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LIFTING IN SOBOLEV SPACES

Jean Bourgain(1), Haim Brezis(2),(3) and Petru Mironescu(4)

Introduction.

Let Ω ⊂ Rn be a (smooth) bounded domain which is connected and simply connected.
Given a function u : Ω → S1 (i.e., u : Ω → C and |u(x)| = 1 a.e.) we may write pointwise

u(x) = eiϕ(x)

for some function ϕ : Ω → R. The objective is to find a lifting ϕ “as regular as u permits.”
For example, if u is continuous one may choose ϕ to be continuous and if u ∈ Ck one
may also choose ϕ to be Ck. A more delicate result asserts that if u ∈ VMO (= vanishing
means oscillation), then one may choose ϕ to be also VMO (see R. Coifman and Y. Meyer
[1] and H. Brezis and L. Nirenberg [1]). In this paper we study the question of lifting in the
framework of the Sobolev spaces W s,p with 0 < s < ∞ and 1 < p < ∞. The motivation
comes from problems of the Ginzburg-Landau type where one considers questions such as
Min

∫
|∇u|2 in the class of functions u : Ω → S1 (see e.g. F. Bethuel, H. Brezis and F.

Hélein [1]).

The first result in that direction is

Theorem (F. Bethuel and X. Zheng [1]). Assume

u ∈W 1,p(Ω;S1) with p ≥ 2,

then u may be written as u = eiϕ for some ϕ ∈W 1,p(Ω; R).

Surprisingly the restriction p ≥ 2 is optimal in any dimension n ≥ 2, i.e., given any
p < 2 there is some u ∈ W 1,p which cannot be lifted by a ϕ ∈ W 1,p (such examples will
be given later; see Section 4).

We address the same questions in all Sobolev spaces W s,p. Here is a summary of our
main results:

Theorem 1. Assume n = 1, 0 < s < ∞ and 1 < p < ∞. Then the answer to the lifting
question in W s,p is always positive.
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2 JEAN BOURGAIN,HAIM BREZIS AND PETRU MIRONESCU

Theorem 2. Assume n ≥ 2, 0 < s < 1 and 1 < p <∞. The answer to the lifting question
in W s,p is:

a) positive if sp < 1,

b) negative if 1 ≤ sp < n,

c) positive if sp ≥ n.

Theorem 3. Assume n ≥ 2, 1 ≤ s < ∞ and 1 < p < ∞. The answer to the lifting
question in W s,p is:

a) negative if sp < 2,

b) positive if sp ≥ 2.

In these statements “positive” means that every u ∈ W s,p(Ω;S1) may be written as
u = eiϕ for some ϕ ∈W s,p(Ω; R) and “negative” means that for some u’s in W s,p(Ω;S1)
there is no ϕ ∈W s,p(Ω; R) such that u = eiϕ.

As a simple consequence of the theorems when p = 2, i.e., for Hs = W s,2, we have

Corollary 1. When n = 1 the answer to the lifting problem in Hs is always positive.

When n ≥ 2 the answer to the lifting problem in Hs is:

a) positive if 0 < s < 1/2,

b) negative if 1/2 ≤ s < 1,

c) positive if s ≥ 1.

The proof of Theorems 1 and 2 when sp < 1 turns out to be quite involved (even for
the Hs case, s < 1/2, and even when n = 1). It relies on a characterization, due to G.
Bourdaud [1] (see also the earlier paper of R. Devore and V. A. Popov [1]), of the W s,p

space when sp < 1; for the convenience of the reader, and also because we make use of
sharp estimates, we have presented a proof in a separate section, Appendix A.

In view of the Corollary for n ≥ 2, a function u ∈ H1/2(Ω;S1) need not have a lifting
ϕ ∈ H1/2(Ω; R); however, it has a lifting ϕ in Hs, ∀s < 1/2. We prove (see Appendix E)

Theorem 4. Assume Q is a cube in Rn, n ≥ 1. For every u ∈ Hs(Q;S1) with 0 < s < 1/2
one may find a ϕ in Hs such that u = eiϕ and satisfying the (optimal) estimate

‖ϕ‖Hs ≤ C(1 − 2s)−1/2‖u‖Hs

with C independent of u and independent of s (for s near 1/2).

Such an estimate is useful in deriving bounds for the Ginzburg-Landau functional when
the boundary condition belongs to H1/2. For example, let Q be a cube of Rn, n ≥ 1, and
let Ω = Q × (0, 1). For any function g ∈ H1/2(Q; C), set

H1
g (Ω = {u(x, t) : Ω → C ;

∫

Ω

|∇u|2dxdt <∞ and u(x, 0) = g(x) on Q},

Eε(u) =
1

2

∫

Ω

|∇u|2 +
1

4ε2

∫

Ω

(|u|2 − 1)2,
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where ∇ denotes the full gradient (in (x, t)).

Theorem 5. For every g ∈ H1/2(Q;S1) we have, for ε > 0,

Eε = Min
u∈H1

g(Ω)
Eε(u) ≤ C log(1/ε)‖g‖2

H1/2

where C is independent of ε and of g.

For variants of Theorem 5, see Remark 8 in Section 5.

The plan of the paper is the following:

1. Proof of Theorems 1 and 2 when sp < 1

2. Proof of Theorem 1 when sp ≥ 1 and of Theorem 2 when sp ≥ n

3. Proof of Theorem 3 when sp ≥ 2

4. Examples of obstruction in Theorems 2 and 3

5. Control of lifting in the Hs-norm for s
→
< 1

2 and application to Ginzburg-Landau

Appendix A. A characterization of W s,p(Ω; R) when sp < 1

Appendix B. Functions in W s,p(Ω; Z) are constant when sp ≥ 1

Appendix C. Composition in fractional Sobolev spaces

Appendix D. Gagliardo-Nirenberg inequalities and products in fractional Sobolev spaces

Appendix E. Behaviour of the Hs-norms of lifting for s
→
< 1

2 . Proof of Theorem 4

Appendix F. Martingale representation and lifting in Hs,p

1. Proof of Theorems 1 and 2 when sp < 1.

Here, the assumption that Ω is simply connected is not needed since we may always
extend the given function by a constant outside Ω; the resulting function still belongs to
W s,p since sp < 1 (this is a well-known fact, see e.g. Lions-Magenes [1], Section 1.11 when
p = 2 and the references therein; it is also a consequence of the characterization of W s,p

in Appendix A). Thus, we may assume that Ω = (0, 1)n and we use the same notation as
in Appendix A.

Let u ∈W s,p(Ω;S1). For each j = 0, 1, . . . , consider the function Uj ∈ Ej defined by

Uj(x) =

{
Ej(u)(x)
|Ej(u)(x)| if Ej(u)(x) 6= 0

1 if Ej(u)(x) = 0.

Clearly Uj → u a.e. on Ω (since Ej(u) → u a.e. and |u| = 1 a.e.) For each j = 0, 1, . . . we
construct a real-valued function ϕj ∈ Ej such that

(1.1) eiϕj = Uj on Ω,
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(1.2) |ϕj − ϕj−1| ≤ C|Uj −Uj−1| on Ω.

Note that (1.2) can be achieved by induction on j, for example with C = π/2.

On the other hand, observe that for every ξ, η, ζ ∈ C with |ζ| = 1, we have

(1.3)

∣∣∣∣
ξ

|ξ|
−

η

|η|

∣∣∣∣ ≤ 4(|ζ − ξ| + |ζ − η|)

with the convention that 0
0 = 1 (consider separately the case where |ξ|, |η| ≥ 1/2 and the

case where either |ξ| < 1/2 or |η| < 1/2).

Applying (1.3) to ξ = Ej(u)(x), η = Ej−1(u)(x) and ζ = u(x) we obtain a.e. on Ω

(1.4) |Uj − Uj−1| ≤ 4(|u−Ej(u)| + |u−Ej−1(u)|).

Combining this with (1.2) yields

(1.5) |ϕj − ϕj−1| ≤ C(|u−Ej(u)| + |u−Ej−1(u)|)

and thus

(1.6)
∑

j≥1

2spj‖ϕj − ϕj−1‖
p
Lp ≤ C

∑

j≥0

2spj‖u−Ej(u)‖pLp .

Applying Theorem A.1 and Corollary A.1 in Appendix A, we conclude that ϕj → ϕ in Lp

with ϕ ∈W s,p, eiϕ = u, and

(1.7) ‖ϕ‖Ws,p ≤ C‖u‖Ws,p .

We may always assume (by adding to ϕ an integer multiple of 2π) that

|

∫

Ω

ϕ| ≤ 2π.

Thus, we have constructed a function ϕ ∈W s,p such that eiϕ = u and

(1.8) ‖ϕ‖Lp + ‖ϕ‖Ws,p ≤ C(1 + ‖u‖Ws,p).

Remark 1. One should observe the linear dependence while in the continuous case there
is no bound whatsoever for ‖ϕ‖L∞ in terms of ‖u‖L∞ ; see also Remark 3 where we show
that there is no bound for ϕ in H1/2 in terms for ‖u‖H1/2 in one dimension despite the
fact that every u ∈ H1/2 has a (unique) lifting in H1/2.

Remark 2. The function ϕ constructed above also belongs to every Lq, q <∞. This may
be easily seen by observing that u ∈W s,p ∩ L∞ ⊂W σ,q for every σ < s with σq = sp (by
the Gagliardo-Nirenberg inequality, see Appendix D). Therefore ϕ belongs to every such
W σ,q. Choosing σ close to zero we obtain a q which is arbitrarily large.
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2. Proof of Theorem 1 when sp ≥ 1 and of Theorem 2 when sp ≥ n.

When sp > 1 in Theorem 1 or sp > n in Theorem 2, u is continuous by the Sobolev
imbedding theorem and, locally, we may consider ϕ = −i log u which is well-defined and
singlevalued. To conclude, we rely on a lemma about composition:

Lemma 1. Assume n ≥ 1, 0 < s <∞ and 1 < p <∞. Let v ∈W s,p(Ω)∩L∞(Ω) and let
Φ ∈ C∞. Then Φ ◦ v ∈W s,p(Ω).

The proof is very simple when 0 < s < 1 (using the definition of W s,p and the fact that
Φ is Lipschitz on the range of v). This lemma is also well-known when s is an integer,
with the help of the Gagliardo-Nirenberg inequality. When s > 1 is not an integer the
argument is more delicate; we refer to Escobedo [1] and Lemma C.1 in Appendix C.

We now turn to the proof of Theorem 1 when s = 1/p; the proof of Theorem 2 when
s = n/p is identical and we omit it. Set I = Ω = (0, 1).

By standard trace theory there is some ũ ∈W s+1/p,p(I2; R2) such that

ũ(x, 0) = u(x).

Since u takes its values into S1 one may expect that, near I×{0}, ũ takes its values “close”
to S1. This is not true for a general extension ũ. However, special extensions have that
property. For example

ũ(x, y) =
1

2y

∫ x+y

x−y

u(t)dt

(u is extended by symmetry to the interval (−2,+2)) has the property that ũ ∈W s+1/p,p,
and moreover, |ũ(x, y)| → 1 uniformly in x as y → 0. This is a consequence of the
fact that W s,p ⊂ VMO in the limiting case of the Sobolev imbedding (see e.g. Boutet de
Monvel-Berthier, Georgescu and Purice [1],[2], Brezis and Nirenberg [1]). Similarly, any
harmonic extension ũ of u in I2 has also the same property (see Brezis and Nirenberg [2],
Appendix 3). If we consider v = ũ/|ũ| in a neighborhood ω of I × {0} in I2 we have an
extension v of u such that

v ∈W s+1/p,p(ω;S1).

Here, we have used again Lemma 1.

Let us now explain how to complete the proof of the theorem when p = 2,
i.e., u ∈ H1/2(I;S1). From the above discussion we have some extension v of u, with

v ∈ H1(ω;S1).

Applying the theorem of Bethuel and Zheng we may write

v = eiψ

for some ψ ∈ H1(ω; R) and then ϕ = ψ|I has the required properties.

We now turn to the general case. Here, we shall use the following lemma about products
in fractional Sobolev spaces. Its proof is presented in Appendix D when Ω = Rn (see
Lemma D.2). The case of a smooth domain Ω follows by extending the functions to Rn.



6 JEAN BOURGAIN,HAIM BREZIS AND PETRU MIRONESCU

Lemma 2. Assume s ≥ 1 and 1 < p <∞. Let

f, g ∈W s,p(Ω; R) ∩ L∞(Ω; R)

where Ω is a smooth bounded domain in Rn. Then

fDg ∈W s−1,p(Ω).

Proof of Theorem 1 completed. We recall that there is a neighborhood Q of I × {0} in I2

and an extension v of u such that

v ∈W s+(1/p),p(Q;S1).

Applying once more the same construction we find some

w ∈W s+(2/p),p(U ;S1)

where U is a neighborhood of Q × {0} in Q × I. (This construction is possible since
(s+1/p)p = 2, so that we are again in a limiting case for the Sobolev imbedding and thus
v ∈ VMO. Iterating this construction we find some

ζ ∈W s+(k/p),p(G;S1)

where G is a domain in Rk+1. Consider the first integer k ≥ 1 such that

s + (k/p) ≥ 1.

This choice of k implies that

s+
j

p
< 1, j = 0, 1, . . . , k − 1,

so that, at each step, standard trace theory applies (recall that a function in W s,p has an
extension in W s+1/p,p provided s is not an integer).

¿From the Gagliardo-Nirenberg inequality (see Lemma D.1) we have

ζ ∈W 1,k+1(G;S1).

Applying the theorem of Bethuel and Zheng, we may write

(2.1) ζ = eiψ

for some ψ ∈W 1,k+1(G; R). Differentiating (2.1) we find

Dψ = −iζ̄Dζ.
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By Lemma 2 we have
Dψ ∈W s+(k/p)−1,p(G)

and hence
ψ ∈ W s+(k/p),p(G).

Taking back traces we obtain
ϕ = ψ|I ∈W s,p(I)

and
u = eiϕ.

Remark 3. In one dimension we have established that every u ∈ H1/2(Ω;S1) admits a
lifting ϕ ∈ H1/2(Ω;S1). Moreover, this lifting is unique modulo an additive constant (see
Appendix B) and the map u 7→ ϕ is continuous fromH1/2 intoH1/2 (this can be established
using the same argument as in Step 7 of the proof of Theorem 4 in Brezis-Nirenberg [1]).
Surprisingly there is no bound whatsoever for ‖ϕ‖H1/2 in terms of ‖u‖H1/2. Here is
an example of a sequence (ϕn) such that ‖ϕn‖H1/2 → +∞ while ‖eiϕn‖H1/2 ≤ C. On
Ω = (−1,+1) consider the sequence of functions ϕn defined by

ϕn(x) =






0 for −1 < x < 0

2πnx for 0 < x < 1/n

2π for 1/n < x < 1.

Clearly ‖ϕn‖H1/2 → +∞ (since ϕn → ϕ = 1(0,1) in L2 and ϕ does not belong to H1/2).

In fact, a more precise computation left to the reader shows that ‖ϕn‖H1/2 ≥ c(logn)1/2

with c > 0. On the other hand the reader will easily check (for example by scaling) that
‖eiϕn − 1‖H1/2 remains bounded. The same conclusion holds when H1/2 is replaced by
W 1/p,p with any p, 1 < p <∞.

Remark 4. As we have just pointed out there is no control of ϕ in H1/2 in terms of eiϕ

in H1/2. There is, however, (in dimension one), an estimate for (ϕ − �

∫
ϕ) in the space

H1/2 +W 1,1, equipped with its usual norm, in terms of ‖eiϕ‖H1/2. Here is the argument,
working for simplicity with periodic functions. We may also assume (by density) that
ϕ is smooth. Observe that the dual of H1/2 + W 1,1 is H−1/2 ∩ W−1,∞. Given any
T ∈ H−1/2 ∩W−1,∞, write T = ψ′ + c for some ψ ∈ H1/2 ∩ L∞ and some constant c.
Then

〈T,ϕ− �

∫
ϕ〉 = 〈ψ′, ϕ− �

∫
ϕ〉 = −〈ψ,ϕ′〉.

But if we set u = eiϕ, then ϕ′ = −iūu′ and thus

|〈T,ϕ− �

∫
ϕ〉| = |〈ψ, iūu′〉| = |〈u′, iψū〉| ≤ ‖u‖H1/2‖ψu‖H1/2.
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Recall that H1/2 ∩ L∞ is an algebra (see e.g. Appendix D) and that

‖ψu‖H1/2 ≤ C(‖ψ‖H1/2 + ‖ψ‖L∞ )(‖u‖H1/2 + ‖u‖L∞)

≤ C‖T‖H−1/2∩W−1,∞ (‖u‖H1/2 + 1).

We conclude that

‖ϕ− �

∫
ϕ‖H1/2+W1,1 ≤ C‖u‖H1/2(‖u‖H1/2 + 1).

The same estimate holds in higher dimensions if u belongs to the closure of C∞(Ω̄;S1)
in H1/2(Ω;S1); however, the argument is much more delicate and will be presented in our
forthcoming paper, Bourgain, Brezis and Mironescu [1].

3. Proof of Theorem 3 when sp ≥ 2.

The case s = 1 in Theorem 3 coincides with the theorem of Bethuel and Zheng. For the
sake of completeness we present a proof which is simpler than the original one (see also
Carbou [1] for a similar idea).

Proof of the Bethuel-Zheng theorem. The idea is to assume that ϕ is known and to derive
some consequences. Writing u = u1 + iu2 with u1 = cosϕ and u2 = sinϕ we have

Du1 = −(sinϕ)Dϕ = −u2Dϕ

and
Du2 = (cosϕ)Dϕ = u1Dϕ.

Hence

(3.1) Dϕ = u1Du2 − u2Du1.

The strategy is now to find ϕ by solving (3.1) with the help of a generalized form of
Poincaré’s lemma,

Lemma 3. Let 1 ≤ p <∞ and let f ∈ Lp(Ω; Rn). The following properties are equivalent:

a) there is some ϕ ∈W 1,p(Ω; R) such that

f = Dϕ,

b) one has

(3.2)
∂fi
∂xj

=
∂fj
∂xi

∀ i, j, 1 ≤ i, j ≤ n
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in the sense of distributions, i.e.,
∫
fi
∂ψ

∂xj
=

∫
fj
∂ψ

∂xi
∀ ψ ∈ C∞

0 (Ω).

We emphasize that the assumption that Ω is simply connected is needed in this lemma.

Proof of Lemma 3. The implication a) ⇒ b) is obvious. To prove the converse, let f̄ be
the extension of f by 0 outside Ω and let f̄ε = ρε ⋆ f̄ where (ρε) is a sequence of mollifiers.
The f̄ε’s satisfy (3.2) on every compact subset of Ω (for ε sufficiently small). In particular,
on every smooth simply connected domain ω ⊂ Ω with compact closure in Ω, there is a
function ψε such that

Dψε = f̄ε in ω.

(Here we have used the standard Poincaré lemma). Passing to the limit we obtain some
ψ ∈ W 1,p(ω) such that Dψ = f in ω. Finally, we write Ω as an increasing union of ωn
as above and obtain a corresponding sequence ψn. In the limit we find some ϕ ∈ L1

loc(Ω)
with Dϕ = f in Ω. Using the regularity of Ω and a standard property of Sobolev spaces
(see e.g. Maz’ja [1], Corollary in Section 1.1.11) we conclude that ϕ ∈W 1,p(Ω).

Proof of the Bethuel-Zheng theorem completed. We will first verify condition b) of the
lemma for

(3.3) f = u1Du2 − u2Du1

i.e.,

fi = u1
∂u2

∂xi
− u2

∂u1

∂xi
.

Formally, property (3.2) is clear. Indeed, if u1 and u2 are smooth, then

∂fi
∂xj

−
∂fj
∂xi

= 2

(
∂u1

∂xj

∂u2

∂xi
−
∂u1

∂xi

∂u2

∂xj

)
.

On the other hand, if we differentiate the relation

|u|2 = u2
1 + u2

2 = 1

we find

(3.4) u1
∂u1

∂xi
+ u2

∂u2

∂xi
= 0 ∀ i = 1, 2, . . . , n.

Thus, in R2, the vector (∂u1

∂xi
, ∂u2

∂xi
) is orthogonal to (u1, u2). It follows that the vectors

(∂u1

∂xi
, ∂u2

∂xi
) and (∂u1

∂xj
, ∂u2

∂xj
) are colinear and therefore

(3.5) det

(
∂u1

∂xi

∂u2

∂xi
∂u1

∂xj

∂u2

∂xj

)

=
∂u1

∂xi

∂u2

∂xj
−
∂u1

∂xj

∂u2

∂xi
= 0.
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Hence (3.2) holds. To make this argument rigorous we rely on the density of smooth
functions in the Sobolev space W 1,p(Ω; R) (see e.g. Adams [1], Chap. III or Brezis [1],
Chap. IX): there are sequences (u1n) and (u2n) in C∞(Ω; R) such that u1n → u1 and
u2n → u2 in W 1,p(Ω; R) and ‖u1n‖L∞ ≤ 1, ‖u2n‖L∞ ≤ 1.

[Warning: We do not claim that un = (u1n, u2n) takes its values in S1. The density of
C∞(Ω̄;N) in W 1,p(Ω;N), where N is a compact manifold without boundary, e.g. N = S1,
is a delicate matter which has been extensively studied by Bethuel [1]. As a matter of fact,
the Bethuel-Zheng theorem can be used to prove the density of C∞(Ω̄;S1) in W 1,p(Ω;S1)
for p ≥ 2.]

Set
fn = u1nDu2n − u2nDu1n,

so that
fn → f in Lp

and

(3.6)
∂fin
∂xj

−
∂fjn
∂xi

= 2(
∂u1n

∂xj

∂u2n

∂xi
−
∂u1n

∂xi

∂u2n

∂xj
)

converges in Lp/2 to 2
(
∂u1

∂xj

∂u2

∂xi
− ∂u1

∂xi

∂u2

∂xj

)
. Multiplying (3.6) by ψ ∈ C∞

0 (Ω), integrating

by parts and passing to the limit (using the fact that p ≥ 2) we obtain

−

∫

Ω

(fi
∂ψ

∂xj
− fj

∂ψ

∂xi
) = 2

∫

Ω

(
∂u1

∂xj

∂u2

∂xi
−
∂u1

∂xi

∂u2

∂xj
)ψ.

On the other hand (3.4) and (3.5) hold a.e. (even for any u ∈ W 1,p(Ω;S1), 1 ≤ p < ∞)
It follows that f satisfies b) of Lemma 3, and therefore there is some ϕ ∈W 1,p(Ω; R) such
that

f = Dϕ.

We will now prove that this ϕ is essentially the one in the conclusion of the Bethuel-Zheng
theorem.

Recall that if g, h ∈W 1,p(Ω) ∩ L∞(Ω) with 1 ≤ p <∞, then gh ∈W 1,p and

∂

∂xi
(gh) = g

∂h

∂xi
+ h

∂g

∂xi
.

Set
v = ue−iϕ,

so that v ∈W 1,p and

Dv = e−iϕ(Du − iDϕ) = ue−iϕ(ūDu − iDϕ)

= ue−iϕ(ūDu− if) = ue−iϕ(u1Du1 + u2Du2) = 0 by (3.4).
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We deduce that v is a constant and since |v| = 1 we may write v = eiC for some constant
C ∈ R. Hence u = ei(ϕ+C) and the function ϕ+ C has the desired properties.

We now turn to the proof of Theorem 3 when sp ≥ 2. In fact, we have a more precise
statement:

Lemma 4. Assume n ≥ 1, s ≥ 1, 1 < p <∞ and sp ≥ 2. Then any u ∈ W s,p(Ω;S1) may
be lifted as u = eiϕ with ϕ ∈W s,p(Ω; R) ∩W 1,sp(Ω; R).

Proof. Observe that

W s,p ∩ L∞ ⊂W 1,sp

by the Gagliardo-Nirenberg inequality (see Lemma D.1). Since sp ≥ 2 we may apply the
Bethuel-Zheng theorem and write u = eiϕ for some ϕ ∈ W 1,sp(Ω; R). Using Lemma 2 we
find that

Dϕ = −iūDu ∈W s−1,p,

so that ϕ ∈W s,p.

4. Examples of obstruction in Theorems 2 and 3.

We start with an example of obstruction in Theorem 2, i.e., when 0 < s < 1 and
1 ≤ sp < n.

Lemma 5. Assume n ≥ 2. Given any s and any p with 0 < s < 1, 1 < p < ∞, and
1 ≤ sp < n, there is some u ∈ W s,p(Ω;S1) which cannot be lifted, i.e., for this u no
ϕ ∈W s,p(Ω; R) exists such that u = eiϕ.

Proof. Without loss of generality we may assume that Ω is the unit ball. Let

ψ(x) =
1

|x|α
with

n− sp

p
≤ α <

n− sp

sp

and let

u = eiψ.

We claim that

(4.1) u ∈W s,p(Ω;S1).

Indeed it is clear that

ψ ∈W 1,q ∀ q with 1 < q <
n

α+ 1
,

and thus

ψ ∈W σ,q ∀ σ with 0 < σ < 1 , ∀ q with 1 < q <
n

α+ 1
.
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Since u ∈ L∞, we also know, by the Gagliardo-Nirenberg inequality (see Lemma D.1 in
Appendix D), that

u ∈ W t,r ∀ t ∈ (0, 1) ∀ r ∈ (1,∞) with tr <
n

α+ 1
.

In particular, we may choose t = s and r = p since sp < n/(α + 1), i.e., (4.1) holds.

Next we claim that there is no ϕ ∈ W s,p(Ω; R) such that u = eiϕ. Assume, by contra-
diction, that such ϕ exists. Set

η =
1

2π
(ϕ− ψ),

so that η takes its values in Z and

η ∈W s,p
loc (Ω\{0}; Z)

(because ψ is smooth on Ω\{0}). Since sp ≥ 1 and Ω\{0} is connected we conclude, using
Lemma B.1 in Appendix B, that η is a constant. Thus ψ ∈ W s,p(Ω; R). Note that, by
scaling,

A(r) =

∫

Br

∫

Br

|ψ(x) − ψ(y)|p

|x − y|n+sp
dxdy

satisfies A(1) = rβA(r) with β = (α + s)p − n ≥ 0 (by assumption on α). If A(1) < ∞,
then A(1) = 0 (by letting r → 0). But this is impossible. Thus A(1) = ∞, i.e., ψ /∈ W s,p.
A contradiction.

A topological obstruction. There is an alternative example of obstruction to lifting,
which is of topological nature.

Consider first the case n = 2. Set

(4.2) u(x) =
x

|x|
on the unit ball Ω of R2.

Since
|Du(x)| ≤ C/|x|

we see that u ∈ W 1,q(Ω;S1) for every q < 2 and therefore u ∈ W s,p(Ω;S1) for every
s ∈ (0, 1) and every p ∈ (1,∞) with sp < 2 (by the Gagliardo-Nirenberg inequality; see
Lemma D.1), If, in addition, we assume sp ≥ 1 then there is no ϕ ∈W s,p(Ω; R) such that
u = eiϕ. Indeed set

Ω′ = Ω\([0, 1] × {0})

and
θ ∈ (0, 2π) with eiθ = u.

Clearly θ ∈ C∞(Ω′) and θ has a jump of 2π along the segment [0, 1] × {0}. Assume, by
contradiction, that u has a lifting ϕ ∈ W s,p(Ω; R). Arguing as above we would conclude
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that θ ∈ W s,p(Ω; R) but this is impossible since θ has a jump of 2π along the segment
(0, 1) × {0} and such a function cannot belong to W s,p with sp ≥ 1.

When n ≥ 3, the same construction as above with

u(x) =
(x1, x2)

(x2
1 + x2

2)
1/2

x = (x1, x2, . . . , xn)

provides an example of a function u ∈W s,p(Ω;S1) for every s ∈ (0, 1) and every p ∈ (1,∞)
with sp < 2 and which has no lifting in W s,p when sp ≥ 1. However, this example does
not reach the optimal condition sp < n when n ≥ 3.

Remark 5. The topological obstruction provides an example of loss of regularity in lifting.
To explain the phenomenon consider the simple case where p = 2. Recall (see Corollary 1)
that if u ∈ Hs(Ω;S1) with 1/2 < s < 1, then, in general, u has no lifting in Hs. From the
positive part in Corollary 1 one knows that u has a lifting in H(1/2−ε). Roughly speaking,
we lose (s − 1/2) derivative in the lifting.
Open Problem: When n ≥ 3 the precise loss of regularity in lifting is not fully under-
stood. For simplicity consider the case n = 3 and p = 4. First a summary of the known
results:

a) If s < 1/4, any u ∈W s,4 has a lifting in W s,4.

b) If s ≥ 3/4, any u ∈W s,4 has a lifting in W s,4.

c) If 1/4 ≤ s < 3/4 some u’s in W s,4 have no lifting in W s,4.

d) The topological example provides an example of a function u ∈W s,4 ∀ s < 1/2, and
this u has no lifting even in W 1/4,4.

It would be interesting to find an example of a function u ∈ W s,4 ∀s < 3/4 which has
no lifting even in W 1/4,4.

Finally, case b) in Theorem 3 relies on

Lemma 6. Assume n ≥ 2. Given any s and any p with s ≥ 1 and 1 < p <∞ with sp < 2,
there is some u ∈W s,p(Ω;S1) which cannot be lifted by a function ϕ ∈W s,p(Ω; R).

Proof. Use the topological example u above. It is easy to see that u ∈ W s,p ∀s ∈ (0,∞),
∀p ∈ (1,∞) with sp < 2. This u has no lifting even in W 1/p,p.

5. Control of lifting in the Hs-norm for s
→
< 1

2 and application to Ginzburg-
Landau.

We return to the particular issue of lifting a function u ∈ Hs(Ω;S1) when s < 1/2 and
s→ 1/2. Recall (see Corollary 1) that, for every s < 1/2, u admits a lifting ϕ ∈ Hs(Ω; R),
i.e.,

(5.1) u = eiϕ
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We also know (see (1.7)) that we may find a ϕ ∈ Hs such that

‖ϕ‖Hs ≤ Cs‖u‖Hs.

Our aim is to find an optimal control for the constant Cs as s→ 1/2. Such a control will
then be used in the study of the Ginzburg-Landau energy Eε as ε → 0.

If we follow the proof in Section 1 we obtain a ϕ as a limit of sequence ϕj such that

(5.2)
∑

j≥1

4sj‖ϕj − ϕj−1‖
2
L2 ≤ C

∑

j≥0

4sj‖u−Ej(u)‖2
L2

where here, and in what follows, C without a subscript s denotes a constant which remains
bounded as s→ 1/2. Following the proof of Corollary 1 we obtain

(5.3)
∑

j≥1

4sj‖Ej(ϕ) −Ej−1(ϕ)‖2
L2 ≤ C

∑

j≥1

4sj‖ϕj − ϕj−1‖
2
L2 .

We also recall (see Step 3 in Appendix A) that

(5.4)
∑

j≥0

4sj‖u−Ej(u)‖2
L2 ≤ C‖u‖2

Hs.

Combining (5.2), (5.3) and (5.4) yields

(5.5)
∑

j≥1

4sj‖Ej(ϕ) −Ej−1(ϕ)‖2
L2 ≤ C‖u‖2

Hs.

Finally we know (see Corollary A.2 in Appendix A) that

(5.6) ‖ϕ‖Hs ≤ Cs




∑

j≥1

4sj‖Ej(ϕ) −Ej−1(ϕ)‖2
L2




1/2

and the optimal constant Cs for the inequality (5.6) is of the order of (1 − 2s)−1. Hence
we deduce that the ϕ constructed by this technique satisfies

(5.7) ‖ϕ‖Hs ≤ C(1− 2s)−1‖u‖Hs.

In fact, there is a more refined construction of lifting which yields a better estimate.
For simplicity we work in a cube Q of Rd, d ≥ 1; for more general domains see Remark
E.2 in Appendix E.
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Theorem 4. For every u ∈ Hs(Q;S1) with 0 < s < 1/2 one may construct a ϕ ∈
Hs(Q; R) satisfying (5.1) and the (optimal) estimate

(5.8) ‖ϕ‖Hs ≤ C(1 − 2s)−1/2‖u‖Hs,

where C is independent of u and independent of s as s→ 1/2.

The reason why the previous construction does not yield the correct asymptotic as
s → 1/2 is due to “edge-singularities” at the nodes of our dyadic partitions Pj . To
overcome this, we rely on an argument of translations which is explained in Appendix E
where we present the proof of Theorem 4. That type of argument has been exploited earlier
in slightly different contexts (for instance in comparing the usual and dyadic BMO-norms,
see Garnett and Jones [1]).

The next result is an application to the Ginzburg-Landau functional. Let Q be a cube
of Rd, d ≥ 1, and let Ω = Q × (0, 1). For any function g ∈ H1/2(Q; C) set

H1
g (Ω) =

{
u(x, t) : Ω → C;

∫

Ω

|∇u|2dxdt <∞ and u(x, 0) = g(x) on Q

}
,

Eε(u) =
1

2

∫

Ω

|∇u|2 +
1

4ε2

∫

Ω

(|u|2 − 1)2,

where ∇ denotes the full gradient (in (x, t)).

Theorem 5. For every g ∈ H1/2(Q;S1) we have, for ε > 0,

(5.9) Eε = Min
u∈H1

g(Ω)
Eε(u) ≤ C log(1/ε)‖g‖2

H1/2

where C is independent of ε and of g.

Proof. Let s = s(ε) < 1/2 to be specified. It follows from Theorem 4 (applied to g) that
g = eiϕ for some ϕ ∈ Hs(Q; R) satisfying

(5.10) ‖ϕ‖Hs ≤ C(1 − 2s)−1/2‖g‖H1/2.

Denote ϕδ a δ-smoothing of ϕ (with δ to be chosen later). Thus, we have

(5.11) ‖ϕ− ϕδ‖L2(Q) ≤ Cδs‖ϕ‖Hs(Q) ≤ Cδs(1 − 2s)−1/2‖g‖H1/2(Q)

also, by (5.10),

(5.12) ‖ϕδ‖H1/2(Q) ≤ Cδs−1/2‖ϕ‖Hs(Q) ≤ C(1 − 2s)−1/2δs−1/2‖g‖H1/2(Q).

Taking

(5.13) 1 − 2s ∼ (log 1/δ)−1
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we conclude that

(5.14) ‖ϕδ‖H1/2(Q) ≤ C(log 1/δ)1/2‖g‖H1/2(Q).

Let ϕ̃δ denote some harmonic extension of ϕδ to Ω with

(5.15) ‖ϕ̃δ‖H1(Ω) ≤ C(log 1/δ)1/2‖g‖H1/2(Q)

and set

(5.16) Gδ = eiϕ̃δ

so that

(5.17) ‖Gδ‖H1(Ω) ≤ C(log 1/δ)1/2‖g‖H1/2(Q).

Let P denote some harmonic extension of (g − eiϕδ ) to Ω satisfying the following three
estimates

‖P‖H1(Ω) ≤ C‖g− eiϕδ‖H1/2(Q)

≤ C(‖g‖H1/2(Q) + ‖ϕδ‖H1/2(Q))

≤ C(log 1/δ)1/2‖g‖H1/2(Q) by (5.14),(5.18)

(5.19) ‖P‖L∞(Ω) ≤ C‖g − eiϕδ‖L∞(Q) ≤ C,

and

‖P‖L2(Ω) ≤ C‖g − eiϕδ‖L2(Q)

≤ C‖ϕ− ϕδ‖L2(Q) ≤ Cδ1/2(log 1/δ)1/2‖g‖H1/2(Q) by (5.11).(5.20)

Define

(5.21) u = Gδ + P

so that by construction u|t=0 = g on Q.

¿From (5.17) and (5.18) we have

(5.22) ‖u‖2
H1(Ω) ≤ C log(1/δ)‖g‖2

H1/2(Q).
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On the other hand, using (5.19) we find

∣∣|u|2 − 1
∣∣ ≤ C

∣∣|u| − 1
∣∣∣∣|u|+ 1

∣∣ ≤ C
∣∣|u| − 1

∣∣

and since ∣∣|u| − 1
∣∣ =

∣∣|u| − |Gδ|
∣∣ ≤ |u−Gδ| = |P |

we are led to

(5.23)

∫

Ω

(|u|2 − 1)2 ≤ C

∫

Ω

|P |2 ≤ Cδ(log 1/δ)‖g‖H1/2(Q) by (5.20).

Combining (5.22) and (5.23) we obtain

Eε(u) ≤ C(1 + δ/ε2) log(1/δ)‖g‖2
H1/2(Q).

Choosing δ = ε2 yields the desired estimate (5.9).

Remark 6. In dimension d = 1, Eε remains bounded as ε→ 0 since we may write g = eiϕ

with some ϕ ∈ H1/2 and then take u = eiϕ̃ where ϕ̃ is some harmonic extension of ϕ.
However, the bound for Eε depends on g, not just on ‖g‖H1/2 (see also Remark 3).

Remark 7. In dimension d ≥ 2, estimate (5.9) is optimal. This may be seen, for example
in dimension d = 2, by choosing for g the topological example described in Section 4,

g(x) =
x

|x|
on Q.

We claim that Eε ≥ α log(1/ε) for some constant α > 0. Indeed we may write for any
u ∈ H1

g (Ω),

Eε(u) ≥ α

∫ 1

1/2

dr

∫

∑
r

(
1

2
|∇σu|

2 +
1

4ε
(|u|2 − 1)2

)
dσ

where Σr = {(x, t) ∈ Ω ; |x|2 + t2 = r2} and ∇σ denote the tangential gradient on Σr. We
then invoke the lower bound

1

2

∫

∑
r

|∇σu|
2 +

1

4ε2

∫

∑
r

(|u|2 − 1)2 ≥ c(log 1/ε)

which is known for a 2-dimensional flat disk (see Bethuel, Brezis and Hélein [1], Theorem
V.3) and can be transported to Σr by a smooth diffeomorphism.

The fact that (5.9) is optimal when d ≥ 2 shows in turn that (5.8) is also optimal for
d ≥ 2. Indeed an estimate of the form ‖ϕ‖Hs ≤ o((1 − 2s)−1/2) in place of (5.8), would
yield Eε ≤ o(log 1/ε), which is impossible. When d = 1, estimate (5.8) is still optimal, but
this requires a separate argument (see Remark E.1 in Appendix E).
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Remark 8. Theorem 4 is still valid for a general smooth domain Q in Rd (without any
topological assumption); see Remark E.2 in Appendix E. As a result, Theorem 5 is also
true in that situation. In Theorem 5 we may also take for Ω any smooth bounded domain
in Rd+1, d ≥ 1 and Q = ∂Ω; this is a consequence of the fact that Theorem 4 is still valid
when Q is a smooth d-dimensional manifold (see Remark E.2 in Appendix E). In that
case a more elementary (and simple) proof of (5.9) was obtained recently by T. Rivière
[3]. Estimate (5.9) plays a fundamental role in the asymptotic analysis (as ε → 0) of
Ginzburg-Landau minimizers (see Rivière [1], [2], Lin and Rivière [1], Sandier [1] and also
the forthcoming paper Bourgain, Brezis and Mironescu [1]).

APPENDIX A

A characterization of Ws,p(Ω; R) when sp < 1

Let Ω = (0, 1)n. For j = 0, 1, . . . we denote by Pj the dyadic partition of Ω into 2jn

cubes of side 2−j and by Ej the space of functions from Ω into R (or C) which are constant
on each cube of Pj . Given a function f ∈ Lp(Ω) we consider the function fj = Ej(f) ∈ Ej
defined as follows: every x ∈ Ω belongs to one of the cubes, say Qj(x), of the partition Pj
and we set

fj (x) = Ej(f)(x) =�

∫

Qj(x)

f.

Clearly we have

(A.1) ‖Ej(f)‖Lp ≤ ‖f‖Lp ∀ j,

(A.2) Ej(f) → f in Lp and a.e. as j → ∞.

Theorem A.1. Assume sp < 1. Then

‖f‖pWs,p ∼
∑

j≥1

2spj‖Ej(f) −Ej−1(f)‖pLp

∼
∑

j≥0

2spj‖f −Ej(f)‖pLp .

Remark A.1. Theorem A.1 is due to G. Bourdaud [1] (see his Théorème 5 with m = 0
and also the earlier paper of R. Devore and V. A. Popov [1]). It gives a positive answer to

a conjecture of H. Triebel [1] (Conjecture 1) for the Haar system {h
(−1,0)
j } in the spaces

Bsp,p = W s,p. The parameter ℓ = −1+1−0 = 0 and (for s > 0), the condition s < ℓ+(1/p)
is indeed sp < 1. For the convenience of the reader, and also because we are interested in
the behaviour of the sharp constants in the norm equivalence as sp→ 1, we present below
a proof of Theorem A.1.

We have also made use of the
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Corollary A.1. Assume sp < 1 and let (ϕj)j=0,1,... be a sequence of functions on Ω such
that

(A.3) ϕj ∈ Ej ∀j = 0, 1 . . .

and

(A.4)
∑

j≥1

2spj‖ϕj − ϕj−1‖
p
Lp <∞.

Then ϕj → ϕ in Lp and ϕ ∈W s,p with

(A.5) ‖ϕ‖pWs,p ≤ C
∑

j≥1

2spj‖ϕj − ϕj−1‖
p
Lp .

Remark A.2. Here ‖f‖Ws,p denotes the standard semi-norm,

‖f‖pWs,p =

∫

Ω

∫

Ω

|f(x) − f(y)|p

|x− y|n+sp
dxdy.

To work with a norm it suffices to add |
∫
f |.

Proof of Corollary A.1. From (A.4) we see that ϕj is a Cauchy sequence in Lp and thus
ϕj → ϕ in Lp. In order to prove that ϕ ∈ W s,p it suffices, in view of Theorem A.1, to
check that

(A.6)
∑

j≥1

2spj‖Ej(ϕ) −Ej−1(ϕ)‖pLp <∞.

Note that

(A.7) Ej(ϕ) −Ej−1(ϕ) = Ej(ϕ− ϕj) −Ej−1(ϕ − ϕj−1) + ϕj − ϕj−1

and thus

(A.8) ‖Ej(ϕ) −Ej−1(ϕ)‖Lp ≤ ‖ϕ− ϕj‖Lp + ‖ϕ− ϕj−1‖Lp + ‖ϕj − ϕj−1‖Lp

On the other hand, if we write

ϕj − ϕ = (ϕj − ϕj+1) + (ϕj+1 − ϕj+2) + · · · ,

we see that
‖ϕj − ϕ‖Lp ≤

∑

k≥j

‖ϕk − ϕk+1‖Lp
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so that, by (A.8), we have

(A.9) ‖Ej(ϕ) −Ej−1(ϕ)‖Lp ≤ 3
∑

k≥j

‖ϕk − ϕk−1‖Lp .

Thus, by Hölder,

‖Ej(ϕ) −Ej−1(ϕ)‖Lp ≤ 3
∑

k≥j

(k − j + 1)‖ϕk − ϕk−1‖Lp
1

(k − j + 1)

≤ 3




∑

k≥j

(k − j + 1)p‖ϕk − ϕk−1‖
p
Lp




1/p


∑

k≥j

1

(k − j + 1)p′




1/p′

and therefore

(A.10) ‖Ej(ϕ) −Ej−1(ϕ)‖pLp ≤ C
∑

k≥j

(k − j + 1)p‖ϕk − ϕk−1‖
p
Lp .

Consequently
∑

j≥1

2spj‖Ej(ϕ) −Ej−1(ϕ)‖pLp ≤ C
∑

j≥1

∑

k≥j

2spj(k − j + 1)p‖ϕk − ϕk−1‖
p
Lp

= C
∑

k≥1

2spk‖ϕk − ϕk−1‖
p
Lpak(A.11)

where

ak =
∑

1≤j≤k

2sp(j−k)(k − j + 1)p

= 2sp
∑

1≤ℓ≤k

ℓp

2spℓ
≤ a∞ = 2sp

∞∑

ℓ=1

ℓp

2spℓ
.

We deduce from (A.11) and Theorem A.1 that ϕ ∈W s,p and

‖ϕ‖pWs,p ≤ C
∑

j≥1

2spj‖ϕj − ϕj−1‖
p
Lp .

Proof of Theorem A.1. Set

X = ‖f‖pWs,p

Y =
∑

j≥1

2spj‖Ej(f) −Ej−1(f)‖pLp

Z =
∑

j≥0

2spj‖f −Ej(f)‖pLp .
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We will prove that Y ∼ Z and Z ≤ CX without assuming sp < 1. That condition enters
only to prove that X ≤ CY .

Step 1: Y ≤ Z

Proof. We have, since Ej−1(f) ∈ Ej−1 ⊂ Ej ,

Ej(Ej−1(f)) = Ej−1(f)

and thus
|Ej(f) −Ej−1(f)| = |Ej(f) −Ej(Ej−1(f))|.

Therefore
‖Ej(f) −Ej−1(f)‖Lp ≤ ‖f −Ej−1(f)‖Lp

and the estimate Y ≤ Z follows.

Step 2: Z ≤ CY . Here the condition sp < 1 is not used; it suffices to have s > 0.

Proof. Set ϕj = Ej(f); as in the proof of Corollary A.1 we obtain

‖f − ϕj‖Lp ≤
∑

k≥j+1

‖ϕk − ϕk−1‖Lp

and, by Hölder,

‖f − ϕj‖Lp ≤




∑

k≥j+1

(k − j)p‖ϕk − ϕk−1‖
p
Lp




1/p


∑

k≥j+1

1

(k − j)p′




1/p′

.

Thus
‖f − ϕj‖

p
Lp ≤ C

∑

k≥j+1

(k − j)p‖ϕk − ϕk−1‖
p
Lp

and consequently

∑

j≥0

2spj‖f − ϕj‖
p
Lp ≤ C

∑

j≥0

∑

k≥j+1

2spj(k − j)p‖ϕk − ϕk−1‖
p
Lp

= C
∑

k≥1

2spkak‖ϕk − ϕk−1‖
p
Lp

where

ak =
∑

0≤j≤k−1

2sp(j−k)(k − j)p ≤ a∞ =
∞∑

ℓ=1

ℓp

2spℓ
<∞.

Hence
Z ≤ Ca∞Y.
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Step 3: Z ≤ CX. Here, again, the condition sp < 1 is not used.

Proof. Recall that Qj(x) is the cube in the partition Pj containing the point x. Write

f(x) −Ej(f)(x) = f(x)− �

∫

Qj (x)

f(y)dy =�

∫

Qj(x)

(f(x) − f(y))dy

= 2nj
∫

Qj(x)

(f(x) − f(y))dy

and thus, by Hölder,

|f(x) −Ej(f)(x)|p ≤ 2nj
∫

Qj(x)

|f(x) − f(y)|pdy.

Therefore

(A.12) ‖f −Ej(f)‖pLp ≤ 2nj
∫

Ω

dx

∫

Qj(x)

|f(x) − f(y)|pdy,

so that

Z =
∑

j≥0

2spj‖f −Ej(f)‖pLp ≤
∑

j≥0

2(n+sp)j

∫

Ω

dx

∫

Qj(x)

|f(x) − f(y)|pdy

=

∫

Ω

∫

Ω

|f(x) − f(y)|p

|x− y|n+sp
a(x, y)dxdy,

where
a(x, y) = |x− y|n+sp

∑

j≥0

2(n+sp)j1Qj(x)(y)

and 1 denotes the characteristic function. Clearly

a(x, y) ≤ (4n)(n+sp)/2 ∀x, y ∈ Ω

and the conclusion follows.

Step 4: X ≤ CY when sp < 1.

Proof. For h ∈ Rn set

(δhf)(x) = f(x + h) − f(x), x ∈ Ωh = Ω ∩ (Ω − h).

A quantity equivalent to X is

(A.13) X ′ =

∫

|h|<1

dh

|h|n+sp

∫

Ωh

|(δhf)(x)|pdx.

We will use the following two lemmas



LIFTING IN SOBOLEV SPACES 23

Lemma A.1. We have, with some constant C (depending only on p, α and β), for all
h ∈ Rn and all j ≥ 1

‖δhf‖
p
Lp(Ωh) ≤ C




j∑

k=1

2α(j−k)p‖δh(fk − fk−1)‖
p
Lp(Ωh) +

∞∑

k=j+1

2β(k−j)p‖fk − fk−1‖
p
Lp(Ω)



 ,

where α > 0 and β > 0 will be chosen later.

Proof. As above, write

f = f0 +
∑

k≥1

(fk − fk−1)

and thus
δhf =

∑

k≥1

δh(fk − fk−1),

so that

‖δhf‖Lp(Ωh) ≤

j∑

k=1

‖δh(fk − fk−1)‖Lp(Ωh) + 2

∞∑

k=j+1

‖fk − fk−1‖Lp(Ω),

and the conclusion follows from Hölder’s inequality.

Lemma A.2. We have, for all h ∈ Rn and all ψ ∈ Ek, k ≥ 1,

(A.14) ‖δhψ‖
p
Lp(Ωh) ≤ C|h|2k‖ψ‖pLp(Ω)

where C depends only on p and n.

Proof. Write

ψ =
∑

Q∈Pk

aQ1Q

and thus
δhψ =

∑

Q

aQ(δh1Q).

Therefore, by Hölder

|δhψ|
p ≤




∑

Q

|aQ|
p|δh1Q|








∑

Q

|δh1Q|




p−1

.

But ∑

Q

|δh1Q| ≤ 2
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and thus

(A.15)

∫

Ωh

|δhψ|
p ≤ C

∑

Q

|aQ|
p

∫

Ωh

|δh1Q|.

On the other hand

(A.16)

∫

Ωh

|δh1Q| ≤ |Q\(Q − h)| + |(Q − h)\Q| ≤ C
|h|

2(n−1)k

and

(A.17) ‖ψ‖pLp(Ω) =
1

2nk

∑

Q

|aQ|
p.

Combining (A.15), (A.16) and (A.17) yields (A.14).

Proof of Step 4 completed. In view of (A.13) we have

X ≤ C
∞∑

j=1

∫

1
2j <|h|< 1

2j−1

dh

|h|n+sp

∫

Ωh

|(δhf)(x)|pdx.

Combining this with Lemma A.1 we find

X ≤ C(I1 + I2)

where

(A.18) I1 =
∞∑

j=1

∫

1
2j <|h|< 1

2j−1

2(n+sp)j

j∑

k=1

2α(j−k)p‖δh(fk − fk−1)‖
p
Lp(Ωh)dh

and

(A.19) I2 =

∞∑

j=1

∫

1
2j <|h|< 1

2j−1

2(n+sp)j
∞∑

k=j+1

2β(k−j)p‖fk − fk−1‖
p
Lp(Ω)dh.

The estimate for I2 is very simple since

I2 ≤ C
∞∑

j=1

∞∑

k=j+1

2spj2β(k−j)p‖fk − fk−1‖
p
Lp

= C
∞∑

k=2

2spkbk‖fk − fk−1‖
p
Lp
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where

bk =
k−1∑

j=1

2sp(j−k)2β(k−j)p ≤ b =
∞∑

ℓ=1

2(β−s)ℓp <∞

provided we choose 0 < β < s. Therefore I2 ≤ CY .

To estimate I1 we apply Lemma A.2 with ψ = (fk − fk−1). Inserting (A.14) in (A.18)
we obtain

I1 ≤ C
∞∑

j=1

2spj
j∑

k=1

2(k−j)2α(j−k)p‖fk − fk−1‖
p
Lp

= Cc
∞∑

k=1

2spk‖fk − fk−1‖
p
Lp

with

c =
∞∑

ℓ=0

2(sp−1+αp)ℓ <∞,

provided we choose 0 < α < (1−sp)/p (this is the only place where we use the assumption
sp < 1). Thus we have proved that I1 ≤ CY and the proof of Step 4 is complete.

Returning to Theorem A.1 it is a natural question to ask how the norm-equivalence
deteriorates when sp→ 1. It was already observed that the inequality

∑

j≥1

2spj‖∆jf‖
p
Lp ≤ C‖f‖pWs,p ,

where ∆jf = Ej(f) −Ej−1(f), is independent of the assumption sp < 1. Concerning the
other direction, one has the following more precise result when sp is close to 1.

Proposition A.1. Assume sp < 1. Then

(A.20) ‖f‖Ws,p ≤
C

s(1 − sp)




∑

j≥1

2spj‖∆jf‖
p
Lp




1/p

where C is an absolute constant.

Proof. Following the proof of Step 4 with

α = (1 − sp)/2p and β = s/2

and using the fact that
∞∑

ℓ=1

2−aℓ ≤

∫ ∞

0

dx

2ax
= C/a,
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we obtain

X ≤

(
1 +

C

αp′
+

C

βp′

)p−1

(I1 + I2)

and then

I2 ≤ C(1 +
1

sp
)Y

I1 ≤
C

1 − sp
Y.

Combining these inequalities yields (A.20).

In particular, with p = 2, we find

Corollary A.2. For 1/4 < s < 1/2 we have

‖f‖Hs ≤ C(1− 2s)−1




∑

j≥1

4sj‖∆jf‖
2
L2




1/2

where C is an absolute constant.

The dependence in (1 − 2s)−1 for s → 1/2 in Corollary A.2 is optimal as can be seen
from the following example.

Lemma A.3. Let 0 < s < 1
2
. Let Ω = (−1, 1) equipped with standard dyadic partition

{Pj} and

f = (log
1

x
)χ

[0<x<1]
.

Then

(i) ‖f‖Hs & (1 − 2s)−3/2

(ii) (
∑

j≥1

4js‖∆jf‖
2
L2 )1/2 ∼ (1 − 2s)−1/2.

Proof.

(i)

‖f‖2
Hs =

∫∫
|f(x + h) − f(x)|2

|h|1+2s
dxdh ≥

∫∫

x<0<x+h

h−(1+2s)(log
1

x + h
)2dxdh

≥
∑

j

4js
∫ −2−j

−2−j+1

(log
1

x
)2dx

∼
∑

j

j22−j(1−2s)

∼ (1 − 2s)−3.
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(ii) We need to evaluate the increments ∆jf . Let I ∈ Pj−1,

I = [a, a + 2−(j−1)] ⊂ [0, 1].

Thus the value of |∆jf | on I is

(A.21) 2j
∣∣∣∣
∫ a+2−j

a

f −

∫ a+2−j+1

a+2−j

f

∣∣∣∣ = 2j
∣∣F (a + 2−j+1) + F (a) − 2F (a + 2−j)

∣∣

where

F (x) = x log
1

x
+ x.

For a = 0,

(A.22) (A.21) = 2j |F (2−j+1) − 2F (2−j)| = 2j|2−j+1(j − 1) − 2−j+1j
∣∣ = 2.

For a = r2−(j−1), r ≥ 1

(A.23) (A.21) . 2j4−j‖F ′′‖L∞(I) = 2−j‖
1

x
‖L∞(I) ∼

1

r
.

It follows in particular from (A.22), (A.23) that

‖∆jf‖
2
2 ≤ C2−j

∑

r≥1

r−2 = C2−j

∑
4js‖∆jf‖

2
2 ≤ C

∑
2−j(1−2s) ∼ (1 − 2s)−1.

APPENDIX B

Functions in Ws,p(Ω; Z) are constant when sp≥1.

A continuous function on a connected space with values into Z must be constant. Func-
tions in the Sobolev space W s,p with sp ≥ 1 have the same property although they need
not be continuous. More precisely we have

Theorem B.1. Assume Ω is a connected open set in Rn, n ≥ 1. Let 0 < s < ∞ and
1 < p <∞ be such that

(B.1) sp ≥ 1,

including s = 1 and p = 1. Then any function f ∈W s,p(Ω; Z) must be constant.

Remark B.1. Hardt, Kinderlehrer and Lin [1] have stated the same conclusion when
s = 1/2 and p = 2 with a sketch of proof. Bethuel and Demengel [1] have also ob-
tained the same result when sp > 1 and the proof we present follows their argument with
an additional ingredient to cover the case sp = 1.
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Proof. It is convenient to split the proof into two steps:

Step 1: the case n = 1.

If sp > 1, the conclusion is obvious since f is continuous by the Sobolev imbedding
theorem. If sp = 1, a borderline for the Sobolev imbedding, f need not be continuous, but
f is VMO (see e.g. Brezis and Nirenberg [1], Section I.2). Therefore, the essential range
of f is connected (see Brezis and Nirenberg [1], Section I.5) and thus f is constant. For
the convenience of the reader we reproduce the argument. Set

fε(x) =�

∫

Bε(x)

f(y)dy

and note that

dist(fε(x),Z) ≤�

∫

Bε(x)

|f(y) − fε(x)|dy → 0

uniformly in x as ε → 0 (since f ∈ VMO). On the other hand fε(Ω) is connected and
consequently there is some integer kε ∈ Z such that

‖fε − kε‖L∞ → 0 as ε→ 0.

It follows that kε → k as ε → 0 with k ∈ Z and f = k a.e. on Ω.

Step 2: the case n ≥ 2.

It suffices to prove that f is locally constant a.e. and thus we may assume, without loss
of generality, that Ω = (0, 1)n. For a.e. x′ = (x1, . . . , xi−1, xi+1, . . . xn) in (0, 1)n−1 the
function

(B.2) t 7→ ψ(t) = f(x1, . . . xi−1, t, xi+1, . . . xn)

belongs to W s,p(0, 1). This is a consequence of the fact that an equivalent norm for
W s,p(Rn)(0 < s < 1) is given by

|‖f |‖p = ‖f‖pLp +
n∑

i=1

∫ 1

0

∫

Rn

|f(x + tei) − f(x)|p

t1+sp
dxdt

where (ei) denotes the canonical basis of Rn (see e.g. Adams [1], p.208-214). Applying
Step 1 we know that for a.e. x′ ∈ (0, 1)n−1 the function ψ is constant. To complete
Step 2 we rely on the following simple measure theoretical lemma (see e.g. Lemma 2 in
Brezis, Li, Mironescu and Nirenberg [1])
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Lemma B.1. Let Ω = (0, 1)n and let f be a measurable function on Ω such that for each
1 ≤ i ≤ n and for a.e. x′ = (x1, . . . , xi−1, xi+1, . . . xn) in (0, 1)n−1 the function ψ defined
in (B.2) is constant a.e. on (0, 1). Then f is constant a.e. on Ω.

Remark B.2. Assumption (B.1) cannot be weakened. Indeed, the characteristic function of
any smooth domain ω compactly contained in Ω belongs to W s,p for any s, p with sp < 1.

Remark B.3. The conclusion of Theorem B.1 is still valid if f : Ω → Z is a sum of functions

in different Sobolev space, i.e., f =
∑k

i=1 fi with fi ∈ W si,pi(Ω; R) and sipi ≥ 1 for all
i. The proof is identical to the one we have presented above. In particular the conclusion
holds if f ∈ H1/2 +W 1,1; this fact will be used in our forthcoming paper Bourgain, Brezis
and Mironescu [1].

APPENDIX C

Composition in fractional Sobolev spaces

We investigate here the question whether Φ ◦ v belongs to W s,p(Ω) when v belongs to
W s,p(Ω) and Φ is smooth. For simplicity we consider only the case Ω = Rn. Of course,
here, we also assume that Φ(0) = 0. The case of a domain can be treated by extending
the functions to Rn.

Lemma C.1. Let 0 < s <∞ and 1 < p <∞. Assume

(C.1) v ∈W s,p(Ω) ∩ L∞(Ω).

Then

(C.2) Φ ◦ v ∈W s,p(Ω).

Proof. When s is an integer the conclusion is easy via the Gagliardo-Nirenberg inequality.
For example, when s = 2

D2(Φ ◦ v) = Φ′(v)D2v + Φ′′(v)(Dv)2 ∈ Lp

since W 2,p∩L∞ ⊂W 1,2p by the Gagliardo-Nirenberg inequality. A similar argument holds
for higher order derivatives.

We now turn to the case where s is fractional. The conclusion is obvious when 0 < s < 1.
Suppose now that 1 < s < 2. One has to show that

D(Φ ◦ v) = Φ′(v)Dv ∈W s−1,p.

This would require a lemma about products which eludes us.

Instead of this strategy one relies on a characterization of W s,p via finite differences.
Set

(δhu)(x) = u(x+ h) − u(x),
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so that
(δ2hu)(x) = u(x+ 2h) − 2u(x+ h) + u(x).

Then

(C.3) u ∈W s,p ⇔

∫∫
|δ2hu(x)|p

|h|n+sp
dhdx <∞,

(see Triebel [2], p.110).

The key observation is that δ2h(Φ ◦ v) can be estimated in terms of δ2hv and δhv. This is
the purpose of our next computation.

Set

X = v(x + 2h)

Y = v(x + h)

Z = v(x).

Then

(C.4) Φ(X) − Φ(Y ) = Φ′(Y )(X − Y ) +O(|X − Y |2)

and

(C.5) Φ(Z) −Φ(Y ) = Φ′(Y )(Z − Y ) +O(|Z − Y |2).

Since
δ2h(Φ ◦ v)(x) = (Φ(X) − Φ(Y )) + (Φ(Z) − Φ(Y )),

one finds

(C.6) |δ2h(Φ ◦ v)(x)| ≤ C(|δ2hv(x)| + |δhv(x + h)|2 + |δhv(x)|
2).

Consequently

(C.7)

∫∫
|δ2h(Φ ◦ v)(x)|p

|h|n+sp
≤ C

∫∫
|δ2hv(x)|

p

|h|n+sp
+ C

∫∫
|δhv(x)|

2p

|h|n+sp
.

The first term on the righthand side of (C.7) is finite since v ∈ W s,p and for the second
term we observe that

∫∫
|δhv(x)|

2p

|h|n+sp
= ‖v‖2p

W
s
2

,2p ≤ C‖v‖pL∞‖v‖pWs,p
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by the Gagliardo-Nirenberg inequality (see Lemma D.1). Hence we have proved that
Φ ◦ v ∈ W s,p. The same argument extends to a general s > 2, s non integer (see e.g.
Escobedo [1]).

APPENDIX D

Gagliardo-Nirenberg inequalities and products in fractional Sobolev spaces

We establish here some Gagliardo- Nirenberg type inequalities used in the paper. We
also present a proof of Lemma 2 concerning products in fractional Sobolev spaces. These
results are presumably known to the experts. For simplicity we work on Rn; the case of a
domain can be treated by extending the functions to Rn.

Lemma D.1. Let 0 < s <∞, 1 < p <∞. Assume

u ∈W s,p(Rn) ∩ L∞(Rn).

Then

(D.1) u ∈ W r,q, ∀ r ∈ (0, s) with q =
sp

r
,

and

(D.2) |‖u|‖Wr,q ≤ C‖u‖
1−(r/s)
L∞ |‖u|‖

r/s
Ws,p ,

provided that either (i) both r, s are non integers or (ii) r is an integer.

Here, we use the following semi-norm on W s,p (see e.g. Triebel [2]):

|‖u|‖Ws,p =

{
‖Dsu‖Lp , if s is an integer

(
∫∫ |δM

h u(x)|p

|h|n+sp dxdh)1/p if s is not an integer

(as usual, M > s is any integer).

Proof of Lemma D.1. It is convenient to observe that, for every s ∈ (0,∞) and every
p ∈ (1,∞),

(D.3) |‖u|‖pWs,p(Rn) ∼

∫

Sn−1

dσ

∫

y·σ=0

|‖u(tσ + y)|‖pWs,p(R)dy.

(When s is not an integer, (D.3) is clear. When s is an integer, (D.3) follows from the fact
that the function

A 7→

(∫

Sn−1

|A(σ, σ, ..., σ)|pdσ

) 1
p
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is a norm on the space of s-linear symmetric forms on Rn.) Using (D.3) one sees that the
proof of (D.2) reduces to the one-dimensional case.

Also, note that the desired inequality (D.2) is clear when both s and r are not integers.
Indeed, in this case, we have, for M > s (and hence M > r)

|‖u|‖qWr,q =

∫∫
|δMh u(x)|q

|h|n+rq
dxdh ≤ ‖δMh u‖

q−p
L∞

∫∫
|δMh u(x)|p

|h|n+rq
dxdh

≤ C‖u‖q−pL∞ |‖u|‖pWs,p .

Therefore, it suffices to establish (D.2) for n = 1 and s ≥ 1. We follow the proof of
Nirenberg [1]. By the Sobolev imbedding theorem, we have (since sp > 1),

W s,p([0, 1]) ⊂W r,q([0, 1]).

Hence

(D.4) |‖u|‖Wr,q([0,1]) ≤ C(‖u‖Lp([0,1]) + |‖u|‖Ws,p([0,1])), u ∈W s,p([0, 1]).

It then follows that

(D.5) |‖u|‖Wr,q([0,1]) ≤ C(‖u‖L∞([0,1]) + |‖u|‖Ws,p([0,1])), u ∈W s,p([0, 1]).

By scaling, we find

|‖u|‖qWr,q([0,ℓ]) ≤ C(ℓ1−sp‖u‖qL∞([0,ℓ]) + ℓ(
s
r−1)(sp−1)|‖u|‖qWs,p([0,ℓ])),(D.6)

= C(A(ℓ) +B(ℓ)), u ∈W s,p([0, ℓ]).

It clearly suffices to prove (D.2) in [0,∞) and we may assume that ‖u‖Ws,p = 1. Fix
some ε > 0. We construct inductively a sequence of disjoint intervals I1, I2, . . . such that

[0,+∞) = I1 ∪ I2 ∪ · · ·

as follows:

We compare A(ε) and B(ε). If B(ε) ≥ A(ε), then we take I1 = [0, ε) and next construct
I2. Otherwise, note that limℓ→∞ A(ℓ) = 0, limℓ→∞B(ℓ) = ∞ (unless u ≡ 0, which is not
the case). Hence there is some ε < ℓ <∞ such that A(ℓ) = B(ℓ). It then follows that

|‖u|‖qWr,q([0,ℓ]) ≤ C‖u‖q−pL∞([0,ℓ])|‖u|‖
p
Ws,p([0,ℓ]).

In this case we take I1 = [0, ℓ). We next start the above procedure from the endpoint of
I1. Since at each step we have |Ij | ≥ ε, we clearly cover in this way [0,∞) with a sequence
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of intervals. Denote the first type of intervals by Ij and the second type by Kj . Using the
assumption that r is an integer we have

|‖u|‖qWr,q([0,∞)) =
∑

Ij

|‖u|‖qWr,q(Ij)
+
∑

Kj

· · ·

≤ Cε(
s
r−1)(sp−1)

∑

Ij

|‖u|‖qWs,p(Ij)

+C‖u‖q−pL∞(R)

∑

Kj

|‖u|‖pWs,p(Kj)
.

Note that, since q > p, we have

∑

Ij

|‖u|‖pWs,p(Ij)
≤ 1 ⇒

∑

Ij

|‖u|‖qWs,p(Ij)
≤ 1.

Hence

(D.7) |‖u|‖qWr,q([0,∞]) ≤ Cε(
s
r −1(sp−1) +C‖u‖q−pL∞(R)|‖u|‖

p
Ws,p(R).

We conclude by letting ε→ 0 in (D.7) (the constants C are independent of ε).

Remark D.1. The conclusion of Lemma D.1 fails when s = 1 and p = 1. For example
W 1,1(R)∩L∞(R) is not contained in W 1/2,2(R)—because this would imply the inequality
‖u‖W1/2,2 ≤ C‖u‖W1,1 which is clearly wrong (use for example the sequence in Remark 3).

Remark D.2. In the general case (no restrictions on r and s), the conclusions of Lemma
D.1 are still true (the remaining case, i.e., s integer and r non integer, is treated in T.
Runst [1], Lemma 5.2.1).

We next prove a regularity result for products in Sobolev spaces.

Lemma D.2. Let n ≥ 1, 1 < s <∞, 1 < p <∞. Let u, v ∈W s,p(Rn) ∩ L∞(Rn). Then

uDv ∈W s−1,p(Rn).

Proof of Lemma D.2. If s is an integer, the conclusion follows easily from the Gagliardo-
Nirenberg inequality. We henceforth assume that s is not an integer.

We use a Littlewood- Paley decomposition technique (see e.g. Bony [1], Alinhac and
Gérard [1] or Chemin [1]). Let ψ0 ∈ C∞

0 (Rn) be such that

ψ0(ξ) = 1 if |ξ| ≤ 1 and ψo(ξ) = 0 if |ξ| ≥ 2.

Set
ψj (ξ) = ψ0(2

−jξ) − ψ0(2
−j+1ξ), j ≥ 1 and ϕj = F−1(ψj ), j ≥ 0.
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For f ∈ S ′, let fj = f ∗ ϕj, so that f =
∑

j≥0 fj in S ′.

We have uDv =
∑

(rj + sj ), where

rj = uj
∑

k≤j−1

Dvk and sj = Dvj
∑

k≤j

uk.

Since clearly ∥∥∥∥
∑

k≤j

ϕk

∥∥∥∥
L1

≤ C,

∥∥∥∥
∑

k≤j

Dϕk

∥∥∥∥
L1

≤ C2j, ∀j ≥ 0,

we obtain

(D.8)

∥∥∥∥
∑

k≤j

vk

∥∥∥∥
Lq

≤ C‖v‖Lq , ∀q,

(D.9)

∥∥∥∥
∑

k≤j

Dvk

∥∥∥∥
Lq

≤ C2j‖v‖Lq , ∀q,

and the same inequalities hold for u. Therefore,

(D.10) ‖rj‖
p
Lp ≤ C‖uj‖

p
Lp

∥∥∥∥
∑

k≤j−1

Dvk

∥∥∥∥
p

L∞

≤ C2jp‖uj‖
p
Lp‖v‖

p
L∞ .

On the other hand, vj =
∑

k≤j+2(vj )k, since, for k ≥ j + 3,

F((vj )k) = F(v)ψjψk = 0.

Therefore,

‖Dvj‖Lq =

∥∥∥∥
∑

k≤j+2

D(vj )k

∥∥∥∥
Lq

≤ C2j‖vj‖Lq , ∀q,

by (D.9) applied to vj . Consequently,

(D.11) ‖sj‖
p
Lp ≤ C‖u‖pL∞‖Dvj‖

p
Lp ≤ C2jp‖vj‖

p
Lp‖u‖

p
L∞ .

We now recall two basic facts about W σ,p, σ > 0, σ non integer, 1 < p <∞. Let f ∈W σ,p

and let fj = f ∗ ϕj as above. Then

(D.12) ‖f‖pWσ,p ∼
∑

j≥0

2σjp‖fj‖
p
Lp

(see e.g. Triebel [2], p. 46).
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Conversely, let gj be a sequence in Lp such that suppF(gj) ⊂ B2j . Then

(D.13)

∥∥∥∥
∑

j≥0

gj

∥∥∥∥
p

Wσ,p

≤ C
∑

j≥0

2σjp‖gj‖
p
Lp

(see e.g. Chemin [1], p. 27). Using (D.10), (D.11) and (D.12) (with σ = s), we find

(D.14)
∑

j≥0

2(s−1)jp‖rj + sj‖
p
Lp ≤ C

(
‖u‖pL∞‖v‖pWs,p + ‖v‖pL∞‖u‖pWs,p

)
.

Since suppF(rj + sj) ⊂ B2j+3, (D.13) (applied with σ = s− 1 and gj = rj + sj ) combined
with (D.14) yields that uDv ∈W s−1,p and that

(D.15) ‖uDv‖Ws−1,p ≤ C(‖u‖L∞‖v‖Ws,p + ‖v‖L∞‖u‖Ws,p ).

Remark D.3. As a consequence of Lemma D.2, we derive the well-known fact that
W s,p ∩ L∞ is an algebra.

APPENDIX E

Behaviour of the Hs-norm of lifting for s
→
<

1
2 . Proof of Theorem 4

We return to the particular issue of lifting of an unimodular function F in Hs, s < 1
2 .

As we have pointed out in Section 5 the construction described in Appendix A of a lifting

(E.1) F = eiϕ, ϕ ∈ Hs

does not lead to the optimal estimate of ‖ϕ‖Hs when s→ 1
2 . Our aim is to prove

Theorem E.1. Let Q be a cube of Rd, d ≥ 1. For every F ∈ Hs(Q;S1) with 0 < s < 1/2
one may construct a ϕ ∈ Hs(Q; R) satisfying (E.1) and the (optimal) estimate

(E.2) ‖ϕ‖Hs ≤ C(1 − 2s)−1/2‖F‖Hs

where C is a constant independent of F and independent of s as s→ 1/2.

Proof. Given an unimodular Hs-function F on a cube, say Q = [0, 1
2
]d ⊂ Rd, we may

extend F to a 1-periodic unimodular function in Hs
loc(R

d) by the usual procedure of reflec-
tions and periodic continuation. Hence, we may assume F ∈ Hs(Td;S1), where Td = d-dim
torus. This setting is particularly convenient to perform our translation averaging. On
Ω = Td, we fix again a system {Pj}j=0,1,2,... of refining dyadic partitions (thus the atoms
of Pj are d-intervals of size ∼ 2−j) and denote Ej the corresponding expectation operators.
Denote also τθ the shift operators on Td.

We perform the following construction. Given F ∈ Hs(Ω;S1), denote Fθ = F ◦ τθ and
ϕ[θ] the lifting of Fθ gotten from the construction described in Section 1 (with fixed Pj’s).
Thus

(E.3) Fθ = eiϕ[θ] and F = ei(ϕ[θ]◦τ−θ )

and ϕ[θ] ◦ τ−θ = ϕ is a lifting for F . Thus Theorem 4 will follow immediately from the
next statement.
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Lemma E.1. We have

∫

Td

‖ϕ[θ]‖Hsdθ ≤ C(1 − 2s)−1/2‖F‖Hs.

Proof. We show in fact that

(E.4)

∫
‖ϕ[θ]‖2

Hsdθ ≤ C(1 − 2s)−1‖F‖2
Hs.

The lefthand side of (E.4) equals

∫∫∫
|ϕ[θ] − τhϕ[θ]|2(x)

|h|2s+d
dxdhdθ

∼
∑

j≥0

2(2s+d)j

∫∫

|h|∼2−j

‖ϕ[θ] − τhϕ[θ]‖2
2dhdθ.(E.5)

Denote ϕ[θ] by ϕ for simplicity. Fix j.
Writing

(E.6) ϕ = Ejϕ+
∑

j′>j

∆j′ϕ (∆j′ = Ej′ −Ej′−1)

estimate

(E.7) ‖ϕ− τhϕ‖
2
2 . ‖Ejϕ− τhEjϕ‖

2
2 +

∑

j′>j

(j′ − j)2‖∆j′ϕ‖
2
2.

Recall inequality (1.5) in Section 1

(E.8) |ϕj − ϕj−1| ≤ C(|Fθ −Ej(Fθ)| + |Fθ −Ej−1(Fθ)|).

Hence, since ϕj = Ej(ϕj), we have

‖∆jϕ‖2 ≤ ‖Ej(ϕ− ϕj)‖2 + ‖Ej−1(ϕ− ϕj−1)‖2 + ‖ϕj − ϕj−1‖2(E.9)

≤ C
∑

j′≥j

‖ϕj′ − ϕj′−1‖2

≤ C
∑

j′≥j−1

‖Fθ −Ej′ (Fθ)‖2

≤ C
∑

j′≥j−1

(j′ − j + 2)‖∆j′Fθ‖2(E.10)
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and estimate in (E.7)

(E.11) ‖∆j′ϕ‖
2
2 ≤ C

∑

j′′≥j′−1

(j′′ − j′ + 2)4‖∆j′′Fθ‖
2
2.

Thus the contribution of the second term in (E.7) is bounded by

∑

j≥0

2(2s+d)j

∫∫

|h|∼2−j

{∑

j′>j

(j′ − j)2‖∆j′ϕ‖
2
2

}
dhdθ

≤ C

∫
dθ

{∑

j≥0

22sj
∑

j′′+2≥j′>j

(j′ − j)2(j′′ − j′ + 2)4‖∆j′′Fθ‖
2
2

}

≤ C

∫
dθ

{ ∑

j′′>0

22sj′′‖∆j′′Fθ‖
2
2

}
.(E.12)

Recalling the proof of Theorem A1 (in particular the inequality Y ≤ CX independent of
the assumption 2s < 1) we have

(E.13) (E.12) ≤ C

∫
dθ‖Fθ‖

2
Hs ≤ C‖F‖2

Hs.

Thus the θ-integration is irrelevant here.
The main point is the contribution of the first term ‖Ejϕ− τhEjϕ‖

2
2 in (E.5), thus

(E.14)
∑

j≥0

2(2s+d)j

∫∫

|h|∼2−j

∫
|Ejϕ− τhEjϕ|

2dθdhdx.

Estimate

(E.15) |Ejϕ− τhEjϕ| ≤
∑

j′≤j

|∆j′ϕ− τh∆j′ϕ|.

Write

(E.16) ∆j′ϕ =
∑

I∈Pj′

aIχI
.

Then, for |h| < 2−j , one easily verifies that

(E.17) |∆j′ϕ− τh∆j′ϕ| ≤
∑

I∈Pj′

|aI | |χI
− τhχI

| ≤ C(|∆j′ϕ| ∗ P2−j′ )χj′,2−j
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where χj′,2−j denotes the characteristic function of the set

(E.18) {x; dist (x, ∂I) ≤ 2−j for some I ∈ Pj′}

and Pε denotes the usual Poisson-kernel for instance.

Thus

(E.19)

∫
χj′,2−j = mes (E.18) ≤ C2j

′d2−j
′(d−1)2−j ≤ C2j

′−j .

Substituting (E.17) in (E.15) implies (since ∪I∈Pj′
1

∂I ⊂ ∪I∈Pj′
2

∂I for j′1 < j′2)

(E.20) |Ejϕ− τhEjϕ|
2 ≤

∑

j′1≤j,j
′

2≤j

j′1≤j
′

2

(|∆j′1
ϕ| ∗ P

2
−j′

1
)(|∆j′2

ϕ| ∗ P
2
−j′

2
)χj′1,2−j .

Next,

(E.21) ∆j′ϕ = Ej′(ϕ− ϕj′) −Ej′−1(ϕ− ϕj′−1) + ϕj′ − ϕj′−1

and again from inequality (E.8)

(E.22) |ϕ− ϕj′ | ≤ C
∑

j′′>j′

(j′′ − j′)|∆j′′Fθ|.

We get

(E.23) |∆j′ϕ| ∗ P2−j′ ≤ C
∑

j′′≥j′

(j′′ − j′ + 1)(|∆j′′Fθ| ∗ P2−j′ ).

Substituting (E.23) in (E.20) and then in (E.14) gives
(E.24)∑
j≥0

22sj

∫∫
dxdθ

∑
j′1≤j,j′2≤j,j′1≤j′2

j′′1 ≥j′1,j′′2 ≥j′2

(j′′1 − j′1 + 1)(j′′2 − j′2 + 1)(|∆j′′1
Fθ| ∗ P

2
−j′

1
)(|∆j′′2

Fθ| ∗ P
2
−j′

2
)χj′1,2−j (x).

The role of the θ-translation is that we introduced an extra variable to estimate (E.24).
Write F as a Fourier series in Td

F =
∑

n∈Zd

F̂ (n)einx.

Then

∆j(Fθ) =
∑

F̂ (n)einθ∆j(e
in.)(E.25)

|(|∆jFθ| ∗ Pε)(x)|
2 ≤

∫ ∣∣∣∣
∑

F̂ (n)einθ∆j(e
in.)(x − y)|2 Pε(y)dy.(E.26)
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Integrating (E.26) in θ gives clearly

(E.27) ‖|∆jFθ| ∗ Pε‖
2
L2

θ
≤
∑

|F̂ (n)|2 ‖∆j(e
in.)‖2

∞ .
∑

|F̂ (n)|2(1 ∧ |n|2−j)2.

To estimate (E.24), perform first the θ-integration using Cauchy-Schwarz and (E.27).
This gives, recalling (E.19)

(E.28)
∑

j≥0

22sj
∑

j′α≤j,j′α≤j′′α ,j
′

1≤j
′

2

2j
′

1−j(j′′1 − j′1 + 1)(j′′2 − j′2 + 1)

[∑

n

|F̂ (n)|2(1 ∧ |n|2−j
′′

1 )2
]1/2

[∑

n

|F̂ (n)|2(1 ∧ |n|2−j
′′

2 )2
]1/2

.

To evaluate (E.28), denote

ℓα = j′′α − j′α ≥ 0 (α = 1, 2)(E.29)

m = j′2 − j′1 ≥ 0(E.30)

so that

(E.31)

(E.28) =
∑

m,ℓ1.ℓ2≥0

(ℓ1 + 1)(ℓ2 + 1)
∑

j′1

2j
′

1

(∑

j≥j′1

2(2s−1)j

)
.

[∑

n

|F̂ (n)|2(1 ∧ |n|2−j
′

1−ℓ1)2
]1/2[∑

n

|F̂ (n)|2(1 ∧ |n|2−j
′

1−m−ℓ2)2
]1/2

.

Applying Cauchy-Schwarz for the j′1-summation
(E.32)

(E.31) ≤ C
∑

m,ℓ1,ℓ2

(ℓ1 + 1)(ℓ2 + 1)(1 − 2s)−1

[∑

n,j′1

|F̂ (n)|222sj′1(1 ∧ |n|2−j
′

1−ℓ1)2
]1/2[∑

n,j′1

|F̂ (n)222sj′1(1 ∧ |n|2−j
′

1−m−ℓ2)2
]1/2

.

Writing

(E.33)
∑

j

22sj(1 ∧ |n|2−j−ℓ)2 ∼ 2−2sℓ(1 + |n|)2s

it follows that

(E.34)
(E.32) ≤

C

1 − 2s

∑

m,ℓ1,ℓ2

(ℓ1 + 1)(ℓ2 + 1)2−s(ℓ1+ℓ2+m)

(∑

n

|F̂ (n)|2(1 + |n|)2s
)

≤ C(1 − 2s)−1‖F‖2
Hs.
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Since (E.5) is bounded by the sum of (E.13) and (E.34), this proves Lemma E.1.

Remark E.1. The optimality of the bound (E.2) when d = 2 was proved in Remark 7. The
case d ≥ 3 is similar by choosing

g(x) =
(x1, x2)

(x2
1 + x2

2)
1/2

x = (x1, x2, . . . , xd)

and proceeding as in the 2-dimensional case. The optimality of (E.2) when d = 1 is more
delicate and will be established in the forthcoming paper Bourgain, Brezis and Mironescu
[1].

Remark E.2. Theorem E.1 is still valid if the cube Q is replaced by a smooth domain Ω
in Rd, d ≥ 2 (without any topological assumption on Ω). The proof can be modified as

follows. Consider a neighborhood Ω̃ of Ω̄ and a function still denoted F , F ∈ Hs(Ω̃;S1)
which extends the original F (this can be done by the standard procedure of local reflexion
across the boundary). Next, construct a finite sequence of disjoint cubes (Qα), having the

same size, and such that Ω ⊂
⋃
α
Qα ⋐ Ω̃. The construction described in Section 1 is still

valid on
⋃
α
Qα and we obtain a lifting ϕ ∈ Hs(

⋃
α
Qα; R). For θ ∈ Rd with |θ| < δ, δ

sufficiently small, Fθ = F ◦ τθ is well defined on
⋃
α
Qα has a lifting ϕ[θ]. The proof of

Lemma E.1 described above can be adapted and yields

∫

|θ‖<δ

‖ϕ[θ]‖Hsdθ ≤ C(1 − 2s)−1/2‖F‖Hs.

Theorem E.1 is also valid if the cube Q is replaced by a smooth d-dimensional manifold
M , d ≥ 1, say without boundary. The dyadic partition of Q is replaced by some dyadic
“triangulation” of M . The shift operators τθ are replaced by a finite family {Si(t)},
1 ≤ i ≤ N of 1-parameter group of transformations on M such that, at each x ∈ M , the
generators Vi(x) = d

dtSi(t)x|t=0
span the tangent space Tx(M). Such a family can be easily

constructed as integral curves for the differential equations ẋ(t) = Vi(x(t)) and the vector-
fields Vi(x) are obtained via local coordinates and a partition of unity. The shift operators
τθ are replaced by the shifts along the Si, i.e., σθ = Π

i
Si(ti), where θ = (t1, t2, . . . , tN ),

and then Fθ = F ◦ σθ. Adapting the proof of Lemma E.1 we find

∫

θ∈RN ,|θ|<1

‖ϕ[θ]‖dθ ≤ C(1− 2s)−1/2‖F‖Hs.

APPENDIX F

Martingale representation and lifting in Hs,p
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The question of representation and lifting can be raised in other function spaces. For

instance, in the Hs,p space.

Recall the definition of the Hs,p-norm (0 < s < 1)

(F.1) ‖f‖Hs,p =

[ ∫ (∫
|f(x + h) − f(x)|2

|h|2s+d
dh

)p/2
dx

]1/p

.

This space is a bit more delicate to deal with then W s,p. The natural martingale counter-

part of (F.1) is given by

(F.2)

∥∥∥∥

(∑
22js|∆jf |

2

)1/2∥∥∥∥
p

where ∆jf = Ej(f)−Ej−1(f) and Ej is the conditional expectation operator with respect

to Pj (as before). This situation is a bit different from W s,p. We show the following

Proposition F.1. (i) We have

(F.3)
∥∥(
∑

4js|∆jf |
2
)1/2∥∥

p
≤ C|f‖Hs,p

(ii) If sp < 1 and p ≥ 2, then the converse inequality holds

(F.4) ‖f‖Hs,p ≤ C

∥∥∥∥

(∑
4js|∆jf |

2

)1/2∥∥∥∥
p

(iii) Inequality (F.4) fails for s > 1
2 .

Proposition F.1 leaves some cases unanswered and they will possibly be addressed else-

where. Again, Proposition F.1 is relevant to the question of Triebel [1] concerning the

representation of Besov and Sobolev spaces in the Haar-system. It implies that for the

spaces Hs,p = F sp,2, the conjecture is valid if ps < 1, p ≥ 2 but fails for s > 1
2 .

In the proof of Proposition F.1, we will make use of some standard martingale inequal-

ities (which the reader may find in Garsia [1] for instance).
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Proposition F.2. We have

(F.5)

∥∥∥∥
∑

Ej(gj)

∥∥∥∥
p

≤ Cp

∥∥∥∥
∑

|gj|

∥∥∥∥
p

for 1 ≤ p <∞

and

(F.6)

∥∥∥∥

(∑
|Ej(gj)|

2

)1/2∥∥∥∥
p

≤ Cp

∥∥∥∥

(∑
|gj |

2

)1/2∥∥∥∥
p

for 1 < p <∞.

In both statements, the sequence {gj} consists of arbitrary functions.

Remark F.1. In (F.5), (F.6), the expectation operatorsEj may get replaced by convolution

operator P2−j for instance, where Pε stands for the usual Poisson kernel (cf. Stein [l]).

Proof of Proposition F.1.

(i) By (F.6)

(F.7)

∥∥∥∥

(∑
4js|∆jf |

2

)1/2∥∥∥∥
p

≤ C

∥∥∥∥

(∑
4js|f −Ej−1(f)|2

)1/2∥∥∥∥
p

.

Again

|(f −Ej−1(f))(x)| ≤ 2jd
∫

|h|<2−j

|f(x) − f(x + h)|dh

|f −Ej−1(f)|2 ≤ 2jd
∫

|h|<2−j

|f − τhf |
2dh.(F.8)

where τh is the translation operator.

Substituting (F.8) in (F.7) implies

(F.9)

(F.7) ≤

∥∥∥∥

{∫
dh |f − τhf |

2

[ ∑

|h|<2−j

4js2jd
]}1/2∥∥∥∥

p

∼

∥∥∥∥

{∫
|f − τhf |

2 |h|−(d+2s)dh

}1/2∥∥∥∥
p

= ‖f‖Hs,p .
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(ii) Write

(F.10)

∫
|f − τhf |

2 |h|−(d+2s)dh ∼
∑

j

2j(d+2s)

∫

|h|∼2−j

|f − τhf |
2dh.

Fix j. Estimate

|f − τhf | ≤ |fj − τhfj | + |f − fj | + τh|f − fj |

|f − τhf |
2 .

∑

j′<j

(j − j′)2|∆j′f − τh(∆j′f)|2 + |f − fj |
2 + τh|f − fj |

2

(F.11)

and substituting (F.11) in (F.10), we get the following contributions

(F.10) ≤ C
∑

j′<j

2j(d+2s)(j − j′)2
∫

|h|∼2−j

|∆j′f − τh(∆j′f)|2dh(F.12)

+
∑

j

4js|f − fj |
2(F.13)

+
∑

j

4js[P2−j ∗ (|f − fj |
2)].(F.14)

Contribution of (F.13)

Write

‖(F.13)1/2‖p ≤

∥∥∥∥

[∑

j

4js
∑

j′≥j

(j′ − j)2|∆j′f |
2

]1/2∥∥∥∥
p

∼

∥∥∥∥

(∑

j

4j
′s |∆j′f |

2

)1/2∥∥∥∥
p

.(F.15)

Contribution of (F.14)

(F.16) ‖(F.14)1/2‖p =

{∫ {∑

j

4js[P2−j ∗ (|f − fj |
2)]

}p/2} 1
p

.

Use the general inequality (see Remark F.1)

(F.17)

∥∥∥∥
∑

j

P2−jgj

∥∥∥∥
q

≤ Cq

∥∥∥∥
∑

j

|gj|

∥∥∥∥
q

for 1 ≤ q <∞.
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Thus, since p ≥ 2, letting q = p/2 in (F.17), it follows

(F.16) ≤ C

[∫ (∑

j

4js |f − fj |
2

)p/2]1/p

≤ C

∥∥∥∥

(∑

j

4js|∆jf |
2

)1/2∥∥∥∥
p

.(F.18)

Contribution of (F.12)

Denoting ℓ = j − j′ ≥ 0, write

(F.19)

‖(F.12)1/2‖p ≤
∑

ℓ≥0

ℓ2ℓs
(∥∥∥∥

[∑

j′

4j
′s

(
2(j′+ℓ)d

∫

|h|≤2−(j′+ℓ)

|∆j′f − τh(∆j′f)|2dh

)]1/2∥∥∥∥
p

.

To bound (F.19), fix ℓ and consider the map

(F.20) Tℓ : Lpℓ2 → Lp
L2

h
ℓ2

defined by

(F.21) Tℓḡ = Tℓ({gj}) = {(Ejgj − τhEjgj)2
(j+ℓ)d/2 χ[|h|<2−(j+ℓ)]}

Thus the components of Tℓḡ are functions of x and h.

Denote ‖Tℓ‖p the norm of (F.20). We estimate ‖Tℓ‖p, 2 ≤ p, by interpolation between

2 and some large q.

Fixing 2 < q <∞, we may bound

‖Tℓḡ‖Lq

L2
h

ℓ2
≤ ‖Ej|gj |.2

(j+ℓ)d/2χ[|h|<2−(j+ℓ)]‖Lq

L2
h

ℓ2
+ ‖τh(Ej |gj|).2

(j+ℓ)d/2 χ[|h|<2−(j+ℓ)]‖Lq

L2
h

ℓ2

= (F.22) + (F.23).

Thus, invoking (F.6)

(F.24) (F.22) ∼

∥∥∥∥

[∑
(Ej |gj|)

2

]1/2∥∥∥∥
q

≤ Cq‖ḡ‖Lq

ℓ2
.
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Also, since q > 2 and using inequalities (F.17), (F.6)

(F.23) ≤ C

∥∥∥∥

[∑

j

(Ej |gj|)
2 ∗ P2−(j+ℓ)

]1/2∥∥∥∥
q

=

∥∥∥∥
∑

j

(Ej |gj |)
2 ∗ P2−(j+ℓ)

∥∥∥∥
1/2

q/2

≤ C

∥∥∥∥
∑

j

(Ej |gj |)
2

∥∥∥∥
1/2

q/2

≤ C‖ḡ‖Lq

ℓ2
.(F.25)

Thus ‖Tℓḡ‖Lq

L2
h

ℓ2
≤ Cq‖ḡ‖Lq

ℓ2
, i.e.

(F.26) ‖Tℓ‖q ≤ Cq for 2 ≤ q <∞.

Next, for p = 2, a direct calculation gives

‖Tℓḡ‖L2
xL

2
hℓ

2 =

[∑

j

2(j+ℓ)d

∫∫

|h|<2−(j+ℓ)

|(Ejgj)(x) − (Ejgj)(x + h)|2dxdh

]1/2

(F.27)

≤ C2−ℓ/2
(∑

j

‖Ejgj‖
2
2

)1/2

(F.28)

≤ C2−ℓ/2‖ḡ‖L2
ℓ2
.(F.29)

The estimate (F.28) simply results from the fact that for I ∈ Pj and |h| < 2−(j+ℓ)

(F.30) ‖χI(x) − χI(x + h)‖L2
x
≤ C2(−d−1)j/2− j+ℓ

2 = C2−ℓ/22−dj/2.

¿From (F.29),

(F.31) ‖Tℓ‖2 ≤ C2−ℓ/2.

Interpolating 2 < p < q, it results from (F.26), (F.31) that

(F.32) ‖Tℓ‖p < Cε2
−ℓ( 1

p−ε) for all ε > 0.

Returning to (F.19), we define thus

(F.33) gj′ = 2j
′s∆j′f
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so that, by (F.32)

(F.19) ≤
∑

ℓ≥0

ℓ2ℓs‖Tℓ{gj′}‖Lp

L2
h

ℓ2

≤ Cε
∑

ℓ≥0

ℓ2ℓs2−ℓ(
1
p −ε) ‖{gj′}‖Lp

ℓ2
.(F.34)

Since sp < 1, we may take ε sufficiently small to ensure boundedness of the factor in

(F.34), leading again to the bound
∥∥(
∑

4j
′s|∆jf |

2
)1/2∥∥

p
.

This establishes inequality (F.4).

(iii) Take d = 1 and define

(F.35) fj = 2−js
2j∑

r=1

(−1)rχIr where Pj = {I1, . . . , I2j}.

Fix a large integer R and let {jr}r=1,... ,R be a lacunary sequence.

Define

(F.36) f =
R∑

r=1

εrfjr

where εr = ±1 are independent signs. Thus ∆jrf = εrfjr and trivially

(F.37)

∥∥∥∥

(∑
4js|∆jf |

2

)1/2∥∥∥∥
p

= R1/2.

Next, take δ > 0 a small number and write

(F.38)

∫
|f − τhf |

2|h|−(1+2s)dh ≥
R∑

r=1

(δ2−jr )−(1+2s)

∫

|h|<δ2−jr

|f − τhf |
2dh.

Averaging over the ± signs εr in (F.36) permits us clearly to ensure that

(F.39) (F.38) ≥
∑

r

(δ2−jr )−(1+2s)

∫

|h|<δ2−jr

|fjr − τhfjr |
2dh.
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Recalling (F.35), one sees that

(F.39) ≥ c
∑

r

(δ2−jr )−(1+2s)(δ2−jr )4−jrs
∑

I∈Pjr

χ[dist (x,∂I)<1
2 δ2

−jr ]

(F.40)

= cδ−2s
∑

r

∑

I∈Pjr

χ[dist (x,∂I)<1
2δ|I|]

.(F.41)

Therefore

(F.42) ‖f‖Hs,p ≥ cδ−s
∥∥∥∥

{ R∑

r=1

∑

I∈Pjr

χ[dist (x,∂I)<1
2 δ|I|]

}1/2∥∥∥∥
p

.

Fixing δ > 0 and letting R > R(δ) be sufficiently large, the reader will easily convince

himself that

(F.43) (F.42) ≥ cδ−s(δR)1/2 = cδ
1
2−s.(F.37).

Consequently, letting δ → 0, we see that inequality (F.4) cannot hold for s > 1
2 . This

completes the proof of Proposition F.1.

There is the following application of Proposition F.1 to the lifting problem of unimodular

functions.

Corollary F.1. Let s > 0, sp < 1, p ≥ 2 and F ∈ Hs,p(Ω;S1), where Ω is a cube in Rd.

Then

(F.44) F = eiϕ

for some ϕ ∈ Hs,p(Ω).

Remark F.2. The other cases not covered by the corollary have not been investigated.

Proof. The function ϕ is constructed as in the W s,p-case (see Section 1). ¿From Propo-

sition F.1, (i), (ii) and similar calculations as in the W s,p-estimate, we obtain (with the
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notations from Section 1)

‖ϕ‖Hs,p ≤ C

∥∥∥∥

(∑
4js|∆jϕ|

2

)1/2∥∥∥∥
p

≤ C

∥∥∥∥

(∑
4jsEj(ϕ− ϕj)|

2

)1/2∥∥∥∥
p

+

∥∥∥∥

(∑
4js|ϕj − ϕj−1|

2

)1/2

‖p(F.45)

by (F.6)

≤ C

∥∥∥∥

(∑
4js|ϕ− ϕj |

2

)1/2∥∥∥∥
p

+

∥∥∥∥

(∑
4js|ϕj − ϕj−1|

2

)1/2∥∥∥∥
p

≤ C

∥∥∥∥

(∑

j′>j

4js(j′ − j)2|ϕj′ − ϕj′−1|
2

)1/2∥∥∥∥
p

(F.46)

by(1.5)

≤ C

∥∥∥∥

(∑

j′>j

4js(j′ − j)2 |F −Ej′−1F |
2

)1/2∥∥∥∥
p

(F.47)

≤ C

∥∥∥∥

( ∑

j′′≥j′>j

4js(j′ − j)2(j′′ − j′ + 1)2 |∆j′′F |
2

)1/2∥∥∥∥
p

(F.48)

≤ C

∥∥∥∥

(∑

j′′

4j
′′s |∆j′′F |

2

)1/2∥∥∥∥
p

≤ C‖F‖Hs,p.(F.49)

Acknowledgment: The second author (H.B.) is partially supported by a European Grant

ERB FMRX CT98 0201. He is also a member of the Institut Universitaire de France. We

thank Y. Meyer and G. Bourdaud for providing us useful references.

References

[[XXXX] ]R. Adams [1], Sobolev Spaces, Acad. Press, 1975.
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LIFTING IN SOBOLEV SPACES 49

F. Bethuel and F. Demengel [1], Extensions for Sobolev mappings between manifolds, Cal. Var. PDE 3

(1995), 475–491.

F. Bethuel and X. Zheng [1], Density of smooth functions between two manifolds in Sobolev spaces, J.
Funct. Anal. 80 (1988), 60–75.

J.-M.Bony [1], Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles
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