such that

Dy, = f. inw.

(Here we have used the standard Poincaré lemma). Passing to the limit we obtain some
Y € WHP(w) such that Dy = f in w. Finally, we write { as an increasing union of wy,
as above and obtain a corresponding sequence ,,. In the limit we find some ¢ € L ()
with Dy = f in ). Using the regularity of €2 and a standard property of Sobolev spaces
(see e.g. Maz’ja [1], Corollary in Section 1.1.11) we conclude that ¢ € WHP(Q).

Proof of the Bethuel-Zheng theorem completed. We will first verify condition b) of the
lemma for

(33) f = ulDuQ — uzDul

ie.,

u 6U2 —u 8U1
! 8331 2 8331 ’
Formally, property (3.2) is clear. Indeed, if u; and uy are smooth, then
8f1 _ 8f] —9 8U1 6U2 _ 8U1 6U2
833]' 8331 N 833]' 8331 8331 833]' ’

On the other hand, if we differentiate the relation

i =

[ul* = ui +uz =1

we find
ou ou
(3.4) Ut tus—2 =0 Yi=1,2,...,n
Thus, in R?, the vector (g—’g, g—’;j) is orthogonal to (u1,us3). It follows that the vectors
(g—’g, g—’;j) and (%, %) are colinear and therefore

(3.5) ~0.

det <g—132 %) . 8U1 6U2 8U1 6U2

a’LL1 auZ - A . - . .
oy o Ox; Or;  Ox; Ox;
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Hence (3.2) holds. To make this argument rigorous we rely on the density of smooth
functions in the Sobolev space WP (Q;R) (see e.g. Adams [1], Chap. III or Brezis [1],
Chap. IX): there are sequences (ui,) and (us,) in C*®°(Q;R) such that uy, — u; and
Uzn — uz in WEP(Q;R) and ||u1n||r~ < 1, ||uon||~ < 1.

[Warning: We do not claim that u, = (u1,,uz2,) takes its values in S!. The density of
C>®(Q; N) in WP(Q; N), where N is a compact manifold without boundary, e.g. N = S*,
is a delicate matter which has been extensively studied by Bethuel [1]. As a matter of fact,
the Bethuel-Zheng theorem can be used to prove the density of C>°(£2; St) in WP(Q; S1)
for p > 2.]

Set
fn - ulnDUQn - UQnDulna
so that
fo— f inLP
and
(36) 6f1n . 6f]n _ 2(8u1n 6u2n . 6u1n 6u2n)

833]' 8331 833]' 8331 8331 833]'

converges in LP/? to 2 (%g’;? — g’x‘? %). Multiplying (3.6) by ¢ € C3°(2), integrating
J i i J
by parts and passing to the limit (using the fact that p > 2) we obtain

O 0%, [ Duiduz  Our Ous
_/Q(ﬁ%j_fjaxi)_2/9(8xj Or;  Ox; 6333')@&

On the other hand (3.4) and (3.5) hold a.e. (even for any u € WP(Q;S!), 1 < p < o)
It follows that f satisfies b) of Lemma 3, and therefore there is some ¢ € WP(Q; R) such
that

f = De.

We will now prove that this ¢ is essentially the one in the conclusion of the Bethuel-Zheng
theorem.

Recall that if g, h € W1P(Q) N L*°(Q) with 1 < p < oo, then gh € WP and

9 oh  dg
0x; (gh) = g@xi + haxi'

Set
v=ue '?,

so that v € WP and
Dv = e “?(Du —iDyp) = ue™"?(uDu — iDyp)
= ue ¥ (uDu —if) = ue™¥ (u1Duy + usDug) =0 by (3.4).
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We deduce that v is a constant and since |v| = 1 we may write v = €’“ for some constant
C € R. Hence u = /¢t and the function ¢ + C has the desired properties.

We now turn to the proof of Theorem 3 when sp > 2. In fact, we have a more precise
statement:

Lemma 4. Assumen > 1,5 > 1,1 < p < co and sp > 2. Then any u € W*5P(Q; S1) may
be lifted as u = ¥ with o € WP(Q;R) N WLsP(Q; R).
Proof. Observe that

WP N L* Cc WhHeP

by the Gagliardo-Nirenberg inequality (see Lemma D.1). Since sp > 2 we may apply the
Bethuel-Zheng theorem and write u = €' for some ¢ € W*P(Q;R). Using Lemma 2 we
find that

Dy = —iuDu € W bP,

so that ¢ € W*P,

4. Examples of obstruction in Theorems 2 and 3.

We start with an example of obstruction in Theorem 2, i.e., when 0 < s < 1 and
1 <sp<n.

Lemma 5. Assume n > 2. Given any s and any p with 0 < s < 1, 1 < p < 00, and
1 < sp < n, there is some u € W*P(Q; S') which cannot be lifted, i.e., for this u no
p € W#*P(Q;R) exists such that u = e'¥.

Proof. Without loss of generality we may assume that €2 is the unit ball. Let

Y(x) = — with i O NP
|| p sp
and let
u=e",
We claim that
(4.1) u € WP(Q; Sh).

Indeed it is clear that

e whe ‘v’qwith1<q<L,
a+1

and thus

YeW? VowithO<o<1, ‘v’qwith1<q<%.
e
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Since u € L, we also know, by the Gagliardo-Nirenberg inequality (see Lemma D.1 in
Appendix D), that

ueWh Vite (0,1) Vre(l,00) withtr < .
a+1

In particular, we may choose t = s and r = p since sp < n/(a + 1), i.e., (4.1) holds.

Next we claim that there is no ¢ € W*P(Q;R) such that u = e¢*¥. Assume, by contra-

diction, that such ¢ exists. Set
1

7727r

(o =),
so that n takes its values in Z and
€ Wige (2\{0};Z)

(because 1 is smooth on 2\{0}). Since sp > 1 and Q\{0} is connected we conclude, using
Lemma B.1 in Appendix B, that n is a constant. Thus ¢ € W*P(Q;R). Note that, by

scaling, "
dzxd
A e

satisfies A(1) = rPA(r) with 8 = (a + s)p —n > 0 (by assumption on «). If A(1) < oo,
then A(1) =0 (by letting » — 0). But this is impossible. Thus A(1) = oo, i.e., b ¢ W*P.
A contradiction.

A topological obstruction. There is an alternative example of obstruction to lifting,
which is of topological nature.

Consider first the case n = 2. Set

(4.2) u(x) = |33_| on the unit ball  of R?,
x

Since
|Du(z)| < C/lx|

we see that u € Wh4(Q; S1) for every ¢ < 2 and therefore u € W*P(Q;S!) for every
s € (0,1) and every p € (1,00) with sp < 2 (by the Gagliardo-Nirenberg inequality; see
Lemma D.1), If, in addition, we assume sp > 1 then there is no ¢ € W*P(2; R) such that
u = €e?. Indeed set

= Q\([0,1] < {0})

and .
6 € (0,2m) with e = w.

Clearly 0 € C°°(€Y') and 6 has a jump of 27 along the segment [0,1] x {0}. Assume, by
contradiction, that u has a lifting ¢ € W*P(Q;R). Arguing as above we would conclude
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that 0 € W#*P(Q;R) but this is impossible since € has a jump of 27 along the segment
(0,1) x {0} and such a function cannot belong to W*P? with sp > 1.

When n > 3, the same construction as above with

(z1,22)
ulr) = ———-"-—+ x=(r1,T2,...,Tn
D= g T nem)
provides an example of a function u € W*?(£; S1) for every s € (0,1) and every p € (1, 00)
with sp < 2 and which has no lifting in W#%P? when sp > 1. However, this example does
not reach the optimal condition sp < n when n > 3.

Remark 5. The topological obstruction provides an example of loss of regularity in lifting.
To explain the phenomenon consider the simple case where p = 2. Recall (see Corollary 1)
that if u € H*(Q; S!) with 1/2 < s < 1, then, in general, u has no lifting in H®. From the
positive part in Corollary 1 one knows that u has a lifting in H(1/2-¢) Roughly speaking,
we lose (s — 1/2) derivative in the lifting.

Open Problem: When n > 3 the precise loss of regularity in lifting is not fully under-
stood. For simplicity consider the case n = 3 and p = 4. First a summary of the known
results:

a) If s < 1/4, any u € W4 has a lifting in W*4.

b) If s > 3/4, any u € W** has a lifting in W*4,

c) If 1/4 < s < 3/4 some u’s in W have no lifting in W*?.

d) The topological example provides an example of a function v € W4V s < 1/2, and

this u has no lifting even in W/%4,

It would be interesting to find an example of a function u € W** Vs < 3/4 which has
no lifting even in W1/44,

Finally, case b) in Theorem 3 relies on

Lemma 6. Assumen > 2. Given any s and any p with s > 1 and 1 < p < oo with sp < 2,
there is some u € W*P(§; S1) which cannot be lifted by a function p € W*P({);R).

Proof. Use the topological example u above. It is easy to see that u € WP Vs € (0, c0),
Vp € (1,00) with sp < 2. This u has no lifting even in W1/P:P,

5. Control of lifting in the H°-norm for s < ! and application to Ginzburg-

2
Landau.

We return to the particular issue of lifting a function u € H*(; S') when s < 1/2 and
s — 1/2. Recall (see Corollary 1) that, for every s < 1/2, v admits a lifting ¢ € H*(Q; R),
ie.,

(5.1) u = e
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We also know (see (1.7)) that we may find a ¢ € H® such that

lellzrs < Csllull e

Our aim is to find an optimal control for the constant Cs as s — 1/2. Such a control will
then be used in the study of the Ginzburg-Landau energy F. as ¢ — 0.

If we follow the proof in Section 1 we obtain a ¢ as a limit of sequence ¢; such that

(5.2) D 4905 = pj1lli: < CY 4% |lu — Ej(u)|3a

Jj=21 J=0

where here, and in what follows, C' without a subscript s denotes a constant which remains
bounded as s — 1/2. Following the proof of Corollary 1 we obtain

(5-3) > 4Ej(p) = Ejma(@)lze < C Y470 — wjallie.

Jj=21 Jj=21

We also recall (see Step 3 in Appendix A) that

(5.4) Y 4u— Ej(u)|72 < CllulF..
§>0

Combining (5.2), (5.3) and (5.4) yields

(5.5) D ANE (9) = Ejm ()72 < CllullFe.
Jjz1
Finally we know (see Corollary A.2 in Appendix A) that

1/2
(5.6) el < Cs | D 47 Ej(p) — Eja(9)ll7

Jj21

and the optimal constant C; for the inequality (5.6) is of the order of (1 —2s)~!. Hence
we deduce that the ¢ constructed by this technique satisfies

(5.7) ol s < C(1—28) " |ul| g

In fact, there is a more refined construction of lifting which yields a better estimate.
For simplicity we work in a cube @ of R?, d > 1; for more general domains see Remark
E.2 in Appendix E.
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Theorem 4. For every v € H*(Q;S') with 0 < s < 1/2 one may construct a ¢ €
H?*(Q;R) satisfying (5.1) and the (optimal) estimate

(5-8) Il < O —28)"2[ull -,

where C' is independent of u and independent of s as s — 1/2.

The reason why the previous construction does not yield the correct asymptotic as
s — 1/2 is due to “edge-singularities” at the nodes of our dyadic partitions P;. To
overcome this, we rely on an argument of translations which is explained in Appendix E
where we present the proof of Theorem 4. That type of argument has been exploited earlier
in slightly different contexts (for instance in comparing the usual and dyadic BMO-norms,
see Garnett and Jones [1]).

The next result is an application to the Ginzburg-Landau functional. Let @) be a cube
of R* d > 1, and let Q = Q x (0,1). For any function g € H/?(Q;C) set

1 ) ) 2 _
H,(Q) = {u(az,t) Q- (C,/Q |Vu|*dzdt < oo and u(z,0) = g(x) on Q} ,
Bow) =5 [ IVl + 5 [ (- 17
2 Q 4e2 Q ’
where V denotes the full gradient (in (z,t)).

Theorem 5. For every g € H'/2(Q; S') we have, for e > 0,

(5.9) E. = uel\giglr(lmEs(U) < Clog(1/e)l9l3/2

where C' is independent of € and of g.

Proof. Let s = s(e) < 1/2 to be specified. It follows from Theorem 4 (applied to g) that
g = e for some ¢ € H*(Q;R) satisfying

(5.10) el < C(1—25)""2|gll g2/2-

Denote p;s a §-smoothing of ¢ (with ¢ to be chosen later). Thus, we have
(5.11) e — wsllz2(Q) < CO°[lpll o) < C°(1 — 23)_1/2Hg”H1/2(Q)
also, by (5.10),
(5.12) lpsll 12y < CO° 2ol rs(q) < C(1 = 28) 72652l g]| gr1/2()-
Taking

(5.13) 1—2s~ (log1/8)~"
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we conclude that

(5.14) sl 1720y < ClUog1/8)"2 gl 11/2(q).

Let ¢5 denote some harmonic extension of @5 to {2 with

(5.15) 185l 1) < Cog1/8) |9l /2
and set

(5.16) Gs = e'¥s

so that

(5.17) |Gsll sy < Cl10 1/8) gl 2.

Let P denote some harmonic extension of (g — e?¥%) to ) satisfying the following three
estimates

IPllzrce) < Cllg = € |l /2
< Clgllarrzy + llesllzrr2(0))

(5.18) < C(log 1/6)'2||gll grr/2(q) by (5.14),
(5.19) 1P| oo () < Cllg — €% || o) < C,
and

1Pllrz() < Cllg = e |l2(q)

(5.20) < Cllo = wsllz2(q) < C8'/*(log 1/8) 2| |gl 12y by (5.11).
Define
(5.21) u=Gs+ P

so that by construction uj—g = g on Q.

¢From (5.17) and (5.18) we have

(5.22) [ullr @) < Clog(1/0)l19l1 /2 (q)-
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On the other hand, using (5.19) we find
[l = 1) < Ol - 1|Ju] + 1] < C|Jul - 1]
and since
|[ul = 1] = |lu| = |Gs|| < |u—Gs| = |P|

we are led to
623 [ (P -1 <0 [ PP < Colog1/Dlglace) by (520)
Combining (5.22) and (5.23) we obtain

Ec(u) < C(1+6/e*)10g(1/8) 1911312 (-

Choosing § = &2 yields the desired estimate (5.9).

Remark 6. In dimension d = 1, E. remains bounded as ¢ — 0 since we may write g = ¥
with some ¢ € H'/? and then take u = e’ where ¢ is some harmonic extension of ¢.
However, the bound for E. depends on g, not just on ||g|| ;1,2 (see also Remark 3).

Remark 7. In dimension d > 2, estimate (5.9) is optimal. This may be seen, for example
in dimension d = 2, by choosing for g the topological example described in Section 4,

g(r) =— onQ.

We claim that E. > alog(1l/e) for some constant o > 0. Indeed we may write for any

ue Hj(Q), 1
1 1
E.(u) > a/ dr/ (—|V(,u|2 + —(|ul® - 1)2) do
1/2 > 2 4e

where 3, = {(z,t) € Q ;|z|*> +t?> =72} and V, denote the tangential gradient on ¥,. We
then invoke the lower bound

1 2 1 2 2
— Voul” + — 1) > c(log1
2/ T| ul 122 T(|U| )” = c(log1/e)

which is known for a 2-dimensional flat disk (see Bethuel, Brezis and Hélein [1], Theorem
V.3) and can be transported to ¥, by a smooth diffeomorphism.

The fact that (5.9) is optimal when d > 2 shows in turn that (5.8) is also optimal for
d > 2. Indeed an estimate of the form |[p||zs < o((1 — 25)7'/2) in place of (5.8), would
yield E. < o(log 1/¢), which is impossible. When d = 1, estimate (5.8) is still optimal, but
this requires a separate argument (see Remark E.1 in Appendix E).
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Remark 8. Theorem 4 is still valid for a general smooth domain @ in R? (without any
topological assumption); see Remark E.2 in Appendix E. As a result, Theorem 5 is also
true in that situation. In Theorem 5 we may also take for 2 any smooth bounded domain
in R d > 1 and Q = 0Q; this is a consequence of the fact that Theorem 4 is still valid
when @ is a smooth d-dimensional manifold (see Remark E.2 in Appendix E). In that
case a more elementary (and simple) proof of (5.9) was obtained recently by T. Riviere
[3]. Estimate (5.9) plays a fundamental role in the asymptotic analysis (as ¢ — 0) of
Ginzburg-Landau minimizers (see Riviere [1], [2], Lin and Riviere [1], Sandier [1] and also
the forthcoming paper Bourgain, Brezis and Mironescu [1]).

APPENDIX A
A characterization of W5P(Q;R) when sp < 1
Let Q = (0,1)". For j = 0,1,... we denote by P; the dyadic partition of 2 into 27"
cubes of side 277 and by &; the space of functions from €2 into R (or C) which are constant
on each cube of P;. Given a function f € LP(2) we consider the function f; = E;(f) € &;

defined as follows: every = € €2 belongs to one of the cubes, say Q;(z), of the partition P;
and we set

£i(@) = B5(f) () :/Q o
Clearly we have

(A1) 1E; (e < [ flle V4,
(A.2) E;(f) — f in L? and a.e. as j — oo.

Theorem A.1. Assume sp < 1. Then

1 e ~ > 2PN E(f) = Bj—a ()

Jj=21

~ D 2P| f = B

J=0

Remark A.1. Theorem A.1 is due to G. Bourdaud [1] (see his Théoréeme 5 with m = 0
and also the earlier paper of R. Devore and V. A. Popov [1]). It gives a positive answer to
a conjecture of H. Triebel [1] (Conjecture 1) for the Haar system {h§—1,0)} in the spaces
B; , = W*P. The parameter £ = —1+1—0 = 0 and (for s > 0), the condition s < £+ (1/p)
is indeed sp < 1. For the convenience of the reader, and also because we are interested in
the behaviour of the sharp constants in the norm equivalence as sp — 1, we present below
a proof of Theorem A.1.

We have also made use of the
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Corollary A.1. Assume sp < 1 and let (¢;);=0,1,... be a sequence of functions on ) such

goee

that

(A.3) 0, €& Yj=01...
and

(A.4) > 2P||g; — |}, < 0.

J=21

Then ¢; — ¢ in LP and ¢ € W*P with

(A.5) lelfyen <CD 2P N05 — @illfs.
i>1

Remark A.2. Here || f||ws» denotes the standard semi-norm,

||f||€vs,p :/Q : |f(z) — f(y)|pda:dy.

o — gl

To work with a norm it suffices to add | [ f|.

Proof of Corollary A.1. From (A.4) we see that ¢; is a Cauchy sequence in L” and thus
wj — @ in LP. In order to prove that ¢ € W*P it suffices, in view of Theorem A.1, to
check that

(A.6) > 2| Ej(p) — Bj-a(9)|f, < oo
i>1
Note that
(A.7) Ej(p) — Ej—1(p) = Ej(p — @) = Ej—1(p —¢j-1) + 91 — i1
and thus
(A.8) 1Ej(¢) = Ej—1(@)llr < llo —@jllee + o — @j-1lle + loj — ©j-1llLe

On the other hand, if we write

0 — @ =(p; —@jr1) + (Pj+1 — @jr2) + -,

we see that

los — @llze <> llon — ortallze
k>j
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so that, by (A.8), we have

(A.9) 1E;(0) = Ej—1(0)lle <3 llok — @r1lle-
k>

Thus, by Hélder,

IEi(¢) = By-a(e)lar <3300 =i+ Dl - el
; 1/p
<3| ) (k= i+ DPllex — er-allfs > ¢
E>j k>j
and therefore
(A.10) 1E;(0) = Eima (), < CD (k=5 +1)llok — pralF,.

k=>j

Consequently

D_ 2B (@) = Eima(@)lE < €23 27 (k= + 1P len = eralls

Jj21 j21k2j

(A.11) =C Y 2" ox — pr-1lfpan
k>1

where

ap=» 2P0 (k- 41y

1<j<k
op =, P
__ 9Sp - __ 9Sp
=2 Z 9spl < Qoo =2 Z 9spl”
1<e<k =1

We deduce from (A.11) and Theorem A.1 that ¢ € W*P and

ol < CD 2P |l0; — 051 1h,

Jj=>1
Proof of Theorem A.1. Set
X = | fll5yer
Y =329 By (f) — B (DL,

Jj=21

7 = ZQSWHf — Ej(N)IIz»-

J=0

1

SR

1/p’
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We will prove that Y ~ Z and Z < CX without assuming sp < 1. That condition enters
only to prove that X < CY.
Step 1: Y < 7
Proof. We have, since E;_1(f) € £;_1 C &j,

Eij(Ej-1(f)) = Ej-1(f)
and thus
|E;(f) — Ej—1 (O] = |E;(f) — Ej(Ej-1(f))]-

Therefore
1E;(f) = Ej—1(Nllee <|f — Ej—1(f)llze

and the estimate Y < Z follows.
Step 2: Z < CY. Here the condition sp < 1 is not used; it suffices to have s > 0.
Proof. Set p; = E;(f); as in the proof of Corollary A.1 we obtain
If = eillee < D llow — or-allee
k>j+1
and, by Holder,

1/p 1/p’
. 1
1F=eslle < | D (k= 3)Pller — oxall > =T

: ~ (k— j)¥
k>j+1 k>j+1

Thus

If =il <C Y (k= §Pller — pr-1llfn
k>j+1

and consequently

S 2P f =il <CY Y 2% (k= 5ok — er-alll

320 J>0 k>j+1
= O 2Pay|lor — pralls
k>1
where
, > yp
0<j<k—1 =1
Hence

Z < (CayY.
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Step 3: Z < (C'X. Here, again, the condition sp < 1 is not used.
Proof. Recall that @;(x) is the cube in the partition P; containing the point x. Write

Fo) = B = f@)= | = ()~ )y

=29 [ (f(@) - Sy
Q;(z)
and thus, by Holder,

@) - B(f) @) <27 / (@) — F(y)Pdy.

Qj ()
Therefore
(A.12) I f — E;( p §2"J/da:/ f(y)|Pdy,
3(1’)
so that

z=3 2| f - Bi()II}, < 22“*“’”/ d"“"/ LA

§>0 §>0

:/ |f(33) _f(y)|pa(a:,y)da:dy,
QJQ

o — gl

where

a(z,y) = |z —y|"tP Y "2, o (y)
j=>0

and 1 denotes the characteristic function. Clearly
a(z,y) < (4n)"TP/2 vy e Q

and the conclusion follows.

Step 4: X < CY when sp < 1.
Proof. For h € R™ set

Onf)(x)=fx+h)— flx), € =0N(Q—h).

A quantity equivalent to X is

(A.13) X' = /h _dh__ /Q (0 f) ()P dz.

<1 |R|"ToP

We will use the following two lemmas
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Lemma A.1. We have, with some constant C (depending only on p,« and 3), for all
heR™and all j > 1
16nf 1500y < C | D2 22077160 (fe = fr ey + D 2°F PNk = frcallf iy |

k=1 k=j+1

where a > 0 and 8 > 0 will be chosen later.

Proof. As above, write

f="rfo+> (fi = fr-1)

E>1
and thus
onf = Z5h(fk — fr=1),
E>1
so that

i .
10n fll o) < D100 (fe = fe-1)llzr@n) +2 D I1fe = foo1llze(e,
k=1

k=j+1
and the conclusion follows from Hoélder’s inequality.
Lemma A.2. We have, for all h € R™ and all ¥ € &, k > 1,
(A.14) 1688112 1 0y < CIAIZE N1, g

where C' depends only on p and n.
Proof. Write

P = Z aQlq

QEPy
and thus

ontp = aqg(6nlq).
Q
Therefore, by Holder

p—1

6r” < | > laglPlnlol | | D 10n1ql
Q Q

But
Z |5h1Q| <2
Q
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and thus
(A15) | 1o <Y lagl [ léntal

Qh Q Qh
On the other hand

h
(A1 [ il < jo\@ - 1+ @ - m\Ql < Cts
and
1
(A.17) 110 0) = 5om > lagl.
Q

Combining (A.15), (A.16) and (A.17) yields (A.14).
Proof of Step 4 completed. In view of (A.13) we have

= dh

X<C 7/ onf)(x)|Pdx.
2 [, ey T Jo, 10N

Combining this with Lemma A.1 we find

X §C(I1+IQ)

where
0o J
o (n+sp)j a(j—k)p o p
(A.18) I = 2/1 ol DI 160 (fe — Fr=1)l 70 () @R
j=1 §<|h|<2j_1 k=1
and

(Alg) I, = Z/l 9(n+sp)j Z 25(k—j)p||fk — fk—1||1£p(9)dh-

1
j=1"7 37 <Ihl<g= k=j+1

The estimate for I is very simple since

Iy < CZ Z 28pj26(k—j)p||fk _ fk!—l”ip

j=1k=j+1

= CZQSPkkafk — feallfs
k=2
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where i
—1 o0
by = Z 25P(i=k)9B(k=i)p < | — Zg(ﬁ—s)é’p < 00
j=1 =1

provided we choose 0 < 3 < s. Therefore I, < CY.

To estimate I; we apply Lemma A.2 with ¢ = (fx — fr—1). Inserting (A.14) in (A.18)
we obtain

00 J
L<CS 200 S 2k Dgel-Rr| f — fp,

j=1 k=1
[ee)
=Cc) 2P| fi — frallhs
k=1

with

c = ZQ(SP—HQP)@ < 0,
(=0
provided we choose 0 < a < (1 —sp)/p (this is the only place where we use the assumption
sp < 1). Thus we have proved that Iy < CY and the proof of Step 4 is complete.

Returning to Theorem A.1 it is a natural question to ask how the norm-equivalence
deteriorates when sp — 1. It was already observed that the inequality

D 2PN Af 15 < ClfIyew,

jz1
where A;f = E;(f) — Ej_1(f), is independent of the assumption sp < 1. Concerning the
other direction, one has the following more precise result when sp is close to 1.
Proposition A.1. Assume sp < 1. Then

1/p

C .
A2 B — 25PI|| AL FIIE,
(A.20) Ilwer < s | 27801

Jj=>1
where C is an absolute constant.

Proof. Following the proof of Step 4 with

a=(1—sp)/2p and [ =s/2

and using the fact that

o o0 d
Sove [ =cla
=1 0o 2
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we obtain -
C C\"
Xﬁ(l-ﬁ-a—p/'i‘ﬁ—p/) (Il'i‘IQ)
and then
1
L <C(l+4+—)Y
sp
C
I < Y.
1—sp
Combining these inequalities yields (A.20).
In particular, with p = 2, we find
Corollary A.2. For1/4 < s < 1/2 we have
1/2
Ifllzs < C(L=25)"" (D494, 7
j>1

where C' is an absolute constant.

The dependence in (1 — 2s)~! for s — 1/2 in Corollary A.2 is optimal as can be seen
from the following example.
Lemma A.3. Let 0 < s < % Let Q = (—1,1) equipped with standard dyadic partition
{P;} and

1
f = (log ;)X[O<m<1]'

Then
@) N fllee 2 (1 —29)737
(i) O 4°A;fll72)" 7 ~ (1 —29)7 12
jz1
Proof.

(4)

|f(z+h) — f(x)]? // _a 1
.= dxdh > h=(+28) (lo0 —— \2dzdh
I#11 / |h|1H2s = z<0<z+h (Og93+h) !

2.7
1
>E435 (1 ~)2d
/2J+1 ng) ’

~ Zj22_](1_25)
J

~(1—2s)73
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(i) We need to evaluate the increments A; f. Let I € P;_1,
I=la,a+2"9"Y)c0,1].

Thus the value of |A;f| on [ is

) a—|—2_j a+2_j+1 ) ) )
(A.21) 2 / f—/ f’ =2 |F(a+277") + F(a) — 2F(a 4+ 277)|
a a+2-7
where 1
F(x) = xlog; + x.
For a =0,
(A.22) (A.21) = 29|F(277Y) —2F(279)| = 272791 (j — 1) — 2791 4] = 2.

Fora =r2=0-1 r>1

1

o 1
(A.23) (A21) S 2479|F"||poo(ry = 2 JH;HLOO(I) ~

It follows in particular from (A.22), (A.23) that
1A fl3 < €279y 2 = 027

r>1

ST aEAf3 < 0279072 (1 - 29) 7

APPENDIX B
Functions in W*P(Q:Z) are constant when sp>1.
A continuous function on a connected space with values into Z must be constant. Func-

tions in the Sobolev space W*P with sp > 1 have the same property although they need
not be continuous. More precisely we have

Theorem B.1. Assume () is a connected open set in R™,n > 1. Let 0 < s < oo and
1 < p < o0 be such that

(B.1) sp > 1,

including s = 1 and p = 1. Then any function f € W*%P(Q;Z) must be constant.

Remark B.1. Hardt, Kinderlehrer and Lin [1] have stated the same conclusion when
s = 1/2 and p = 2 with a sketch of proof. Bethuel and Demengel [1] have also ob-
tained the same result when sp > 1 and the proof we present follows their argument with
an additional ingredient to cover the case sp = 1.
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Proof. 1t is convenient to split the proof into two steps:

Step 1: the case n = 1.

If sp > 1, the conclusion is obvious since f is continuous by the Sobolev imbedding
theorem. If sp = 1, a borderline for the Sobolev imbedding, f need not be continuous, but
f is VMO (see e.g. Brezis and Nirenberg [1], Section 1.2). Therefore, the essential range
of f is connected (see Brezis and Nirenberg [1], Section 1.5) and thus f is constant. For
the convenience of the reader we reproduce the argument. Set

and note that
dist(f. (2), 2) s/ () — fe(@)|dy — 0

B.(z)

uniformly in z as € — 0 (since f € VMO). On the other hand f.(€2) is connected and
consequently there is some integer k. € Z such that

Hfs —k€||Loo —0 ase—0.

It follows that k. — k as ¢ — 0 with k € Z and f = k a.e. on Q.
Step 2: the case n > 2.

It suffices to prove that f is locally constant a.e. and thus we may assume, without loss

of generality, that Q = (0,1)”. For a.e. 2’ = (21,...,%i_1,%i+1,...2Ty) in (0,1)"7 the
function
(B.2) tb—)’gb(t) = f(:El,....’Ei_l,t,ZEH_l,...IER)

belongs to W*P(0,1). This is a consequence of the fact that an equivalent norm for
W#P(R™)(0 < s < 1) is given by

n 1 ) - p
A1 = 1715, +Z/ / R

where (e;) denotes the canonical basis of R™ (see e.g. Adams [1], p.208-214). Applying
Step 1 we know that for a.e. 2/ € (0,1)"~! the function v is constant. To complete
Step 2 we rely on the following simple measure theoretical lemma (see e.g. Lemma 2 in
Brezis, Li, Mironescu and Nirenberg [1])




LIFTING IN SOBOLEV SPACES 29

Lemma B.1. Let Q = (0,1)" and let f be a measurable function on ) such that for each
1<i<mnand for ae 2 = (x1,...,%i_1,Titr1,...Ty) in (0,1)"71 the function 1 defined
in (B.2) is constant a.e. on (0,1). Then f is constant a.e. on (2.

Remark B.2. Assumption (B.1) cannot be weakened. Indeed, the characteristic function of
any smooth domain w compactly contained in €2 belongs to W#%? for any s,p with sp < 1.

Remark B.3. The conclusion of Theorem B.1 is still valid if f : {2 — Z is a sum of functions
in different Sobolev space, i.e., f = Zle fi with f; € W5oPi(Q;R) and s;p; > 1 for all
1. The proof is identical to the one we have presented above. In particular the conclusion
holds if f € HY2 4+ W™1: this fact will be used in our forthcoming paper Bourgain, Brezis
and Mironescu [1].

APPENDIX C

Composition in fractional Sobolev spaces
We investigate here the question whether ® o v belongs to W*P({2) when v belongs to
W#5P(Q) and ® is smooth. For simplicity we consider only the case 2 = R™. Of course,

here, we also assume that ®(0) = 0. The case of a domain can be treated by extending
the functions to R".

Lemma C.1. Let 0 < s < oo and 1 < p < co. Assume

(C.1) v € WP(Q) N L>(Q).
Then
(C.2) dov e WHP(Q).

Proof. When s is an integer the conclusion is easy via the Gagliardo-Nirenberg inequality.
For example, when s = 2

D?*(® ov) = &' (v)D*v + ®"(v)(Dv)? € LP
since W2PNL> C Wh?P by the Gagliardo-Nirenberg inequality. A similar argument holds
for higher order derivatives.

We now turn to the case where s is fractional. The conclusion is obvious when 0 < s < 1.
Suppose now that 1 < s < 2. One has to show that

D(® ov) = & (v)Dv € W12,

This would require a lemma about products which eludes us.

Instead of this strategy one relies on a characterization of W*P via finite differences.
Set
(opu)(z) = u(x + h) — u(z),
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so that
(62u)(z) = u(x + 2h) — 2u(z + h) + u(z).
Then
107
5,p
(C.3) ue W & // |h|"+51’ dhdaz < 00,

(see Triebel [2], p.110).

The key observation is that §7 (® o v) can be estimated in terms of §?v and §pv. This is
the purpose of our next computation.

Set

X =v(z + 2h)

Y =v(x+h)

Z =v(z).
Then
(C.4) PX)-dY)=d' V)X -Y)+0O(X -Y/])
and
(C.5) (Z)-o(Y)=0'(Y)Z-Y)+0(Z-Y).
Since

05 (® o v)(z) = (R(X) — (V) + (2(2) — 2(Y)),

one finds
(C.6) 167 (@ 0 v) ()] < C(I67v(2)] + |dnv(@ + h)[* + [dpv(2)[?).
Consequently

162 (® o v)( // // [0nv(z)[*P
(D e e A

The first term on the righthand side of (C.7) is finite since v € W*P and for the second
term we observe that

[0nv(z)[*P 2
/ |h|ntsp = ||/U||V[I;%,2p < ClvllLsllvlyes
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by the Gagliardo-Nirenberg inequality (see Lemma D.1). Hence we have proved that
®owv € WP, The same argument extends to a general s > 2, s non integer (see e.g.
Escobedo [1]).

APPENDIX D
Gagliardo-Nirenberg inequalities and products in fractional Sobolev spaces

We establish here some Gagliardo- Nirenberg type inequalities used in the paper. We
also present a proof of Lemma 2 concerning products in fractional Sobolev spaces. These
results are presumably known to the experts. For simplicity we work on R"; the case of a
domain can be treated by extending the functions to R".

Lemma D.1. Let 0 < s < 00,1 < p < 00. Assume

u € WHP(R™) N L®(R™).

Then
T y Sp
(D.1) ue Wn, Vre(0,s) withq= —,
,
and
1—(r/s r/s
(D.2) lalllwes < Cllull = lul 1750,

provided that either (i) both r, s are non integers or (ii) r is an integer.

Here, we use the following semi-norm on W*? (see e.g. Triebel [2]):

Tl | Du|| », if s is an integer
ul||we
! (ff |5|h|’,jgi)p|pda:dh)1/p if s is not an integer

(as usual, M > s is any integer).

Proof of Lemma D.1. It is convenient to observe that, for every s € (0,00) and every
p € (1,00),
(D.3) L / et + )y sy

(When s is not an integer, (D.3) is clear. When s is an integer, (D.3) follows from the fact

that the function )
A (/ Ao, a,...,a)|pda)p
Sn—l
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is a norm on the space of s-linear symmetric forms on R™.) Using (D.3) one sees that the
proof of (D.2) reduces to the one-dimensional case.

Also, note that the desired inequality (D.2) is clear when both s and r are not integers.
Indeed, in this case, we have, for M > s (and hence M > r)

Mo (z)|2 _ SMay(z)|P
Ml = [ 20  dan < aifugr [ [ duan

< Cllull <l [Fys.o-

Therefore, it suffices to establish (D.2) for n = 1 and s > 1. We follow the proof of
Nirenberg [1]. By the Sobolev imbedding theorem, we have (since sp > 1),

W=k ([0,1]) € Wn4([0, 1)).
Hence
(D.4) Hlulllwraoan < CUlullzeoa + lulllwsr o), uw € WP([0, 1]).
It then follows that
(D.5) lulllwraoany < CUlullze o1y + [lwlllwsro,1), u € WP([0,1]).
By scaling, we find

0.6) el < CO Pl o o0

(A(l) + B(¢)),u € WP(]0,£]).

C )+ LETDE |16 0.
C

It clearly suffices to prove (D.2) in [0,00) and we may assume that |u||ws» = 1. Fix
some € > 0. We construct inductively a sequence of disjoint intervals I, Io, ... such that

[0,+OO)211UIQU"'

as follows:

We compare A(e) and B(e). If B(e) > A(e), then we take I; = [0,¢) and next construct
I5. Otherwise, note that limy_.o, A(¢) =0, limy_,, B(¢) = oo (unless u = 0, which is not
the case). Hence there is some € < ¢ < oo such that A(¢) = B(¢). It then follows that

|||u|||§1/vr,q([o,g]) < Clul quop([o,g])|||u|||%/s,p([o,g])-

In this case we take Iy = [0,¢). We next start the above procedure from the endpoint of
I,. Since at each step we have |I;| > ¢, we clearly cover in this way [0, c0) with a sequence
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of intervals. Denote the first type of intervals by I; and the second type by K;. Using the
assumption that r is an integer we have

el fyraoeey = D Metlllfyragry + 2+
I K;
< 05(%—1)(sp—1)z |||U|||§I/vs’p(1j)
I,
+ Cllull 52y D ully o i,
K;

Note that, since ¢ > p, we have
Sl By, < 1= ZHIUHIWWH <
I

Hence
(D-7) |||u|||?/vr,q([o,oo]) < Celr—1(sp=1) + C||u||quop(R)|||u|||€vs,p(ﬂg)-

We conclude by letting ¢ — 0 in (D.7) (the constants C' are independent of ¢).

Remark D.1. The conclusion of Lemma D.1 fails when s = 1 and p = 1. For example
WLHR) N L>®(R) is not contained in W/22(R)—because this would imply the inequality
|u|lyp1/2.2 < Cllu|lpic which is clearly wrong (use for example the sequence in Remark 3).

Remark D.2. In the general case (no restrictions on r and s), the conclusions of Lemma
D.1 are still true (the remaining case, i.e., s integer and r non integer, is treated in T.
Runst [1], Lemma 5.2.1).

We next prove a regularity result for products in Sobolev spaces.

Lemma D.2. Letn>1, 1<s<o00,1<p<oo. Let u,v € WSP(R™) N L>*(R™). Then

uDv € W LP(R™).

Proof of Lemma D.2. 1f s is an integer, the conclusion follows easily from the Gagliardo-
Nirenberg inequality. We henceforth assume that s is not an integer.

We use a Littlewood- Paley decomposition technique (see e.g. Bony [1], Alinhac and
Gérard [1] or Chemin [1]). Let 1y € C§°(R™) be such that

o) =1 ifle] <1 ande(€) =0 if ¢ > 2.

Set
V;i(€) = o (277€) — o (27911€), 5 > 1 and ¢; = F(y);), j > 0.
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For f € &' let f; = f*pj, sothat f =3, f;inS"
We have uDv = > (r; + s;), where

T = Uj Z Dvy,  and s; = Dv; Zuk

k<j—1 k<j
Since clearly
Yoerl| <O, D Dy <C¥, Vix0,
k<j L k<j Lt
we obtain
(D.8) > | <Clllre, Vg,
k<j LA
(D.9) > Du|| < C2|v|L., Vg

k<j Le

and the same inequalities hold for u. Therefore,

Z ka

k<j—1

p
(D.10) 751120 < Clluslize < C2P gl [0] e -

Lo

On the other hand, v; = ) 5 (v))k, since, for k > j + 3,

F((vj)) = F(v)bjrhe = 0.

Therefore,
IDvjllza = || > Dwpk|| < C2|vyllza, Vg,
k<j+2 Le
by (D.9) applied to v;. Consequently,
(D.11) Is; 117> < CllullfellDvsllz, < C27Pvs 170 [l

We now recall two basic facts about WP o > 0, ¢ non integer, 1 < p < co. Let f € WP
and let f; = f* ¢; as above. Then

(D.12) o ~ D271 f511%0

J=0

(see e.g. Triebel [2], p. 46).
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Conversely, let g; be a sequence in L? such that suppF(g;) C Bai. Then

P
(D.13) > 9 <CY 27|17
jzo0  TWer 20
(see e.g. Chemin [1], p. 27). Using (D.10), (D.11) and (D.12) (with o = s), we find
(D.14) > 267Dy 4 5517 < C(llul o 01y + 0170 llfyen)-

J=20
Since suppF (rj + s;) C Bgj+s, (D.13) (applied with 0 = s — 1 and g; = r; + s;) combined
with (D.14) yields that uDv € W*~1? and that

(D.15) [uDv|[ws-1p < C([Jullzeefv]lwer + [[0] Lo lullwer).

Remark D.3. As a consequence of Lemma D.2, we derive the well-known fact that
WP N L is an algebra.

APPENDIX E
Behaviour of the H®-norm of lifting for s?%. Proof of Theorem 4

We return to the particular issue of lifting of an unimodular function F' in H®, s < %
As we have pointed out in Section 5 the construction described in Appendix A of a lifting

(E.1) F=¢e% pcH®
does not lead to the optimal estimate of ||¢||g= when s — 1. Our aim is to prove

Theorem E.1. Let Q be a cube of R?,d > 1. For every F € H*(Q; S') with0 < s < 1/2
one may construct a ¢ € H*(Q;R) satisfying (E.1) and the (optimal) estimate

(E.2) lelle < O —28)"V2(|F|| 1o
where C' is a constant independent of F' and independent of s as s — 1/2.
Proof. Given an unimodular H*-function F' on a cube, say @ = [0, %]d C R?, we may

extend F to a 1-periodic unimodular function in H{ (R?) by the usual procedure of reflec-
tions and periodic continuation. Hence, we may assume F € H*(T9; S1), where T¢ = d-dim
torus. This setting is particularly convenient to perform our translation averaging. On
Q= T¢, we fix again a system {Pj}j=0,1,2,.. of refining dyadic partitions (thus the atoms
of P; are d-intervals of size ~ 277) and denote F; the corresponding expectation operators.
Denote also 7 the shift operators on T¢.

We perform the following construction. Given F' € H*(€; S'), denote Fy = F o 7y and
©]0] the lifting of Fy gotten from the construction described in Section 1 (with fixed P;’s).
Thus
(E.3) Fy = el and F = ¢i(#l0lo7-0)

and ¢[0] o T_p = ¢ is a lifting for F. Thus Theorem 4 will follow immediately from the
next statement.
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Lemma E.1. We have

[ 1606l-ds < 01— 2972 Pl
Proof. We show in fact that
(E.4) [ 1eleldo < €1 =26 P

The lefthand side of (E.4) equals

|l6] — Thep[0]]° ()
/ / et dxdhde

(85 Yoo [ el = mgldlinas
7>0 |h|~2" I
Denote ¢[f] by ¢ for simplicity. Fix j.
Writing
(E.6) p=Ejp+ > Ajp  (Ajy =Ey—Ej )
J'>J
estimate
(E.7) e — el S 1B — nEjells + D (G — )24, ¢ll3.
J'>J
Recall inequality (1.5) in Section 1
(E.8) i — i1l < C(|Fo — E;(Fo)| + |Fo — Ej—1(Fp))).
Hence, since ¢; = Ej(¢;), we have
(E.9) 1Azll2 < 1E; (0 = @)l + [[Ej—1(p — @j-1)ll2 + [lej — i1l
<CY ey = pi-1lz
=
<C > |Fy—Ep(Fo)l2
§>5—-1
(E.10) <C DY (G —it+2lAyFls

Jj'z2j-1
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and estimate in (E.7)

(E.11) 1Apel3 <C Y (" =3 +2)* A Foll3.

§"=3' =1

Thus the contribution of the second term in (E.7) is bounded by

S [[ { 3 —j)2||Ajst||§}dhd9
[hj~2s

j>0 Jj'>3
<C / d@{Zf”’ > <j’—j)?(j“—j'+2>4||Aj~Fe||§}
3>0 34225 >]
©12) <o [of 3 2an13)
j//>0

Recalling the proof of Theorem Al (in particular the inequality Y < C'X independent of
the assumption 2s < 1) we have

(E.13) (E.12) < 0/d9||F9||§{S < C||F||%--

Thus the #-integration is irrelevant here.
The main point is the contribution of the first term || E;¢o — 7, Fj¢||3 in (E.5), thus

(E.14) D oCsrdi / /|h| . / |Ej — mhEj0|*dfdhdz.

j=0
Estimate
(E.15) |Ejo — mEj0l <> |Ajp — gl
J'<J
Write
(E16) A]/(,O = Z arx;-
IEPj/

Then, for |h| < 277, one easily verifies that

(E.17) [Ajp —Tnlypl < > arl Ix, — Tax, | < C(1A ] % Py i )xjr 25
IEPj/
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where X/ o-; denotes the characteristic function of the set

(E.18) {x;dist (z,0I) <277 for some I € P;/}

and P. denotes the usual Poisson-kernel for instance.

Thus

(E.19) /Xj,,z_j —mes (E.18) < 027427 (4=Yo=i < 97'~J,

Substituting (E.17) in (E.15) implies (since Urep., I C Urep., OI for j1 < j75)
J1 T2

(E.20) |Ejp — mhEjp|* < Z (1Aj ol * P )(1A 0] % Pyeiy )X 23
31<5,55<j
31<35
Next,
(E.21) Ajp=Ej(p—pj) = Ej_1(p—pj—1) + 05 — i1

and again from inequality (E.8)

(E.22) lp— ;| <C Z 3|0 Fy).
Jj" >y’
We get
(E.23) Ajpl Py <C Y (5" =5+ 1)(|Ajn Fyl + Pyyr).
j//Zj/

Substituting (E.23) in (E.20) and then in (E.14) gives
(E.24)

> 2 [[azao ST G =+ DU s DA Fal By (1B Fol x P
V-

—32)Xg1 92— ().
71<4,35<4,31 <44
31 >31,35 >34

The role of the #-translation is that we introduced an extra variable to estimate (E.24).
Write F as a Fourier series in T¢
F = Z ﬁ(n)em‘r.

neZd

Then
(E.25) Z F(n)e™ Aj;(e™)

(E.26) (148 Fp| * Pe)(2)|* < / ‘ Y Fm)em (e )@ —y)* P-(y)dy.
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Integrating (E.26) in 6 gives clearly
(E.27) 11A;Fol  Pell72 < > 1Em) [85(™)][% S D IFm)PLA n[277)%.

To estimate (E.24), perform first the f-integration using Cauchy-Schwarz and (E.27).
This gives, recalling (E.19)

(E.28)
11/2
> 22 > 2179 (51 — i + 1)(5Y — b+ 1) ZIF 2(1 A [nj277)?
j=0 J6<3:35,<30.31<35 )
11/2
Z|F 2(1 A n|2792)?

To evaluate (E.28), denote

(E29) Ea == ]g _jéx 2 0 ((l/ = 172)
(E-30) m=jy—j; >0
so that

(E.28) = Z (€1 +1)(ls + 1) 2231(22(25 1)])

m,€1.£2>0 J>q1

{Zw 2(1 A nf2791 )2} {Zw 2(1 A |p|2—dimmt2)2 }1/2.

Applying Cauchy-Schwarz for the j{-summation

(E.31)

(E.32)
(B31)<C Y (tr+1)(la +1)(1 —2s)7"
m,lq,02
1/2

{Zw )[222571 (1 A |n|2791~ )2} {Zw )222571 (1 A p|2 79122 ] .
n]l n]l

Writing

(E.33) D 22 (1A |nf277 702 ~ 272 (1 4 |n))?

J
it follows that
(12.32) < S (614 1)+ 02 (PR ) )
1-—2s
(E.34) m, 0y lo n
<001 - 25 F e
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Since (E.5) is bounded by the sum of (E.13) and (E.34), this proves Lemma E.1.

Remark E.1. The optimality of the bound (E.2) when d = 2 was proved in Remark 7. The
case d > 3 is similar by choosing

(z1,22)
T) = ——— s = (r1,22,...,2
g( ) (33%4—33%)1/2 ( 1,42 d)
and proceeding as in the 2-dimensional case. The optimality of (E.2) when d = 1 is more
delicate and will be established in the forthcoming paper Bourgain, Brezis and Mironescu

[1].

Remark E.2. Theorem E.1 is still valid if the cube @ is replaced by a smooth domain €2
in R?, d > 2 (without any topological assumption on ). The proof can be modified as
follows. Consider a neighborhood € of Q and a function still denoted F, F' € H*(Q; S")
which extends the original F' (this can be done by the standard procedure of local reflexion
across the boundary). Next, construct a finite sequence of disjoint cubes (Q,,), having the
same size, and such that Q C |J Q, € Q. The construction described in Section 1 is still

valid on |J Q. and we obtain a lifting ¢ € H*(|J Qa;R). For § € R? with 0] < 6,6
sufficiently small, Fy = F o 7y is well defined on |J Q. has a lifting ¢[f]. The proof of

Lemma E.1 described above can be adapted and yields

/|9|| lplfllnedo < C(1 = 25)7 /2 Pl
<

Theorem E.1 is also valid if the cube @ is replaced by a smooth d-dimensional manifold
M, d > 1, say without boundary. The dyadic partition of @) is replaced by some dyadic
“triangulation” of M. The shift operators 7y are replaced by a finite family {5;(¢)},
1 < i < N of 1-parameter group of transformations on M such that, at each x € M, the
generators V;(z) = £.5;(t)z|,_, span the tangent space T3 (M). Such a family can be easily
constructed as integral curves for the differential equations #(¢) = V;(z(t)) and the vector-
fields V;(x) are obtained via local coordinates and a partition of unity. The shift operators
79 are replaced by the shifts along the S;, i.e., gy = IZISi(ti), where 0 = (t1,t2,... ,tN),

and then Fy = F o gg. Adapting the proof of Lemma E.1 we find

/ lo[6]]1d6 < C(1— 25)" /2| F| ..
9ERN |g|<1

APPENDIX F

Martingale representation and lifting in HSP
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The question of representation and lifting can be raised in other function spaces. For

instance, in the H*P space.

Recall the definition of the H*P-norm (0 < s < 1)

h) 2 p/2 1/p
(F.1) e = | [ (RO ) ]

This space is a bit more delicate to deal with then W*P. The natural martingale counter-

part of (F.1) is given by

(F.2) H (222j5|Ajf|2)1/2

where A f = E;(f)— E;—1(f) and Ej; is the conditional expectation operator with respect

p

to P; (as before). This situation is a bit different from W*P?. We show the following
Proposition F.1. (i) We have

JsI A £12\1/2
(F.3) IO 018 12) ) < Clfllarew

(19) Ifsp <1 and p > 2, then the converse inequality holds

(.4) Ifler < || (0150 -

P
(i4i)  Inequality (F.4) fails for s > 1.

Proposition F.1 leaves some cases unanswered and they will possibly be addressed else-
where. Again, Proposition F.1 is relevant to the question of Triebel [1] concerning the
representation of Besov and Sobolev spaces in the Haar-system. It implies that for the

spaces H*P = F7 5, the conjecture is valid if ps < 1,p > 2 but fails for s > %

In the proof of Proposition F.1, we will make use of some standard martingale inequal-

ities (which the reader may find in Garsia [1] for instance).
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Proposition F.2. We have

<C,
p

> gl

for 1<p<
p

(F5) |5 Ban

and

(F.6) H (Zizer) - (Tlost) -

In both statements, the sequence {g;} consists of arbitrary functions.

for 1 <p< 0.

<G,
p

p

Remark F.1. In (F.5), (F.6), the expectation operators E; may get replaced by convolution

operator P,-; for instance, where P. stands for the usual Poisson kernel (cf. Stein [1]).

Proof of Proposition F.1.

(i) By (F)
(6.7 (= 4j5|Ajf|2)1/2 E ol (s Ej—l(f)|2)1/2 :
Again

(f ~ Bya(F)(@)] < 2 /|| £(@) — f(z + W]dh
() - B (P <2 /Im_j f —mfPdh.

where 73, is the translation operator.

Substituting (F.8) in (F.7) implies

1/2
(F.7) < {/dh |f—7'hf|2{ > 4j52jd”
|h|<2—7 p
(F.9) 1/2
- { [ 15 =mar |h|—<d+25>dh}
p

= [[fllers.r-
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(7i) Write
©10) [ U= PR 200 [ g i,
- B ~2
j
Fix j. Estimate

\f = mnfl <|fi — kil +1f = fil + 7l f = £
(F.11)

f=mnflP S G =185 f = (D P+ |f = £+ 7l f — £

J'<g

and substituting (F.11) in (F.10), we get the following contributions

(F.12) (F.10) gCZQj(d+25)(j—j’)2/ Ay f = (A )P dh
'<i [hl~272

(F.13) + ) 40— f
J

(F.14) + ) 4 [Py x (I = £517)].
J

Contribution of (F.13)

Write

1/2
I(F.13)12]], < {Z‘“SZ i =014, f|2]

/>‘7

(F.15) - (Z |Ajff|2)

p
/2

Contribution of (F.14)

. P/2y 3
(F 16) a2, = { [{Eetre - sen} )
J
Use the general inequality (see Remark F.1)

Z Py-ig;
j q

(F.17)

<c,

for 1 <qg < o0.
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Thus, since p > 2, letting ¢ = p/2 in (F.17), it follows

(F.16) < C{ / (24” . fﬂz)””} 1/p

J

(F.18) < CH(ZMﬂAJP)UQ

p

Contribution of (F.12)

Denoting ¢ = j — 5’ > 0, write

(F.19)
) ) 1/2
||(F12)1/2||p < ZEQES (H |iZ4J s (2(] +€)d/ |Aj’f — Th(Aj,f)|2dh):|
= f RIS .
To bound (F.19), fix £ and consider the map
(F.20) Tp: Ly — Lz
defined by
(F.21) Tg = To({9;}) = {(Ejg; — mE39)2" 9% Xy ca-von}

Thus the components of Tyg are functions of x and h.

Denote ||T¢||, the norm of (F.20). We estimate ||T||,, 2 < p, by interpolation between

2 and some large q.

Fixing 2 < g < oo, we may bound

2

_ e i+¢)d
||T139||L4L2£2 < ||Ej|9j|-2(]Jr )d/QX[|h|<2—<j+2>] ||L€’L2e2 + ||Th(Ej|9j|)-2(]Jr )d/2 X[|h|<2—(j+€)]||Li2e
h h h

= (F.22) + (F.23).

Thus, invoking (F.6)

(F.24) (F22) ~ H B2 -

< Cylgl s,
q
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Also, since ¢ > 2 and using inequalities (F.17), (F.6)

1/2 1/2
(23) < C| | S (Bl « oo | | = ‘ S (B lg51)? * P
J q j q/2
1/2
(F.25) <O (Bilg)?| < Cligls, -
j q/2
Thus ”ng”Lngez < Cyllgllzs,, ie
(F.26) |Tellq < Cy for 2 < g < oo.
Next, for p = 2, a direct calculation gives
(F.27)
. 1/2
Il 120 = {Zzwd / /|h| o B~ (Eygy)a+ W) dadn
- <2—(
J
1/2
(F.28) < o2 (X IEw3)
J
—0/2 =
(F.29) < C2 g 5.

The estimate (F.28) simply results from the fact that for I € P; and |h| < 270 +0)

(F.30) Ixz(z) = x1(z +h)|| 2 < Oo(—d-1)j/2=1 _ mo—t/29-dj/2.
¢From (F.29),
(F.31) 1Ty < C27/2.

Interpolating 2 < p < ¢, it results from (F.26), (F.31) that
(F.32) ITe|l, < C-27%2) for all & > 0.
Returning to (F.19), we define thus

(F.33) gy =2 "D f
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so that, by (F.32)

ls
(F.19) < ;«42 17495} lsz, .

(F.34) <CY 227G g},
£>0

Since sp < 1, we may take e sufficiently small to ensure boundedness of the factor in

(F.34), leading again to the bound ||(3° 4j/5|Ajf|2)1/2Hp.
This establishes inequality (F.4).

(797) Take d = 1 and define

27

(F.35) fi =27 (=1)"x1, where P; ={I,... , Ip;}.

r=1

Fix a large integer R and let {j,},=1,... r be a lacunary sequence.

goee

Define

R

(F.36) F=> el
r=1
where €, = £1 are independent signs. Thus A f = e, f;, and trivially

— RY/2.

p

(F.37) H (i) -

Next, take 6 > 0 a small number and write

R
®3%)  [1 =m0z 3oz [ g
r=1 |h

|<62-dr

Averaging over the + signs €, in (F.36) permits us clearly to ensure that

(F.39) (F.38) > (5277r)~(1+29) /W . \fj, — 05, | dh.
r <462 Ir
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Recalling (F.35), one sees that

(F.40)

(F.39) > ¢y (62797)UF29)(5279m)a77m N ™y (2,01)<L52-ir]
I1eP;,

(F.41) =67 > Xaist (z,01)<16|I]]"

r 1P,

Therefore

(F.42) £l iree > 6

R 1/2
{Z Z X[dist (x,af)<%5|1|]}

r=1 IEPjT

p

Fixing § > 0 and letting R > R(§) be sufficiently large, the reader will easily convince
himself that

(F.43) (F.A42) > ¢6~*(6R)Y/? = ¢52° (F.37).

Consequently, letting 6 — 0, we see that inequality (F.4) cannot hold for s > % This

completes the proof of Proposition F.1.

There is the following application of Proposition F'.1 to the lifting problem of unimodular

functions.

Corollary F.1. Let s > 0,sp < 1,p > 2 and F' € H5P(Q; S'), where Q is a cube in R,
Then

(F.44) F =%
for some ¢ € H*P ().

Remark F.2. The other cases not covered by the corollary have not been investigated.

Proof. The function ¢ is constructed as in the W#*P-case (see Section 1). ;From Propo-

sition F.1, (7), (#4) and similar calculations as in the W#®P-estimate, we obtain (with the
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notations from Section 1)

. 1/2
lllarer < OH (Zzﬂsmw)

p
. 1/2 . 1/2
(F.45) < C"(Z4J5Ej(w—soj)|2) # (S0 - o) 1y
by (F6) /2 . 1/2
H(Zm@ m?) + (S ates - pia?)
p
1/2
(F.146) < OH(Z B2 =Pl — oyaP)
3°>7 p
by(1.5) . 1/2
(F.47) < C} (2435(]"—]')2 |F—E-/_1F|2)
> P
. 1/2
(F.48) <C ( Z 435(j’—j)Q(j”—j’+1)2|Aqu|2)
J'23'>7 p
» 1/2
<C (24] S|Aj,,F|2)
j// p
(F.49) < C|F|| s
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