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Ginzburg-Landau minimizers in perforated domains with

prescribed degrees

Leonid Berlyand(1), Petru Mironescu(2)

October 2004, with an update in June 2008

Abstract.
Suppose that Ω is a 2D domain with holes ω0, ω1, . . . , ωj, j = 1...k. In the perforated domain

A = Ω \ ( ∪kj=0 ωj) we consider the class J of complex valued maps having degrees 1 and −1 on
the boundaries ∂Ω, ∂ω0 respectively and degree 0 on the boundaries of other holes.

We investigate whether the minimum of the Ginzburg-Landau energy Eκ is attained in J , as
well as the asymptotic behavior of minimizers as the coherency length κ−1 tends to 0. We show that
the answer to these questions is determined by the value of the H1-capacity cap(A) of the domain.
If cap(A) ≥ π (domain A is ”thin”), minimizers exist for each κ. Moreover they are vortexless
and converge in H1(A) (and even better) to a minimizing S1-valued harmonic map as κ → ∞.
When cap(A) < π (domain A is ”thick”), we establish existence of quasi-minimizers (maps with
“almost minimal energy”), which exhibit a different qualitative behavior : they have exactly two
zeroes (vortices) rapidly converging to ∂A as κ → ∞ . Finally we formulate a conjecture on
non-existence of the minimizers in thick domains.
Update. This preprint was written at the end 2004. We added (in June 2008) a short final section
accounting subsequent developments.

1 Introduction

Our study is motivated by the following problem. In [4], [5], a mathematical model of an ideal su-
perconductor reinforced by a large number of thin insulating rods was introduced. For a cylindrical
superconductor with coaxial cylindrical hole (often used in experimental settings), this model led
to a minimization problem for harmonic maps in a 2D annular domain with many small holes.
The distinguishing mathematical feature of this problem is that the physical insulating conditions
lead to prescribing degree (winding number) boundary conditions. Even though this problem is
nonlinear, it has an underlying linear problem for the multi-valued phase of the harmonic maps,
which is why existence of the minimizers for any fixed number of holes is trivial and the main
issue addressed in [4], [5] was the homogenization limit when number of holes tends to infinity.
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This study led to a natural question : what if the superconductor in the composite described
below is not ideal (e.g., of type II) ?

Mathematically, this means that, in the above minimization problem, the Dirichlet integral for
harmonic maps should be replaced by the Ginzburg-Landau (GL) functional. Then the existence
question becomes highly nontrivial and it leads to the following problem

mκ = Inf
{
Eκ(u) =

1

2

∫

A

|∇u|2 +
κ2

4

∫

A

(1 − |u|2)2 ; u ∈ J
}
. (1.1)

Here, Eκ is a GL type energy (without magnetic field), A is a 2D perforated domain, i.e.

A = Ω \ ( ∪kj=0 ωj), ωj ⊂ Ω, j = 0, . . . , k, ωj ∩ ωl = ∅, j 6= l, (1.2)

with Ω, ωj, j = 0, . . . , k, simply connected bounded smooth domains. The class J of testing maps
is

J = {u ∈ H1(A ; IR2); |u| = 1 a.e. on ∂A, deg(u, ∂Ω) = 1,

deg(u, ∂ω0) = −1, deg(u, ∂ωj) = 0, j = 1, . . . , k}. (1.3)

We thus consider a domain with finitely many fixed holes ωj. The constant κ−1 is the coherency
length (GL parameter). For the sake of our discussion, we will allow κ to be 0, so that throughout
this paper we let κ ≥ 0.

A point that needs clarification is whether the definition of J is meaningful. In other words,
we discuss whether, given a map u ∈ H1(A) such that |u| = 1 a.e. on ∂A, we can define the
degree of u on each component of ∂A. For this purpose, we start by briefly recalling the definition
and the basic properties of the degree of a continuous complex-valued map (see, e.g., [1]). Let
Γ be a C1 simple closed curve in C| . Intuitively speaking, the degree of a map v 6= 0 is defined
as follows. Suppose that the image of Γ, v(Γ), is a closed curve that surrounds the origin. If we
cover Γ once, then v(Γ) winds around the origin a number of times, either in the positive direction
(counterclockwise), or in the negative direction (clockwise). Then the degree of v is the number
of positive loops minus the number of negative loops around the origin. This integer depends on
the sense we choose to cover Γ. To give the formal definition we assume Γ to be oriented, i.e.
we consider a parametrization f : [0, 1] → Γ, with f(0) = f(1). Let v : Γ → C| be a continuous
map and set w = v ◦ f . It is a simple exercise that, if v is always different from 0 on Γ, then we
may write, on [0, 1], w(t) = |w(t)|eıϕ(t) for some continuous ϕ. Since w(0) = w(1), it follows that

ϕ(1) − ϕ(0) ∈ 2πZZ. The integer d =
ϕ(1) − ϕ(0)

2π
is called the degree of v with respect to

0 ; it is denoted by deg(v,Γ, 0), or deg(v,Γ), or deg v. The definition is meaningful, in the sense
that the value of d does not change if we replace f by another parametrization g which yields the
same orientation on Γ.
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More generally, if a ∈ C| is not among the values of v, then we may define deg(v,Γ, a) as
deg(v − a,Γ, 0). It is easy to see that, if v has more regularity, say v ∈ C1, then

d =
1

2ıπ

∫

Γ

1

v

∂v

∂τ
=

1

2ıπ

∫

Γ

v

|v|2
∂v

∂τ
, (1.4)

where τ is the tangent vector directly oriented with respect to the fixed orientation. In particular,
if we change orientation on Γ, d changes to −d. A special case of the above formula is obtained
when |v| = 1, i.e., when v ∈ C1(Γ;S1). In this case, we have

deg v =
1

2π

∫

Γ

v ∧ ∂v

∂τ
, (1.5)

where we have used the following

Notation. If z = a+ ıb, w = c+ ıd ∈ C| , then z∧w = ad− bc. We will also use later the following

notation : if u, v are complex-valued maps, then u ∧∇v =



u ∧ ∂v

∂x

u ∧ ∂v

∂y


.

We quote here the main properties of the degree of non vanishing maps :
a) if

|v − w| < Min{|v(z)|, |w(z)| ; z ∈ Γ},
then deg v= deg w. In particular, the degree is continuous with respect to uniform convergence
; b) deg(vw) =deg v+deg w ; c) deg v = −deg v ; d) if a, b ∈ C| lie in the same connected

component of C| \ v(Γ), then deg (v,Γ, a) =deg (v,Γ, b) ; e) if v ∈ C1(S1;S1) has the Fourier

expansion v =
∑

n∈ZZ
ane

ınθ, then

deg v =
∑

n∈ZZ
n|an|2. (1.6)

Assume now that v ∈ H1/2(Γ). Then the right-hand side of (1.6) makes sense ; so does the
right-hand side of (1.5) if we interpret it appropriately, i.e., if we write it as

1

2π

(
< v1,

∂v2

∂τ
>H1/2(Γ),H−1/2(Γ) − < v2,

∂v1

∂τ
>H1/2(Γ),H−1/2(Γ)

)
.

This suggests the following
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Definition 1 ([12]) Let v ∈ H1/2(Γ;S1). Then

deg v =
1

2π

(
< v1,

∂v2

∂τ
>H1/2(Γ),H−1/2(Γ) − < v2,

∂v1

∂τ
>H1/2(Γ),H−1/2(Γ)

)
. (1.7)

Warning. In order to keep the notations simple, we will write, in what follows, the degree formula
in the form (1.5), even when v is only in H1/2.

The surprising feature of this degree of H1/2 maps is that it is still an integer ; this was proved
by L. Boutet de Monvel, see [12]. The degree is continuous with respect to H1/2 convergence (see
[20]), which is the extension of property a) to H1/2 maps. Properties b) and c) are still valid for
H1/2 maps ; see Section 2 and Appendix A. There is an analogue of property d), but it is more
delicate to state (and not used in this paper) ; we send the reader to [20] for details. On the
other hand, (1.6) clearly holds when v ∈ H1/2, by the definition of the degreee. Finally, we note
that the definition of degree still depends on the orientation we choose on Γ !!since, if we change

orientation, then
∂v

∂τ
changes to −∂v

∂τ
.

One can, more generally, define the degree of a map v ∈ H1/2(Γ; C| ) provided its range is far
away from 0. More specifically, assume that there exist constants a, b > 0 such that a ≤ |v| ≤ b
a.e. on Γ. Then we set

deg v = deg
v

|v| . (1.8)

We now return to the definition of J . Let u ∈ H1(A) be such that |u| = 1 a.e. on ∂A and
set v =tr|∂Au. For each connected component Γ of ∂A, we have v ∈ H1/2(Γ;S1) and thus we may
define the degree of v on Γ, provided we choose an orientation on Γ. Throughout this paper, we
use the following convention : each component Γ of ∂A is oriented with the direct orientation
with respect to A. The degrees we prescribe in the definition of J are the degrees of v computed
with respect to this orientation. Thus, for example, if A = {z ; ρ < |z| < R} and u(z) = z/|z|,
then deg(u, ∂ω0) = −1 and deg(u, ∂Ω) = 1. On the other hand, recall that each simply closed
planar curve Γ has a natural orientation (counterclockwise). With our convention, given a general
domain A, the orientation of ∂Ω is the natural one, while the orientation of ∂ωj, j = 0, . . . , k, is
the opposite of the natural one.

We complete our discussion of degree by mentioning another basic property of the degree of
continuous maps : f) Assume that u ∈ C(A; C| ) is such that u 6= 0 on ∂A. Assume also that

deg(u, ∂Ω)+
k∑

j=0

deg(u, ∂ωj) 6= 0. (Here,the orientation on ∂A is direct with respect to A.) Then u

has has (at least) a zero in A. There is an analogue of f) for H1-maps, but the statement is more

subtle ; see [20]. We will prove in Appendix B a weak analogue of f) sufficient for our needs.
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We may now address a first natural question concerning the minimization problem (1.1)-(1.3)

Question 1. Is mκ attained ?

Before discussing this question, we start by recalling the most intensively studied minimization
problem for the Ginzburg-Landau functional (see [10]), namely

eκ = Inf{Eκ(u) ; u ∈ L}, (1.9)

where
L = {u ∈ H1(G) ; tr∂Gu = g}. (1.10)

Here, G is a smooth bounded domain in IR2 and g ∈ H1/2(∂G;S1) is fixed. In this case, the
minimum is obviously attained in (1.9). The reason is that L is closed with respect to weak H1

convergence ; therefore, if we take a minimizing sequence for (1.9)-(1.10) that weakly converges
to some u, this u is in L and clearly minimizes (1.9)-(1.10).

The situation is more delicate when we do not prescribe a Dirichlet boundary condition, but
only degrees, as shown by the following

Example 1 Let
nκ = Inf{Eκ(u) ; u ∈ M}, (1.11)

where
M = {u ∈ H1(ID) ; |u| = 1 a.e. on S1 , deg(u, S1) = 1}. (1.12)

Here, ID is the unit disc and we consider the natural orientation on S1. Then, for each κ > 0,
nκ = π and nκ is not attained.

We will prove and extend this example in Section 4. In particular, this example implies that
the class M is not closed with respect to weak H1 convergence (it is closed with respect to strong
H1 convergence since degree is continuous for the strong H1/2 convergence). Here is an example
of sequence in M weakly converging in H1 to a map which is not in M :

Example 2 Let (an) ⊂ (0, 1) be such that an → 1. Set un(z) =
z − an
1 − anz

, z ∈ ID. Then un ⇀ −1

weakly in H1.

Clearly un → −1 a.e. (weak H1 convergence will be established in Section 4). Example 2 is
adapted in Section 4 to the class J in order to prove the following

Proposition 1 The class J is not closed with respect to weak H1-convergence.
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This implies that the existence of minimizers of (1.1)-(1.3) does not follow immediately from
the direct method of the Calculus of Variations.

Before discussing Question 1 further, we mention some useful a priori bounds on mκ. Recall
that in the case of a prescribed Dirichlet data with non zero degree (thoroughly studied in [10])
the Ginzburg-Landau energy tends to infinity as κ → ∞. However, a straightforward calculation
shows that the energy remains bounded when we have only specified degrees on the boundary.
More specifically, in Section 6 we prove that, for degrees 1, −1, 0, . . . , 0, we have

mκ ≤ 2π. (1.13)

Note that the right-hand side of (1.13) is independent of A and κ. In fact, our construction yields
analogous upper bounds for arbitrary degrees.

Let us briefly sketch how this upper bound is obtained. We want to consider u ≡ 1 as simplest
testing map, however, this u has to be modified in order to satisfy the required degree conditions.
The modified u can be described as follows :
(i) u equals 1 in the domain A \ (D ∪ ∆) (see Fig. 1 below) ;
(ii) on the boundaries of D and ∆, u has modulus 1 and degrees −1, 1 respectively (see Fig. 2) ;
(iii) u is harmonic in D and in ∆.
By choosing appropriately the phases ϕ and ψ in Picture 2, we prove that Eκ(u) → 2π as D and
∆ shrink to points.
Roughly speaking, such a testing function has a ”vortex” (zero of degree −1 or 1) in D and in ∆,
and the energy of each vortex is almost π. We will call these functions ”vortex testing maps”.

There is yet another upper bound, which is obtained by considering all the possible testing
maps of modulus 1 in A. More specifically, we consider the class

K = {u ∈ J ; |u| = 1 a.e. in A}. (1.14)

It turns out that K is not empty because the degrees we prescribe have total sum 0 ; see Lemma
2.2 below. It is known that, in K, the minimum of the Ginzburg-Landau energy is attained (see
[10]). Let

I0 = Min {Eκ(u) ; u ∈ K} = Min
{

1

2

∫

A

|∇u|2 ; u ∈ K
}
. (1.15)

Then, clearly,
mκ ≤ I0. (1.16)

A more delicate property (see Section 6) is

mκ < I0 . (1.17)
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Figure 1: u equals 1 except on D and ∆

Figure 2: On ∂D ∩ ∂A, the phase of u jumps 2π form M to N . On ∂∆ ∩ ∂A, the jump is from P to Q
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Clearly, (1.13) and (1.17) imply that mκ ≤ Min {I0, 2π}. This bound is close to optimal when
κ is large. Indeed, we prove in Sections 6 and 7 that, for any A, we have

lim
κ→∞

mκ = Min {I0, 2π}. (1.18)

It turns out that I0 can be expressed in explicit geometrical terms using Newtonian capacity
of the domain A ; this is done in Sections 2 and 3. Here is a very simple example that will be
detailed and generalized in Section 2 :

Example 3 Let A = {z ; ρ < |z| < R}. Then the H1-capacity of A is cap(A) =
2π

ln(R/ρ)
and

I0 =
2π2

cap(A)
. (1.19)

In Section 2, we show that (1.19) is valid for any domain of the form Ω \ ω0. Moreover, we
introduce a generalized capacity such that (1.19) still holds for an arbitrary perforated domain
A = Ω \ (∪kj=0ωj). In Section 3, we provide yet another geometrical interpretation of I0 in terms
of conformal representations.

Formula (1.18) suggests that one has to distinguish between three types of domains :
a) ”subcritical”, for which I0 < 2π (or, equivalently, cap(A) > π) ;

b) ”critical”, for which I0 = 2π (or cap(A) = π) ;

c) ”supercritical”, for which I0 > 2π (or cap(A) < π).

This terminology is motivated by our results concerning the existence and behavior of minimizers,
that we discuss below. We illustrate a)-c) by using Example 3. When A is a circular annulus,
a) corresponds to R/ρ < e2, b) to R/ρ = e2 and c) to R/ρ > e2. Intuitively, one should
think of subcritical domains as ”thin” domains, and of supercritical domains as ”thick” domains.
This is obvious for a circular annulus. For a generic domain, this follows from the geometrical
interpretation of H1-capacity.

We now return to the existence of minimizers. The main tool in proving existence is the
following result, established in Section 5

Proposition 2 Assume that mκ < 2π. Then mκ is attained.

The first result of this type was established for the Yamabe problem by Th. Aubin in [3]. Such
results subsequently proved to be extremely useful in minimization problems with possible lack
of compactness of minimizing sequences ; see [19], [16], [17], [13] and the more recent papers [18]
and [23].

The proof of Proposition 2 relies on the following “Price” Lemma
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Lemma 1 Let (un) be a bounded sequence in J . Assume that un ⇀ u weakly in H1(A) (and thus
we must have |u| = 1 a.e. on ∂A). Then :

lim inf
1

2

∫

A

|∇un|2 ≥
1

2

∫

A

|∇u|2+π
(
|1−deg(u, ∂Ω)|+|−1−deg(u, ∂ω0)|+

k∑

j=1

|deg(u, ∂ωj)|
)

(1.20)

and
1

2

∫

A

|∇u|2 ≥ π

∣∣∣∣deg(u, ∂Ω) +
k∑

j=0

deg(u, ∂ωj)
∣∣∣∣. (1.21)

The proof of Lemma 1 is presented in Section 5. The argument there works for arbitrary fixed
degrees instead of 1, −1, 0, . . . , 0. Intuitively, the estimate (1.20) shows that the minimal energy
needed to jump from degree d (for the maps un) to degree δ (for u), on a component of ∂A, is
π|d− δ|. This ”price” is, in general, optimal as shown by the maps in Example 2.

As an immediate consequence of Proposition 2 and of the upper bound (1.17), we obtain the
following

Theorem 1 Assume that A is subcritical or critical. Then mκ is attained for each κ ≥ 0.

Remark 1 Minimizers of (1.1)-(1.3), whenever they exist, are smooth. This requires some proof,
since minimizers or, more generally, critical points of Eκ in J , satisfy mixed type boundary
conditions : Dirichlet for the modulus, and Neumann for the phase. Smoothness of critical points
is established in Appendix C. The discussion on the degree of H1/2 maps is not essential for the
understanding of our proofs. The main ideas can be understood by considering smooth maps in
(1.1)-(1.3).

In the subcritical and critical cases, we further address the following natural

Question 2. What is the behavior of minimizers uκ of (1.1)-(1.3) as κ→ ∞ ?

The answer is given by

Theorem 2 Assume that A is subcritical or critical. Let uκ be a minimizer of (1.1)-(1.3). Then,
up to a subsequence, uκ → u∞ in C1,α(A), ∀ 0 < α < 1. Here, u∞ is a minimizer of (1.14)-(1.15).

Remark 2 It is known that, for the GL equation, one can not improve the C1,α convergence to,
say C2 convergence (H. Brezis, personal communication).

When A is subcritical, the proof of Theorem 2 relies on a straightforward adaptation of the
arguments developed in [9], combined with (1.17). The critical case is much more subtle. Note
that Theorem 2 implies that, for large κ, |uκ| ≈ 1, that is the minimizers are ”vortexless”.
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We now turn to the supercritical case, i.e., we assume I0 > 2π. In this case, our analysis is less
complete, in particular, we were not able to determine whether the value mκ is attained or not in
J . However, a simple consequence of Proposition 2 is that, when A is fixed and κ varies from 0
to ∞, there are only three possibilities

Theorem 3 Assume that A is supercritical. Then (exactly) one of the three following possibilities
holds :
a) mκ is attained for all κ > 0 ;
b) mκ is never attained ;
c) there is some κ1 ∈ (0,∞) such that : if κ < κ1, then mκ is attained, while if κ > κ1, then mκ

is not attained.

Which one of the possibilities a), b) or c) actually occurs for a given A remains at present an open
question. However, when A is of the form Ω \ ω0, we were able to rule out possibility b) :

Proposition 3 Assume that A = Ω \ ω0. Then either a) or c) holds.

By a formal analysis, we believe that possibility a) never occurs, and we were thus led to the
following

Conjecture. Assume that A is supercritical. Then there is a constant κ1 ≥ 0 such that, if κ > κ1,

then mκ is never attained.

Since we do not know whether, for large values of κ, there are minimizers of (1.1)-(1.3), we are
led to consider ”quasi-minimizers”. These maps, which are defined at the beginning of Section
7, are solutions of the Ginzburg-Landau equation with almost minimal energy. The advantage of
considering quasi-minimizers is that they do always exist, and that any minimizer of (1.1)-(1.3) (if
it exists) is a quasi-minimizer. The relevant difference between the subcritcal/critical case and the
supercritical case is that, in the supercritical case, quasi-minimizers develop ”vortices” for large
values of κ.

The notion of a vortex is not clearly defined in the GL literature (although it is perfectly
understood !). Here we discuss briefly the notion of a vortex for solutions of the 2D GL equation

−∆uκ = κ2uκ(1 − |uκ|2) in A. (1.22)

The role of this discussion is to clarify different possible meanings of a vortex, although we will
not give its formal definition.

(i) The most common understanding is that a ”vortex of uκ” is a zero z of uκ. A bit more restrictive
definition requires in addition : a) that z is an isolated zero ; b) that the degree of uκ computed
on small circles around z is different from 0. Condition a) is not too restrictive, however. Indeed,
most of the time one considers minimizers of the Ginzburg-Landau energy with respect to some
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Dirichlet boundary data that does not vanish on the boundary ; in this case, all zeroes of uκ are
isolated, see [24]. It is common belief that condition b) is not restrictive either, in the sense that,
for large κ, zeroes of degree 0 cease to exist. This is not known in general, but it is proved
in many situations ; in particular, this holds for minimizers of the Ginzburg-Landau energy with
respect to a fixed boundary data of modulus 1, see [10].

Here, the vortices are defined intrinsically by the uκ’s. Note that, in this setting, the vortices are
not singularities, since each uκ is smooth.

(ii) There is however another perspective, when a vortex can be defined as a singularity of a
map. Suppose that a given sequence uκ ∈ H1 converges (up to subsequences) to some map u at
least a.e. Then one could define a ”vortex of u” as a singularity of u (u is not smooth near this
point). Note that, in this setting, one has to consider asymtotic behavior of the sequence uκ’s as
κ→ ∞, since it determines u.
It is a common belief that the vortices of u are related to the vortices of the uκ (defined above),
as follows : given a vortex z of u, there are, for large κ, vortices zκ of uκ (i.e., zeroes of uκ) such
that zκ → z. This property is not proved in all the possible situations, but it is known to hold in
many cases ; in particular, for a fixed boundary data ([10]). The converse is known to be false,
i.e., vortices zκ of uκ need not approach a vortex of u ; for example, if the zκ’s ”escape to the
boundary”. Note, that while (i) describes vortices of smooth functions (solutions of GL PDE are
smooth), (ii) introduces vortices of functions, which are not necessarily smooth.

(iii)
A different perspective is to start by considering “regular points” of (uκ). Suppose that (uκ) is

a family of functions in H1 such that uκ → u strongly in H1 in some neighborhood of a point z.
Then z is called a regular point of the the family (uκ).
One expects that a point in A is a vortex of u (in the sense of (ii))) if and only if it is not a regular
point of (uκ) ; this need not be true for points z on ∂A. This result was rigorously proved in
[10] for all the points in A, when the boundary data is fixed ; in other words, in that context, a
point in A is regular if and only if it is not an accumulation point of vortices zk of the uκ’s. This
property is also known to hold, for points z ∈ A, in many other situations.

(iv) There is a fourth point of view, which is particularly useful when treating the Ginzburg-Landau
equation in presence of the magnetic field or the 3D Ginzburg-Landau equation ; this point of
view was first developed in [35] and [31]. Loosely speaking, a point z ∈ A is a ”concentration
point (for (uκ))” if there is some C > 0 such that, for any neighborhood U of z, the energy of uκ
in U is at least C for large values of κ. The energy considered in this approach is usually the GL
energy, possibly rescaled by an appropriate factor.
Concerning concentration points z ∈ A, the are two rigorous results one expects :
a) z is a concentration point (for (uκ)) if and only if z it is not a regular point (for (uκ) ;
b) z is a concentration point (for (uκ)) if and only if there are vortices zκ of uκ that tend to z.
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Note that, for a point z ∈ A, one expects

z vortex ⇐⇒ z limit of vortices of uκ ⇐⇒ z not a regular point ⇐⇒ z concentration point.

We may now state in an informal way the results we establish in Section 11 relative to the
properties of the quasi-minimizers uκ for large values of κ in the supercritical case I0 > 2π :
a) uk has exactly two vortices, one of degree 1 near ∂A, the other one of degree −1 near ∂ω0 ;
b) any a.e. limit u of the uκ’s is vortexless. More precisely, it is a constant ;
c) up to subsequences, there are exactly two concentration points, one on ∂Ω, the other one on
∂ω0. All the other points of A are regular.

Note the contrast in between the subcritical/critical and the supercritical domains, when we
consider the behavior of solutions for large values of κ : in the first case, minimizers do not vanish,
by Theorem 2. With more work, one can prove that quasi-minimizers do not vanish neither. In the
supercritical case, however, quasi-minimizers do have zeroes (and minimizers presumably cease to
exist). In a different context (S2-valued harmonic maps with Dirichlet boundary conditions in a
circular annulus of radii R and ρ), the existence of a critical value of R/ρ determining a qualitative
change in the behavior of minimizers was established in [8]. Similar split in behavior was described
in physical context, see, e.g., [22].

Finally, we discuss uniqueness of minimizers. Note that, if the minimization problem (1.1)-(1.3)
has a solution, then it has infinitely many, since whenever uκ is a minimizer, so is αuκ, ∀ α ∈ S1.
Thus we can, at best, prove uniqueness modulo S1. In Section 10, we adapt the methods developed
in [21] and [31] and establish

Theorem 4 Assume that A is subcritical or critical. Then, for large κ, the minimizers of (1.1)-
(1.3) are unique modulo multiplication with constants of modulus 1.

Nevertheless, our analysis does not include the result of [27] which asserts that, if A is a circular
annulus of sufficiently small capacity, then the minimizers of (1.1)-(1.3) are unique for all κ. In
this context, we mention the following natural question concerning circular annuli

Open Problem. Let A = {z ; ρ < |z| < R}. Assume that A is subcritical or critical. Is it true
that, for all κ, the minimizers of (1.1)-(1.3) are unique modulo S1 ?
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The paper is organized as follows

1. Introduction
2. Properties of the class K and of the degree
3. The geometrical interpretation of the capacity
4. Properties of the class J
5. On the existence of minimizers
6. Bounds for the minimal energy mκ

7. Properties of quasi-minimizers
8. Asymptotic behavior of the minimizers in the subcritical case I0 < 2π
9. Asymptotic behavior of the minimizers in the critical case I0 = 2π
10. ”Uniqueness” of the minimizers in the subcritical and critical case
11. Asymptotic behavior of the quasi-minimizers in the supercritical case I0 > 2π
12. Existence of stable critical points in the supercritical case
Appendices
A. Degree of H1/2 maps and capacity
B. Zeroes of complex valued maps
C. Smoothness of critical points
D. On the harmonic extension in a circular annulus
E. Elementary estimates for conformal mappings
13. Update

2 Properties of the class K and of the degree

2.1 The class K

We discuss here some properties of the class K defined in the Introduction. For later use, it will
be of interest to consider, more generally, the class

K = KD, d0, . . . , dk
= {u ∈ H1(A;S1); deg(u, ∂Ω) = D, deg(u, ∂ωj) = dj, j = 0, . . . , k}. (2.1)

The properties of K we present below are well-known to experts. However, since part of these
results are not published yet, we will also present some proofs in Appendix A. The main references
for this section are [10], [15] and [20].

Lemma 2.1. ([15]) Let u ∈ H1(A;C| ). Then

∫

A

Jac u =
1

2

∫

∂A

u ∧ ∂u

∂τ
. (2.2)
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Lemma 2.2. ([15]) We have

K 6= ∅ ⇐⇒ D +
k∑

j=0

dj = 0. (2.3)

Lemma 2.3. ([15]) Assume the compatibility condition

D +
k∑

j=0

dj = 0 (2.4)

satisfied. Let v ∈ K be fixed. Then :
a) we have

K = {veıϕ ; ϕ ∈ H1(A; IR)}; (2.5)

b) K is closed with respect to weak H1 convergence.

We now recall the main result in [10] concerning the class K :

Lemma 2.4. ([10]) Assume (2.4) satisfied. Let

I = ID, d0, . . . , dk
= Min

{
1

2

∫

A

|∇u|2 ; u ∈ K
}
. (2.6)

Then I is attained. Moreover :
a) the minimizer is unique up to a phase shift, i.e., if u, v are two minimizers of (2.6), then
u = αv for some α ∈ S1 ;
b) any minimizer is smooth ;
c) we have

I =
1

2

∫

A

|∇η|2. (2.7)

Here, η is smooth and it is the only minimizer of

Min
{

1

2

∫

A

|∇ζ|2 + 2π
k∑

j=0

djζ|∂ωj
; ζ ∈ L

}
, (2.8)

where
L = {ζ ∈ H1(A; IR); ζ = 0 on ∂Ω, ζ = const. on each ∂ωj, j = 0, . . . , k} ; (2.9)

d) if u is any minimizer of (2.6) and if η is as above, then

u ∧∇u =
(−∂η/∂y
∂η/∂x

)
; (2.10)
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e) if u is any minimizer of (2.6), we may write locally (i.e., in simply connected sub domains
of A) u = eıϕ, with ϕ smooth. The quantity X = ∇ϕ is globally defined, it can be computed as
X = u ∧∇u and is the only solution of





div X = 0 in A
X · ν = 0 on ∂A∫
∂ωj

X · τ = 2πdj, j = 0, . . . , k.
. (2.11)

Moreover, we have
|X| = |∇u|; (2.12)

f) the function η defined above is the only solution of





∆η = 0 in A
η = 0 on ∂Ω
η = Cj on ∂ωj, j = 0, . . . k∫

∂ωj

∂η

∂ν
= 2πdj, j = 0, . . . , k

. (2.13)

(Here, the constants Cj are a priori unknown and part of the problem.)

2.2 The class K
¿From now on, we specialize to the class K, i.e., we will always assume in what follows that

D = 1, d0 = −1, dj = 0, j = 1, . . . , k. (2.14)

Note that K satisfies the compatibility condition (2.4), and thus Lemma 2.4 applies to K. In
agreement with the notation used in the Introduction, we will write I0 instead of I1,−1, 0, . . . , 0.

The following properties of the function η introduced above will be useful later :

Lemma 2.5. Assume (2.14) satisfied. Then :
a) 0 > Cj > C0, j = 1, . . . , k and 0 > η > C0 in A ;
b) if t ∈ (C0, 0) is not a critical value of η, then the level set {η = t} consists of a single simple
curve which encloses ∂ω0 and ∫

{η=t}

|∇η| = 2π; (2.15)

c) I0 and C0 are related by

C0 = −I0
π
. (2.16)
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In case of a circular annulus, we have explicit formulae for u, η, I0 and C0 :

Lemma 2.6. Assume that A = {z ; ρ < |z| < R}, i.e., Ω = {z ; |z| < R} and ω0 = {z ; |z| < ρ}.
Then :
a) all the minimizers of (1.14)-(1.15) are of the form u(z) = α

z

|z| for some α ∈ S1 ;

b) η(z) = ln |z| − lnR ;
c) C0 = ln ρ− lnR ;

d) I0 = π ln
R

ρ
.

Corollary 2.1. When A is a circular domain, A = {z ; ρ < |z| < R}, the subcritical case
corresponds to R/ρ < e2, the critical case to R/ρ = e2 and the supercritical case to R/ρ > e2.

We now turn to domains of the form A = Ω \ ω0. As we will see, in this case I0 and η are
related to the H1-capacity of A. We recall the definition of the H1-capacity of a hole in a 2D
domain (see, e.g., [32]) :

Definition 2.1. Let ω0, Ω be smooth bounded simply connected domains in IR2 such that ω0 ⊂ Ω.
Set A = Ω \ ω0. Then

cap(A) = Min {
∫

A

|∇v|2 ; v ∈ H1(A), v = 0 on ∂Ω, v = 1 on ∂ω0}. (2.17)

Lemma 2.7. Assume A = Ω \ ω0. Then

I0 =
2π2

cap(A)
. (2.18)

Finally, we consider a general perforated domain A = Ω \ ∪kj=0ωj. In this case, we introduce

the following analogue of the H1-capacity

Definition 2.2. The generalized H1-capacity of the domain A = Ω \ ∪kj=0ωj is

cap(A) = Min {
∫

A

|∇v|2 ; v ∈ H1(A), v = 0 on ∂Ω, v = 1 on ∂ω0, v = Dj on ∂ωj, j = 1, . . . , k}.

(2.19)

In (2.19), the minimum is taken among all the v’s and all the constants Dj. Note that the hole
ω0 plays a special role. It is easy to see that the minimum is attained in (2.19), that the minimizer
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v of (2.19) is unique and satisfies




∆v = 0 in A
v = 0 on ∂Ω
v = 1 on ∂ω0

v = Dj on ∂ωj, j = 1, . . . k∫

∂ωj

∂v

∂ν
= 0, j = 1, . . . , k

. (2.20)

The proof of Lemma 2.7 (presented in Appendix A) combined with (2.20) yields immediately

Lemma 2.8. Assume A = Ω \ ∪kj=0ωj. Then

I0 =
2π2

cap(A)
. (2.21)

2.3 Symmetric domains

We end this section by considering symmetric domains. In this case, we prove that there are
minimizers u0 of I0 that inherit the symmetry properties of the domain. Since the hole ω0 plays
a distinguished role, we have to start by providing a good notion of symmetric domains.

Definition 2.3. Let O be an isometry of the plane. The domain A = Ω \ ∪kj=0ωj is symmetric
with respect to O if

O(A) = A and O(ω0) = ω0. (2.22)

Note that, if A is not a circular annulus, we may assume that O is either an orthogonal symmetry
with respect to a line, or a O a rotation of angle 2π/n, n ≥ 2. Indeed, if O is a rotation of angle
2πθ, with θ 6∈ Q| , then A has to be a circular annulus. On the other hand, if O is a rotation of
angle 2πm/n, with (m,n) = 1, then an appropriate iteration of O is of a rotation of angle 2π/n
and invariates A.

Lemma 2.9. Assume that A is O-symmetric. Then there is a minimizer u0 of I0 such that

u0(O(z)) = O(u0(z)), ∀ z ∈ A. (2.23)

3 The geometrical interpretation of the capacity

As we will see below, the capacity cap(A) is related to conformal representations. We recall
some well known facts about conformal representations of multiply connected domains. We follow
essentially [1]. To start with, consider the case A = Ω \ ω0. Recall that, in this case, A can be
conformally mapped into a circular annulus {z ; ρ < |z| < R} (see, e.g., [1]). Moreover, the ratio
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R/ρ is uniquely determined by A. Indeed, circular annuli are conformally rigid, i.e., two annuli
{z ; ρ1 < |z| < R1} and {z ; ρ2 < |z| < R2} are conformally equivalent if and only if R1/ρ1 = R2/ρ2

([1]). It turns out that the ratio R/ρ is related to cap(A) in a simple way and that the maps defined
in Lemma 2.4, namely u and η, provide an explicit representation of A into {z ; ρ < |z| < R}.
Definition 3.1. If u is a minimizer of (1.14)-(1.15) and η is the map defined in Lemma 2.4, let

f = fA, u = eηu. (3.1)

It is clear from Lemma 2.4 that f is holomorphic.

Part of the following result is proved in [1] :

Lemma 3.1. Assume that A = Ω \ ω0. Then :
a) if ρ, R are such that A can be conformally represented into {z ; ρ < |z| < R}, then

R

ρ
= exp

(
2π

cap(A)

)
; (3.2)

b) the map f is a conformal representation of A into the circular annulus

C =
{
z ; exp

(
− 2π

cap(A)

)
< |z| < 1

}
. (3.3)

c) f extends to a C1-diffeomorphism from A into C such that f(∂Ω) = {z ; |z| = 1} and f(∂ω0) ={
z ; |z| = exp

(
− 2π

cap(A)

)}
. Moreover, f preserves the natural orientation of simple curves.

Proof : Part a) follows from b) and the conformal rigidity of circular annuli. Part b) is proved in
[1] except that the explicit formula for the small radius of C obtained in [1] is ρ = eC0 . But this ρ is
exactly the one given in b), thanks to Lemmas 2.6 and 2.8. We now turn to the proof of c). On the
one hand, it is clear from the definition of f that f is smooth up to the boundary. Since |f | = eC0

on ∂ω0, we have f(∂ω0) ⊂
{
z ; |z| = exp

(
− 2π

cap(A)

)}
; similarly, we have f(∂Ω) ⊂ {z ; |z| = 1}.

On ∂ω0, we have
∂ϕ

∂τ
=
∂η

∂ν
< 0 and

∫

∂ω0

∂ϕ

∂τ
=

∫

∂ω0

∂η

∂ν
= −2π.. (3.4)

Thus (with the natural orientations), f is an orientation preserving diffeomorphism from ∂ω0 into{
z ; |z| = exp

(
− 2π

cap(A)

)}
. Similar assertion holds for ∂Ω. Finally, f preserves the natural

orientation of any simple curve in A, since it does so for ∂ω0.

We now turn to a general A = Ω \ ∪kj=0ωj. Recall the following
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Definition 3.2. ([1]) A canonical slit region is a set E of the form

E = {z ; ρ < |z| < R} \ ∪kj=1Γj. (3.5)

Here, each Γj is a closed circular arc properly contained into some circle {z ; |z| = Rj}, ρ < Rj <
R, and these arcs are mutually disjoint.

We quote the following version of Lemma 3.1, essentially proved in [1] :

Lemma 3.2. Assume A = Ω \ ∪kj=0ωj. Then :
a) the map fA, u is a conformal representation of A into a canonical slit region C of radii R = 1,

ρ = exp
(
− 2π

cap(A)

)
;

b) f extends to a C1-diffeomorphism from A ∪ ∂Ω ∪ ∂ω0 into C ∪ {z ; |z| = 1} ∪
{
z ; |z| = exp

(
−

2π
cap(A)

)}
such that f(∂Ω) = {z ; |z| = 1} and f(∂ω0) =

{
z ; |z| = exp

(
− 2π

cap(A)

)}
. Moreover,

f preserves the natural orientation of simple curves ;
c) Γj = f(∂ωj), j = 1, . . . , k ;
d) if A can be represented into a canonical slit region F of radii ρ < R through some conformal
mapping h such that |h||∂ω0

< |h||∂Ω, then there are some α ∈ C| \ {0}, β ∈ S1 such that F = αC
and h = αβf . In particular,

R

ρ
= exp

(
2π

cap(A)

)
. (3.6)

4 Properties of the class J
4.1 On Example 1

We begin this section by discussing in detail the Example 1 mentioned in the Introduction. We
will prove the following slightly more general fact

Lemma 4.1. Let U be a smooth bounded simply connected domain in C| . Set, for κ > 0,

nκ = Inf
{

1

2

∫

U

|∇v|2 +
κ2

4

∫

U

(1 − |v|2)2 ; v ∈ H1(A;C| ), |v| = 1 a.e. on ∂U, deg (v, ∂U) = 1
}
.

(4.1)
Then :
a) nκ = π ;
b) nκ is never attained.
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Proof : Let v be a testing map in (4.1). Since |∇v|2 ≥ 2|Jac v| pointwise, we find that

1

2

∫

U

|∇v|2 ≥
∫

U

|Jac v| ≥
∫

U

Jac v =
1

2

∫

∂U

v ∧ ∂v

∂τ
= π deg (v, ∂U) = π, (4.2)

by Lemma 2.1 and the degree formula (1.5). Thus nκ ≥ π. We claim that there is no testing map
v such that

1

2

∫

U

|∇v|2 +
κ2

4

∫

U

(1 − |v|2)2 = π. (4.3)

Indeed, by (4.2) this would require |v| = 1 a.e., so that v ∈ H1(U ;S1). However, in this case
Lemma 2.2 implies that deg (v, ∂U) = 0, which is the desired contradiction. We complete the
proof by showing that nκ = π. Since U is smooth, U can be conformally represented into the
unit disc ID through a map w which extends as a C1-diffeomorphism from U into ID. Moreover,
since U is bounded, w preserves the natural orientations, so that we have deg (w, ∂U) = 1 ; thus
w is in the class of testing maps. Consider now, for a ∈ ID, α ∈ S1, the Moebius conformal
representations of ID into itself,

ua,α(z) = α
z − a

1 − az
, ∀ z ∈ ID, (4.4)

and let ua = ua,1. Set va = ua ◦w, which is again a testing map, since ua preserves the orientation
of S1. By using repeatedly conformality, we have

1

2

∫

U

|∇va|2 =
∫

U

| Jac va| =
∫

U

Jac va = area(va(U)) = π. (4.5)

On the other hand, if we consider a real, a ∈ (0, 1), we claim that

lim
aր1

κ2

4

∫

U

(1 − |va|2)2 = lim
aր1

κ2

4

∫

ID

(1 − |ua|2)2 Jac w = 0. (4.6)

Indeed, the last equality in (4.6) follows by dominated convergence, using the fact that, for each
fixed z ∈ ID, we have ua(z) → −1 as aր 1.

Remark 4.1. Here is another similar example :
Let A = Ω \ ω0 and consider the class

J = {u ∈ H1(A; C| ) ; |u| = 1 on ∂A, deg(u, ∂Ω) = 1, deg(u, ∂ω0) = 0}.
Then one may prove that, for each κ ≥ 0, we have

Inf{Eκ(u) ; u ∈ J} = π,

and that this infimum is never attained.
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4.2 The class J

We now turn to the study of the class J . As in Section 2, we will consider, more generally, the
class

J = JD, d0, . . . , dk

= {u ∈ H1(A; C| ); |u| = 1 a.e. on ∂A, deg(u, ∂Ω) = D, deg(u, ∂ωj) = dj, j = 0, . . . , k}. (4.7)

In contrast with Lemma 2.2 and Lemma 2.3 b), we have

Lemma 4.2. The class J is always nonempty and never closed with respect to weak H1 conver-
gence.

Proof : Fix aj ∈ ωj, j = 0, . . . , k and a ∈ A and let

v(z) =
k∏

j=0

(
z − aj
|z − aj|

)−dj
(
z − a

|z − a|
)D+

∑k

j=0
dj

. (4.8)

Let g = v|∂A. Then any smooth extension of g to A is in J .
In order to prove the second property, let v be any smooth map in JD − 1, d0, . . . , dk . Let w be a

conformal representation of Ω into ID and let ua be the map defined by (4.4). Set va = ua ◦ w :
Ω → ID. We are going to modify va in order to obtain a map having modulus 1 on ∂A ; va does
not have this property, since we only have |va| = 1 on ∂Ω. We start by estimating |va| on ∪kj=0∂ωj.

Let K = w(∪kj=0ωj), which is a compact in ID. It is easy to see that there is some C > 0 such that

|ua(z)| ≥ 1 − C(1 − a), ∀ z ∈ K, ∀ a ∈ (1/2, 1), (4.9)

and thus
|va(z)| ≥ 1 − C(1 − a), ∀ z ∈ ∪kj=0∂ωj, ∀ a ∈ (1/2, 1). (4.10)

We define now the following family of maps Φt : C| → ID, 0 < t < 1/4 :

Φt(z) =





z, if |z| ≤ 1 − 2t
z

|z| , if |z| ≥ 1 − t
(
2 − 1 − 2t

|z|
)
z, if 1 − 2t ≤ |z| ≤ 1 − t

,

which clearly satisfies

Φt(z) =
z

|z| , if |z| ≥ 1 − t, |∇Φt −∇id| ≤ Ct if |z| ≤ 1, |∇Φt| ≤ C, (4.11)

for some constant C independent of t. Let

wa(z) = v(z)Φ√
1−a ◦ va(z), ∀ z ∈ A,∀ a ∈ (1/2, 1).
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By (4.10) and (4.11), wa ∈ J provided a is sufficiently close to 1. Moreover, we have wa → −v 6∈ J
a.e. as a ր 1. This proves the lack of weak closedness of J provided we establish that (wa) is
bounded in H1(A). This is clear since on the one hand we have |wa| ≤ |v| ≤ C and on the other
hand we have

∫

A

|∇wa|2 ≤ 2
∫

A

(|v|2|∇(Φ√
1−a ◦ va)|2 + |Φ√

1−a ◦ va|2|∇v|2) ≤ C
∫

A

(|∇va|2 + |∇v|2) ≤ C, (4.12)

by (4.5).

We next establish a lower bound for maps in J that will be useful later.

Lemma 4.3. Let u ∈ J . Then

1

2

∫

A

|∇u|2 ≥ π

∣∣∣∣D +
k∑

j=0

dj

∣∣∣∣. (4.13)

Proof : We have, by Lemma 2.1 and the degree formula (1.5),

1

2

∫

A

|∇u|2 ≥
∫

A

|Jac u| ≥
∣∣∣∣
∫

A

Jac u
∣∣∣∣ =

1

2

∣∣∣∣
∫

∂A

u ∧ ∂u

∂τ

∣∣∣∣ = π

∣∣∣∣D +
k∑

j=0

dj

∣∣∣∣. (4.14)

4.3 Smoothness of critical points

We state here the following regularity result, whose proof is presented in Appendix C

Lemma 4.4. Let vκ ∈ J be a critical point of the Ginzburg-Landau energy Eκ with respect to J .
Then :
a) vκ ∈ C∞(A). In particular, near ∂A we may locally write vκ = ρeıψ ;
b) vκ satisfies the system





−∆vκ = κ2vκ(1 − |vκ|2) in A
ρ = 1 on ∂A

∂ψ

∂ν
= 0 on ∂A

; (4.15)

c) |vκ| ≤ 1 in A.

Remark 4.2. Near ∂A, the (local) phase ψ of vκ is not unique. However, ∇ψ is uniquely deter-

mined and may be computed as
vκ
|vκ|

∧ ∇
(
vκ
|vκ|

)
. Thus, the last equation in (4.15) is meaningful.
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Remark 4.3. For later use, we mention that, if in the set {z ; vκ 6= 0}, we write locally (i.e., on
simply connected domains V ), vκ = ρκe

ıψκ = ρeıψ, then ρ and ψ satisfy
{

−∆ρ = κ2ρ(1 − ρ2) − ρ|∇ψ|2 in V
ρ = 1 on ∂A ∩ V (4.16)

and respectively {
−div(ρ2∇ψ) = 0 in V

ν · ∇ψ = 0 on ∂A ∩ V . (4.17)

5 On the existence of minimizers

5.1 A sufficient condition for the existence of minimizers

This part is devoted to the proof of the following

Proposition 5.1. Assume that mκ < 2π. Then mκ is attained.

Proof : Let (un) be a minimizing sequence for Eκ in J and let u be such that, up to a subsequence
un ⇀ u weakly in H1(A). Set gn = tr∂Aun, g = tr∂Au, so that gn ⇀ g weakly in H1/2(∂A). Since
H1/2(∂A) is compactly embedded into L2(∂A), we have gn → g in L2(∂A). In particular, up to
some further subsequence, we may assume that gn → g a.e. Thus |g| = 1 a.e. on ∂A, and therefore
u ∈ JD, d0, . . . , dk

for some integers D, d0, . . . , dk. By the Fatou lemma, we have

Eκ(u) ≤ lim
n→∞Eκ(un) = mκ. (5.1)

Therefore, it suffices to prove that D = 1, d0 = −1, dj = 0, j = 1, . . . , k, i.e., that u ∈ J .
We have

1

2

∫

A

|∇un|2 =
1

2

∫

A

|∇((un − u) + u)|2 =
1

2

∫

A

|∇(un − u)|2 +
1

2

∫

A

|∇u|2 +
∫

A

∇(un − u) · ∇u, (5.2)

which implies

1

2

∫

A

|∇un|2 =
1

2

∫

A

|∇(un − u)|2 +
1

2

∫

A

|∇u|2 + o(1) as n→ ∞, (5.3)

since un − u ⇀ 0 weakly in H1(A).
Let vn, v be the harmonic extensions of gn, g respectively. Using the fact that gn ⇀ g weakly in
H1/2(∂A), we find that vn → v in C1

loc(A), by standard elliptic estimates ([26]). Consider smooth
bounded disjoint neighborhoods of the ωj’s, U0, . . . , Uk, such that

ωj ⊂ Uj, j = 0, . . . , k, Uj ⊂ Ω, j = 0, . . . , k, Uj ∩ Ul = ∅, j 6= l, (5.4)
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and let U be a smooth domain such that

∪kj=0Uj ⊂ U ⊂ U ⊂ Ω. (5.5)

Since

1

2

∫

A

|∇(un − u)|2 ≥ 1

2

∫

A

|∇(vn − v)|2 ≥
∫

Ω\U

|∇(vn − v)|2 +
k∑

j=0

∫

Uj\ωj

|∇(vn − v)|2, (5.6)

we find, using the pointwise inequality |∇(vn − v)|2 ≥ 2|Jac (vn − v)| and Lemma 2.1, that

1

2

∫

A

|∇(un − u)|2 ≥ 1

2

∣∣∣∣
∫

∂(Ω\U)

(vn − v) ∧ ∂(vn − v)

∂τ

∣∣∣∣ +
1

2

k∑

j=0

∣∣∣∣
∫

∂(Uj\ωj)

(vn − v) ∧ ∂(vn − v)

∂τ

∣∣∣∣. (5.7)

Recalling that vn → v in C1
loc(A), we obtain

∫

∂(Ω\U)

(vn − v) ∧ ∂(vn − v)

∂τ
=

∫

∂Ω

(vn − v) ∧ ∂(vn − v)

∂τ
+ o(1), as n→ ∞ (5.8)

and
∫

∂(Uj\ωj)

(vn − v) ∧ ∂(vn − v)

∂τ
=

∫

∂ωj

(vn − v) ∧ ∂(vn − v)

∂τ
+ o(1), j = 1, . . . , k, as n→ ∞. (5.9)

Since un and vn (respectively u and v) agree on ∂A we have, by the degree formula (1.5),

∫

∂Ω

vn ∧
∂vn
∂τ

= 2π,
∫

∂Ω

v ∧ ∂v

∂τ
= 2πD, (5.10)

∫

∂ω0

vn ∧
∂vn
∂τ

= −2π,
∫

∂ω0

v ∧ ∂v

∂τ
= 2πd0 (5.11)

and ∫

∂ωj

vn ∧
∂vn
∂τ

= 0,
∫

∂ωj

v ∧ ∂v

∂τ
= 2πdj, j = 1, . . . , k. (5.12)

Using the weak convergence of traces in H1/2, we also have, for any component Γ of ∂A, that

∫

Γ

vn ∧
∂v

∂τ
=

∫

Γ

v ∧ ∂v

∂τ
+ o(1), as n→ ∞. (5.13)
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Finally, we use the fact that

∫

Γ

v ∧ ∂vn
∂τ

= −
∫

Γ

∂v

∂τ
∧ vn =

∫

Γ

vn ∧
∂v

∂τ
. (5.14)

The above equality is clear, using integration by parts, when both vn and v are smooth. The
general is obtained through approximation with smooth functions. By combining (5.3) with (5.7)-
(5.14), we find

2π > mκ ≥ lim inf
1

2

∫

A

|∇un|2 ≥ π
(
|D − 1| + |d0 + 1| +

k∑

j=1

|dj|
)

+
1

2

∫

A

|∇u|2, (5.15)

which proves the Price Lemma (Lemma 1). Using the lower bound provided by Lemma 4.3, we
are finally led to

2π > π
(
|D − 1| + |d0 + 1| +

k∑

j=1

|dj|
)

+ π

∣∣∣∣D +
k∑

j=0

dj

∣∣∣∣ ≡ πM + πN. (5.16)

We claim that the right-hand side of (5.16) is ≥ 2π unless

D = 1, d0 = −1, dj = 0, j = 1, . . . , k ; (5.17)

in other words, that (5.16) implies that u ∈ J .
Indeed, if (5.17) does not hold, then : either exactly one of the equalities in (5.17) is violated, and

thus D +
k∑

j=0

dj 6= 0, and the conclusion is clear, since M ≥ 1 and N ≥ 1 ; or, at least two of the

inequalities in (5.17) are false, and then the conclusion is again clear, since M ≥ 2. Therefore,
u ∈ J and the proof of the proposition is complete.

If we examine the above proof, we see that it has as a byproduct the following

Corollary 5.1. Assume that (un) ⊂ J is such that un ⇀ u weakly in H1(A) to some u 6∈ J .
Then

lim inf
n→∞

1

2

∫

A

|∇un|2 ≥ max
{
2π , π +

1

2

∫

A

|∇u|2
}
≥ 2π. (5.18)

Corollary 5.2. Assume that I0 < 2π. Then mκ is attained for each κ > 0.

Proof : Since any minimizer u of (1.14)-(1.15) belongs to J , we have

mκ ≤ Eκ(u) = I0 < 2π. (5.19)
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Corollary 5.3. Assume that I0 = 2π. Then mκ is attained for each κ > 0.

Proof : Let u be a minimizer of (1.14)-(1.15)and g be the restriction of u to ∂A. Let w attain
the minimum of Eκ in the following subclass of J :

L = {v ∈ H1(A; C| ); tr∂Av = g}. (5.20)

The minimum is clearly attained, and any minimizer w belongs to J and satisfies the Ginzburg-
Landau equation

−∆w = κ2w(1 − |w|2). (5.21)

We claim that u (which belongs to L) is not a minimizer of Eκ in L. Indeed, otherwise we would
have, by (5.21) and the fact that |u| = 1, that ∆u = 0. Using once again the fact that |u| = 1, we
find that u is a constant. This contradicts the fact that u ∈ K. In conclusion,

Eκ(w) < Eκ(u) = I0 = 2π, (5.22)

so that mκ < 2π and the conclusion follows from Proposition 5.1.

Corollary 5.4. Assume that mκ′ < 2π for some κ′. Then there is some κ′′ > κ′ such that mκ is
attained if k′ < κ < κ′′.

Proof : Let v ∈ J be such that Eκ′(v) < 2π. Then clearly Eκ(v) < 2π if κ is sufficiently close to
κ′, and we conclude by applying Proposition 5.1 to any such κ.

5.2 Existence of minimizers for small κ when A = Ω \ ω0

Throughout this part, we assume that A is an annular domain, i.e., that A = Ω \ ω0. In this
case, we prove that, for small values of κ, there is a minimizer of (1.1)-(1.3). Moreover, we will
determine the exact value of m0, as well as all the minimizers of (1.1)-(1.3). We start with the
following

Lemma 5.1. Assume that A = Ω \ ω0. Then m0 < 2π.

By combining Lemma 5.1 and Corollary 5.4 we obtain the following

Corollary 5.5. Assume that A = Ω \ ω0. Then there is some κ1 > 0 such that mκ is attained for
0 ≤ κ < κ1.

Proof of Lemma 5.1 : We could obtain Lemma 5.1 directly from Proposition 5.2. However, we
feel that the argument below, which provides, for a given harmonic map, the harmonic extension
of its trace, has its own interest.
Let u be a fixed minimizer of (1.14)-(1.15) and let η be as in Lemma 2.4. Let f be a smooth real
function to be determined later and set u0 = f(η)u. Then

1

2

∫

A

|∇u0|2 =
1

2

∫

A

(f ′2(η)|∇η|2 + f 2(η)|∇u|2) =
1

2

∫

A

(f ′2(η) + f 2(η))|∇η|2, (5.23)

26



by Lemma 2.4. By the coarea formula (see, e.g., [25]) and (5.23), we have

1

2

∫

A

|∇u0|2 =
1

2

∫

IR

(
∫

{η=t}

(f ′2(t) + f 2(t))|∇η|dl)dt = π
∫

IR

(f ′2(t) + f 2(t))dt ; (5.24)

the last equality in (5.24) follows from Lemma 2.5. Recall that, by Lemma 2.4, η is constant on
∂Ω and on ∂ω0 ; more specifically, by Lemma 2.7 we have η = 0 on ∂Ω and η = C0 on ∂ω0, where

C0 = −I0
π

. Assuming now that f(0) = f(C0) = 1, we obtain u0 ∈ J . If f(0) = f(C0) = 1,

the right-hand side of (5.24) is minimal for f(t) = aet + be−t, where a, b satisfy a + b = 1 and
aeC0 + be−C0 = 1. Substituting this f into (5.24) yields

m0 ≤
1

2

∫

A

|∇u0|2 = 2π
1 − eC0

1 + eC0
= 2π

1 − e−I0/π

1 + e−I0/π
< 2π. (5.25)

In particular, for a circular annulus A = {z ; ρ < |z| < R}, we obtain, with the help of Lemma
2.6, that

m0 ≤ 2π
R− ρ

R + ρ
. (5.26)

Remark 5.1. It is easy to see that the map u0 we constructed above may be also obtained in the
following way : let u be a minimizer of (1.14)-(1.15) and let g be its restriction to ∂A. Then u0 is
the harmonic extension of g to A. Recall that, by Lemma 2.4, the minimizers u of I0 are unique
up to a phase shift. Therefore, the maps u0 constructed above are unique up to a phase shift. We
will see below that the above construction is optimal, in the sense that the above maps u0 are
precisely the minimizers of (1.1)-(1.3) for κ = 0 and that ”≤” in (5.25) is actually ”=”.

Remark 5.2. If we repeat the above construction when A = Ω \ (∪kj=0ωj) with k ≥ 1, in general

we obtain
1

2

∫

A

|∇u0|2 > 2π ; this can be proved by considering appropriate A’s. Thus, when k ≥ 1,

we can not derive from the above construction that m0 is attained.

We next prove that the above construction is optimal.

Proposition 5.2. Assume that A = Ω \ ω0. Then :

a) m0 = 2π
1 − eC0

1 + eC0
;

b) the minimizers of (1.1)-(1.3) for κ = 0 are precisely the maps u0 = f(η)u, where f(t) =
aet + be−t, a+ b = 1 and aeC0 + be−C0 = 1 and u is a minimizer of (1.14)-(1.15).

Proof : We start with the case where A is a circular annulus, A = {z ; ρ < |z| < R}. Recall that,

by Lemma 2.6, in this case we have u(z) = α
z

|z| . By Remark 5.1, u0 is the harmonic extension to
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A of the restriction of u to ∂A. Therefore, in polar coordinates, we have

u = α
r2 +Rρ

r(R + ρ)
eıθ. (5.27)

By Lemma D.3, the maps given by (5.27) are precisely the minimizers of (1.1)-(1.3) for κ = 0 and
a) holds for this A. In particular, in this case the minimizers of (1.1)-(1.3) for κ = 0 are unique
up to a phase shift.
We now turn to a general A = Ω \ ω0. Recall that, by Lemma 3.1 c), there is a conformal
representation F from A into C that extends to a C1 orientation preserving diffeomorphism from
A into C that preserves the natural orientations of curves ; here, C = {z ; ρ < |z| < R} and
R

ρ
= eI0/π. Thus, with obvious notations, we find that

J (A) ∋ v 7→ v ◦ F−1 ∈ J (C) (5.28)

is a bijection. Moreover, since F is a conformal representation, we have

1

2

∫

A

|∇v|2 =
1

2

∫

C

|∇(v ◦ F−1)|2. (5.29)

In particular, using obvious notations, we find that

m0(A) = m0(C) = 2π
R− ρ

R + ρ
== 2π

1 − (R/ρ)−1

1 + (R/ρ)−1
= 2π

1 − e−I0/π

1 + e−I0/π
, (5.30)

the last equality following from Lemma 3.1.
Therefore, the maps constructed in Lemma 5.1 are, in A, minimizers of (1.1)-(1.3) for κ = 0.
Moreover, since in C the minimizers of (1.1)-(1.3) for κ = 0 are determined up to a phase shift
and so are the maps constructed in Lemma 5.1, it follows that these maps are all the minimizers
in A of (1.1)-(1.3) for κ = 0.

6 Bounds for the minimal energy mκ

6.1 Upper bounds for mκ

We start by constructing appropriate test functions needed in order to derive sharp upper bounds
for mκ.

Lemma 6.1. There is a sequence (un) ⊂ J1, 0, . . . , 0 such that :

a) |un| ≤ 1 in A, ∀ n ;
b) un → −1 in C1

loc(A \ ∂Ω) ;

c) lim
n→∞

∫

A

|∇un|2 = 2π.
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Proof : We make use of the functions considered in the proof of Lemma 4.1. Let w be a
conformal representation of Ω into ID that extends smoothly up to the boundary, let (an) ⊂ (0, 1)
be a sequence such that an → 1 and set vn = uan ◦ w. We next correct the map vn in order to
have modulus 1 on the boundary. To this purpose, we start by noting that |vn + 1| ≤ C(1 − an)
on ∂A \ ∂Ω. With Φt as in the proof of Lemma 4.2, we set un = Φ√

1−an
◦ vn in A. Then this un

belongs to J1, 0, . . . , 0 for sufficiently large n. Properties a) and b) are clear for this choice of un,

by construction. Moreover, if we extend un (the extension being still denoted by un) to Ω by the
same formula, properties a) and b) still hold with A replaced by Ω. On the other hand, we clearly
have, by the property (4.11) of Φt, that

|∇un −∇vn| ≤ C
√

1 − an|∇vn| in Ω. (6.1)

Therefore,

lim
n→∞

∫

A

|∇un|2 = lim
n→∞

∫

Ω

|∇un|2 = lim
n→∞

∫

Ω

|∇vn|2 = 2
∫

Ω

|Jac vn| = 2
∫

Ω

Jac vn = 2 area (ID) = 2π,

(6.2)
since vn is a conformal representation of Ω into ID.

Similarly, we have

Lemma 6.2. There is a sequence (vn) ⊂ J0,−1, 0, . . . , 0 such that :

a) |vn| ≤ 1 in A, ∀ n;
b) vn → −1 in C1

loc(A \ ∂ω0) ;

c) lim
n→∞

∫

A

|∇vn|2 = 2π.

Proof : We may assume that 0 ∈ ω0. Let g(z) = 1/z and B = g(A). Then B = O \ ∪kj=0Uj,
where O is the domain enclosed by g(∂ω0), U0 the domain enclosed by g(∂Ω), and Uj the domain
enclosed by g(∂ωj), j = 1, . . . , k. Construct, in B, a sequence (un) as in Lemma 6.1 and let
vn = un ◦g = un ◦g−1. Clearly, (vn) has the properties a) and b). As for c), it follows from Lemma
6.1 c) and the fact that

∫

A

|∇vn|2 =
∫

A

|∇(un ◦ g)|2 =
∫

B

|∇un|2 =
∫

B

|∇un|2, (6.3)

since g is a conformal representation.

Remark 6.1. In Section 11, we will give a geometrical interpretation of the maps un and vn
constructed above.

We may now establish the following upper bounds
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Proposition 6.1. We have, for each κ ≥ 0 and each A, the following upper bounds

mκ ≤ 2π (6.4)

and
mκ < I0. (6.5)

Proof : Inequality (6.5) follows from the proof of Corollary 5.3, where we establish that, with u
a minimizer of (1.14)-(1.15), there is some w ∈ J such that Eκ(w) < Eκ(u) = I0.
For the proof of (6.4), let wn = unvn, where un, vn are given by the two preceding lemmas. By
(2.13), we have wn ∈ J . On the one hand, we have

lim
n→∞

∫

A

(1 − |wn|2)2 = 0, (6.6)

by dominated convergence, thanks to a) and b) in Lemma 6.1 and Lemma 6.2.
On the other hand, let U , V be smooth open sets such that

U, V ⊂ A, U ∩ V = ∅, U ∪ V = A, ∂Ω ⊂ U, ∂ω0 ⊂ V .

Then, by Lemma 6.1. and Lemma 6.2, we find
∫

U

|un∇vn+vn∇un|2 =
∫

U

|∇un|2 +o(1),
∫

V

|un∇vn+vn∇un|2 =
∫

V

|∇vn|2 +o(1) as n→ ∞, (6.7)

so that
∫

A

|∇wn|2 =
∫

A

|un∇vn + vn∇un|2 =
∫

U

|∇un|2 +
∫

V

|∇vn|2 + o(1) = 4π + o(1) as n→ ∞ ; (6.8)

for the last equality, we use again Lemma 6.1 b) and Lemma 6.2 b). By combining (6.6) and (6.8),
we find that

lim
n→∞Eκ(wn) = 2π, (6.9)

and (6.4) follows.

Corollary 6.1. Assume that mκ′ is attained for some κ′ > 0. Then mκ is attained for 0 ≤ κ < κ′.

Proof : Let uκ′ be a minimizer of (1.1)-(1.3) for κ = κ′. Since uκ′ satisfies

−∆uκ′ = κ′
2
uκ′(1 − |uκ′|2), (6.10)

we noticed, during the proof of Corollary 5.3, that we can not have |uκ′| = 1. Therefore,
∫

A

(1 − |uκ′|2)2 > 0, (6.11)
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and thus
Eκ(uκ′) < Eκ′(uκ′) ≤ 2π if 0 ≤ κ < κ′. (6.12)

The conclusion follows now from Proposition 5.1.

Corollary 6.2. Assume that mκ′ is not attained for some κ′ ≥ 0. Then mκ′ = 2π and mκ is not
attained for κ > κ′.

Corollary 6.3. For each A, there is some κ′ ∈ [0,∞] such that :
a) mκ is always attained for 0 ≤ κ < κ′;
b) mκ is never attained for κ > κ′.
If, in addition, κ′ <∞, then mκ′ = 2π and mκ = 2π for κ > κ′.

Remark 6.2. When A has a single hole, it follows from Proposition 5.2. that κ′ > 0. We do not
know whether, when A has more than one hole, we always have κ′ > 0.

Remark 6.3. The conjecture mentioned in the introduction is equivalent to: I0 > 2π =⇒ κ′ <∞.

6.2 Asymptotic behavior of mκ

Among other facts, we prove below that the upper bounds established in Proposition 6.1 are
asymptotically optimal as κ→ ∞.

Corollary 6.4. Assume that I0 < 2π. Then :
a) lim

κ→∞
mκ = I0;

b) up to subsequences, minimizers uκ → u strongly in H1(A) as κ→ ∞, where u is some minimizer
of (1.14)-(1.15).

Proof : First note that mκ is non-decreasing with κ, so that the limit in a) exists. Let u be such
that, along some subsequence, uκn ⇀ u weakly in H1(A) and a.e. Since

1

2

∫

A

|∇u|2 ≤ lim inf
n→∞

1

2

∫

A

|∇uκn|2 ≤ lim inf
n→∞

Eκn(uκn) = lim
κ→∞

Eκ(uκ) ≤ I0 < 2π, (6.13)

we find by Corollary 5.1 that u ∈ J and that

1

2

∫

A

|∇u|2 ≤ I0. (6.14)

On the other hand, ∫

A

(1 − |uκ|2)2 ≤ 4

κ2
Eκ(uκ) → 0 as κ→ ∞, (6.15)

31



so that |u| = 1 a.e. Therefore, u ∈ K, so that u has to be a minimizer of (1.14)-(1.15), by (6.14).
Recalling (6.13) , we find that

lim
n→∞

∫

A

|∇uκn|2 =
∫

A

|∇u|2, (6.16)

and thus uκn → u strongly in H1(A). Part a) follows from (6.13) and (6.16).

Corollary 6.5. Assume that I0 = 2π. Then lim
κ→∞mκ = I0 = 2π.

Proof : Let u be such that, up to some subsequence, uκn ⇀ u weakly in H1(A) and a.e. If u ∈ J ,
then u is a minimizer of (1.14)-(1.15) and the conclusion follows as in the previous Corollary. If
u 6∈ J , by Corollary 5.1 we find that

2π ≥ lim
κ→∞

Eκ(uκ) = lim inf
n→∞

Eκn(uκn) ≥ lim inf
n→∞

1

2

∫

A

|∇uκn|2 ≥ 2π, (6.17)

and the conclusion follows again.

Corollary 6.6. Assume that I0 > 2π. Then lim
κ→∞

mκ = 2π.

Proof : Due to the corrolaty 6.3 if κ′ <∞ then conlsuion follows. Thus we assume that κ′ = ∞
so mk is attained and we can consider a sequence of minimizers uκn” Let u be such that, up to
some subsequence, uκn ⇀ u weakly in H1(A) and a.e. Since

1

2

∫

A

|∇u|2 ≤ lim inf
n→∞

1

2

∫

A

|∇uκn|2 ≤ lim inf
n→∞ Eκn(uκn) = lim

κ→∞Eκ(uκ) ≤ 2π, (6.18)

we cannot have u ∈ J . For otherwise, as in the proof of Corollary 6.4, we would have u ∈ K and

2π < I0 ≤
1

2

∫

A

|∇u|2 ≤ 2π, (6.19)

which is impossible. Thus u 6∈ J and the conclusion follows by combining (6.18) with Corollary
5.1.

We will need later the following refinement of (6.5)

Lemma 6.3. There are some constants C = C(A) > 0 and κ′ = κ′(A) > 0 such that

mκ ≤ I0 −
C

κ2
, ∀ κ > κ′. (6.20)
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Proof : Let u be a minimizer of (1.14)-(1.15) and g =tr∂Au. Let, for κ > 0, vκ ∈ J be the
minimizer of Eκ in the class L given by (5.20). We claim that

vκ → u strongly in H1(A) as κ→ ∞. (6.21)

Indeed, let v be any possible weak limit of some subsequence of (uκ). Since Eκ(vκ) ≤ Eκ(u) = I0,

we find as in the proof of Corollary 6.4 that |v| = 1 and
1

2

∫

A

|∇v|2 ≤ I0. On the other hand, we

have tr∂Au=tr∂Av, so that v ∈ K. Therefore, v is a minimizer of (1.14)-(1.15). By Lemma 2.4,
there is some α ∈ S1 such that v = αu. This α has to be 1, since u and v agree on ∂A. Finally,
we proceed as in the proof of Corollary 6.4 to obtain the strong H1 convergence claimed in (6.21).

We now invoke the following result in [9]

Lemma 6.4. ([9]) We have

κ2(1 − |vκ|2) → |∇u|2 in Cloc(A) as κ→ ∞ (6.22)

and

lim
κ→∞

Eκ(vκ) =
1

2

∫

A

|∇u|2 = I0. (6.23)

Actually, the above result was obtained in [9] for minimizers of the Ginzburg-Landau energy
Eκ with a fixed Dirichlet boundary data g under the additional assumption that A is simply
connected. However, the simple connectedness of A is used in their proof only for establishing
(6.21). Since we proved above (6.21), we may apply Lemma 6.4 to our case.
Note that u is smooth and non constant. Therefore, we may find a compact K ⊂ A and constants
c = c(A) > 0, κ′ = κ′(A) > 0 such that

κ2(1 − |vκ|2) ≥ c in K for κ > κ′(A). (6.24)

Let now κ > κ′(A). Using (6.23), we find that

I0 − Eκ(vκ) =
∑

n≥0

(E2n+1κ(v2n+1κ) − E2nκ(v2nκ)). (6.25)

By the minimality of vκ with respect to Eκ, we have

E2n+1κ(v2n+1κ) − E2nκ(v2nκ) ≥ E2n+1κ(v2n+1κ) − E2nκ(v2n+1κ) =
3

4
4nκ2

∫

A

(1 − |v2n+1κ|2)2. (6.26)

Combining (6.24) and (6.26), we find

E2n+1κ(v2n+1κ) − E2nκ(v2nκ) ≥
3

4
4nκ2

∫

K

(1 − |v2n+1κ|2)2 ≥ 3c24−n−3κ−2|K|. (6.27)
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Going back to (6.25), we obtain, for κ > κ′(A), that

mκ ≤ Eκ(vκ) ≤ I0 −
∑

n≥0

3c24−n−3κ−2|K| = I0 −
C

κ2
. (6.28)

7 Properties of quasi-minimizers

We start by defining the quasi-minimizers we alluded to in the Introduction.

Definition 7.1. A family of quasi-minimizers is a family (uκ) ⊂ J , κ ≥ 0, such that :

Eκ(uκ) ≤ mκ +
1

eκ
(7.1)

and uκ is a minimizer of the Ginzburg-Landau energy with respect to its own boundary condition,
i.e.,

Eκ(uκ) ≤ Eκ(v) if tr∂Av = tr∂Auκ. (7.2)

Note that quasi-minimizers always exist. Moreover, any minimizer uκ of mκ, if it exists, is a
quasi-minimizer. It also follows from the maximum principle that

|uκ| ≤ 1 in A. (7.3)

On the other hand, quasi-minimizers satisfy

−∆uκ = κ2uκ(1 − |uκ|2) in A (7.4)

and thus they are smooth in A.
Note also that, in view of Proposition 6.1, we have the following uniform bound

Eκ(uκ) ≤ 2π + 1 = C. (7.5)

The main tool for determining the asymptotic behavior of the quasi-minimizers is the following

Lemma 7.1. ([33]) Set, for z ∈ A, d(z) = dist(z, ∂A). Under the assumptions (7.3)-(7.5), we
have

|Dluκ(z)| ≤
Cl
dl(z)

, l ∈ IN, z ∈ A (7.6)

and

|Dl(1 − |uκ|2)(z)| ≤
Cl

κ2dl+2(z)
, l ∈ IN, z ∈ A. (7.7)

Here, Cl are explicit constants depending only on l and the constant C in (7.5).
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Actually, the above estimates were established in [33] when d(z) = 1 ; the general case follows by
scaling. Note that these estimates deteriorate when we approach the boundary ; in fact, it is not
reasonable to expect uniform estimates up to the boundary.

Corollary 7.1. Let (uκ) be a family of quasi-minimizers. Then, up to subsequences, (uκ) con-
verges, weakly in H1(A) and strongly in C l

loc(A), l ∈ IN, to some u ∈ C∞(A) such that |u| = 1.

Proposition 7.1. Assume that I0 > 2π and let (uκ) be a family of quasi-minimizers. Then there
are constants ακ ∈ S1 such that (ακuκ) converges, weakly in H1(A) and strongly in C l

loc(A), l ∈ IN,
to 1.

Proof : We start by proving that any possible limit as in Corollary 7.1 is a constant of modulus
1. Indeed, let u be any S1-valued smooth map such that, along some subsequence, (uκ) converges,
weakly in H1(A) and strongly in C l

loc(A), l ∈ IN, to u. First of all, the proof of Corollary 6.6 implies
that u 6∈ K. Thus u is in some class KD, d0, . . . , dk with (D, d0, . . . , dk) 6= (1,−1, 0, . . . , 0). Since

u ∈ H1(A ;S1), Lemma 2.2 implies thatD+
k∑

j=0

dj = 0. Therefore, among the degreesD, d0, . . . , dk,

there are at least two degrees different from the corresponding degrees 1,−1, 0, . . . , 0. Let us
assume, for simplicity, that D 6= 1 and d0 6= −1, the analysis being similar in the other cases. Fix
some small δ > 0 and let

Γδ = {z ∈ A ; dist(z, ∂Ω) = δ}, Ωδ = {z ∈ A ; dist(z, ∂Ω) < δ}
and respectively

γδ = {z ∈ A ; dist(z, ∂ω0) = δ}, ωδ = {z ∈ A ; dist(z, ∂ω0) < δ}.
We orient Γδ and γδ as boundaries of Ωδ and ωδ, respectively. By Lemma 2.2 applied to u in Ωδ

and in ωδ, we have
deg(u,Γδ) = −D and deg(u, γδ) = −d0. (7.8)

We now argue as in the proof of Proposition 5.1. Assume that uκl
⇀ u as in Corollary 7.1. Then

we have

2π ≥ lim infmκl
≥ lim inf

1

2

∫

A

|∇uκl
|2 = lim inf

1

2

∫

A

|∇(uκl
− u)|2 +

1

2

∫

A

|∇u|2, (7.9)

so that

2π ≥ lim inf
(

1

2

∫

Ωδ

|∇(uκl
− u)|2 +

1

2

∫

ωδ

|∇(uκl
− u)|2

)
+

1

2

∫

A

|∇u|2. (7.10)

Now

lim inf
1

2

∫

Ωδ

|∇(uκl
− u)|2 ≥ lim inf

∣∣∣∣
∫

Ωδ

Jac (uκl
− u)

∣∣∣∣ = lim inf
1

2

∣∣∣∣
∫

∂Ωδ

(uκl
− u)∧ ∂(uκl

− u)

∂τ

∣∣∣∣. (7.11)
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Using the C1
loc(A) convergence of uκl

to u, we find that

lim inf
1

2

∫

Ωδ

|∇(uκl
− u)|2 ≥ lim inf

1

2

∣∣∣∣
∫

∂Ω

(uκl
− u) ∧ ∂(uκl

− u)

∂τ

∣∣∣∣. (7.12)

As in the proof of Proposition 5.1, we obtain

lim inf
1

2

∫

Ωδ

|∇(uκl
− u)|2 ≥ π|D − 1|. (7.13)

Similarly,

lim inf
1

2

∫

ωδ

|∇(uκl
− u)|2 ≥ π|d0 + 1|. (7.14)

By combining (7.10), (7.13), (7.14) and the fact that D 6= 1, d0 6= −1, we are led to
∫

A

|∇u|2 = 0,

so that u is a constant of modulus 1.

We next prove the existence of the family (ακ). Set

βκ =
1

|A|
∫

A

uκ. (7.15)

Since any possible limit u is a constant of modulus 1, it is easy to see that |βκ| → 1 as κ→ ∞. If

we set, for sufficiently large κ, ακ =
βκ
|βκ|

, then for this choice the conclusion of the proposition is

straightforward.

As a consequence of the above proposition, we obtain that quasi-minimizers have to vanish at
least twice in the supercritical case

Lemma 7.2. Assume that A is supercritcal, i.e., that I0 > 2π. Let (uκ) be a family of quasi-
minimizers. Fix some small δ > 0. Then there is some κ′ = κ′(A) such that, for κ > κ′, uκ has
at least a zero at distance < δ from ∂Ω and at least a zero at distance < δ from ∂ω0.

Remark 7.1. We will see in Section 11 that uκ has exactly two zeroes for large κ, but the
argument is rather involved.

Proof of Lemma 7.2 : We reason near ∂Ω, the situation being similar near ∂ω0. Fix some δ > 0
and let Γ = {z ∈ A ; dist(z, ∂Ω) = δ}. Let κ′ be such that, for κ > κ′, we have |ακuκ − 1| < 1/2
on Γ. Then, for any such κ, we have deg(ακuκ,Γ) = 0, and thus deg(uκ,Γ) = 0. Argue by
contradiction and asume that, for such a κ, uκ does not vanish in the domain U enclosed by Γ
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and ∂Ω. We claim that, in this case, there is a constant C = C(κ) such that C ≤ |uκ| ≤ 1 in U .
Assuming the claim proved, for the moment, it follows that the map v = uκ/|uκ| is in H1(U ;S1),
and it has degrees 1 on ∂Ω and 0 on Γ. (The fact that ∇v ∈ L2(U) follows from the pointwise
inequality |∇v| ≤ |∇uκ|/C in U .) But this is impossible, by Lemma 2.2.
Returning to the claim, we start by noting that there is some ε = εκ > 0 such that |uκ(z)| ≥ 1/2
if dist(z, ∂Ω) > ε i; this follows from the proof of Lemma 4.4. On the other hand, there is some
D = D(κ) > 0 such that |uκ(z)| ≥ D when ε ≤dist(z, ∂Ω) ≤ δ, since uκ is smooth and non
vanishing. The claim follows with C =Min{1/2, D}. The proof of the lemma is complete.

8 Asymptotic behavior of the minimizers in the subcritical case I0 < 2π

Throughout this section, we always assume that we are in the subcritical case, i.e., that

I0 < 2π. (8.1)

If we combine Corollary 5.2, Corollary 6.4 and Corollary 7.1, we already know that in the subcritical
case we have

mκ < I0 < 2π, (8.2)

lim
κ→∞

mκ = I0, (8.3)

mκ is attained for each κ ≥ 0 (8.4)

and, if uκ is a minimizer of (1.1)-(1.3) then, up to some subsequences,

uκ → u strongly in H1(A) and in C l
loc(A),∀ l ∈ IN, where u is a minimizer of (1.14) − (1.15).

(8.5)
The aim of this section is to improve the property (8.5), by proving that uκ converges to u in some
better spaces.

We start with a preliminary remark : the minimization problem (1.1)-(1.3 is degenerate, in the
sense that, if uκ is a minimizer, so is αuκ, for α ∈ S1. It will be convenient to reduce degeneracy
by replacing each uκ with some appropriate rotation of uκ. This is done in

Lemma 8.1. Assume I0 < 2π and let, for each κ ≥ 0, uκ be a minimizer of (1.1)-(1.3). Fix some
minimizer u∞ of I0. Then there is a family (ακ) ⊂ S1 such that

vκ = ακuκ → u∞ strongly in H1(A) and in C l
loc(A),∀ l ∈ IN. (8.6)

Proof : We proceed as at the end of the proof of Proposition 7.1. Set

βκ =
1

|A|
∫

A

uκu∞. (8.7)
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We first claim that |βκ| → 1 as κ→ ∞. Indeed, by (8.5), up to some subsequence we have uκ → u
in H1(A) for some minimizer u of I0. By Lemma 2.4, there is some α ∈ S1 such that u = αu∞,
and thus βκ → α along such a subsequence. Obviously, this implies that |βκ| → 1 as κ→ ∞. Now
let

ακ =
βκ
|βκ|

, (8.8)

which is well-defined for sufficiently large κ. Then, clearly,
∫

A

ακuκu∞ → 1 as κ→ ∞. (8.9)

Invoking once again (8.5) and Lemma 2.4, we find that (8.6) holds for this choice of ακ.

The key ingredient in improving (8.5) is the following

Lemma 8.2. We have
|uκ| → 1 uniformly in A as κ→ ∞. (8.10)

Proof : It suffices to work with vκ instead of uκ. Recall that |vκ| ≤ 1, by (7.3), so that, for
0 < a < 1, it suffices to prove that there is some κa ≥ 0 such that

|vκ| ≥ a in A, ∀ κ ≥ κa. (8.11)

We start by noting that (8.11) holds ”far away” from ∂A. Indeed, by (7.7) in Lemma 7.1, we have

|vκ(z)| ≥ a if d(z) ≥
√

C0

κ2(1 − a2)
=
Ca

κ
, (8.12)

where d(z) =dist(z, ∂A).
We next prove that (8.11) holds ”near” ∂A. For this purpose, we need the following

Lemma 8.3. ([20]) Let (gn) ⊂ VMO(∂A;S1) be such that gn → g strongly in VMO(∂A). Then,
for each 0 < a < 1, there is some δ > 0 independent of n such that

a ≤ |g̃n(z)| ≤ 1 if d(z) < δ. (8.13)

Here, g̃n is the harmonic extension of gn to A.

Proof of Lemma 8.2 continued : Set gκ =tr∂Avκ and g =tr∂Au∞. Since vκ → u∞ strongly in
H1(A), we have gκ → g strongly in H1/2(∂A). Using the fact that H1/2 →֒VMO in 1-D, we find
from Lemma 8.1 and Lemma 8.3 that there are some δ > 0, κa1 such that

1 + a

2
≤ |g̃κ(z)| ≤ 1 if d(z) < δ and κ ≥ κa1. (8.14)
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Write now vκ = g̃κ + wκ, where wκ satisfies
{

−∆wκ = κ2vκ(1 − |vκ|2) in A
wκ = 0 on ∂A

. (8.15)

In order to estimate |wκ|, we rely on the following

Lemma 8.4. ([9]) Let u ∈ C2(A) satisfy
{

∆u = f in A
u = 0 on ∂A

. (8.16)

Then, for some constant CA depending only on A, we have

‖∇u‖L∞(A) ≤ CA‖ u‖1/2
L∞(A)‖ f‖

1/2
L∞(A). (8.17)

Proof of Lemma 8.2 completed : Since |vκ| ≤ 1, by (7.3), and |g̃κ(z)| ≤ 1 (as harmonic
extension of a map of modulus 1), we find that

|wκ| ≤ 2 in A (8.18)

and
|∆wκ| ≤ κ2 in A. (8.19)

By combining (8.18), (8.19) and Lemma 8.4, we obtain

|∇wκ| ≤
√

2CAκ in A. (8.20)

Recalling that wκ = 0 on ∂A, we obtain, for some constant DA depending only on A, that

|wκ(z)| ≤ DAκ d(z) in A. (8.21)

By combining (8.14) and (8.21) we find, for large κ,

|vκ(z)| ≥ a if d(z) ≤ 1 − a

2Daκ
=
Da

κ
. (8.22)

We complete the proof of Lemma 8.2 by establishing that (8.11) holds in the region of A uncovered
by the estimates (8.12) and (8.22). This part of the proof follows [9]. We may assume that
Da ≤ Ca, for otherwise the whole of A is covered by these estimates. First, note that, by applying
(7.6) to vκ, we have

|∇vκ(z)| ≤ EAκ if
Da

2κ
≤ d(z) ≤ Ca

κ
, (8.23)

where EA is independent of large κ. Assume that there is some z ∈ A such that

|vκ(z)| ≤ a and
Da

κ
≤ d(z) ≤ Ca

κ
. (8.24)
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¿From (8.23) and (8.24), we derive the existence of some ca < Da such that

|vκ(y)| ≤
1 + a

2
if |y − z| ≤ ca

κ
. (8.25)

Pick now κa2 such that

{y ; |y − z| ≤ ca

κ
} ⊂ A if

Da

κ
≤ d(z) ≤ Ca

κ
and κ ≥ κa2. (8.26)

Then

κ2

4

∫

A

(1 − |vκ|2)2 ≥ κ2

4

∫

{y;|y−z|≤ca/κ}

(1 − |vκ|2)2 ≥ π(ca)2(1 − a)(1 + 3a)

4
if κ ≥ κa2. (8.27)

We will finally prove that (8.27) (and thus (8.24)) can not hold for sufficiently large κ. (This will
complete the proof, in view of (8.12) and (8.22).) To this purpose, it suffices to establish that

lim
κ→∞

κ2

4

∫

A

(1 − |vκ|2)2 = 0. (8.28)

This is an easy consequence of (8.3) and (8.5), since

κ2

4

∫

A

(1 − |vκ|2)2 = mκ −
1

2

∫

A

|∇vκ|2 → I0 −
1

2

∫

A

|∇u∞|2 = 0 as κ→ ∞. (8.29)

One of the useful consequences of Lemma 8.2 is that it allows us to rewrite, for large values of
κ, the Ginzburg-Landau equation in terms of the modulus and the phase of uκ. Let κ2 be such

that |uκ| ≥ 1/2 for κ ≥ κ2. Set ρ = ρκ = |uκ|, for κ ≥ κ2. Then
uκ
ρ

∈ J . By Lemma 2.3 a), we

may write
uκ
ρ

= u∞e
ıψ for some ψ = ψκ ∈ H1(A; IR) ; actually, ρ, ψ ∈ C∞(A; IR), by Lemma 4.4.

Moreover, we noted in the statement of Lemma 2.4 that u∞ = eıϕ, where ϕ is only locally defined,
but it has a globally defined gradient. We may thus write, locally in A,

uκ = ρeı(ϕ+ψ) = ρκe
ı(ϕ+ψκ) = ρκe

ıψκu∞, (8.30)

the last expression in (8.30) being globally defined. It follows immediately from (4.16) and (4.17)
that ψ and ρ satisfy

{
−∆ρ = κ2ρ(1 − ρ2) − ρ|∇(ϕ+ ψ)|2 in A

ρ = 1 on ∂A
(8.31)
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and respectively 



−div(ρ2∇ψ) = div(ρ2∇ϕ) = 2ρ∇ρ · ∇ϕ in A
∂ψ

∂ν
= 0 on ∂A

. (8.32)

Two remarks about the equation of ψ : on the one hand, it has a global meaning, since ∇ϕ is
globally defined. On the other hand, the second equality in (8.32) comes from the fact, by Lemma
2.4, we have div(∇ϕ) =div(−∂η/∂y, ∂η/∂x) = 0.

Lemma 8.5. We have

ψκ −
1

|A|
∫

A

ψκ → 0 in W 1,p(A), 1 < p <∞, as κ→ ∞. (8.33)

Proof : We rewrite (8.32) as




∆ψ = div((1 − ρ2)∇(ϕ+ ψ)) in A
∂ψ

∂ν
= 0 on ∂A

. (8.34)

By standard elliptic estimates ([26]) we have, for 1 < p <∞,

‖∇ψ‖Lp(A) ≤ Cp‖(1 − ρ2)∇(ϕ+ ψ)‖Lp(A) ≤ Cp‖1 − ρ2‖L∞(A)(‖∇ϕ‖Lp(A) + ‖∇ψ‖Lp(A)). (8.35)

By Lemma 8.2, we have Cp‖1 − ρ2‖L∞(A) ≤ 1/2 for sufficiently large κ, and thus, for such κ, we
obtain

‖∇ψ‖Lp(A) ≤ 2Cp‖1 − ρ2‖L∞(A)‖∇ϕ‖Lp(A) → 0 as κ→ ∞. (8.36)

The conclusion of Lemma 8.5 follows from (8.36) and the Poincaré-Wirtinger inequality.

For the next result, we follow the unpublished paper [34].

Lemma 8.6. We have, for sufficiently large κ and a constant CA depending only on A, the esti-
mate ∫

A

(1 − ρ2
κ)

2 ≤ CA
κ4
. (8.37)

Proof : A straightforward computation shows that

Eκ(uκ) =
1

2

∫

A

|∇ρ|2 +
1

2

∫

A

ρ2|∇ϕ|2 +
1

2

∫

A

ρ2|∇ψ|2 +
∫

A

ρ2∇ϕ · ∇ψ +
κ2

4

∫

A

(1 − ρ2)2. (8.38)

¿From (2.21), it follows that ∇ϕ satisfies
{

div(∇ϕ) = 0 in A
ν · ∇ϕ = 0 on ∂A

. (8.39)
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If we multiply (8.39) by ψ and integrate, we find that
∫

A

∇ϕ · ∇ψ = 0. (8.40)

By combining (8.38) and (8.40), we are led to

Eκ(uκ) =
1

2

∫

A

|∇ρ|2 +
1

2

∫

A

ρ2|∇ϕ|2 +
1

2

∫

A

ρ2|∇ψ|2 +
∫

A

(ρ2 − 1)∇ϕ · ∇ψ +
κ2

4

∫

A

(1 − ρ2)2. (8.41)

We now use the minimality of uκ. Since u∞ ∈ J , we have

mκ = Eκ(uκ) ≤ Eκ(u∞) = I0 =
1

2

∫

A

|∇ϕ|2. (8.42)

Using (8.41) together with (8.42), we obtain

1

2

∫

A

|∇ρ|2 +
1

2

∫

A

ρ2|∇ψ|2 +
κ2

4

∫

A

(1 − ρ2)2 ≤ 1

2

∫

A

(1 − ρ2)|∇ϕ|2 +
∫

A

(1 − ρ2)∇ϕ · ∇ψ. (8.43)

We estimate the integrals on the right-hand side of (8.43) using the Cauchy-Schwartz inequality
and obtain

1

2

∫

A

(1 − ρ2)|∇ϕ|2 ≤ κ2

16

∫

A

(1 − ρ2)2 +
4

κ2

∫

A

|∇ϕ|4 (8.44)

and respectively

∫

A

(1 − ρ2)∇ϕ · ∇ψ ≤ κ2

16

∫

A

(1 − ρ2)2 +
4

κ2

∫

A

|∇ψ|2|∇ϕ|2. (8.45)

Combining (8.43), (8.44) and (8.45), we find

1

2

∫

A

|∇ρ|2 +
1

2

∫

A

(ρ2 − 4

κ2
|∇ϕ|2)|∇ψ|2 +

κ2

8

∫

A

(1 − ρ2)2 ≤ 4

κ2

∫

A

|∇ϕ|4. (8.46)

Recall that, by Lemma 2.4, ∇ϕ is smooth in A, and thus bounded. Recall also that ρ → 1
uniformly in A, by Lemma 8.2. Therefore, for sufficiently large κ, we have the estimate

1

2

∫

A

|∇ρ|2 +
1

3

∫

A

|∇ψ|2 +
κ2

8

∫

A

(1 − ρ2)2 ≤ C

κ2
, (8.47)

and the conclusion of Lemma 8.6 follows.
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Corollary 8.1. ρκ remains bounded in H2(A) as κ→ ∞.

Proof : Set fκ = κ2ρ(1 − ρ2) − ρ|∇(ϕ+ ψ)|2. Then (8.31) may be rewritten as
{

−∆ρ = fκ in A
ρ = 1 on ∂A

. (8.48)

Using Lemma 8.5, Lemma 8.6 and the inequality |ρ| ≤ 1 together with the fact that |∇ϕ| is
bounded in A, we find that

‖fκ‖L2(A) ≤ C, for sufficiently large κ. (8.49)

The conclusion of the corollary follows now from (8.48) and (8.49), using standard elliptic estimates
([26]).

Estimates (8.10), (8.33) and (8.37) are the key ingredients that allow us to follow from now on
the strategy developed in [9] in order to obtain further asymptotic estimates. This is done in the
remaining part of this section.

Lemma 8.7. ψκ remains bounded in W 2,p(A), 1 < p <∞, as κ→ ∞.

Proof : We write, for sufficiently large κ, (8.32) as





∆ψ = −2

ρ
∇ρ · ∇(ϕ+ ψ) = gκ in A

∂ψ

∂ν
= 0 on ∂A

. (8.50)

Using (8.33) and (8.37) together with the fact that |∇ϕ| is bounded in A, we obtain that gκ
remains bounded in Lp(A), 1 < p <∞, as κ→ ∞, so that the conclusion follows.

Lemma 8.8. ρκ remains bounded in W 2,p(A), 1 < p <∞, as κ→ ∞.

Proof : By Corollary 8.1, the conclusion is clear when p ≤ 2. As in the proof of Corollary 8.1, it
suffices to establish, for sufficiently large κ, the estimate

∫

A

(1 − ρ2)p ≤ C

κ2p
, 2 < p <∞. (8.51)

Set w = wκ = 1 − ρκ. Using the fact that |uκ| ≤ 1, we see that wκ ≥ 0. On the other hand, we
may rewrite (8.31) as

{
−∆w + κ2ρ(1 + ρ)w = ρ|∇(ϕ+ ψ)|2 in A

w = 0 on ∂A
. (8.52)
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By (8.10), for sufficiently large κ we have
{

−∆w + κ2w ≤ |∇(ϕ+ ψ)|2 = h = hκ in A
w = 0 on ∂A

. (8.53)

Let p > 2. If we multiply (8.53) by wp−1 and integrate, we find

(p− 1)
∫

A

wp−2|∇w|2 + κ2
∫

A

wp ≤
∫

A

hwp−1 ≤
( ∫

A

wp
)(p−1)/p( ∫

A

hp
)1/p

. (8.54)

Hence ∫

A

wp ≤ 1

κ2p

∫

A

hp. (8.55)

Using (8.33), (8.55), the inequality ρ ≤ 1 and the fact that |∇ϕ| is bounded in A, we find

∫

A

(1 − ρ2)p ≤ 4
∫

A

wp ≤ C

κ2p
, (8.56)

which is the desired conclusion.

Corollary 8.2. Let ακ ∈ S1 be defined as in Lemma 8.1. Then

ακuκ → u∞ in C1,β(A), 0 < β < 1, as κ→ ∞. (8.57)

Proof : By Lemma 8.7 and Lemma 8.8, ρκ and ψκ are bounded in W 2,p(A), 1 < p < ∞. For
a given β such that 0 < β < 1, pick some p such that 1 − 2/p > β. For such a choice of p,
the embedding W 2,p(A) →֒ C1,β(A) is compact. Since u∞ ∈ C∞(A), we find that, up to some
subsequence and for some u, vκ = ρκe

ıψκu∞ → u in C1,β(A) as κ → ∞. By Lemma 8.1, the limit
u must coincide with u∞, and the conclusion follows immediately.

We end by noting that all the further estimates obtained in [9] may be also established in our
case by straightforward adaptations of the arguments therein.

9 Asymptotic behavior of the minimizers in the critical case I0 = 2π

The aim of this section is to extend the results obtained in the previous section to the critical
case I0 = 2π. If we examine the proof of the estimates obtained in the subcritical case, we see
that the only point where the subcriticality intervenes is via (8.5), more specifically, via the fact
that the family (uκ) converges, up to subsequences and strongly in H1(A), to some minimizer u
of (1.14)-(1.15) . We will obtain below that, in the critical case, minimizers uκ of(1.1) converge in
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H1(A), up to subsequences, to some minimizer u of (1.14)-(1.15). Once this will be done, all the
results in Section 8 will then automatically follow when I0 = 2π.

We start by proving a weaker fact, namely

Lemma 9.1. Assume I0 = 2π. Let u ∈ H1(A;S1)∩C∞(A) be such that, up to some subsequence,
uκ converges to u, weakly in H1(A) and strongly in C l

loc(A), l ∈ IN. Then :
either
a) u is a minimizer of (1.14)-(1.15)
or
b) u is a constant of modulus 1.

Proof : Assume first that u ∈ K. Then, by Corollary 6.5, we have, along some subsequence such
that uκn ⇀ u weakly in H1(A),

I0 = 2π = lim
κ→∞mκ ≥ lim

n→∞
1

2

∫

A

|∇uκn|2 ≥
1

2

∫

A

|∇u|2 ≥ I0, (9.1)

so that u has to be a minimizer of (1.14)-(1.15).
Assume next that u 6∈ K. Let D, d0, . . . , dk be integers such that u ∈ KD, d0, . . . , dk . By Lemma

2.2 and the fact that |u| = 1 in A, we find that D +
k∑

j=0

dj = 0. Since u 6∈ K, this implies that

|D − 1| + |d0 + 1| +
k∑

j=0

|dk| ≥ 2. (9.2)

By (5.15), (9.2) and Corollary 6.5 we have

2π ≥ lim inf
n→∞

1

2

∫

A

|∇uκn|2 ≥ π
(
|D − 1| + |d0 + 1| +

k∑

j=0

|dk|
)

+
1

2

∫

A

|∇u|2 ≥ 2π +
1

2

∫

A

|∇u|2, (9.3)

so that u has to be a constant of modulus 1.

We next exclude possibility b) in Lemma 9.1.

Lemma 9.2. Assume I0 = 2π. Let u ∈ H1(A;S1)∩C∞(A) be such that, up to some subsequence,
uκ converges to u, weakly in H1(A) and strongly in C l

loc(A), l ∈ IN. Then u is a minimizer of
(1.14)-(1.15) in K.

Proof : Argue by contradiction and assume that there is some subsequence such that uκn ⇀ α
weakly in H1(A) and strongly in C l

loc(A), l ∈ IN for some constant α ∈ S1. For simplicity, we
drop from now on the subscript n.
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Let, for δ > 0 fixed and sufficiently small, Γ = {z ∈ A ; dist(z, ∂Ω) = δ}. Let U be the domain
enclosed by ∂Ω and Γ and let V = A \ U . Then

∂U = ∂Ω ∪ Γ and ∂V = Γ
⋃

∪kj=0∂ωj, (9.4)

provided δ > 0 is sufficiently small. We orient Γ as part of ∂U .
By Lemma 7.1, Corollary 7.1 and the fact that u is a constant, we may find some κ2 such that

1

2
≤ |uκ(z)| ≤ 1 and |∇uκ(z)| ≤

1

2π|Γ| if z ∈ Γ and κ ≥ κ2. (9.5)

For κ ≥ κ2, we may write, locally on Γ, uκ = ρκe
ıϕκ , where ∇ϕκ is globally defined on Γ. Moreover,

we have

|∇uκ|2 = |∇ρκ|2 + ρ2
κ|∇ϕκ|2 ≥

1

4
|∇ϕκ|2 on Γ. (9.6)

Therefore,

|∇ϕκ| ≤
1

π|Γ| on Γ. (9.7)

Thus

2π |deg(uκ,Γ)| =
∣∣∣∣
∫

Γ

∂ϕκ
∂τ

∣∣∣∣ ≤
∫

Γ

|∇ϕκ| ≤ π. (9.8)

Hence, for κ ≥ κ2, we have deg(uκ,Γ) = 0, and thus

∫

Γ

∂ϕκ
∂τ

= 0 for κ ≥ κ2. (9.9)

We next use the pointwise inequality |∇uκ|2 ≥ 2|Jac uκ|, Lemma 2.1 and the degree formula (1.5)
in order to obtain

1

2

∫

U

|∇uκ|2 ≥
∫

U

Jac uκ =
1

2

∫

∂Ω

uκ ∧
∂uκ
∂τ

+
1

2

∫

Γ

uκ ∧
∂uκ
∂τ

= π +
1

2

∫

Γ

ρ2
κ

∂ϕκ
∂τ

(9.10)

and similarly
1

2

∫

V

|∇uκ|2 ≥ −
∫

V

Jac uκ = π +
1

2

∫

Γ

ρ2
κ

∂ϕκ
∂τ

. (9.11)

By combining (9.9), (9.10) and (9.11) we find

1

2

∫

A

|∇uκ|2 ≥ 2π +
∫

Γ

ρ2
κ

∂ϕκ
∂τ

= 2π +
∫

Γ

(ρ2
κ − 1)

∂ϕκ
∂τ

, (9.12)
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so that, by (9.6), we have

mκ ≥
1

2

∫

A

|∇uκ|2 ≥ 2π −
∫

Γ

(1 − ρ2
κ)|∇ϕκ| ≥ 2π − 2

∫

Γ

(1 − ρ2
κ)|∇uκ| for κ ≥ κ2. (9.13)

Invoking (7.7), we find, with some constant C independent of κ, the estimate

mκ ≥ 2π − C

κ2

∫

Γ

|∇uκ| for κ ≥ κ2. (9.14)

Recalling that we argued by contradiction and supposed that uκ converges in C l
loc(A), l ∈ IN to

some constant, we obtain from (9.14) and the upper bound (6.20) given by Lemma 6.3 that, for
some constants κ3 and D > 0, we have

2π − o
(

1

κ2

)
≤ mκ ≤ 2π − D

κ2
for κ ≥ κ3. (9.15)

We obtain a contradiction for sufficiently large κ. This completes the proof of Lemma 9.2.

Once we know that the only possible limits (in the sense of Corollary 7.1) of (uκ) are the
minimizers of (1.14)-(1.15), we may repeat the proof of Corollary 6.4 and obtain the following

Lemma 9.3. Assume I0 = 2π. Then, along subsequences, uκ → u strongly in H1(A) as κ → ∞,
where u is some minimizer of (1.14)-(1.15).

The conclusion of Lemma 9.3 suffices for obtaining, in the critical case I0 = 2π, all the results
proved in Section 8. For the convenience of the reader, we state these results as

Corollary 9.1. Assume I0 = 2π. Fix some minimizer u∞ of I0 in K. Then :
a) there is a family (ακ) ⊂ S1 such that

vκ = ακuκ → u∞ strongly in H1(A) and in C l
loc(A),∀ l ∈ IN ; (9.16)

b) uκ remains bounded in W 2,p(A), 1 < p <∞, as κ→ ∞ ;
c) ακuκ → u∞ in C1,β(A), 0 < β < 1, as κ→ ∞.

10 ”Uniqueness” of the minimizers in the subcritical and critical case

10.1 Uniqueness modulo a phase shift

As already noticed in the Introduction, if uκ is a minimizer of (1.1)-(1.3), so is αuκ for α ∈ S1.
This is why we can, at best, prove uniqueness modulo a phase shift. The following result asserts
uniqueness modulo a phase shift. Its proof is based on a technique developed in [21] ; see also [30]
or [34].
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Proposition 10.1. Assume that A is either subcritical or critical, i.e., that I0 ≤ 2π. Then there
is some κ0 such that, if κ ≥ κ0 and uκ, vκ are two minimizers of (1.1)-(1.3), then vκ = αuκ for
some α ∈ S1.

Proof : Let κ2 be such that 1/2 ≤ |uκ|, |vκ| ≤ 1 if κ ≥ κ2. For such κ we may write vκ =
uκρκwκ = uκρw, where w ∈ H1(A;S1) and ρ = |vκ|/|uκ|. It is obvious that w ∈ K0, 0, . . . , 0.

Applying (2.2) with v = 1, we find that wκ = eıψκ = eıψ for some globally defined ψ ∈ H1(A; IR).
To summarize, we have

vκ = uκρκe
ıψκ = uκρe

ıψ, with ρ =
|vκ|
|uκ|

,
1

2
≤ ρ ≤ 2, ψ ∈ H1(A; IR), if κ ≥ κ2. (10.1)

On the other hand, we may write, locally in A,

uκ = ζκe
ıϕκ = ζeıϕ, with ζ = |uκ|,

1

2
≤ ζ ≤ 1, ∇ϕ globally defined in A, if κ ≥ κ2. (10.2)

We may now invoke the following

Lemma 10.1. ([21]) We have, for κ ≥ κ2,

Eκ(vκ) = Eκ(uκ) +
1

2

∫

A

ζ2|∇ρ|2 +
1

2

∫

A

ζ2ρ2|∇ψ|2 +
∫

A

ζ2ρ2∇ϕ · ∇ψ +
κ2

4

∫

A

ζ4(1 − ρ2)2. (10.3)

Proof of Proposition 10.1 completed : Since |uκ| ≥ 1/2 in A for κ ≥ κ2, (4.17) becomes, for
uκ and κ ≥ κ2, {

−div(ζ2∇ϕ) = 0 in A
ν · ∇ϕ = 0 on ∂A

. (10.4)

If we multiply (10.4) by ψ and integrate, we find
∫

A

ζ2∇ϕ · ∇ψ = 0. (10.5)

By combining (10.3) and (10.5), we obtain

Eκ(vκ) = Eκ(uκ)+
1

2

∫

A

ζ2|∇ρ|2 +
1

2

∫

A

ζ2ρ2|∇ψ|2 +
∫

A

ζ2(ρ2−1)∇ϕ ·∇ψ+
κ2

4

∫

A

ζ4(1−ρ2)2. (10.6)

By Cauchy-Schwartz, we have

∣∣∣∣
∫

A

ζ2(ρ2 − 1)∇ϕ · ∇ψ
∣∣∣∣ ≤

κ2

8

∫

A

ζ4(1 − ρ2)2 +
2

κ2

∫

A

|∇ϕ|2|∇ψ|2. (10.7)
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By (9.6), (10.7) and the fact that, by Corollary 8.2 and Corollary 9.1, uκ remains bounded in
C1(A), we find that

∣∣∣∣
∫

A

ζ2(ρ2 − 1)∇ϕ · ∇ψ
∣∣∣∣ ≤

κ2

8

∫

A

ζ4(1 − ρ2)2 +
C

κ2

∫

A

|∇ψ|2 (10.8)

for some constant C independent of sufficiently large κ. Inserting (10.8) into (10.6), we obtain

Eκ(vκ) ≥ Eκ(uκ) +
1

2

∫

A

ζ2|∇ρ|2 +
1

2

∫

A

(
ζ2ρ2 − 2C

κ2

)
|∇ψ|2 +

κ2

8

∫

A

ζ4(1 − ρ2)2. (10.9)

By Lemma 8.2 and Corollary 9.1, we have

ζ2ρ2 = |vκ|2 → 1 uniformly in A as κ→ ∞. (10.10)

By combining (10.9) and (10.10), we find that, for sufficiently large κ,

Eκ(vκ) ≥ Eκ(uκ) +
1

2

∫

A

ζ2|∇ρ|2 +
1

3

∫

A

|∇ψ|2 +
κ2

8

∫

A

ζ4(1 − ρ2)2. (10.11)

Since both uκ and vκ are minimizers of (1.1)-(1.3), (10.11) implies that ρ = 1 and ψ = c for
some constant c ∈ IR. Taking the definitions of ρ and ψ into account, this in turn implies that
vκ = αuκ, where α = eıc ∈ S1.

For further use, we also mention the following consequence of the method in [21]

Lemma 10.2. Assume that I0 ≤ 2π. Let (vκ) ⊂ J be a family of solutions of the Ginzburg-Landau
system {

−∆vκ = κ2vκ(1 − |vκ|2) in A
vκ ∧ (ν · ∇vκ) = 0 on ∂A

(10.12)

such that Eκ(vκ) ≤ I0 and, up to subsequences, vκ → u strongly in H1(A), where u is some
minimizer of (1.14)-(1.15). Then there is some κ0 such that, for κ ≥ κ0, vκ is a minimizer of
(1.1)-(1.3).

Proof : Let uκ be a minimizer of (1.1)-(1.3). On the one hand, since Eκ(vκ) ≤ I0 and vκ → u
strongly in H1(A), we may obtain as in the proof of Lemma 8.2 that |vκ| → 1 uniformly in A as
κ → ∞. As explained in Section 9, the fact that vκ → u in H1(A) together with the fact that
|vκ| → 1 uniformly in A as κ→ ∞ imply that the conclusions of Corollary 9.1 apply to the family
(vκ). This allows us to proceed as in the proof of Proposition 10.1 in order to obtain (10.11). (The
hypothesis (10.12) is needed in Lemma 10.1.) By reversing the roles of uκ and vκ, we thus also
have, for sufficiently large κ,

Eκ(uκ) ≥ Eκ(vκ) +
1

2

∫

A

ζ2ρ2

∣∣∣∣∇
(

1

ρ

)∣∣∣∣
2

+
1

3

∫

A

|∇ψ|2 +
κ2

4

∫

A

ζ4ρ2
(
1 − 1

ρ2

)2

. (10.13)
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¿From (10.13) and the fact that Eκ(uκ) ≤ Eκ(vκ), we find as above that vκ = ακuκ, so that vκ is
a minimizer of (1.1)-(1.3).

10.2 Minimizers in presence of symmetries

The remaining part of this section is devoted to providing a more precise description of minimizers
in presence of symmetries. To start with, we consider the case of a circular annulus. Assume that
A = Ω \ ω0, where Ω = {z ; |z| < R}, ω0 = {z ; |z| < ρ} and ρ < R. In this case, it is easy to see

that (10.12) has a special solution, of the form wκ(z) = fκ(|z|)
z

|z| = fκ(r)e
ıθ. Moreover, this wκ

belongs to J and f = fκ satisfies




−f ′′ − f ′

r
+
f

r2
= κ2f(1 − f 2) in [ρ,R]

f(ρ) = f(R) = 1
2
√
Rρ

R + ρ
≤ f ≤ 1 in [ρ,R]

(10.14)

(see, e.g., [27]). This solution is obtained by minimizing Eκ in the class

L = {v ∈ H1(A; C| ) ; v(z) = g(|z|) z|z| , g ∈ H1([ρ,R]), g(ρ) = g(R) = 1}.

Since, by Lemma 2.4, one the minimizers of (1.14)-(1.15) is, for this A, u∞(z) =
z

|z| ∈ L, it follows

that Eκ(wκ) ≤ I0.

Proposition 10.2. Assume that A = Ω \ ω0, where Ω = {z ; |z| < R}, ω0 = {z ; |z| < ρ} and
ρ < R. Assume also that A is subcritical or critical, i.e., that R/ρ ≤ e2. Then there is some

κ0 such that, for κ ≥ κ0, each minimizer uκ of mκ is of the form uκ(z) = ακfκ(|z|)
z

|z| for some

ακ ∈ S1.

Proof : We already noted that Eκ(wκ) ≤ I0. Therefore, in view of Lemma 10.2, it suffices to
prove that wκ → u∞ in H1(A) as κ→ ∞. An easy computation shows that

∫

A

(|∇(wκ− u∞)|2 + |wκ− u∞|2) = 2π

R∫

ρ

(
(f − 1)2

(
r+

1

r

)
+ rf ′2

)
≤ C

R∫

ρ

((f − 1)2 + f ′2), (10.15)

where

C = 2πmax{R +
1

R
, ρ+

1

ρ
,R}. (10.16)
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If we multiply the first equation in (10.14) by r(f − 1), integrate and take the last property in
(10.14) into account, we find

R∫

ρ

(
ρf ′2+

2κ2
√
Rρ

R + ρ
ρ(f−1)2

)
≤

R∫

ρ

(rf ′2+κ2rf(f−1)2(1+f)) =

R∫

ρ

1

r
f(1−f) ≤ 1

ρ

R∫

ρ

(1−f). (10.17)

By Cauchy-Schwartz, we have

1

ρ

R∫

ρ

(1 − f) ≤ κ2
√
Rρ

R + ρ
ρ

R∫

ρ

(f − 1)2 +
R + ρ

4κ2ρ3
√
Rρ

R∫

ρ

1. (10.18)

Inserting (10.18) into (10.17), we are led to

R∫

ρ

(
ρf ′2 +

κ2
√
Rρ

R + ρ
ρ(f − 1)2

)
≤ D

κ2
. (10.19)

By combining (10.15) and (10.19), we find that wκ → u∞ in H1(A). The proof of Proposition
10.2 is complete.

We now turn to domains which are symmetric in the sense of Definition 2.3.

Proposition 10.3. Assume that A is O-symmetric. Assume also that A is subcritical or critical,
i.e., that I0 ≤ 2π.Then there is some κ0 such that, if κ ≥ κ0, there is a minimizer vκ of mκ such
that

vκ(O(z)) = O(vκ(z)), ∀ z ∈ A. (10.20)

Proof : Since circular annuli were treated in Proposition 10.2, we may assume that O is either a
symmetry with respect to a line, or a rotation of angle 2π/n for some integer n ≥ 2.

We start with the case of a symmetry, which we may assume with respect to Ox. Fix some
z0 ∈ A∩Ox and let (uκ) be a family of minimizers of (1.1)-(1.3). For sufficiently large κ, we have
1/2 ≤ |uκ| ≤ 1, so that there is exactly one ακ ∈ S1 such that ακuκ(z0) ∈ (0, 1]. Set vκ = ακuκ.
Let wκ(z) = vκ(z), which is clearly a minimizer of (1.1)-(1.3). Since wκ(z0) = vκ(z0), Proposition
10.1 implies that wκ = vκ for sufficiently large κ. Thus vκ(z) = vκ(z) in A, for sufficiently large κ,
which is the desired conclusion.
Assume now that O is a rotation of angle 2π/n, for example around the origin. Let (uκ) be a family
of minimizers of (1.1)-(1.3). As in the case of a symmetry, for sufficiently large κ, there is some
ακ ∈ S1 such that uκ ◦ O = ακuκ. Since uκ ◦ On = uκ, we find that ακ must be of the form ακ =
eı2lπ/n for some integer l with 0 ≤ l ≤ n− 1. Fix some z0 ∈ ∂Ω and let zk = Ok(z0), k = 1, . . . , n,
so that zn = z0. Without any loss of generality, we may assume that uκ(z0) = 1. Denote by Γk the
directly oriented arc of ∂Ω joining zk−1 to zk. These arcs form a partition of ∂Ω and O(Γk−1) = Γk

51



for k = 1, . . . , n − 1. Since each Γk is simply connected, we may write, on Γk, uκ(z) = eıψk(z) for
some smooth ψk. Moreover, we may assume that ψk+1(zk) = ψk(zk) for k = 1, . . . , n− 1, and that
ψ1(z0) = 0. Using the fact that uκ(z1) = ακ = eı2lπ/n, we find that ψ1(z1) = 2lπ/n+2mπ for some
integer m, that is ψ2(O(z0)) = ψ1(z0) + 2lπ/n + 2mπ. Since uκ ◦ O = ακuκ, we must then have
ψ2(O(z)) = ψ1(z) + 2lπ/n+ 2mπ for all z ∈ Γ1, by connectivity of Γ1. Reiterating this argument,
we find that, with the same m, we have ψk+1(O(z)) = ψk(z) + 2lπ/n + 2mπ for all z ∈ Γk, for
k = 1, . . . , n− 1. Finally, since

1 = deg(uκ, ∂Ω) =
1

2π
(ψn(zn) − ψ1(z0)) =

1

2π

n∑

k=1

(ψk(zk) − ψk(zk−1)) = l + 2mn, (10.21)

we find that l = 1 and m = 0. This implies that uκ ◦O = eı2π/nuκ, that is uκ ◦O = O ◦ uκ, which
is the desired result.

Corollary 10.1. Assume that, for some κ, mκ is attained and that the minimizers of (1.1)-(1.3)
are unique up to a phase shift. Assume also that A is O-symmetric. Then :
a) if O is a symmetry with respect to a straight line, there is a minimizer uκ of mκ such that
uκ ◦ O = O ◦ uκ ;
b) if O is a rotation, then all the minimizers of (1.1)-(1.3) satisfy uκ ◦ O = O ◦ uκ ;
c) if A is a circular annulus, A = {z ; ρ < |z| < R}, then all the minimizers of (1.1)-(1.3) are

radially symmetric, i.e., of the form uκ(z) = f(|z|) z|z| .

Remark 10.1. In the above statement, we do not assume A subcritical or critical.

Proof of Corollary 10.1 : When O is a symmetry, property a) was obtained in Proposition 10.3
using two ingredients : uniqueness up to a phase shift and the existence of a point z0 ∈ A such
that |uκ(z0)| ≥ 1/2. However, such a point exists each time mκ is attained. Indeed, recall that, by
Lemma 4.4, we have uκ ∈ C∞(A), and the existence of z0 follows from the fact that |uκ| = 1 on ∂A.
Similarly, for δ > 0 sufficiently small, we have |uκ| ≥ 1/2 on Γ, where Γ = {z ∈ A ; dist(z, ∂Ω) = δ}.
If O is a rotation of angle 2π/n, then this Γ is O-symmetric. We may consider this Γ in the proof of
Proposition 10.3 and obtain symmetry of minimizers. Finally, in case c), minimizers are symmetric
with respect to rotations of angle 2π/n, for all n, and the conclusion follows by density of rational
rotations among all the rotations.

11 Asymptotic behavior of the quasi-minimizers in the supercritical
case I0 > 2π

11.1 Concentration of the energy and of the zeroes near ∂Ω ∪ ∂ω0

Throughout this section, we assume that I0 > 2π. We consider a family (uκ) of quasi-minimizers
in the sense of the Definition 7.1. The purpose of this section is to give a precise description of
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the quasi-minimizers. Roughly speaking, we are going to prove that ”everything happens near ∂Ω
and near ∂ω0” ; rigorous statements will be given below.

To start with, we are going to prove that, for large κ, almost all the energy of uκ is concentrated
near the two distinguished parts of the boundary, ∂Ω and ∂ω0.

Lemma 11.1. Let K be a fixed compact in A \ (∂Ω ∪ ∂ω0). Then, for any m ∈ IN, we have

lim
κ→∞

κm
(
κ2

∫

A

(1 − |uκ|2)2 +
∫

K

|∇uκ|2
)

= 0. (11.1)

Proof : We argue by induction, starting with m = 2. Fix some compact K ⊂ A \ (∂Ω ∪ ∂ω0).
Let, for δ > 0 fixed and sufficiently small, Γ = Γδ = {z ∈ A ; dist(z, ∂Ω) = δ} and γ = γδ = {z ∈
A ; dist(z, ∂ω0) = δ}. Let U = Uδ be the domain enclosed by ∂Ω and Γ, V = Vδ be the domain
enclosed by ∂ω0 and γ and set W = Wδ = A \ (U ∪ V ). Then

K ⊂ W, ∂U = ∂Ω ∪ Γ, ∂V = ∂ω0 ∪ γ, (11.2)

provided δ is sufficiently small. Following the argument that led us to the inequality (9.13) in the
proof of Lemma 9.2, we find successively for sufficiently large κ, that

Eκ(uκ) ≥
1

2

∫

U

|∇uκ|2 +
1

2

∫

V

|∇uκ|2 +
1

2

∫

K

|∇uκ|2 +
κ2

4

∫

A

(1 − |uκ|2)2, (11.3)

then

Eκ(uκ) ≥
1

2

∫

K

|∇uκ|2 +
κ2

4

∫

A

(1 − |uκ|2)2 + 2π −
∫

Γ

(1 − |uκ|2)|∇uκ| −
∫

γ

(1 − |uκ|2)|∇uκ|, (11.4)

and finally that

Eκ(uκ) ≥
1

2

∫

K

|∇uκ|2 +
κ2

4

∫

A

(1 − |uκ|2)2 + 2π − o
(

1

κ2

)
as κ→ ∞. (11.5)

By (6.4) and (7.1), we have on the other hand that

Eκ(uκ) ≤ 2π +
1

eκ
. (11.6)

Estimate (11.1) for m = 2 follows from (11.5) and (11.6).

We next assume that (11.1) holds for some m ≥ 2 and all compacts K and establish (11.1) for
m + 1 and all compacts K, which will complete the proof. Fix a compact K ⊂ A \ (∂Ω ∪ ∂ω0).
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Fix some sufficiently small 0 < δ1 < δ2 such that , for δ1 < δ < δ2, (11.2) holds. By (11.1) applied
to m and to the compact L = (Uδ2 \ Uδ1) ∪ (Vδ2 \ Vδ1), we find that

lim
κ→∞

κm
(
κ2

∫

L

(1 − |uκ|2)2 +
∫

L

|∇uκ|2
)

= 0. (11.7)

By Fubini and (11.7), there is some δ = δκ ∈ (δ1, δ2) such that

lim
κ→∞

κm
(
κ2

∫

Γδ∪γδ

(1 − |uκ|2)2 +
∫

Γδ∪γδ

|∇uκ|2
)

= 0. (11.8)

Thus
∫

Γδ∪γδ

(1 − |uκ|2)|∇uκ| ≤
( ∫

Γδ∪γδ

(1 − |uκ|2)2
∫

Γδ∪γδ

|∇uκ|2
)1/2

= o
(

1

κm+1

)
as κ→ ∞. (11.9)

By combining (11.4), (11.6) and (11.9), we obtain (11.1) for m+ 1 and K.

Corollary 11.1. Assume that I0 > 2π. Then

2π − o
(

1

κm

)
≤ mκ ≤ 2π as κ→ ∞, for m ∈ IN. (11.10)

We next prove that the zeroes of uκ are very close to ∂Ω∪ ∂ω0. For this purpose, we define the
sets

Aκm =
{
z ∈ A ; dist(z, ∂Ω ∪ ∂ω0) ≥

1

κm

}
, for m ∈ IN. (11.11)

By Lemma C.1, uκ has to vanish near ∂Ω and near ∂ω0. The next results implies in particular

that, for each fixed m ∈ IN, the zeroes of uκ are at distance o
(

1

κm

)
from ∂Ω ∪ ∂ω0 as κ→ ∞ :

Lemma 11.2. We have
lim
κ→∞

inf
Aκ

m

|uκ| = 1, for m ∈ IN. (11.12)

Proof : Argue by contradiction and assume that, for some m ∈ IN and some t ∈ (0, 1), we may
find sequences κl → ∞, (zl) ⊂ Aκl

m such that |uκl
(zl)| ≤ t. We first claim that the sequence (zl)

stays far away from ∪kj=1∂ωj. Indeed, let U ⊂ A be a smooth open set such that

∪kj=1∂ωj ⊂ U ⊂ A \ (∂Ω ∪ ∂ω0). (11.13)

By (11.1), we have

lim
κ→∞

∫

U

|∇uκ|2 = 0. (11.14)
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On the other hand, by Proposition 7.1, we may find a family (ακ) ⊂ S1 such that

ακuκ ⇀ 1 weakly in H1(A) as κ→ ∞. (11.15)

By (11.14) and (11.15), we find that

vκ = ακuκ → 1 strongly in H1(U) as κ→ ∞. (11.16)

Since it suffices to prove (11.12) for vκ, we work from now on with vκ instead of uκ (note that
vκ is also a quasi-minimizer). Set g = gκ =tr∪k

j=1
∂ωj
vκ, so that g → 1 in H1/2(∪kj=1∂ωj). Set also

h = hκ =tr∂Ω∪∂ω0
vκ − 1. We split vκ = a+ b+ c = aκ + bκ + cκ, where a, b, c satisfy respectively :





∆a = 0 in A
a = g on ∪kj=1 ∂ωj
a = 1 on ∂Ω ∪ ∂ω0

, (11.17)





∆b = 0 in A
b = 0 on ∪kj=1 ∂ωj
b = h on ∂Ω ∪ ∂ω0

(11.18)

and {
−∆c = κ2vκ(1 − |vκ|2) in A

c = 0 on ∂A
. (11.19)

By Lemma 8.3, there is some δ > 0 independent of sufficiently large l such that

|a(z)| ≥ 1 + t

2
if dist(z, ∂A) ≤ δ. (11.20)

On the other hand, since vκ is bounded in H1(A), it follows that h is bounded in H1/2(∂Ω∪ ∂ω0).
By standard elliptic estimates ([26]), we find that

|∇b(z)| ≤ C for z ∈ U, (11.21)

for some constant C independent of l. Since b = 0 on ∪kj=1∂ωj, this implies that

|b(z)| ≤ C dist(z,∪kj=1∂ωj) for z ∈ U. (11.22)

Finally, by Lemma 11.1 we have ‖∆c‖Lp(A) → 0 as l → ∞, so that ‖c‖W 2,p(A) → 0 as l → ∞, for
1 < p <∞. In particular, by the Sobolev embeddings and the fact that c = 0 on ∂A, we have

|c(z)| + |∇c(z)| → 0 uniformly in A as l → ∞. (11.23)

By combining (11.20), (11.22) and (11.23), we find that there is some ε > 0 independent of
sufficiently large l such that

|vκ(z)| > t if dist(z,∪kj=1∂ωj) ≤ ε, (11.24)
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that is, as claimed, the points zl are far away from ∪kj=1∂ωj.

We next prove that the points zl are close to ∂Ω ∪ ∂ω0. Indeed, since |vκl
(zl)| ≤ t, we find from

Lemma 7.1 that
dist(zl, ∂A) → 0 as l → ∞. (11.25)

By (11.24) and (11.25) and the hypothesis zl ∈ Aκl
m, we obtain that

1

κml
≤ d = dl = dist(zl, ∂Ω ∪ ∂ω0) → 0 as l → ∞. (11.26)

Finally, we will see that the existence of the points zl contradicts the conclusion of Lemma 11.1.
We start from the fact that a+ b satisfies

{
∆(a+ b) = 0 in A

|a+ b| = 1 on ∂A
, (11.27)

so that

|∇(a+ b)(z)| ≤ C

dist(z, ∂A)
for z ∈ A, (11.28)

for some constant C independent of z and l, by standard estimates for the Green function. By
combining (11.23), (11.26) and (11.28), we see that for sufficiently large l and a constant D
independent of l we have

B = Bl = {z ; |z − zl| < dl/2} ⊂ A and |∇vκl
(z)| ≤ D

dl
in B. (11.29)

By (11.29) and the hypothesis |vκl
(zl)| ≤ t, we find that there is some 0 < c < 1/2 independent of

large l such that

|vκl
(z)| ≤ 1 + t

2
for z such that |z − zl| < c dl. (11.30)

By (11.29) and (11.30), we find

κ2
l

∫

A

(1 − |vκl
|2)2 ≥ κ2

l

∫

{z ;|z−zl|<cdl}

(1 − |vκl
|2)2 ≥ Eκ2+2m

l , (11.31)

for some E > 0 independent of large l. This contradicts Lemma 11.1, and thus completes the
proof of Lemma 11.2.

As a final step towards a sharp description of the quasi-minimizers, we prove that, in compact
subsets of A, uκ is very close to a constant of modulus 1.
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Lemma 11.3. There are constants βκ ∈ S1 such that, for any fixed compact K ⊂ A and any
integers l ∈ IN, m ∈ IN, we have

‖βκ − uκ‖Cl(K) = o
(

1

κm

)
as κ→ ∞. (11.32)

Proof : For the convenience of the reader, we divide the proof into several steps.

Step 1. Estimates for the C1 convergence of the phase

Fix any point z0 ∈ A and set, for large κ, βκ =
uκ(z0)

|uκ(z0)|
∈ S1 ; we are going to prove that

(11.32) is satisfied for this choice of βκ. Let aκ be such that βκ = eıaκ . Fix a compact K ⊂ A.
In view of the statement we want to prove, we may assume that z0 ∈ K and that K is simply
connected. Fix also a smooth simply connected open set U such that K ⊂ U ⊂ U ⊂ A. In view of
Proposition 7.1, for sufficiently large κ we have |uκ| ≥ 1/2 in U , and thus we may write, globally
in U , uκ = ρeıψ = ρκe

ıψκ , for some smooth ρ and ψ. We may always assume that ψκ(z0) = aκ.
Set, for δ > 0 sufficiently small, Γδ = {z ∈ U ; dist(z, ∂U)} = δ}. By Fubini and Lemma 11.1, for
any fixed m ∈ IN we may find a δ = δ(m,κ) such that

Γδ encloses K and
∫

Γδ

(κ2(1 − |uκ|2)2 + |∇uκ|2) = o
(

1

κ2m

)
as κ→ ∞. (11.33)

Since |∇ψ| ≤ 2|∇uκ|, it follows in particular that

∫

Γδ

|∇ψ|2 = o
(

1

κ2m

)
as κ→ ∞, (11.34)

so that

max{ψ(z) ; z ∈ Γδ} − min{ψ(z) ; z ∈ Γδ} = o
(

1

κm

)
as κ→ ∞. (11.35)

Recall that, by (4.17), ψ satisfies

div(ρ2∇ψ) = 0 in U. (11.36)

By (11.35) and the fact that ψκ(z0) = aκ, we find that

max{|ψ(z) − aκ| ; z ∈ Γδ} = o
(

1

κm

)
as κ→ ∞, (11.37)

so that the maximum principle applied to ψ yields

max{|eıψ(z) − βκ| ; z ∈ K} = o
(

1

κm

)
as κ→ ∞. (11.38)
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We next estimate the rate of convergence of ψ to aκ in C1. To this purpose, we rewrite (11.36) as

−∆ψ = −∆(ψ − aκ) = f = fκ =
2

ρ
∇ρ · ∇ψ in U. (11.39)

Thus, by standard elliptic interior estimates, we have, for p > 2,

‖∇ψ‖L∞(K) ≤ Cp(‖f‖Lp(U) + ‖ψ − aκ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞. (11.40)

Here, we use the fact that |f | ≤ 8|∇uκ|2 in U , together with Lemma 11.1 and (11.35).

Step 2. Estimates for the uniform convergence of the modulus
By (4.16), the equation of ζ = ζκ = 1 − ρ = 1 − ρκ is

∆ζ = g = gκ = κ2ρ(1 − ρ2) − ρ|∇ψ|2 in U. (11.41)

By Lemma 11.1 and Step 1 applied to the compact U , we have

‖g‖L2(U) = o
(

1

κm

)
as κ→ ∞. (11.42)

On the other hand, the inequality |∇ρ| ≤ |∇uκ| together with (11.33) imply that

∫

Γδ

(κ2(1 − ρ2)2 + |∇ρ|2) = o
(

1

κ2m

)
as κ→ ∞, (11.43)

which in turn yields

‖ζ‖L∞(Γδ) = o
(

1

κm

)
as κ→ ∞. (11.44)

By (11.42), (11.44) and standard elliptic interior estimates, we obtain

‖1 − ρ‖L∞(K) = ‖ζ‖L∞(K) ≤ C(‖g‖L2(U) + ‖ζ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞ (11.45)

and, for 1 ≤ p <∞,

‖∇ρ‖Lp(K) = ‖∇ζ‖Lp(K) ≤ Cp(‖g‖L2(U) + ‖ζ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞. (11.46)

By combining (11.38), (11.40), (11.45) and (11.46), we find that

‖uκ − βκ‖W 1,p(K) = o
(

1

κm

)
as κ→ ∞, ∀ K, ∀ 1 ≤ p <∞. (11.47)

Step 3. The bootstrap argument
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Let f be as in (11.39). By (11.40) and (11.46) applied to the compact U , we have

‖f‖Lp(U) = o
(

1

κm

)
as κ→ ∞, ∀ 1 < p <∞. (11.48)

By combining (11.37), (11.39) and (11.48) we find, using standard elliptic interior estimates, that

‖ψ − aκ‖W 2,p(K) ≤ Cp(‖f‖Lp(U) + ‖ψ − aκ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞, ∀ 1 < p <∞, (11.49)

so that

‖ψ − aκ‖C1,a(K) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1, (11.50)

by the Sobolev embeddings.
Let now g be as in (11.41). By (11.40) and (11.45) applied to the compact U , we find that

‖g‖Lp(U) = o
(

1

κm

)
as κ→ ∞, ∀ 1 < p <∞. (11.51)

From (11.41), (11.44) and (11.51) we obtain, using standard elliptic interior estimates, that

‖1 − ρ‖W 2,p(K) ≤ Cp(‖g‖Lp(U) + ‖1 − ρ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞, ∀ 1 < p <∞, (11.52)

and thus

‖1 − ρ‖C1,a(K) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1, (11.53)

using once again the Sobolev embeddings.
By combining (11.50) and (11.53), we are led to

‖uκ − βκ‖C1,a(K) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1. (11.54)

We complete the proof of Lemma 11.3 by establishing by a straightforward induction the estimate

‖uκ − βκ‖Cl,a(K) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1, ∀ l ∈ IN. (11.55)

Assuming that (11.55) holds for l and all the compact subsets of A, we find, with f and g given
respectively by (11.39) and (11.41), that

‖f‖Cl−1,a(U) = o
(

1

κm

)
, ‖g‖Cl−1,a(U) = o

(
1

κm

)
as κ→ ∞, ∀ 0 < a < 1. (11.56)

We next replace (11.50) and (11.52) by the appropriate Schauder interior estimates

‖ψ−aκ‖Cl+1,a(K) ≤ Ca(‖f‖Cl−1,a(U)+‖ψ−aκ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1, (11.57)
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and respectively

‖1 − ρ‖Cl+1,a(K) ≤ Ca(‖g‖Cl−1,a(U) + ‖1 − ρ‖L∞(Γδ)) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1. (11.58)

It follows from (11.57) and (11.58) that

‖uκ − βκ‖Cl+1,a(K) = o
(

1

κm

)
as κ→ ∞, ∀ 0 < a < 1. (11.59)

The proof of Lemma 11.3 is complete.

11.2 The profile of quasi-minimizers for large κ

In order to better explain the results we will establish in the remaining part of this section, we
start by taking a closer look to the upper bound mκ ≤ 2π established in Proposition 6.1. More
specifically, we will give a more intuitive description of the testing maps wn = unvn constructed
during the proof of Proposition 6.1. To start with, let us recall the construction that led to un.
Fix a conformal representation F of Ω into ID (this map was denoted w in the proof of Lemma
6.1) and let, for a ∈ ID, Fa to be the conformal representation of Ω into ID given by Fa = ua ◦ F ,

where ua is the Moebius map, ua(z) =
z − a

1 − az
. Thus Fa is holomorphic and has exactly one zero

za = F−1(a). In particular, this zero tends to ∂Ω as |a| ր 1 ; more precisely, dist(za, ∂Ω) is of
the order of 1 − |a|. Another easily seen property of Fa is that Fa → −1 uniformly on compact
subsets of Ω as |a| ր 1 ; more specifically, on any compact K ⊂ Ω, the quantity |Fa + 1| is of the
order of 1 − |a|. Another useful remark is that the map Fa is determined, up to a phase shift, by
its zero za : if H is a conformal representation of Ω into ID such that H(za) = 0, then there is
some α ∈ S1 such that H = αFa (see, e.g., [1]). The maps un constructed in the proof of Lemma
6.1 were essentially given by un ≈ Fan for some sequence (an) ⊂ (0, 1) such that an ր 1. Here,
≈ accounts for the fact that the modulus of Fan was slightly corrected in order to have |un| = 1
on ∂A ; however, this correction is less and less important as n → ∞. We also note that, for the
purpose of Lemma 6.1, any sequence (an) such that |an| → 1 would have been useful. For later
use, it will be convenient to describe the map Fa not in terms of the parameter a in the Moebius
transform, but rather in terms of its unique zero. For a given z ∈ Ω, we will denote F z the map
FF (z), which is the only map of the form Fa that vanishes at z.
We next recall the construction of vn. Let G be a conformal representation of C| ∪{∞}\ω0 into ID
; it is easy to see that G extends as a smooth map from ∂ω0 into S1. Set, as above, Ga = ua ◦G.
It is a simple exercice that the map vn constructed in the proof of Lemma 6.2 essentially agrees
with some Ga : vn ≈ Gbn , provided we choose the right G, for some sequence (bn) ⊂ (0, 1) such
that bn ր 1. Similarly, we define Gz = GG(z), for z ∈ C| \ ω0.
Finally, the testing maps in Proposition 6.1 are given by

wn ≈ FanGbn = F ζnGξn , where ζn = F−1(an), ξn = G−1(bn). (11.60)
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In particular, wn has exactly two zeroes : ζn near ∂Ω, ξn near ∂ω0. Moreover, intuitively speaking,
wn is ”almost” holomorphic far away from ∂ω0 (since vn ≈ −1, so that wn ≈ −un there) and,
similarly, ”almost” anti-holomorphic far away from ∂Ω. A straightforward adaptation of the proof
of Proposition 6.1 yields the following result, whose proof will be omitted

Lemma 11.4. Let F be a conformal representation of Ω into ID and G be a conformal represen-
tation of C| \ ω0 into ID. Define, for ζ, ξ ∈ A and α ∈ S1, wζ,ξ,α = αF ζGξ, wζ,ξ,α : A → C| . Then
:
a) wζ,ξ,α → α uniformly on the compacts of A \ (∂Ω ∪ ∂ω0) as ζ → ∂Ω and ξ → ∂ω0 ;
b) lim

ζ→∂Ω, ξ→∂ω0

Eκ(wζ,ξ,α) = 2π.

Since, in principle we can have mκ < 2π, we can not infer that, for a fixed κ, wζ,ξ,α satisfies the
upper bound (7.1) required in the definition of a quasi-minimizer, even if we choose ζ, ξ very close
to ∂Ω, to ∂ω0 respectively. However, if we assume A supercritical, we know from Corollary 6.6
that mκ ≈ 2π for large values of κ, so that, for large κ, wζ,ξ,α becomes a good candidate for a quasi-
minimizer, provided we take ζ and ξ sufficiently close to ∂Ω, respectively to ∂ω0. Unfortunately,
this is unrealistic. Indeed, the above construction can be modified in the following way, which
we present informally : take a map that is close to αF ζ near ζ and close to βGξ near ξ. Here,
α 6= β, α, β ∈ S1. Then ”glue” these maps by considering an S1-valued transition map from ζ to
ξ, that is equal to −α near ζ and to −β near ξ. If the transition map is properly choosen, then
we obtain a map with energy close to 2π. Therefore, we may prove at best that, near its zeroes, a
quasi-minimizer looks like some αF ζ (if the zero is close to ∂Ω), respectively like some βGξ (near
∂ω0). We will eventually prove that this is indeed the case for large κ.

We state informally the main results of this section : assume A supercritical. Then, for suffi-
ciently large κ, the following properties hold :
(P1) each quasi-minimizer uκ has exactly two zeroes, one, say ζ, near ∂Ω, the other one, say ξ,
near ∂ω0 ;
(P2) each quasi-minimizer uκ is ”almost” holomorphic far away from ∂ω0 and ”almost” anti-
holomorphic far away from ∂Ω ;
(P3) near ζ, uκ is close (in a sense to be made precise later) to αF ζ for some α ∈ S1. Similarly,

near ξ, uκ is close to some βGξ ;
(P4) ζ is a zero of degree 1 and ξ is a zero of degree −1.

We start by giving a precise version of property (P2). Recall that f is holomorphic if and only
if |∇f |2 = 2Jac f ; for a general map f , we have only the pointwise inequality |∇f |2 ≥ 2Jac f .
Similarly, g is anti-holomorphic if and only if |∇g|2 = −2Jac g, while in general we have only
|∇g|2 ≥ −2Jac g.

Lemma 11.5. Assume that I0 > 2π and let (uκ) be a family of quasi-minimizers. Let K be a
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fixed compact set in A \ ∂ω0, L be a fixed compact set in A \ ∂Ω. Then, for each m ∈ IN, we have

∫

K

(|∇uκ|2 − 2Jac uκ) = o
(

1

κm

)
and

∫

L

(|∇uκ|2 + 2Jac uκ) = o
(

1

κm

)
as κ→ ∞. (11.61)

Proof : By Lemma 11.3, the conclusion is clear if either K or L are compact subsets of A \
(∂Ω∪ ∂ω0). Therefore, without any loss of generality, we may assume that K = U , L = V , where
U, V ⊂ A are smooth open sets such that

∂Ω ⊂ U ⊂ A \ (∪kj=0∂ωj), ∂ω0 ⊂ V ⊂ A \ (∂Ω ∪ ∪kj=1∂ωj), U ∩ V = ∅. (11.62)

Set Γ = ∂U \ ∂Ω, γ = ∂V \ ∂ω0, which are smooth (possibly multiply connected) curves in A.
We proceed as in the proof of Lemma 11.1. We have

Eκ(uκ) ≥
∫

K

(
1

2
|∇uκ|2 − Jac uκ

)
+

∫

K

Jac uκ +
∫

L

(
1

2
|∇uκ|2 + Jac uκ

)
−

∫

L

Jac uκ. (11.63)

Since, by Lemma 2.1, the degree formula (1.5) and Lemma 11.3, we have

∫

K

Jac uκ =
1

2

∫

∂Ω

uκ ∧
∂uκ
∂τ

+
1

2

∫

Γ

uκ ∧
∂uκ
∂τ

= π + o
(

1

κm

)
as κ→ ∞ (11.64)

and similarly

−
∫

L

Jac uκ = −1

2

∫

∂ω0

uκ ∧
∂uκ
∂τ

− 1

2

∫

γ

uκ ∧
∂uκ
∂τ

= π + o
(

1

κm

)
as κ→ ∞, (11.65)

the conclusion of Lemma 11.5 follows by combining (11.63), (11.64) and (11.65) together with the
upper bound

Eκ(uκ) ≤ mκ +
1

eκ
≤ 2π +

1

eκ
(11.66)

required in the definition of quasi-minimizers.

If we examine the above proof, the argument we used yields in a straightforward way the
following result, whose proof will be omitted

Lemma 11.6. Let U , V ⊂ A be two smooth open sets such that (11.62) holds. Then, for each
m ∈ IN, we have

∫

U

(
1

2
|∇uκ|2+

κ2

4
(1−|uκ|2)2)

)
= π+o

(
1

κm

)
,

∫

V

(
1

2
|∇uκ|2+

κ2

4
(1−|uκ|2)2

)
= π+o

(
1

κm

)
, as κ→ ∞.

(11.67)
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We next start preparing the proof of property (P3). To this purpose, it will be convenient to
approximate uκ with a product, one of the factors ”living” near ∂Ω, the other one near ∂ω0. This
is done in the following way : set vκ = βκuκ, where βκ is given by Lemma 11.3. Fix two small
numbers 0 < δ1 < δ2 and set

Uj = {z ∈ A ; dist(z, ∂Ω} < δj}, Vj = {z ∈ A ; dist(z, ∂Ω} < δj}, j = 1, 2. (11.68)

By Lemma 11.3, we may extend vκ|U1
from U1 to Ω, the extension being denoted by fκ, such that,

for each m ∈ IN, we have

fκ = vκ in U1, fκ = 1 in Ω\U2, ‖f−1‖Cl(K) = o
(

1

κm

)
, as κ→ ∞, ∀ l ∈ IN, ∀ K compact in Ω.

(11.69)
Similarly, we may find, in C| \ ω0, a map gκ such that, for each m ∈ IN, we have

gκ = vκ in V1, fκ = 1 in C| \V2, ‖f−1‖Cl(K) = o
(

1

κm

)
, as κ→ ∞, ∀ l ∈ IN, ∀K compact in C| \ω0.

(11.70)
Note that, by construction, we have

uκ = βκfκgκ in U1 ∪ V1. (11.71)

By Lemma 11.1, we also have

‖uκ − βκfκgκ‖H1(A) = o
(

1

κm

)
, as κ→ ∞, ∀ m ∈ IN. (11.72)

Moreover, by Lemma 11.6, we obtain
∫

Ω

(
1

2
|∇fκ|2 +

κ2

4
(1 − |fκ|2)2

)
= π + o

(
1

κm

)
, as κ→ ∞ (11.73)

and ∫

C| \ω0

(
1

2
|∇gκ|2 +

κ2

4
(1 − |gκ|2)2

)
= π + o

(
1

κm

)
, as κ→ ∞. (11.74)

Note also that, by construction, the zeroes of uκ which are close to ∂Ω coincide, for large κ, with
the zeroes of fκ, and the zeroes of uκ close to ∂ω0 with the ones of gκ. We next note that, by the
proof of lemma 4.4, for a fixed κ, the zeroes of a critical point uκ of Eκ in J can not tend to ∂A,
applies also to the case of the quasi-minimizers. Indeed, the argument in the proof of Lemma 4.4
requires only that |uκ| = 1 on ∂A and that uκ satisfies the Ginzburg-Landau equation, which is
the case for quasi-minimizers. Therefore, for large κ, there are two (possibly not unique) points
in A, ζ = ζκ, ξ = ξκ, such that

uκ(ζ) = fκ(ζ) = 0 and uκ(z) = 0 =⇒ dist(z, ∂Ω) ≥ dist(ζ, ∂Ω) (11.75)
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and respectively

uκ(ξ) = gκ(ξ) = 0 and uκ(z) = 0 =⇒ dist(z, ∂ω0) ≥ dist(ξ, ∂ω0). (11.76)

Moreover, by Lemma 11.3, these zeroes are very close to ∂Ω or ∂ω0, more specifically

dist(ζ, ∂Ω) = o
(

1

κm

)
, dist(ξ, ∂ω0) = o

(
1

κm

)
, as κ→ ∞,∀m ∈ IN. (11.77)

The following result is the main step in establishing (P3).

Lemma 11.7. Let κl → ∞. Then there is some α ∈ S1 such that, up to some subsequence,
fκl

◦ (F ζκl )−1 → α id strongly in H1(ID).

Proof : We split the proof into several steps.
Step 1. Existence of a holomorphic weak H1 limit w for fκl

◦ (F ζκl )−1

Set a = aκ = f ◦ (F ζ)−1 = fκ ◦ (F ζκ)−1 : ID → C| . Since F ζ is a conformal representation, we have

∫

ID

|∇a|2 =
∫

Ω

|∇f |2 = 2π + o
(

1

κm

)
, as κ→ ∞,∀m ∈ IN, (11.78)

by (11.73).
Using again the fact that F ζ is a conformal representation (and thus an orientation preserving
diffeomorphism), we also have

∫

ID

(|∇a|2 − 2Jac a) =
∫

Ω

(|∇f |2 − 2Jac f) = o
(

1

κm

)
, as κ→ ∞,∀m ∈ IN, (11.79)

by (11.69) and Lemma 11.5.
Also note that

|a| = 1 on S1. (11.80)

From (11.78) and (11.80) it follows that, up to subsequences, a ⇀ w weakly in H1(ID) for some
map w such that |w| = 1 on S1. Moreover, since the map

H1(A) ∋ u 7→
∫

A

(|∇u|2 − 2 Jac u)

is convex and continuous, (11.79) together with the fact that a ⇀ w weakly in H1(ID) imply that
∫

ID

(|∇w|2 − 2Jac w) ≤ 0. (11.81)
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By (11.81) and the identity

|∇w|2 − 2Jac w =
(
∂ Re w

∂x
− ∂ Im w

∂y

)2

+
(
∂ Re w

∂y
+
∂ Im w

∂x

)2

, (11.82)

it follows that, in the distribution sense, we have

∂ Re w

∂x
=
∂ Im w

∂y
and

∂ Re w

∂y
= −∂ Im w

∂x
, (11.83)

so that w is holomorphic in ID. Moreover, it follows from (11.78) that
∫

ID

|∇w|2 ≤ 2π. (11.84)

Set b =trS1w ∈ H1/2(S1;S1). Since w is holomorphic, the Fourier expansion of b is of the form
∞∑

l=0

cle
ılθ and, by the degree formula (1.6), its degree is

deg b =
∞∑

l=1

l|cl|2. (11.85)

On the other hand, since w is holomorphic, it coincides with the harmonic extension of b, and
thus, after a simple computation, we find

∫

ID

|∇w|2 = 2π
∞∑

l=1

l|cl|2. (11.86)

If we compare (11.84), (11.85) and (11.86), we find that either deg b = 0, and then b (and thus w)
has to be a constant of modulus 1, or deg b = 1, and then

∫

ID

|∇w|2 = 2π. (11.87)

Step 2. w is not constant
We start by excluding the first possibility, i.e., we prove that w is not a constant of modulus 1.
Intuitively speaking, this comes from the fact that a(0) = 0.
Fix some 0 < ε < 1. We will find some δ > 0 such that, for all sufficiently large κ, |a(z)| ≤ ε if
|z| ≤ δ. Set d = dκ =dist(ζ, ∂Ω) =dist(ζκ, ∂Ω). It is clear from the definition of F ζ ( and explained
in Appendix X) that there are some constants C(δ) > 0, for 0 < δ < 1, independent of large κ,
such that

|(F ζ)−1(z) − (F ζ)−1(0)| = |(F ζ)−1(z) − ζ| ≤ C(δ)d|z| if |z| ≤ δ. (11.88)
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On the other hand, recall the estimate (11.29), which with our notations becomes, for large κ,

|∇f(z)| = |∇uκ(z)| ≤
D

d
if |z − ζ| ≤ d

2
, (11.89)

for some constant D independent of κ. By combining (11.88) and (11.89), we see that, for each
ε > 0, there is some δ = δ(ε) > 0 such that |a(z)| ≤ ε if |z| ≤ δ.
As a consequence, |w(z)| ≤ ε if |z| ≤ δ. Therefore, w is not a constant, as claimed. Moreover,
since w is holomorphic, and thus smooth in ID, we may also infer the fact that

w(0) = 0. (11.90)

Step 3. Conclusion
We know that w is a holomorphic map in ID such that w(0) = 0 and |w| = 1 on S1. Therefore,
there is some α ∈ S1 such that w = α id, by the Schwartz lemma (see, e.g., [1]). On the other

hand, by (11.78) and (11.87) we find that
∫

ID

|∇a|2 →
∫

ID

|∇w|2. Therefore, up to subsequences, a

strongly converges in H1(ID) to α id, as claimed.

Similarly, we have

Lemma 11.8. Let κl → ∞. Then there is some β ∈ S1 such that, up to some subsequence,

gκl
◦ (Gξκl )

−1 → β id strongly in H1(ID).

We may now prove the precise statement concerning property (P3), which is a trivial conse-
quence of Lemmas 11.7 and 11.8 :

Lemma 11.9. Let (uκ) be a family of quasi-minimizers. Let U , V be two smooth open sets such
that (11.62) holds. Then there are constants ακ ∈ S1, γκ ∈ S1 such that

∫

U

|∇(uκ − ακF
ζ)|2 → 0 as κ→ ∞ (11.91)

and respectively ∫

V

|∇(uκ − γκGξ)|2 → 0 as κ→ ∞. (11.92)

Proof : By Lemma 11.7, we have

lim
κ→∞

inf
α∈S1

∫

ID

|∇(aκ − α id)|2 = 0. (11.93)

66



Thus, we may find a family (δκ) ⊂ S1 such that

lim
κ→∞

∫

ID

|∇(aκ − δκ id)|2 = 0. (11.94)

In turn, this implies, since F ζ is a conformal representation, that

lim
κ→∞

∫

Ω

|∇(fκ − δκ F
ζκ)|2 = 0. (11.95)

By (11.70) and the fact that, by construction, ∇F ζ → 0 on compact subsets of Ω, this immediately
implies (11.91) for ακ = βκδκ, where the βκ are given by Lemma 11.3. The proof of (11.92) is
similar.

We now start the proof of (P1). The first step consists in proving that the energy of uκ is
essentially concentrated in a ball of radius of order dist(ζ, ∂Ω) around ζ and in a ball of radius of
order dist(ξ, ∂ω0) around ξ.

Lemma 11.10. Let δ > 0. Then there are constants Rδ > 0 and rδ > 0 such that, for sufficiently
large κ, we have

1

2

∫

U(ζ)

|∇uκ|2 ≥ π − δ

3
, (11.96)

1

2

∫

V (ξ)

|∇uκ|2 ≥ π − δ

3
(11.97)

and
1

2

∫

A\(U(ζ)∪V (ξ))

|∇uκ|2 ≤ δ. (11.98)

Here,
U(ζ) = {z ∈ A ; |z − ζ| ≤ Rδdist(ζ, ∂Ω) , dist(z, ∂Ω) ≥ rδdist(ζ, ∂Ω)} (11.99)

and
V (ξ) = {z ∈ A ; |z − ξ| ≤ Rδdist(ξ, ∂ω0) , dist(z, ∂ω0) ≥ rδdist(ξ, ∂ω0)}. (11.100)

Proof : Estimate (11.98) follows from (11.96) and (11.97) using the upper bound (11.6). We
will prove only (11.96), the proof of (11.97) being similar. Let δ > 0. Fix some radius 0 < ρ < 1
such that ∫

{z ; |z|<ρ}

|∇id|2 > π − δ

3
. (11.101)

67



By Lemma 11.7, for sufficiently large κ we have

∫

{z ; |z|<ρ}

|∇a|2 > π − δ

3
. (11.102)

Since F ζ is a conformal representation, we find that

∫

(F ζ)−1({z ; |z|<ρ})

|∇uκ|2 =
∫

(F ζ)−1({z ; |z|<ρ})

|∇f |2 =
∫

{z ; |z|<ρ}

|∇a|2 > π − δ

3
. (11.103)

The conclusion of Lemma 11.10 follows then trivially from the fact that, by the definition of F ζ ,
there are clearly some constants Rδ > 0 and rδ > 0 such that, for sufficiently large κ, we have (see
also Appendix X):

(F ζ)−1({z ; |z| < ρ}) ⊂ {z ∈ A ; |z − ζ| ≤ Rδdist(ζ, ∂Ω) , dist(z, ∂Ω) ≥ rδdist(ζ, ∂Ω)}. (11.104)

We next prove that, if uκ has, near ∂Ω, a zero different from ζ, then that zero is ”far away”
from ζ in a suitable scale.

Lemma 11.11. Let R > 0. Then, for sufficiently large κ, the only zero of uκ in the set {z ∈
A ; dist(z, ζ) ≤ R dist(ζ, ∂Ω)} is ζ.

Proof : By our choice of ζ as the zero of uκ closest to ∂Ω, we have uκ(z) 6= 0 if dist(z, ∂Ω) ≤dist(ζ, ∂Ω).
Therefore, it suffices to prove that ζ is the only zero of uκ in the set

B = Bκ = {z ∈ A ; |z − ζ| ≤ R dist(ζ, ∂Ω), dist(z, ∂Ω) ≥ dist(ζ, ∂Ω)}. (11.105)

By the form of F ζ (see also Appendix X), there is some compact smooth convex K ⊂ ID, inde-
pendent of κ, such that B ⊂ (F ζ)−1(K). On the other hand, using again the form of F ζ , there
are constants ρ > 0, r > 0 such that

B ⊂ (F ζ)−1(K) ⊂ C = Cκ = {z ∈ A ; |z − ζ| ≤ ρ dist(ζ, ∂Ω), dist(z, ∂Ω) ≥ r dist(ζ, ∂Ω)}.
(11.106)

The conclusion of Lemma 11.11 is an immediate consequence of the following

Claim. For sufficiently large κ, the restriction of uκ to B is a C1 diffeomorphism into its image.

Proof of the Claim : Split uκ = v1 + v2, where
{

−∆v1 = 0 in A
v1 = uκ on ∂A

(11.107)
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and {
−∆v2 = h = hκ = κ2uκ(1 − |uκ|2) in A

v2 = 0 on ∂A
. (11.108)

Since v1 is harmonic and |v1| = 1 on ∂A, we find, by standard estimates for the Green function,
that

|∇v1(z)| ≤
C1

dist(z, ∂Ω)
and |D2v1(z)| ≤

C1

(dist(z, ∂Ω))2
in A, (11.109)

for some C1 independent of large κ. Taking the definition of the set C into account, this implies
that

|∇v1(z)| ≤
C2

dist(ζ, ∂Ω)
and |D2v1(z)| ≤

C2

(dist(ζ, ∂Ω))2
in C. (11.110)

By interpolation, this yields, with some constant C3 independent of large κ, the estimate

|∇v1(z) −∇v1(z
′)| ≤ C3|z − z′|b

(dist(ζ, ∂Ω))1+b
in C, ∀ 0 < b < 1. (11.111)

On the other hand, we find from Lemma 11.1 and the inequality |uκ| ≤ 1, valid for quasi-
minimizers, that ‖h‖Lp(A) → 0 as κ → ∞, and thus ‖v2‖W 2,p(A) → 0 as κ → ∞, for 1 < p < ∞.
By the Sobolev embedings, this implies that

‖v2‖C1,b(A) → 0 as κ→ ∞, ∀ 0 < b < 1. (11.112)

By combining (11.110), (11.111) and (11.112), we find that

|∇uκ(z)| ≤
C4

dist(ζ, ∂Ω)
and |∇uκ(z) −∇uκ(z′)| ≤

C4|z − z′|b
(dist(ζ, ∂Ω))1+b

in C, ∀ 0 < b < 1,

(11.113)
where C4 depends only on b.
We next transport the above estimates to ID with the help of F ζ . Note that, by construction, we
have

|∇(F ζ)−1(z)| ≤ C5dist(ζ, ∂Ω) and |D2(F ζ)−1(z)| ≤ C5dist(ζ, ∂Ω) in K. (11.114)

By (11.113) and (11.114), we find immediately, with a = aκ = uκ ◦ (F ζ)−1, that

|∇a(z) −∇a(z′)| ≤ C6(|z − z′| + |z − z′|b) ≤ C7|z − z′|b in K, ∀ 0 < b < 1, (11.115)

where C7 depends only on b.
Therefore, the family (aκ) is relatively compact in C1,b(K), for 0 < b < 1. On the other hand,
recall that, by Lemma 11.7, up to subsequences, aκ converges strongly in H1(A) to α id, for
some α ∈ S1. Therefore, for sufficiently large κ, aκ is a C1 diffeomorphism in K. Since F ζ is a
diffeomorphism, we find that a ◦ F ζ is a diffeomorphism in (F ζ)−1(K) ; in particular, uκ is a C1

diffeomorphism in B. This completes the proof of Lemma 11.11.
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Remark 11.1. With a little more work, the above proof yields the following estimate :

|uκ(z)| ≥
C8|z − ζ|

dist(ζ, ∂Ω)
in B, (11.116)

for some constant independent of large κ.

We may now establish property (P1), which we state as

Proposition 11.1. Assume that I0 > 2π. Then each quasi-minimizer uκ has exactly two zeroes,
provided κ is sufficiently large.

Proof : It suffices to reason near ∂Ω, the proof being similar near ∂ω0. Argue by contradiction
and assume that, along some sequences, there is some λ = λκ 6= ζ such that dist(λ, ∂Ω) → 0 as
κ → ∞ and uκ(λ) = 0. Let 0 < δ < π. With the notations of Lemma 11.10, there are some
Rδ > 0 and rδ > 0 such that, for sufficiently large κ, we have

1

2

∫

U(ζ)

|∇uκ|2 ≥ π − δ

3
>

2π

3
. (11.117)

Since the proof of Lemma 11.10 does not use the fact that ζ is the zero of uκ closest to ∂Ω, we
also have

1

2

∫

U(λ)

|∇uκ|2 ≥ π − δ

3
>

2π

3
. (11.118)

From (11.117) and (11.118) it follows that, for large κ, we must have U(ζ)∩U(λ) 6= ∅, for otherwise
we would contradict the conclusion of Lemma 11.6. Let z ∈ U(ζ) ∩ U(λ). It follows from the
definition of U(w) that

|ζ − λ| ≤ |ζ − z| + |z − λ| ≤ Rδdist(ζ, ∂Ω) +Rδdist(λ, ∂Ω), (11.119)

so that

|ζ−λ| ≤ Rδdist(ζ, ∂Ω)+
Rδ

rδ
dist(z, ∂Ω) ≤ Rδdist(ζ, ∂Ω)+

R2
δ

rδ
dist(ζ, ∂Ω) ≡ Rdist(ζ, ∂Ω). (11.120)

This contradicts the conclusion of Lemma 11.11 for large κ. The proof of Proposition 11.1 is
complete.

Remark 11.2. With more work, one may prove that |uκ| is close to 1 if we are far away from
from ζ and ξ in the respective scales dist(ζ, ∂Ω) and dist(ξ, ∂ω0), that is : for each 0 < δ < 1,
there are constants Rδ and rδ such that, for large κ, we have |uκ| ≥ δ in the set A \ (U(ζ)∪V (ξ)).

We end this section by establishing the property (P4).
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Lemma 11.12. For sufficiently large κ, ζκ is a zero of degree 1 of uκ, while ξκ is a zero of degree
−1 of uκ.

Proof : We reason for ζ, the argument being similar for ξ. Fix some 0 < r <dist(ζ, ∂Ω). We have
to prove that deg(uκ, C) = 1, where C = {z |z− ζ| = r} and the orientation on C is the direct one.
Fix some sufficiently small δ > 0 (independent of κ). Let

U = {z ∈ A ; dist(z, ∂A) < δ, |z − ζ| > r}. (11.121)

As in the proof of Lemma 7.2, for sufficiently large κ there is some D > 0 such that D < |uκ| ≤ 1
in U . Arguing again as in the proof of Lemma 7.2, the map v = uκ/|uκ| belongs to H1(U ;S1), and
if we orient the components of ∂U with the orientations inherited from U , we have deg(v,Γ) = 0,
deg(v, ∂Ω) = 1 and deg(v, C) = −deg(uκ, C). By Lemma 2.2 applied to U , we find that deg(v, C) =
−1, so that deg(uκ, C) = 1.

12 Existence of stable critical points in the supercritical case

From what we know by now, if A is supercritical, then : either (i) there is some finite κ1 such that
the minimizers of (1.1)-(1.3) do not exist for κ > κ1 or (ii) for large κ, the minimizers have two
zeroes. In this section, we prove that, for large values of κ, there are locally minimizing critical
points of Eκ that do not vanish. In particular, these critical points are not minimizers. The
construction we present below is also valid when A is sub critical or critical, but it is easy to see
that in these cases it actually yields minimizers. The same idea could be used to obtain stable
solution of the Neumann problem, in the spirit of [28] and [29]. However, the method in [28] seems
to be very much related to radial symmetry, while our works in general domains.

We will need the following variant of Lemma 8.2 :

Lemma 12.1. Let u be a minimizer of (1.14)-(1.15). Let (un) ⊂ K be such that un → u strongly
in H1(A). Set gn =tr∂Aun, g =tr∂Au. Let κn → ∞ and, for each n, let un be a minimizer of Eκn

in the class
{u ∈ H1(A) ; tr∂Au = gn}.

Then |un| → 1 uniformly in A as n→ ∞.

Proof : All we need in order to be able to repeat the proof of Lemma 8.2 is the estimate

lim
n→∞κ

2
n

∫

A

(1 − |un|2)2 = 0. (12.1)

Since

Eκn(un) ≤ Eκn(un) =
1

2

∫

A

|∇un|2 →
1

2

∫

A

|∇u|2 = I0, (12.2)
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we find that, up to subsequences, un ⇀ v weakly in H1(A) to some v ∈ H1(A;S1) such that

1

2

∫

A

|∇v|2 ≤ 1

2

∫

A

|∇u|2. (12.3)

Since we also have tr∂Av =tr∂Au, it follows that v ∈ K ; therefore, v = u, by Lemma 2.4. Going
back to (12.2), we find that un → u strongly in H1(A) and (12.1) follows by using again (12.2).

We may now start our construction of stable critical points. Set

J ′ = {u ∈ J ; 1/2 ≤ |u| ≤ 2 in A} (12.4)

and let
nκ = Inf{Eκ(u) ; u ∈ J ′}. (12.5)

Lemma 12.2. nκ is attained.

Proof : Let u ∈ J ′. Set ρ = |u| and v = u/|u|. Clearly, ρ ∈ H1(A) and tr∂Aρ = 1. Moreover,
since the map f(z) = z/|z| has a bounded differential in {z ; |z| ≥ 1/2}, it follows that we also
have v ∈ H1(A) ; more specifically, we have v ∈ K. On the other hand, we have

∇u = v∇u+ ρ∇v, v∇v + v∇v = 0 and |∇u|2 = |∇ρ|2 + ρ2|∇v|2, ∀ u ∈ J ′. (12.6)

Indeed, the second equality in (12.6) follows by differentiating the identity vv ≡ 1 ; here, we use
the fact that

∇(fg) = f∇g + g∇f if f, g ∈ H1 ∩ L∞ ; (12.7)

see, e.g., [14]. The third equality is a straightforward consequence of the first two, so it remains
to establish the first equality in (12.6). This identity is clear since, for u ∈ J ′, ρ is bounded, and
thus we may use (12.7).
Let now (un) be a minimizing sequence for nκ. We may write un = ρnvn, with vn ∈ K, ρn ∈ H1(A),
1/2 ≤ ρn ≤ 2, tr∂Aρ

n = 1. By (12.6), we have

1

2

∫

A

|∇ρn|2+
1

8

∫

A

|∇vn|2 ≤
∫

A

Eκ(u
n) =

1

2

∫

A

|∇ρ|2+
1

2

∫

A

(ρn)2|∇vn|2+
κ2

4

∫

A

(1−(ρn)2)2 ≤ I0+o(1) ;

(12.8)
the last inequality comes from the fact that any minimizer u of I0 belongs to J ′, so that nκ ≤ I0.
It follows that the sequences (ρn) and (vn) are bounded in H1(A) (for ρn, we also use the fact that
it has trace 1). Up to some sequence, we may find some ρ, v ∈ H1(A) such that ρn ⇀ ρ, vn ⇀ v
weakly in H1(A). On the one hand, we clearly have 1/2 ≤ ρ ≤ 1. On the other hand, recall that,
by Lemma 2.3 b), the class K is closed with respect to weak H1 convergence, and therefore v ∈ K.
Set u = ρv. It is then straightforward that u ∈ J ′ and that u is a minimizer of (12.5), which
completes the proof of the lemma.
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¿From now on, we will denote by uκ a minimizer of (12.5) and we set gκ =tr∂Auκ. With obvious
notations, we may write uκ = ρκvκ, and then gκ =tr∂Avκ.

Lemma 12.3. Up to subsequences, we have ρκ → 1, vκ → u and uκ → u strongly in H1(A),
where u is a minimizer of (1.14)-(1.15).

Proof : As in the proof of Lemma 12.2, starting from

Eκ(uκ) ≤ I0, (12.9)

we may derive that, up to subsequences, uκ → u strongly in H1(A), for some minimizer u of
I0. Therefore, ρκ = |uκ| → |u| = 1 strongly in H1(A). Finally, the two previous convergences

combined with the fact that vκ = uκ
1

ρκ
yield vκ → u strongly in H1(A) ; here, we use the fact

that H1 ∩ L∞ is an algebra.

Lemma 12.4. There is some κ0 > 0 such that, for κ > κ0, uκ attains

Min{Eκ(w) ; tr∂Aw = gκ}. (12.10)

Proof : Let uκ attain the above minimum. By combining Lemma 12.1 and Lemma 12.3, we
find that |uκ| → 1 uniformly in A. Therefore, uκ ∈ J ′ for large κ and thus Eκ(u

κ) ≥ Eκ(uκ).
The opposite inequality Eκ(u

κ) ≤ Eκ(uκ) being clear from the definition of uκ, we find that
Eκ(u

κ) = Eκ(uκ), and thus uκ attains the minimum in the statement of the Lemma.

Lemma 12.5. For large κ, uκ is a critical point of Eκ in J .

Proof : By the preceding Lemma, for large κ, uκ satisfies the Ginzburg-Landau equation, since it
is a minimizer of Eκ with respect to its own boundary trace. On the other hand, if ψ ∈ C∞(A; IR),
then uκe

ıtψ ∈ J ′, and thus Eκ(uκe
ıtψ) ≥ Eκ(uκ), t ∈ IR. This inequality together with the fact

that uκ satisfies the Ginzburg-Landau equation implies immediately that, in the weak sense, we

have uκ ∧
∂uκ
∂ν

= 0 on ∂A, that is, uκ is a critical point of Eκ in J .

We are now ready to prove that the above uκ’s are local minimizers of Eκ in J .

Proposition 12.1. There are constants κ′ > 0 and δ > 0 such that :
a) if κ > κ′ and if v ∈ J is such that ‖uκ − v‖H1(A) < δ, then Eκ(uκ) ≤ Eκ(v) ;
b) if κ > κ′, then vκ is a minimizer of (12.5) if and only if there is some α ∈ S1 such that
vκ = αuκ.

Proof : For b), we argue as as in the proof of Lemma 10.2. As explained there, since, up to
subsequences, uκ → u strongly in H1(A), we find subsequently, as in Section 9 that uκ → u in
C1,b(A), 0 < b < 1. This is what is needed to derive inequality (10.11), i.e, Eκ(vκ) ≥ Eκ(uκ), with
equality if and only if vκ = αuκ for some α ∈ S1.
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As for the proof of a), we argue by contradiction. Assume that there is a sequence κn → ∞ and
that there are maps vκn ∈ J such that ‖uκn − vκn‖H1(A) < 1/n and Eκn(vκn) < Eκn(uκn). Passing
to a subsequence, we may assume that uκn → u strongly in H1(A), where u is a minimizer of
(1.14)-(1.15). Let wκn attain the minimum of Eκ among all the functions that agree with vκn on
∂A ; thus Eκn(wκn) ≤ Eκn(vκn) < Eκn(uκn). Starting from

Eκn(wκn) < Eκn(uκn) ≤ I0, (12.11)

we find that, up to subsequences, wκn ⇀ v weakly in H1(A) to some v ∈ H1(A;S1). Moreover,
by taking traces, we have tr∂Av =tr∂Au, so that v ∈ K. As in the proof of Lemma 12.1, this
implies that v = u and that wκn → u strongly in H1(A). By the proof of Lemma 8.2, this implies
that |wκn| → 1 uniformly in A as n → ∞. Therefore, for large n we have wκn ∈ J ′, and thus
Eκn(wκn) ≥ Eκn(uκn), which is the desired contradiction.

As explained at the end of Section 10, the above result implies the following

Corollary 12.1. Assume that A is O-symmetric in the sense of Definition 2.3. Then, for large
κ, there is a local minimizer of Eκ in J such that uκ ◦ O = O ◦ uκ.

Assume now that A is a circular annulus, A = {z ; ρ < |z| < R}. Arguing as at the end of the

Section 10, we obtain the existence of a local minimizer Eκ in J of the form uκ(z) = f(|z|) z|z| ;

moreover, we may assume that f(ρ) = f(R) = 1. In particular, this uκ must satisfy the Ginzburg-
Landau equation. However, it is well known that there is exactly one f such that f(ρ) = f(R) = 1
and such that uκ satisfies the Ginzburg-Landau equation ; see, e.g., [27]. We are thus led to the
following

Corollary 12.2. Assume that A = {z ; ρ < |z| < R}. Then, for large κ, the only solution of

the Ginzburg-Landau equation of the form uκ(z) = f(|z|) z|z| , where f(ρ) = f(R) = 1, is a local

minimizer of Eκ in J .

Appendix A. Degree of H1/2 maps and capacity

We prove below some results stated in Section 2.

Proof of Lemma 2.1 : When u ∈ C∞(A; C| ), the above equality is clear by integration by parts.
The case of a general u ∈ H1(A; C| ) follows by considering a sequence (un) ⊂ C∞(A; C| ) such that
un → u strongly in H1(A) and passing to the limits in (2.2) applied to un.

74



Proof of lemma 2.2 : ”⇐” Fix aj ∈ ωj, j = 0, . . . , k, and set

u(z) =
k∏

j=0

(
z − aj
|z − aj|

)−dj

. (A.1)

Then, clearly, deg(u, ∂ωj) = dj, j = 0, . . . , k, and deg(u, ∂Ω) = −
k∑

j=0

dj = D, by (2.3), so that

u ∈ K.
”⇒” Assume K 6= ∅ and let u ∈ K. By Lemma 2.1 and the degree formula (1.5), we have

∫

A

Jac u = π
(
D +

k∑

j=0

dj

)
. (A.2)

Since |u|2 = 1 a.e., we find
u · ux = 0 and u · uy = 0 a.e. (A.3)

Hence, a.e., the vectors ux and uy are both orthogonal to the non-zero vector u. Therefore, ux ‖ uy
a.e., so that Jac u = 0 a.e.. Thus ∫

A

Jac u = 0 (A.4)

and the lemma follows by combining (A.2) and (A.4).

Proof of Lemma 2.3 : a) ”⊃” Recall that, for s > 0, Hs ∩ L∞ is an algebra, i.e. :
(i) if u, v ∈ Hs ∩ L∞, then uv ∈ Hs ∩ L∞ ;
(ii) if un, u, vn, v ∈ Hs ∩ L∞, un → u, vn → v in Hs, ‖un‖L∞ ≤ C, ‖vn‖L∞ ≤ C, then unvn → uv
in Hs

(see, e.g., [2]). We will also use the following well-known fact : if f is a C1 map such that f ′ is
bounded and if U is smooth and bounded, then, for 0 < s ≤ 1, the map

Hs(U) ∋ u 7→ f(u) ∈ Hs(U)

is well-defined and continuous (see, e.g., [36]). It follows from the above results that the map

[0, 1] ∋ t 7→ veıtϕ ∈ H1(A;S1) (A.5)

is well-defined and continuous. By taking traces we find, with Γ any connected component of ∂A,
that the map

[0, 1] ∋ t 7→ trΓ(veıtϕ) ∈ H1/2(Γ;S1) (A.6)

is well-defined and continuous. Since the degree is continuous with respect to H1/2 convergence,
we find that deg (trΓ(veıϕ))= deg (trΓ(v)). Thus veıϕ ∈ K, since v ∈ K.
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a) ”⊂” Let u ∈ K and set w = u/v = uv. Since H1 ∩ L∞ is an algebra, we have w ∈ H1(A;S1).
We claim that deg (w, ∂ωj) = 0, j = 0, . . . , k. The claim is a straightforward consequence of the
following

Lemma A.1. ([15]) Let Γ be a smooth simple closed planar curve and u, v ∈ H1/2(Γ;S1). Then

deg (u,Γ) = −deg (u,Γ); (A.7)

deg (uv,Γ) = deg (u,Γ) + deg (v,Γ); (A.8)

deg (u,Γ) = 0 ⇐⇒ u = eıϕ for some ϕ ∈ H1/2(Γ; IR). (A.9)

Proof of Lemma A.1 : All the properties are clear when u and v are smooth. In full generality,
(A.7) follows from the smooth case and the continuity of the degree in H1/2, using the fact that
C∞(Γ;S1) is dense in H1/2(Γ;S1) (see [20]). As for (A.8), it also follows by density, using in
addition the fact that H1/2 ∩ L∞ is an algebra. Implication ”⇐” in (A.9) follows from the fact
that the map

[0, 1] ∋ t 7→ F (t) = eıtϕ ∈ H1/2(Γ;S1)

is well-defined and continuous. Thus the degree of F (t) with respect to Γ is constant, and this
constant has to be 0, since F (0) is a constant.
In order to prove ”⇒” in (A.9), let U be the interior of Γ. Take a sequence (un) ⊂ C∞(Γ;S1)
such that un → u in H1/2 (here, we use again the density of C∞(Γ;S1) into H1/2(Γ;S1)). Since
H1/2 ∩ L∞ is an algebra, we have vn = uun → 1 in H1/2. We will make use of the following fact :
there is an ε > 0 such that, if v ∈ H1/2(Γ;S1) is such that ‖v − 1‖H1/2 < ε and ṽ is the harmonic
extension of v to U , then 1/2 ≤ |ṽ| ≤ 1 in U (see [20]). Using (A.7), (A.8), the continuity of the
degree for H1/2 convergence and the above mentioned result, we find that, for large n, we have

deg (un,Γ) = 0, deg (vn,Γ) = 0, 1/2 ≤ |ṽn| ≤ 1 in U. (A.10)

For any such n, set w = ṽn/|ṽn|, so that trΓw = ṽn and w ∈ H1(U ;S1). Since Γ is simple, U is
simply connected. We now invoke the fact that S1-valued H1 maps in a simply connected domain
U ”lift” in H1, i.e., we may write w = eıψ for some ψ ∈ H1(U ; IR) (see [11]). On the other hand,
since deg (un,Γ) = 0, we may write un = eıη for some η ∈ C∞(Γ; IR). Finally, let ϕ = η+ trΓψ.
Then ϕ ∈ H1/2(Γ; IR) and clearly u = eıϕ.

Proof of Lemma 2.3 completed : Recall that deg (w, ∂ωj) = 0, j = 0, . . . , k. By Lemma A.1,
we may thus write w = eıϕj on each ∂ωj, for some ϕj ∈ H1/2(∂ωj; IR). Let ϕ̃j be the harmonic
extension of ϕj to ωj ; this ϕ̃j belongs to H1(ωj). Set

w̃ =

{
w, in A

eıϕ̃j , in ωj, j = 0, . . . , k
.
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Then clearly w̃ ∈ H1(Ω;S1). Since Ω is simply connected, we may thus lift w̃ in H1, i.e., we
may write w̃ = eıϕ̃ for some ϕ̃ ∈ H1(Ω; IR). If ϕ is the restriction of ϕ̃ to A, then u = veıϕ and
ϕ ∈ H1(A; IR). This completes the proof of a).

Proof of b) : let (un) ⊂ K be a bounded sequence. Write un = veıϕn , with ϕn ∈ H1(A; IR). Since

|∇ϕn| = |∇(eıϕn)| = |∇(unv)| = |un∇v + v∇un| ≤ |∇v| + |∇un|,
it follows that (ϕn) is bounded in H1, so that, up to a subsequence, ϕn ⇀ ϕ weakly in H1 and
a.e. for some ϕ ∈ H1(A; IR). Then clearly un → u = veıϕ a.e., so that un ⇀ u weakly in H1. By
a), this u belongs to K.

Proof of lemma 2.5 : Clearly, η is not constant. Let x0 be a minimum point of η, which has
to belong to ∂A. Let Γ be the connected component of ∂A containing x0. Since η is constant on

Γ, we must have
∂η

∂ν
< 0 on Γ, by the Hopf boundary lemma. Therefore,

∫

Γ

∂η

∂ν
< 0, and thus

Γ = ∂ω0. In conclusion, any minimum point of η is on ∂ω0. Similarly, any maximum point of η is
on ∂Ω, so that a) follows. For b), let t ∈ (C0, 0) be a regular value of η and let Γ be a connected

component of the level set {η = t}. Note that t 6= Cj, j = 1, . . . , k. Indeed,
∂η

∂τ
= 0 on ∂ωj and,

if j ≥ 1,
∂η

∂ν
has to vanish somewhere on ∂ωj. Thus ∇η has to vanish somewhere on ∂ωj, so that

Cj is a critical value for j ≥ 1. Consider the smooth domain U enclosed by Γ and let V = U ∩A.
Then there is a family F ⊂ {0, . . . , k} such that

∂V = Γ ∪
⋃

j∈F
∂ωj.

Since ∫

∂V

∂η

∂ν
= 0 (A.11)

and
∂η

∂ν
has constant sign on Γ, we see that 0 ∈ F . (In other words, Γ encloses ∂ω0.) Thus

∫

Γ

∂η

∂ν
= −

∫

∂ω0

∂η

∂ν
= 2π. (A.12)

Moreover, since
∂η

∂ν
has constant sign on Γ, this implies that

∫

Γ

|∇η| =
∫

Γ

∣∣∣∣
∂η

∂ν

∣∣∣∣ = 2π. (A.13)

77



We complete the proof of b) by establishing that {η = t} = Γ. Argue by contradiction and assume
that {η = t} has at least two components, say Γ1 and Γ2. Then one of these curves must enclose
the other one (since they both enclose ∂ω0). Consider the domain W contained between the two
curves and let Y = W ∩A. Since η is constant on each component of ∂Y , it follows as above, from
the Hopf boundary lemma, that η attains its maximum or minimum on Y only on Γ1 ∪ Γ2. Thus
η is constant in Y , which contradicts the fact that t is a regular value of η.
Finally, c) follows from Lemma 2.4 c) and the fact that

∫

A

|∇η|2 =
∫

∂ω0

η
∂η

∂ν
= −2πC0. (A.14)

Proof of Lemma 2.6 : The function η defined in b) clearly satisfies (2.13) with C0 = ln ρ− lnR.
By the uniqueness of η, this proves b) and c), while d) follows from c) and Lemma 2.5. For a), we
rely on Lemma 2.4 d). We have, locally in A, u = eıϕ, where ϕ satisfies

ϕx = −y/|z|2, ϕy = x/|z|2. (A.15)

In the simply connected domain U = A \ IR−, the solutions of (A.15) are θ + C, C ∈ IR ; here,

θ = θ(z) ∈ (−π, π) is the principal argumenet of z. Thus u(z) = α
z

|z| in U , with α = eıC ∈ S1.

By continuity, we find that u(z) = α
z

|z| in A.

Proof of Lemma 2.7 : Let v attain cap(A). Then v solves




∆v = 0 in A
v = 0 on ∂Ω
v = 1 on ∂ω0

. (A.16)

By the Hopf boundary lemma, we have
∂v

∂ν
> 0 on ∂ω0. Set

a =
∫

∂ω0

∂v

∂ν
> 0. (A.17)

Then, clearly, the map η in Lemma 2.4 coincides with −2π

a
v. Hence

I0 =
1

2

∫

A

|∇η|2 =
2π2

a2

∫

A

|∇v|2 =
2π2

a2
cap(A). (A.18)

78



On the other hand,

cap(A) =
∫

A

|∇v|2 =
∫

∂ω0

v
∂v

∂ν
= a, (A.19)

so that the lemma follows by combining (A.18) and (A.19).

Proof of Lemma 2.8 : We start with the case of a symmetry. Without loss of generality, we
may assume that O(z) = z. Let η be as in Lemma 2.4 and set η̃ = η ◦O. Clearly, since η satisfies
(2.13), so does η̃, so that η̃ = η, by uniqueness. Thus

∂η

∂x
(z) =

∂η

∂x
(z),

∂η

∂y
(z) = −∂η

∂y
(z), ∀ z ∈ A. (A.20)

By Lemma 2.4 d), e), it follows that, if u is a minimizer of (1.14)-(1.15) and we write locally
u = eıϕ, then

∂ϕ

∂x
(z) = −∂ϕ

∂x
(z),

∂ϕ

∂y
(z) =

∂ϕ

∂y
(z), ∀ z ∈ A. (A.21)

Fix now a point z0 ∈ A∩ IR and let u be a minimizer of (1.14)-(1.15). Set u0 = u(z0)u, so that u0

is still a minimizer of (1.14)-(1.15) and u0(z0) = 1. Consider a ball B ⊂ A centered at z0 and let

J = B ∩ IR. We may write, globally in B, u0 = eıϕ, with ϕ(z0) = 0. By (A.21), we have
∂ϕ

∂x
= 0

on J , so that ϕ = 0 on J . Using again (A.21), we find that ϕ(z) = −ϕ(z) in B. In other words,
the maps u0 and z 7→ u0(z) coincide in B. It turns out that u0 is analytic. Indeed, u0 = f/|f |,
where f = eηu0 is a holomorphic map, by (2.10). Thus, the analytic maps u0 and z 7→ u0(z) ,
that coincide in B, must coincide in A. In other words, u0(z) = u0(z) in A. This is the desired
symmetry property of u0.

We now turn to the case where O is a rotation of angle θ = 2π/n. Without loss of generality,
we may assume the rotation centered at the origin. As above, we have, with η̃ = η ◦O, that η̃ = η.
It follows that

∇η(O(z)) = O(∇η(z)), ∀ z ∈ A, (A.22)

and consequently, if we write locally u = eıϕ, then

∇ϕ(O(z)) = O(∇ϕ(z)), ∀ z ∈ A. (A.23)

Fix now a smooth simple curve Γ ⊂ A which encloses 0 and is symmetric with respect to O. Such
curves exist : for example, if δ > 0 is sufficiently small, we may take

Γ = {z ∈ A ; dist (z, ∂Ω) = δ}.
Note that, if we orient Γ with the natural orientation, then deg (u,Γ) = 1.
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Set v = u
|z|
z

. Since deg (v,Γ) = 0, we may write v = eıψ on Γ, for some smooth globally

defined ψ. By (A.23), with τ(z) the direct tangent vector to Γ at z, we have

τ(O(z)) · ∇ψ(O(z)) = τ(z) · ∇ψ(z), ∀ z ∈ Γ. (A.24)

It follows that, for some C ∈ IR, we have

ψ(O(z)) = ψ(z) + C, ∀ z ∈ Γ. (A.25)

Therefore,
ψ(z) = ψ(On(z)) = ψ(z) + nC, ∀ z ∈ Γ, (A.26)

so that C = 0. By (A.23), we then have v(O(z)) = (v(z)) on Γ. Going back to u, we find that

u(O(z)) = O(u(z)), ∀ z ∈ Γ. (A.27)

Finally, set f = eηu, which is holomorphic in A. Using (A.27) and the fact that η̃ = η, we find
that the holomorphic maps f and O−1 ◦ f ◦O coincide on Γ. Thus they must coincide in A. This
proves that u ◦ O = O ◦ u for every minimizer of (1.14)-(1.15).

The last possible case is k = 0 and O rotation of angle θ, with θ 6∈ πQ| . But then A has to be
a circular annulus, and in this case the conclusion follows from Lemma 2.6.

Appendix B. Zeroes of complex valued maps

We present below an analogue of the property f) of the degree mentioned in the Introduction,
in case where we consider maps which are not smooth up to the boundary. For a more refined
statement, see [20].

Lemma B.1. Let u ∈ H1(A;C| ) be such that ∆u ∈ L2. Assume that 1/2 ≤ |u| ≤ 1 on ∂A and
that

deg(u/|u|, ∂Ω) +
k∑

j=0

deg(u/|u|, ∂ωj) 6= 0. (B.1)

Then u vanishes at least once in A.

Proof : Argue by contradiction. We first claim that there is some a > 0 such that 1/a ≤ |u| ≤ a
in A. Indeed, write u = v + w, where v is the hamonic extension of tr u. Since ∆w ∈ L2, we find
that w is continuous in A (and vanishes on ∂A). On the other hand, tr v takes its values into the
closed set F = {z ∈ C| ; 1/2 ≤ |z| ≤ 1}. Therefore, when z is sufficiently close to ∂A, v(z) is close
to F :

∃ δ > 0 such that dist(z, ∂A) < δ =⇒ 1/4 ≤ |v(z)| ≤ 2 ; (B.2)
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this property was established in [20] for harmonic extensions of VMO maps. In our case, tr
v ∈ H1/2(∂A), and H1/2 →֒VMO in 1D ; therefore, (B.2) applies to our case. We find that
1/8 ≤ |u(z)| ≤ 4 if z is sufficiently close to ∂A. Finally, the existence of a is a consequence of the
continuity of u in A.
Consider the map U = u/|u| ; this map is well-defined, by the preceding discussion. On the other
hand, since U is S1-valued, Lemma 2.2 implies that

deg(u/|u|, ∂Ω) +
k∑

j=0

deg(u/|u|, ∂ωj) = 0. (B.3)

This contradicts assumption (B.1) and completes the proof of Lemma B.1.

Appendix C. Smoothness of critical points

This appendix is devoted to the

Proof of Lemma 4.4 : For the convenience of the reader, we divide the proof, which is rather
long and technical, into several steps.
Step 1. We have |vκ(z)| → 1 uniformly as dist(z, ∂A) → 0
Let g = tr∂Avκ ∈ H1/2(∂A;S1). Since in particular vκ is a critical point of the Ginzburg-Landau
energy in the class

L = {v ∈ H1(A; C| ); tr∂Av = g}, (C.1)

vκ satisfies the first equation in (4.15). Property c) follows from the first equation in (4.15), the
maximum principle and the fact that |g| = 1 (see [9]). By a standard bootstrap argument, the
first equation in (4.15) also implies that vκ ∈ C∞(A). The non trivial assertion of the Lemma is
smoothness up to the boundary, and the remaining part of the proof is devoted to establishing
this assertion.
We split vκ = w + g̃, where w and g̃ solve respectively

{
−∆w = κ2vκ(1 − |vκ|2) in A

w = 0 on ∂A
(C.2)

and {
−∆g̃ = 0 in A

g̃ = g on ∂A
. (C.3)

Since H1(A) →֒ Lq(A), 1 ≤ q <∞, we find that ∆w ∈ Lp(A), for 1 < p <∞. Thus w ∈ W 2,p(A),
1 < p <∞, by standard elliptic estimates (see, e.g., [26]). In particular, by the Sobolev embeddings
we have w ∈ C1,α(A) for 0 < α < 1. Since w = 0 on ∂A, this implies that

|w(z)| ≤ C dist(z, ∂A), ∀ z ∈ A. (C.4)
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On the other hand, given a map g ∈ VMO(∂A ;S1), its harmonic extensions to A, g̃, has modulus
”almost” 1 near ∂A, that is

g ∈ VMO(∂A ;S1), 0 < ε < 1 =⇒ ∃ δ > 0 such that 1 − ε ≤ |g̃(z)| ≤ 1 if dist(z, ∂A) < δ (C.5)

(for the definition of VMO and the proof of (C.5), see [20]). Since H1/2 →֒VMO in 1D, the
conclusion of (C.5) holds for our g. By combining (C.4) and (C.5), we find that

|vκ(z)| → 1 uniformly as dist(z, ∂A) → 0. (C.6)

Step 2. We rewrite the Ginzburg-Landau equation near ∂A

We fix a neighborhood U of ∂A such that |vκ| ≥ 1/2 in U ∩ A. From now on, we work only in

V = U ∩ A. In V we may write vκ = ρη, where ρ = |vκ| and η =
vκ
|vκ|

. Since η ∈ C∞(V ;S1)

we may write, in simply connected subdomains of V , η = eıψ. The vector field ∇ψ = η ∧ ∇η is
globally defined in V , and clearly ∇ψ ∈ L2(V ), since η ∈ H1(V ). It is easy to see that ρ and ψ
are weak solutions of {

−∆ρ = κ2ρ(1 − ρ2) − ρ|∇ψ|2 in V
ρ = 1 on ∂A

(C.7)

and respectively {
−div(ρ2∇ψ) = 0 in V

ν · ∇ψ = 0 on ∂A
. (C.8)

The last condition in (C.8) is obtained via the fact that

[
d

dt
Eκ(vκe

ıtζ)
]

t=0
= 0, ∀ ζ ∈ C∞(A) such that supp ζ ⊂ V . (C.9)

We are eventually going to prove that ρ, ψ are smooth in the neighborhood of each point z0 ∈ ∂A,
which will complete the proof of the Lemma.

Step 3. We have ∇ψ ∈ Lp(V ), 1 ≤ p <∞
Fix some z0 ∈ ∂A. In order to simplify the proof, we make the following assumptions : we
suppose that z0 = 0, that A ⊂ {z ; Im(z) > 0}, and that ∂A ⊂ IR in the neighborhood of z0.
(However, these assumptions are not essential for carrying out the arguments below.) Let R > 0
to be specified later such that the disc DR of radius R is contained in U and the upper half disc

D+
R = DR ∩{z ; Im(z) > 0} is contained in V . We extend ψ, ρ and F = (1− ρ2)∇ψ =

(
F1

F2

)
from

the upper half disc D+
R to DR. These extensions will be denoted by ψ̃, ρ̃ and F̃ and are given, in

the lower half disc DR \ A, by

ψ̃(z) = ψ(z), ρ̃(z) = ρ(z), F̃ (z) =
(
F1(z)
−F2(z)

)
. (C.10)
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Then, clearly, ψ̃ is a weak solution of

∆ψ̃ = divF̃ (z) in DR. (C.11)

By standard elliptic estimates ([26]), we have

‖∇ψ̃‖Lp(DR) ≤ Cp(‖tr∂DR
ψ̃‖W 1−1/p,p(∂DR) + ‖F̃‖Lp(DR)), ∀ 1 < p <∞. (C.12)

By scaling, the constant Cp depends on p, but not on R. Next we note that

‖F̃‖Lp(DR) ≤ ‖1− ρ̃2‖L∞(DR)‖∇ψ̃‖Lp(DR) = ‖1−ρ2‖L∞(DR)‖∇ψ̃‖Lp(DR) ≤
1

2Cp
‖∇ψ̃‖Lp(DR), (C.13)

provided R is sufficiently small, by (C.6) and the definition of ρ̃. We next note that, for a.e. R > 0
such that D+

R ⊂ V , we have tr∂DR∩Aψ ∈ H1(∂DR ∩ A), so that for any such R we have

tr∂DR
ψ̃ ∈ H1(∂DR) →֒ W 1−1/4,4(∂DR), (C.14)

by the Sobolev embeddings. Taking any R such that both (C.13) with p = 4 and (C.14) hold,
we find from (C.12) that ∇ψ ∈ L4 near z0. Using the fact that vκ ∈ C∞(A), we obtain that
∇ψ ∈ L4(V ). We use this argument to bootstrap : as above, for a.e. R > 0 such that D+

R ⊂ V
we have

tr∂DR
ψ ∈ W 1,4(∂DR) →֒ W 1−1/8,8(∂DR). (C.15)

We find similarly that ∇ψ ∈ L8(V ), and by induction that ∇ψ ∈ L2n
(V ) for n ≥ 1. Therefore,

∇ψ ∈ Lp(V ) for 1 ≤ p <∞. (C.16)

Step 4. The bootstrap argument
Going back to the equation (C.7), we find from (4.31) that ∆ρ ∈ Lp(V ), 1 < p < ∞. If W is
a neighborhood of ∂A such that W ⊂ U , this implies, by standard elliptic estimates ([26]), that
ρ ∈ W 2,p(W ∩ A), 1 < p <∞, and therefore,

ρ ∈ W 2,p(V ), 1 < p <∞, (C.17)

since vκ ∈ C∞(A).
Finally, we bootstrap the equation (C.7) and the equation (C.8) of ψ. For this purpose, we pick,
for each z0 ∈ ∂A, a disc D centered at z0 such that D ∩ V is simply connected. We may thus
choose, in D ∩ V , a single-valued phase ψ of vκ. Then, in D ∩ V , we may rewrite (C.8) as





∆ψ = −2

ρ
∇ρ · ∇ψ in D ∩ V

∂ψ

∂ν
= 0 on ∂A ∩D

. (C.18)
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From (C.16)-(C.18), we find that ∆ψ ∈ Lp(D ∩ V ), 1 < p < ∞. This implies that ψ ∈ W 2,p(V ),
1 < p < ∞. We next obtain by a straightforward induction that ρ ∈ W n,p(V ), ψ ∈ W n,p(V ),
1 < p < ∞, n ≥ 2. Since vκ = ρeıψ in D ∩ V , we find that vκ ∈ C∞(D ∩ V ). Thus vκ ∈ C∞(A)
and the proof of Lemma 4.4 is complete.

Appendix D. On the harmonic extension in a circular annu-
lus

Here, we make explicit some straightforward and well known computations we needed in Section
5. Throughout this Appendix, we asume that A is a circular annulus, A = {z ; ρ < |z| < R}.
Let g ∈ H1/2(A). We may thus write, on ∂ω0 = {z ; |z| = ρ}, g =

∑

n∈ZZ
ane

ınθ ; since g ∈ H1/2,

we have
∑

n∈ZZ
|n||an|2 < ∞. Similarly, on ∂Ω = {z ; |z| = R}, we may write g =

∑

n∈ZZ
bne

ınθ, with

∑

n∈ZZ
|n||bn|2 <∞.

Lemma D.1. Let u be the harmonic extension of g to A. Then

∫

A

|∇u|2 = 2π
{ |b0 − a0|2

lnR− ln ρ
+

∑

n6=0

|n|
R2|n| − ρ2|n| [(|an|

2 + |bn|2)(R2|n| + ρ2|n|)− 2(anbn + anbn)R
|n|ρ|n|]

}
.

(D.1)

Proof : Since u is harmonic in A, we may write in polar coordinates

u = A0 +B0 ln r +
∑

n6=0

(Anr
|n| +Bnr

−|n|)eınθ ≡
∑

αne
ınθ. (D.2)

Identification of the coefficients on ∂A yields

A0 =
a0 lnR− b0 ln ρ

lnR− ln ρ
, B0 =

b0 − a0

lnR− ln ρ
(D.3)

and

An =
bnR

|n| − anρ
|n|

(R|n| − ρ|n|)(R|n| + ρ|n|)
, Bn =

R|n|ρ|n|(anR
|n| − bnρ

|n|)

(R|n| − ρ|n|)(R|n| + ρ|n|)
, ∀ n 6= 0. (D.4)

Since clearly
∫

A

|∇u|2 = 2π

R∫

ρ

(r
∑

|αn′|2 +
1

r
|αn|2), (D.5)

inserting (D.3) and (D.4) into (D.5) yields (D.1).
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Remark D.1. It follows from Lemma D.1 that the right-hand side of (D.1) yields a ”standard”
semi-norm on H1/2(∂A), in the following sense : this quantity is a norm, equivalent to the usual
ones, on codimension one subspaces of H1/2(∂A) that do not contain non zero constants. For

example, a possible choice would be {g ∈ H1/2(∂A) ;
∫

∂Ω

g = 0}. Moreover, for any standard norm

on H1/2(∂A), we have

C1

∥∥∥∥g −
1

2πR

∫

∂Ω

g

∥∥∥∥
2

H1/2(∂A)
≤ r.h.s. of (D.1) ≤ C2

∥∥∥∥g −
1

2πR

∫

∂Ω

g

∥∥∥∥
2

H1/2(∂A)
(D.6)

for some C1 > 0, C2 > 0 independent of g.

Lemma D.2. There are constants C1 > 0, C2 > 0 such that

C1

(
|b0−a0|2+

∑

n6=0

|n|(|an|2+|bn|2)
)
≤ r.h.s. of (D.1) ≤ C1

(
|b0−a0|2+

∑

n6=0

|n|(|an|2+|bn|2)
)
. (D.7)

Proof : In view of (D.1), it suffices to establish, for n 6= 0, with some constants C1, C2 independent
of n, an, bn, the inequality

C1(|an|2+|bn|2) ≤
1

R2|n| − ρ2|n| [(|an|
2+|bn|2)(R2|n|+ρ2|n|)−2(anbn+anbn)R

|n|ρ|n|] ≤ C2(|an|2+|bn|2).
(D.8)

On the one hand, we have

(|an|2+|bn|2)(R2|n|+ρ2|n|)−2(anbn+anbn)R
|n|ρ|n| ≥ (|an|2+|bn|2)(R2|n|+ρ2|n|)−2(|an|2+|bn|2)R|n|ρ|n|,

(D.9)
so that

(|an|2 + |bn|2)(R2|n| + ρ2|n|) − 2(anbn + anbn)R
|n|ρ|n| ≥ (|an|2 + |bn|2)(R|n| − ρ|n|)2, (D.10)

and thus

1

R2|n| − ρ2|n| [(|an|
2 + |bn|2)(R2|n| + ρ2|n|) − 2(anbn + anbn)R

|n|ρ|n|] ≥ R− ρ

R + ρ
(|an|2 + |bn|2) ; (D.11)

here, we use the fact that
R|n| − ρ|n|

R|n| + ρ|n|
≥ R− ρ

R + ρ
.

Similarly, starting from

(|an|2+|bn|2)(R2|n|+ρ2|n|)−2(anbn+anbn)R
|n|ρ|n| ≤ (|an|2+|bn|2)(R2|n|+ρ2|n|)+2(|an|2+|bn|2)R|n|ρ|n|,

(D.12)
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we obtain

1

R2|n| − ρ2|n| [(|an|
2 + |bn|2)(R2|n| + ρ2|n|) − 2(anbn + anbn)R

|n|ρ|n|] ≤ R + ρ

R− ρ
(|an|2 + |bn|2), (D.13)

since
R|n| + ρ|n|

R|n| − ρ|n|
≥ R + ρ

R− ρ
.

The conclusion of Lemma D.2 follows from (D.11) and (D.13).

Corollary D.1. The map

H1/2(∂A) ∋ g 7→ |g|2H1/2(∂A) = |b0 − a0|2 +
∑

n6=0

|n|(|an|2 + |bn|2) (D.14)

is a norm equivalent with the usual ones on H1/2(∂A) modulo constants.

Lemma D.3. Let A = {z ; ρ < |z| < R}. Then :

a) m0 = 2π
R− ρ

R + ρ
;

b) the only minimizers of (1.1)-(1.3) for κ = 0 are, in polar coordinates, of the form u =

α
r2 +Rρ

r(R + ρ)
eıθ.

Proof : Clearly, the map given in b) belongs to J and is the harmonic extension to A of

g : ∂A → C| , g(z) = α
z

|z| . Moreover, by (D.1), the Dirichlet integral of this u is given by

1

2

∫

A

|∇u|2 = 2π
R− ρ

R + ρ
. Therefore, it suffices to prove that the only minimizers of (1.1)-(1.3) are

those given in b). Let v in J . Let g ∈ H1/2(∂A) be the trace of v to ∂A and let u be the harmonic
extension to A. The starting point is (D.10), that yields, after substitution in (D.1),

∫

A

|∇u|2 ≥ 2π
{ |b0 − a0|2

lnR− ln ρ
+

∑

n6=0

|n|(R|n| − ρ|n|)

R|n| + ρ|n|
(|an|2 + |bn|2)

}
. (D.15)

Equality in (D.15) requires equality in (D.10), which holds if and only if

an = bn for n 6= 0. (D.16)

It follows from (D.15) that

∫

A

|∇u|2 ≥ 2π
∑

n>0

n(R− ρ)

R + ρ
(|an|2 + |bn|2), (D.17)
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and equality in (D.17) holds if and only if

an = bn = 0 for n 6= 1. (D.18)

Since v ∈ J , we have
∑

n|an|2 =
∑

n|bn|2 = 1, by the degree formula (1.6). Thus, we finally
obtain

∫

A

|∇v|2 ≥
∫

A

|∇u|2 ≥ 2π
∑

n>0

n(R− ρ)

R + ρ
(|an|2 + |bn|2) ≥ 2π

R− ρ

R + ρ

∑
n(|an|2 + |bn|2) = 4π

R− ρ

R + ρ
,

(D.19)
with equality if and only if

an = bn = 0 for n < 0 (D.20)

and
v is the harmonic extension of g. (D.21)

Therefore, equality in (D.19) holds if and only if v is the harmonic extension of α
z

|z| , i.e., if and

only if v is as in b).

Appendix E. Elementary estimates for conformal mappings

Lemma E.1. Let a, w ∈ D. Then

|1 − āw| ≤ 1 − |a|2 + |w − a|, (E.1)

|1 − āw|2 = |w − a|2 + (1 − |a|2)(1 − |w|2), (E.2)
∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≤
|w| + |a|
1 + |a||w| , (E.3)

∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≥
||w| − |a||
1 − |a||w| . (E.4)

Proof. We have

|1 − āw| = |1 − aā+ aā− āw| ≤ 1 − |a|2 + |aā− āw|
= 1 − |a|2 + |a||w − a| ≤ 1 − |a|2 + |w − a|,

which proves (E.1). The identity (E.2) can be easily checked.
We finally prove (E.3). The proof of (E.4) being identical to the one of (E.3). Firstly, we may

assume a ≥ 0, since
∣∣∣ w−a
1−āw

∣∣∣ =
∣∣∣ e

iθw−eiθa

1−eiθaeiθw

∣∣∣,and the conclusion depends only on |a|, |w|.
Then, squaring (E.3), we find that

(x3) ⇐⇒ +a(w + w̄)(1 − |w|2)(1 − a2)

≥ (|w|2 + a2)(1 + a|w|)2 − (|w| + a)2(1 + |a|2w2). (E.5)
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Clearly, for |w| = ρ fixed, the left hand side of (E.5) is minimal when w + w̄ is minimal, i.e. for
w = −ρ. Thus

LHS of (x5) ≥ −2a|w|(1 − |w|2)(1 − a2), (E.6)

and it is easy to see that the RHS of (E.6) coincides with the RHS of (E.5).

Lemma E.2. Let r ∈ (0, 1) be fixed. If
∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≤ r, (H)

then

|w − a ≤ 2r

1 − r
(1 − |a|), (E.7)

1 − |w| ≥ 1 − r

1 + r
(1 − |a|). (E.8)

Proof. We have, by (E.1) and (H)

r ≥
∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≥
|w − a|

1 − |a|2 + |w − a| .

Thus
(1 − r)|w − a| ≤ r(1 − |a|2) ≤ 2r(1 − |a|),

so that (E.7) follows.
On the other hand (E.4) and (H) yield

r ≥ |w − a|
|1 − āw| ≥

||w| − |a||
1 − |ā||w̄| ≥

|w| − |a|
1 − |a||w| ,

so that (1 + r|a|)|w| ≤ r + |a|, i.e.,

1 − |w| ≥ 1 − r + |a|
1 + r|a| =

(1 − r)(1 − |a|)
1 + r|a| ≥ 1 − r

1 + r
(1 − |a|).

Lemma E.3. Let c > 0, k > 0 and assume that

|w − a| ≤ k(1 − |a|), (H1)

1 − |w| ≥ c(1 − |a|). (H2)

Then ∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≤
1√

1 + c
k2

. (E.9)
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Proof. Using (E.2), (H1) and (H2), we find that
∣∣∣∣
w − a

1 − āw

∣∣∣∣ =
1√

1 + (1−|w|2)(1−|a|2)
|w−a|2

≤ 1√
1 + (1−|w|)(1−|a|)

|w−a|2

≤ 1√
1 + c(1−|a|)2

k2(1−|a|)2

=
1√

1 + c
k2

.

Lemma E.4. Let Ω be a smooth bounded simply connected domain in R2 and let φ: Ω → D be a
conformal representation. Then, with constants G depending only on φ, we have

C1|ζ1 − ζ2| ≤ |φ(ζ1) − φ(ζ2)| ≤ C2|ζ1 − ζ2|, ∀ζ1, ζ2 ∈ Ω, (E.10)

C1dist(ζ, ∂Ω) ≤ 1 − |φ(ζ)| ≤ C2dist(ζ, ∂Ω), ∀ζ ∈ Ω. (E.11)

Proof. (E.10) is a trivial consequence of the fact that φ extends as a diffeomorphism of Ω̄ into D̄.
as for (E.11), on the one hand we have

1 − |φ(ζ)| ≤ |w − φ(ζ)|, ∀w ∈ S1.

Thus
1 − |φ(ζ)| ≤ |φ(φ−1(w)) − φ(ζ)| ≤ C2|φ−1(w) − ζ|,

so that
1 − |φ(ζ)| ≤ C2 inf

w∈S1
|φ−1(w) − ζ| = C2 inf

ξ∈∂Ω
|ξ − ζ| = C2dist(ζ, ∂Ω).

On the other hand,

1 − |φ(ζ)| = dist(φ(ζ), S1) = inf
w∈S1

|φ(ζ) − w| = inf
w∈S1

|φ(ζ) − φ(φ−1(w))|

≥ C1 inf
w∈S1

|ζ − φ−1(w)| = C1dist(ζ, ∂Ω).

Lemma E.5. Set, for ξ ∈ Ω and α ∈ S1,

φη,α(ζ) = α
φ(ζ) − φ(η)

1 − φ̄(η)φ(ζ)

(these are all the conformal mappings of Ω into D vanishing at η).
a) Fix some r ∈ (0, 1). Then there are constants k1, k2 ≥ 0 independent of α, η such that

φ−1
η,α(D̄r) ⊂ {ζ ∈ Ω; |ζ − η| ≤ k1dist(η, ∂Ω), dist(ζ, ∂Ω) ≥ k2dist(η, ∂Ω)} .

b) Fix some k1, k2 > 0. Then there is some r ∈ (0, 1) independent of α, η such that

φ−1
η,α(D̄r) ⊃ {ζ ∈ Ω; |ζ − η| ≤ k1dist(η, ∂Ω), dist(ζ, ∂Ω) ≥ k2dist(η, ∂Ω)} .
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Proof. We may clearly assume α = 1. Set a = φ(η), w = φ(ζ). we have

ζ ∈ φ−1
η,1(D̄r) ⇐⇒ φη,1(ζ) = w ∈ D̄r ⇐⇒

∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≤ r

=⇒ by (E.7) and (E.8)

|w − a| ≤ 2r

1 − r
(1 − |a|) and 1 − |w| ≥ 1 − r

1 + r
(1 − |a|). (E.12)

Lemma E.4 combined with (E.12) yields

|ζ − η| ≤ 2C2r

C1(1 − r)
dist(η, ∂Ω) (E.13)

and

dist(ζ, ∂Ω) ≥ C1(1 − r)

C2(1 + r)
dist(ξ, ∂Ω), (E.14)

which proves a).
Lemma E.4 implies that

M = {ζ ∈ Ω; |ζ − η| ≤ k1dist(η, ∂Ω), dist(ζ, ∂Ω) ≥ k2dist(η, ∂Ω)}

⊂ N = {ζ ∈ Ω; |φ(ζ) − φ(η)| ≤ k1
C1

C2

(1 − |φ(η)|) and 1 − |φ(ζ)| ≥ k2
C1

C2

(1 − |φ(η)|)}.

For ζ ∈ N , Lemma E.3 implies that

|φη,1(ζ)| =
∣∣∣∣
w − a

1 − āw

∣∣∣∣ ≤
1√

1 +
k2C

3
1

k2
1C

3
2

= r < 1,

that is
φη,1(M) ⊂ φη,1(N) ⊂ D̄r.

13 Update

A short version of this preprint appeared as
Leonid Berlyand, Petru Mironescu, Ginzburg-Landau minimizers with prescribed degrees. Capacity
of the domain and emergence of vortices, Journal of Functional Analysis 239 (2006), 76–99.
This paper contains essentialy the proof of Theorem 1 and a soft version of the estimates in Section
11.
The main question left open in this preprint is non existence, for large κ, of minimizers of Eκ when
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A has a single hole and is supercritical. This was (positively) answered in the note
Leonid Berlyand, Dmitry Golovaty, Volodymyr Rybalko, Nonexistence of Ginzburg-Landau min-
imizers with prescribed degree on the boundary of a doubly connected domain, Comptes Ren-
dus.Mathématique 343 (2006), 63–68.
The proof there requires new ingredients. It uses also the estimates in Section 11.1. A shortcut
in obtaining these estimates can be find in
Leonid Berlyand, Petru Mironescu, Two-parameter homogenization for a Ginzburg-Landau prob-
lem in a perforated domain , posted at http://hal.archives-ouvertes.fr/ICJ/
Among other results, it is explained there that, for large κ and supercritical A, nonexistence of
minimizers of Eκ holds also when A has more than one hole.
Almost nothing is known about existence (or rather nonexistence) when the degrees prescribed on
∂A are arbitrary. A natural method for proving nonexistence is to prove nonexistence of critical
points, i. e., of solutions of (4.15). Bad news: in
Leonid Berlyand, Volodymyr Rybalko, Solutions with Vortices of a Semi-Stiff Boundary Value
Problem for the Ginzburg-Landau Equation, posted at http://arxiv.org/abs/0712.1062v1
it is proved that, when A has a single hole, the prescribed degrees are arbitrary and κ is large,
(4.15) has always solutions.
Mickaël Dos Santos announced the same result for an arbitrary number of holes. Result to be
posted at http://hal.archives-ouvertes.fr/ICJ/
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