Ginzburg-Landau minimizers in perforated domains with prescribed degrees

Suppose that Ω is a 2D domain with holes ω 0 , ω 1 , . . . , ω j , j = 1...k. In the perforated domain A = Ω \ ( ∪ k j=0 ω j ) we consider the class J of complex valued maps having degrees 1 and -1 on the boundaries ∂Ω, ∂ω 0 respectively and degree 0 on the boundaries of other holes.

We investigate whether the minimum of the Ginzburg-Landau energy E κ is attained in J , as well as the asymptotic behavior of minimizers as the coherency length κ -1 tends to 0. We show that the answer to these questions is determined by the value of the H 1 -capacity cap(A) of the domain. If cap(A) ≥ π (domain A is "thin"), minimizers exist for each κ. Moreover they are vortexless and converge in H 1 (A) (and even better) to a minimizing S 1 -valued harmonic map as κ → ∞. When cap(A) < π (domain A is "thick"), we establish existence of quasi-minimizers (maps with "almost minimal energy"), which exhibit a different qualitative behavior : they have exactly two zeroes (vortices) rapidly converging to ∂A as κ → ∞ . Finally we formulate a conjecture on non-existence of the minimizers in thick domains.

Introduction

Our study is motivated by the following problem. In [START_REF] Berlyand | Effective properties of superconducting and superfluid composites[END_REF], [START_REF] Berlyand | Homogenization of harmonic maps and superconducting composites[END_REF], a mathematical model of an ideal superconductor reinforced by a large number of thin insulating rods was introduced. For a cylindrical superconductor with coaxial cylindrical hole (often used in experimental settings), this model led to a minimization problem for harmonic maps in a 2D annular domain with many small holes. The distinguishing mathematical feature of this problem is that the physical insulating conditions lead to prescribing degree (winding number) boundary conditions. Even though this problem is nonlinear, it has an underlying linear problem for the multi-valued phase of the harmonic maps, which is why existence of the minimizers for any fixed number of holes is trivial and the main issue addressed in [START_REF] Berlyand | Effective properties of superconducting and superfluid composites[END_REF], [START_REF] Berlyand | Homogenization of harmonic maps and superconducting composites[END_REF] was the homogenization limit when number of holes tends to infinity.

This study led to a natural question : what if the superconductor in the composite described below is not ideal (e.g., of type II) ?

Mathematically, this means that, in the above minimization problem, the Dirichlet integral for harmonic maps should be replaced by the Ginzburg-Landau (GL) functional. Then the existence question becomes highly nontrivial and it leads to the following problem

m κ = Inf E κ (u) = 1 2 A |∇u| 2 + κ 2 4 A (1 -|u| 2 ) 2 ; u ∈ J . (1.1)
Here, E κ is a GL type energy (without magnetic field), A is a 2D perforated domain, i.e.

A = Ω \ ( ∪ k j=0 ω j ), ω j ⊂ Ω, j = 0, . . . , k, ω j ∩ ω l = ∅, j = l, (

with Ω, ω j , j = 0, . . . , k, simply connected bounded smooth domains. The class J of testing maps is J = {u ∈ H 1 (A ; IR 2 ); |u| = 1 a.e. on ∂A, deg(u, ∂Ω) = 1, deg(u, ∂ω 0 ) = -1, deg(u, ∂ω j ) = 0, j = 1, . . . , k}.

(

We thus consider a domain with finitely many fixed holes ω j . The constant κ -1 is the coherency length (GL parameter). For the sake of our discussion, we will allow κ to be 0, so that throughout this paper we let κ ≥ 0.

A point that needs clarification is whether the definition of J is meaningful. In other words, we discuss whether, given a map u ∈ H 1 (A) such that |u| = 1 a.e. on ∂A, we can define the degree of u on each component of ∂A. For this purpose, we start by briefly recalling the definition and the basic properties of the degree of a continuous complex-valued map (see, e.g., [START_REF] Ahlfors | Complex Analysis[END_REF]). Let Γ be a C 1 simple closed curve in C | . Intuitively speaking, the degree of a map v = 0 is defined as follows. Suppose that the image of Γ, v(Γ), is a closed curve that surrounds the origin. If we cover Γ once, then v(Γ) winds around the origin a number of times, either in the positive direction (counterclockwise), or in the negative direction (clockwise). Then the degree of v is the number of positive loops minus the number of negative loops around the origin. This integer depends on the sense we choose to cover Γ. To give the formal definition we assume Γ to be oriented, i.e. we consider a parametrization f : [0, 1] → Γ, with f (0) = f (1). Let v : Γ → C | be a continuous map and set w = v • f . It is a simple exercise that, if v is always different from 0 on Γ, then we may write, on [0, 1], w(t) = |w(t)|e ıϕ(t) for some continuous ϕ. Since w(0) = w(1), it follows that ϕ(1)ϕ(0) ∈ 2πZ Z. The integer d = ϕ(1)ϕ(0) 2π is called the degree of v with respect to 0 ; it is denoted by deg(v, Γ, 0), or deg(v, Γ), or deg v. The definition is meaningful, in the sense that the value of d does not change if we replace f by another parametrization g which yields the same orientation on Γ.

More generally, if a ∈ C | is not among the values of v, then we may define deg(v, Γ, a) as deg(va, Γ, 0). It is easy to see that, if v has more regularity, say v ∈ C 1 , then

d = 1 2ıπ Γ 1 v ∂v ∂τ = 1 2ıπ Γ v |v| 2 ∂v ∂τ , (1.4) 
where τ is the tangent vector directly oriented with respect to the fixed orientation. In particular, if we change orientation on Γ, d changes to -d. A special case of the above formula is obtained when |v| = 1, i.e., when v ∈ C 1 (Γ; S 1 ). In this case, we have

deg v = 1 2π Γ v ∧ ∂v ∂τ , (1.5) 
where we have used the following Notation. If z = a + ıb, w = c + ıd ∈ C | , then z ∧ w = adbc. We will also use later the following notation : if u, v are complex-valued maps, then u ∧ ∇v

=     u ∧ ∂v ∂x u ∧ ∂v ∂y     .
We quote here the main properties of the degree of non vanishing maps : a n e ınθ , then

deg v = n∈Z Z n|a n | 2 .
(1.6)

Assume now that v ∈ H 1/2 (Γ). Then the right-hand side of (1.6) makes sense ; so does the right-hand side of (1.5) if we interpret it appropriately, i.e., if we write it as

1 2π < v 1 , ∂v 2 ∂τ > H 1/2 (Γ),H -1/2 (Γ) -< v 2 , ∂v 1 ∂τ > H 1/2 (Γ),H -1/2 (Γ) .
This suggests the following Definition 1 ( [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF]) Let v ∈ H 1/2 (Γ; S 1 ). Then

deg v = 1 2π < v 1 , ∂v 2 ∂τ > H 1/2 (Γ),H -1/2 (Γ) -< v 2 , ∂v 1 ∂τ > H 1/2 (Γ),H -1/2 (Γ) . (1.7) 
Warning. In order to keep the notations simple, we will write, in what follows, the degree formula in the form (1.5), even when v is only in H 1/2 .

The surprising feature of this degree of H 1/2 maps is that it is still an integer ; this was proved by L. Boutet de Monvel, see [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF]. The degree is continuous with respect to H 1/2 convergence (see [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]), which is the extension of property a) to H 1/2 maps. Properties b) and c) are still valid for H 1/2 maps ; see Section 2 and Appendix A. There is an analogue of property d), but it is more delicate to state (and not used in this paper) ; we send the reader to [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF] for details. On the other hand, (1.6) clearly holds when v ∈ H 1/2 , by the definition of the degreee. Finally, we note that the definition of degree still depends on the orientation we choose on Γ !!since, if we change orientation, then ∂v ∂τ changes to -∂v ∂τ .

One can, more generally, define the degree of a map v ∈ H 1/2 (Γ; C | ) provided its range is far away from 0. More specifically, assume that there exist constants a, b > 0 such that a ≤ |v| ≤ b a.e. on Γ. Then we set

deg v = deg v |v| . (1.8) 
We now return to the definition of J . Let u ∈ H 1 (A) be such that |u| = 1 a.e. on ∂A and set v =tr |∂A u. For each connected component Γ of ∂A, we have v ∈ H 1/2 (Γ; S 1 ) and thus we may define the degree of v on Γ, provided we choose an orientation on Γ. Throughout this paper, we use the following convention : each component Γ of ∂A is oriented with the direct orientation with respect to A. The degrees we prescribe in the definition of J are the degrees of v computed with respect to this orientation. Thus, for example, if A = {z ; ρ < |z| < R} and u(z) = z/|z|, then deg(u, ∂ω 0 ) = -1 and deg(u, ∂Ω) = 1. On the other hand, recall that each simply closed planar curve Γ has a natural orientation (counterclockwise). With our convention, given a general domain A, the orientation of ∂Ω is the natural one, while the orientation of ∂ω j , j = 0, . . . , k, is the opposite of the natural one.

We complete our discussion of degree by mentioning another basic property of the degree of continuous maps : f) Assume that u ∈ C(A; C | ) is such that u = 0 on ∂A. Assume also that deg(u, ∂Ω) + k j=0 deg(u, ∂ω j ) = 0. (Here,the orientation on ∂A is direct with respect to A.) Then u has has (at least) a zero in A. There is an analogue of f) for H 1 -maps, but the statement is more subtle ; see [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]. We will prove in Appendix B a weak analogue of f) sufficient for our needs.

We may now address a first natural question concerning the minimization problem (1.1)-(1.3) Question 1. Is m κ attained ? Before discussing this question, we start by recalling the most intensively studied minimization problem for the Ginzburg-Landau functional (see [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF]), namely

e κ = Inf{E κ (u) ; u ∈ L}, (1.9) 
where L = {u ∈ H 1 (G) ; tr ∂G u = g}.

(1.10)

Here, G is a smooth bounded domain in IR 2 and g ∈ H 1/2 (∂G; S 1 ) is fixed. In this case, the minimum is obviously attained in (1.9). The reason is that L is closed with respect to weak H 1 convergence ; therefore, if we take a minimizing sequence for (1.9)-(1.10) that weakly converges to some u, this u is in L and clearly minimizes (1.9)-(1.10).

The situation is more delicate when we do not prescribe a Dirichlet boundary condition, but only degrees, as shown by the following

Example 1 Let n κ = Inf{E κ (u) ; u ∈ M}, (1.11) 
where M = {u ∈ H 1 (ID) ; |u| = 1 a.e. on S 1 , deg(u, S 1 ) = 1}.

(1.12)

Here, ID is the unit disc and we consider the natural orientation on S 1 . Then, for each κ > 0, n κ = π and n κ is not attained.

We will prove and extend this example in Section 4. In particular, this example implies that the class M is not closed with respect to weak H 1 convergence (it is closed with respect to strong H 1 convergence since degree is continuous for the strong H 1/2 convergence). Here is an example of sequence in M weakly converging in H 1 to a map which is not in M :

Example 2 Let (a n ) ⊂ (0, 1) be such that a n → 1. Set u n (z) = z -a n 1 -a n z , z ∈ ID. Then u n ⇀ -1
weakly in H 1 .

Clearly u n → -1 a.e. (weak H 1 convergence will be established in Section 4). Example 2 is adapted in Section 4 to the class J in order to prove the following Proposition 1 The class J is not closed with respect to weak H 1 -convergence.

This implies that the existence of minimizers of (1.1)- (1.3) does not follow immediately from the direct method of the Calculus of Variations.

Before discussing Question 1 further, we mention some useful a priori bounds on m κ . Recall that in the case of a prescribed Dirichlet data with non zero degree (thoroughly studied in [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF]) the Ginzburg-Landau energy tends to infinity as κ → ∞. However, a straightforward calculation shows that the energy remains bounded when we have only specified degrees on the boundary. More specifically, in Section 6 we prove that, for degrees 1, -1, 0, . . . , 0, we have m κ ≤ 2π.

(1.13)

Note that the right-hand side of (1.13) is independent of A and κ. In fact, our construction yields analogous upper bounds for arbitrary degrees.

Let us briefly sketch how this upper bound is obtained. We want to consider u ≡ 1 as simplest testing map, however, this u has to be modified in order to satisfy the required degree conditions. The modified u can be described as follows : (i) u equals 1 in the domain A \ (D ∪ ∆) (see Fig. 1 below) ; (ii) on the boundaries of D and ∆, u has modulus 1 and degrees -1, 1 respectively (see Fig. 2) ; (iii) u is harmonic in D and in ∆. By choosing appropriately the phases ϕ and ψ in Picture 2, we prove that E κ (u) → 2π as D and ∆ shrink to points. Roughly speaking, such a testing function has a "vortex" (zero of degree -1 or 1) in D and in ∆, and the energy of each vortex is almost π. We will call these functions "vortex testing maps".

There is yet another upper bound, which is obtained by considering all the possible testing maps of modulus 1 in A. More specifically, we consider the class K = {u ∈ J ; |u| = 1 a.e. in A}.

(1.14)

It turns out that K is not empty because the degrees we prescribe have total sum 0 ; see Lemma 2.2 below. It is known that, in K, the minimum of the Ginzburg-Landau energy is attained (see [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF]). Let

I 0 = Min {E κ (u) ; u ∈ K} = Min 1 2 A |∇u| 2 ; u ∈ K . (1.15)
Then, clearly, m κ ≤ I 0 .

(1.16)

A more delicate property (see Section 6) is m κ < I 0 .

(1.17) Clearly, (1.13) and (1.17) imply that m κ ≤ Min {I 0 , 2π}. This bound is close to optimal when κ is large. Indeed, we prove in Sections 6 and 7 that, for any A, we have lim κ→∞ m κ = Min {I 0 , 2π}.

(1.18)

It turns out that I 0 can be expressed in explicit geometrical terms using Newtonian capacity of the domain A ; this is done in Sections 2 and 3. Here is a very simple example that will be detailed and generalized in Section 2 :

Example 3 Let A = {z ; ρ < |z| < R}. Then the H 1 -capacity of A is cap(A) = 2π ln(R/ρ)
and

I 0 = 2π 2 cap(A) . (1.19)
In Section 2, we show that (1. [START_REF] Brezis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF]) is valid for any domain of the form Ω \ ω 0 . Moreover, we introduce a generalized capacity such that (1.19) still holds for an arbitrary perforated domain A = Ω \ (∪ k j=0 ω j ). In Section 3, we provide yet another geometrical interpretation of I 0 in terms of conformal representations.

Formula (1.18) suggests that one has to distinguish between three types of domains : a) "subcritical", for which I 0 < 2π (or, equivalently, cap(A) > π) ; b) "critical", for which I 0 = 2π (or cap(A) = π) ; c) "supercritical", for which I 0 > 2π (or cap(A) < π).

This terminology is motivated by our results concerning the existence and behavior of minimizers, that we discuss below. We illustrate a)-c) by using Example 3. When A is a circular annulus, a) corresponds to R/ρ < e 2 , b) to R/ρ = e 2 and c) to R/ρ > e 2 . Intuitively, one should think of subcritical domains as "thin" domains, and of supercritical domains as "thick" domains. This is obvious for a circular annulus. For a generic domain, this follows from the geometrical interpretation of H 1 -capacity.

We now return to the existence of minimizers. The main tool in proving existence is the following result, established in Section 5

Proposition 2 Assume that m κ < 2π. Then m κ is attained.

The first result of this type was established for the Yamabe problem by Th. Aubin in [START_REF] Th | Equations différentieles nonlinéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. Such results subsequently proved to be extremely useful in minimization problems with possible lack of compactness of minimizing sequences ; see [START_REF] Brezis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF], [START_REF] Brezis | Multiple solutions of H-systems and Rellich's conjecture[END_REF], [START_REF] Brezis | Large solutions for harmonic maps in two dimensions[END_REF], [START_REF] Brezis | Metastable harmonic maps, in Metastability and Incompletely Posed Problems[END_REF] and the more recent papers [START_REF] Brezis | Extremal functions for Hardy's inequality with weight[END_REF] and [START_REF] Druet | Elliptic equations with critical Sobolev exponent in dimension 3[END_REF].

The proof of Proposition 2 relies on the following "Price" Lemma Lemma 1 Let (u n ) be a bounded sequence in J . Assume that u n ⇀ u weakly in H 1 (A) (and thus we must have |u| = 1 a.e. on ∂A). Then :

lim inf 1 2 A |∇u n | 2 ≥ 1 2 A |∇u| 2 +π |1-deg(u, ∂Ω)|+|-1-deg(u, ∂ω 0 )|+ k j=1 |deg(u, ∂ω j )| (1.20) and 1 2 A |∇u| 2 ≥ π deg(u, ∂Ω) + k j=0 deg(u, ∂ω j ) . (1.21)
The proof of Lemma 1 is presented in Section 5. The argument there works for arbitrary fixed degrees instead of 1, -1, 0, . . . , 0. Intuitively, the estimate (1.20) shows that the minimal energy needed to jump from degree d (for the maps u n ) to degree δ (for u), on a component of ∂A, is π|d -δ|. This "price" is, in general, optimal as shown by the maps in Example 2.

As an immediate consequence of Proposition 2 and of the upper bound (1.17), we obtain the following Theorem 1 Assume that A is subcritical or critical. Then m κ is attained for each κ ≥ 0.

Remark 1 Minimizers of (1.1)-(1.3), whenever they exist, are smooth. This requires some proof, since minimizers or, more generally, critical points of E κ in J , satisfy mixed type boundary conditions : Dirichlet for the modulus, and Neumann for the phase. Smoothness of critical points is established in Appendix C. The discussion on the degree of H 1/2 maps is not essential for the understanding of our proofs. The main ideas can be understood by considering smooth maps in (1.1)-(1.3).

In the subcritical and critical cases, we further address the following natural Question 2. What is the behavior of minimizers u κ of (1.1)-(1.3) as κ → ∞ ?

The answer is given by Theorem 2 Assume that A is subcritical or critical. Let u κ be a minimizer of (1.1)- (1.3). Then, up to a subsequence,

u κ → u ∞ in C 1,α (A), ∀ 0 < α < 1. Here, u ∞ is a minimizer of (1.14)-(1.15).
Remark 2 It is known that, for the GL equation, one can not improve the C 1,α convergence to, say C 2 convergence (H. Brezis, personal communication).

When A is subcritical, the proof of Theorem 2 relies on a straightforward adaptation of the arguments developed in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF], combined with (1.17). The critical case is much more subtle. Note that Theorem 2 implies that, for large κ, |u κ | ≈ 1, that is the minimizers are "vortexless".

We now turn to the supercritical case, i.e., we assume I 0 > 2π. In this case, our analysis is less complete, in particular, we were not able to determine whether the value m κ is attained or not in J . However, a simple consequence of Proposition 2 is that, when A is fixed and κ varies from 0 to ∞, there are only three possibilities Theorem 3 Assume that A is supercritical. Then (exactly) one of the three following possibilities holds : a) m κ is attained for all κ > 0 ; b) m κ is never attained ; c) there is some

κ 1 ∈ (0, ∞) such that : if κ < κ 1 , then m κ is attained, while if κ > κ 1 , then m κ is not attained.
Which one of the possibilities a), b) or c) actually occurs for a given A remains at present an open question. However, when A is of the form Ω \ ω 0 , we were able to rule out possibility b) :

Proposition 3 Assume that A = Ω \ ω 0 . Then either a) or c) holds.
By a formal analysis, we believe that possibility a) never occurs, and we were thus led to the following Conjecture. Assume that A is supercritical. Then there is a constant κ 1 ≥ 0 such that, if κ > κ 1 , then m κ is never attained.

Since we do not know whether, for large values of κ, there are minimizers of (1.1)-(1.3), we are led to consider "quasi-minimizers". These maps, which are defined at the beginning of Section 7, are solutions of the Ginzburg-Landau equation with almost minimal energy. The advantage of considering quasi-minimizers is that they do always exist, and that any minimizer of (1.1)-(1.3) (if it exists) is a quasi-minimizer. The relevant difference between the subcritcal/critical case and the supercritical case is that, in the supercritical case, quasi-minimizers develop "vortices" for large values of κ.

The notion of a vortex is not clearly defined in the GL literature (although it is perfectly understood !). Here we discuss briefly the notion of a vortex for solutions of the 2D GL equation

-∆u κ = κ 2 u κ (1 -|u κ | 2 ) in A. (1.22)
The role of this discussion is to clarify different possible meanings of a vortex, although we will not give its formal definition.

(i) The most common understanding is that a "vortex of u κ " is a zero z of u κ . A bit more restrictive definition requires in addition : a) that z is an isolated zero ; b) that the degree of u κ computed on small circles around z is different from 0. Condition a) is not too restrictive, however. Indeed, most of the time one considers minimizers of the Ginzburg-Landau energy with respect to some Dirichlet boundary data that does not vanish on the boundary ; in this case, all zeroes of u κ are isolated, see [START_REF] Elliott | Zeros of a complex Ginzburg-Landau order parameter with applications to superconductivity[END_REF]. It is common belief that condition b) is not restrictive either, in the sense that, for large κ, zeroes of degree 0 cease to exist. This is not known in general, but it is proved in many situations ; in particular, this holds for minimizers of the Ginzburg-Landau energy with respect to a fixed boundary data of modulus 1, see [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF].

Here, the vortices are defined intrinsically by the u κ 's. Note that, in this setting, the vortices are not singularities, since each u κ is smooth.

(ii) There is however another perspective, when a vortex can be defined as a singularity of a map. Suppose that a given sequence u κ ∈ H 1 converges (up to subsequences) to some map u at least a.e. Then one could define a "vortex of u" as a singularity of u (u is not smooth near this point). Note that, in this setting, one has to consider asymtotic behavior of the sequence u κ 's as κ → ∞, since it determines u. It is a common belief that the vortices of u are related to the vortices of the u κ (defined above), as follows : given a vortex z of u, there are, for large κ, vortices z κ of u κ (i.e., zeroes of u κ ) such that z κ → z. This property is not proved in all the possible situations, but it is known to hold in many cases ; in particular, for a fixed boundary data ( [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF]). The converse is known to be false, i.e., vortices z κ of u κ need not approach a vortex of u ; for example, if the z κ 's "escape to the boundary". Note, that while (i) describes vortices of smooth functions (solutions of GL PDE are smooth), (ii) introduces vortices of functions, which are not necessarily smooth.

(iii)

A different perspective is to start by considering "regular points" of (u κ ). Suppose that (u κ ) is a family of functions in H 1 such that u κ → u strongly in H 1 in some neighborhood of a point z. Then z is called a regular point of the the family (u κ ). One expects that a point in A is a vortex of u (in the sense of (ii))) if and only if it is not a regular point of (u κ ) ; this need not be true for points z on ∂A. This result was rigorously proved in [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF] for all the points in A, when the boundary data is fixed ; in other words, in that context, a point in A is regular if and only if it is not an accumulation point of vortices z k of the u κ 's. This property is also known to hold, for points z ∈ A, in many other situations.

(iv) There is a fourth point of view, which is particularly useful when treating the Ginzburg-Landau equation in presence of the magnetic field or the 3D Ginzburg-Landau equation ; this point of view was first developed in [START_REF] Rivière | Line vortices in the U (1)-Higgs model[END_REF] and [START_REF] Lin | Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents[END_REF]. Loosely speaking, a point z ∈ A is a "concentration point (for (u κ ))" if there is some C > 0 such that, for any neighborhood U of z, the energy of u κ in U is at least C for large values of κ. The energy considered in this approach is usually the GL energy, possibly rescaled by an appropriate factor. Concerning concentration points z ∈ A, the are two rigorous results one expects : a) z is a concentration point (for (u κ )) if and only if z it is not a regular point (for (u κ ) ; b) z is a concentration point (for (u κ )) if and only if there are vortices z κ of u κ that tend to z.

Note that, for a point z ∈ A, one expects z vortex ⇐⇒ z limit of vortices of u κ ⇐⇒ z not a regular point ⇐⇒ z concentration point.

We may now state in an informal way the results we establish in Section 11 relative to the properties of the quasi-minimizers u κ for large values of κ in the supercritical case I 0 > 2π : a) u k has exactly two vortices, one of degree 1 near ∂A, the other one of degree -1 near ∂ω 0 ; b) any a.e. limit u of the u κ 's is vortexless. More precisely, it is a constant ; c) up to subsequences, there are exactly two concentration points, one on ∂Ω, the other one on ∂ω 0 . All the other points of A are regular.

Note the contrast in between the subcritical/critical and the supercritical domains, when we consider the behavior of solutions for large values of κ : in the first case, minimizers do not vanish, by Theorem 2. With more work, one can prove that quasi-minimizers do not vanish neither. In the supercritical case, however, quasi-minimizers do have zeroes (and minimizers presumably cease to exist). In a different context (S 2 -valued harmonic maps with Dirichlet boundary conditions in a circular annulus of radii R and ρ), the existence of a critical value of R/ρ determining a qualitative change in the behavior of minimizers was established in [START_REF] Bethuel | Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders[END_REF]. Similar split in behavior was described in physical context, see, e.g., [START_REF] Donnelly | Stability of superfluid flow in an annulus[END_REF]. Finally, we discuss uniqueness of minimizers. Note that, if the minimization problem (1.1)-(1.3) has a solution, then it has infinitely many, since whenever u κ is a minimizer, so is αu κ , ∀ α ∈ S 1 . Thus we can, at best, prove uniqueness modulo S 1 . In Section 10, we adapt the methods developed in [START_REF] Comte | Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation[END_REF] and [START_REF] Lin | Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents[END_REF] and establish Theorem 4 Assume that A is subcritical or critical. Then, for large κ, the minimizers of (1.1)-(1.3) are unique modulo multiplication with constants of modulus 1.

Nevertheless, our analysis does not include the result of [START_REF] Golovaty | On uniqueness of vector-valued minimizers of the Ginzburg-Landau functional in annular domains[END_REF] which asserts that, if A is a circular annulus of sufficiently small capacity, then the minimizers of (1.1)-(1.3) are unique for all κ. In this context, we mention the following natural question concerning circular annuli Open Problem. Let A = {z ; ρ < |z| < R}. Assume that A is subcritical or critical. Is it true that, for all κ, the minimizers of (1.1)-(1.3) are unique modulo S 1 ?
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The class K

We discuss here some properties of the class K defined in the Introduction. For later use, it will be of interest to consider, more generally, the class

K = K D, d 0 , . . . , d k = {u ∈ H 1 (A; S 1 ); deg(u, ∂Ω) = D, deg(u, ∂ω j ) = d j , j = 0, . . . , k}. (2.1)
The properties of K we present below are well-known to experts. However, since part of these results are not published yet, we will also present some proofs in Appendix A. The main references for this section are [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF], [START_REF] Brezis | Vorticité de Ginzburg-Landau[END_REF] and [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]. We now recall the main result in [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF] concerning the class K :

Lemma 2.1. ([15]) Let u ∈ H 1 (A; C | ). Then A Jac u = 1 2 ∂A u ∧ ∂u ∂τ . ( 2 
Lemma 2.4. ( [START_REF] Bethuel | Ginzburg-Landau Vortices[END_REF]) Assume (2.4) satisfied. Let

I = I D, d 0 , . . . , d k = Min 1 2 A |∇u| 2 ; u ∈ K . (2.6) 
Then I is attained. Moreover : a) the minimizer is unique up to a phase shift, i.e., if u, v are two minimizers of (2.6), then u = αv for some α ∈ S 1 ; b) any minimizer is smooth ; c) we have

I = 1 2 A |∇η| 2 . (2.7)
Here, η is smooth and it is the only minimizer of e) if u is any minimizer of (2.6), we may write locally (i.e., in simply connected sub domains of A) u = e ıϕ , with ϕ smooth. The quantity X = ∇ϕ is globally defined, it can be computed as X = u ∧ ∇u and is the only solution of (2.12) f ) the function η defined above is the only solution of

Min 1 2 A |∇ζ| 2 + 2π k j=0 d j ζ |∂ω j ; ζ ∈ L , (2.8 
       div X = 0 in A X • ν = 0 on ∂A ∂ω j X • τ = 2πd j , j = 0, . . . , k. . ( 2 
               ∆η = 0 in A η = 0 on ∂Ω η = C j on ∂ω j , j = 0, . . . k ∂ω j ∂η ∂ν = 2πd j , j = 0, . . . , k . (2.13) 
(Here, the constants C j are a priori unknown and part of the problem.)

The class K

¿From now on, we specialize to the class K, i.e., we will always assume in what follows that D = 1, d 0 = -1, d j = 0, j = 1, . . . , k.

(2.14)

Note that K satisfies the compatibility condition (2.4), and thus Lemma 2.4 applies to K. In agreement with the notation used in the Introduction, we will write I 0 instead of I 1, -1, 0, . . . , 0 .

The following properties of the function η introduced above will be useful later : 

Lemma 2.5. Assume (2.14) satisfied. Then : a) 0 > C j > C 0 , j = 1, . . . , k and 0 > η > C 0 in A ; b) if t ∈ (C 0 , 0) is not a critical value
(z) = α z |z| for some α ∈ S 1 ; b) η(z) = ln |z| -ln R ; c) C 0 = ln ρ -ln R ; d) I 0 = π ln R ρ .
Corollary 2.1. When A is a circular domain, A = {z ; ρ < |z| < R}, the subcritical case corresponds to R/ρ < e 2 , the critical case to R/ρ = e 2 and the supercritical case to R/ρ > e 2 .

We now turn to domains of the form A = Ω \ ω 0 . As we will see, in this case I 0 and η are related to the H 1 -capacity of A. We recall the definition of the H 1 -capacity of a hole in a 2D domain (see, e.g., [START_REF] Maz'ja | Sobolev Spaces[END_REF]) : Definition 2.1. Let ω 0 , Ω be smooth bounded simply connected domains in IR 2 such that ω 0 ⊂ Ω.

Set A = Ω \ ω 0 . Then cap(A) = Min { A |∇v| 2 ; v ∈ H 1 (A), v = 0 on ∂Ω, v = 1 on ∂ω 0 }.
(2.17)

Lemma 2.7. Assume A = Ω \ ω 0 . Then

I 0 = 2π 2 cap(A) . (2.18) 
Finally, we consider a general perforated domain A = Ω \ ∪ k j=0 ω j . In this case, we introduce the following analogue of the H 1 -capacity Definition 2.2. The generalized H 1 -capacity of the domain

A = Ω \ ∪ k j=0 ω j is cap(A) = Min { A |∇v| 2 ; v ∈ H 1 (A), v = 0 on ∂Ω, v = 1 on ∂ω 0 , v = D j on ∂ω j , j = 1, . . . , k}.
(2. [START_REF] Brezis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF] In (2.19), the minimum is taken among all the v's and all the constants D j . Note that the hole ω 0 plays a special role. It is easy to see that the minimum is attained in (2.19), that the minimizer v of (2. [START_REF] Brezis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF]) is unique and satisfies

                     ∆v = 0 in A v = 0 on ∂Ω v = 1 on ∂ω 0 v = D j on ∂ω j , j = 1, . . . k ∂ω j ∂v ∂ν = 0, j = 1, . . . , k . (2.20)
The proof of Lemma 2.7 (presented in Appendix A) combined with (2.20) yields immediately Lemma 2.8. Assume A = Ω \ ∪ k j=0 ω j . Then

I 0 = 2π 2 cap(A)
.

(2.21)

Symmetric domains

We end this section by considering symmetric domains. In this case, we prove that there are minimizers u 0 of I 0 that inherit the symmetry properties of the domain. Since the hole ω 0 plays a distinguished role, we have to start by providing a good notion of symmetric domains. Lemma 2.9. Assume that A is O-symmetric. Then there is a minimizer u 0 of I 0 such that

u 0 (O(z)) = O(u 0 (z)), ∀ z ∈ A.
(2.23)

The geometrical interpretation of the capacity

As we will see below, the capacity cap(A) is related to conformal representations. We recall some well known facts about conformal representations of multiply connected domains. We follow essentially [START_REF] Ahlfors | Complex Analysis[END_REF]. To start with, consider the case A = Ω \ ω 0 . Recall that, in this case, A can be conformally mapped into a circular annulus {z ; ρ < |z| < R} (see, e.g., [START_REF] Ahlfors | Complex Analysis[END_REF]). Moreover, the ratio 

C = z ; exp - 2π cap(A) < |z| < 1 . (3.3) c) f extends to a C 1 -diffeomorphism from A into C such that f (∂Ω) = {z ; |z| = 1} and f (∂ω 0 ) = z ; |z| = exp -2π cap(A)
. Moreover, f preserves the natural orientation of simple curves.

Proof : Part a) follows from b) and the conformal rigidity of circular annuli. Part b) is proved in [START_REF] Ahlfors | Complex Analysis[END_REF] except that the explicit formula for the small radius of C obtained in [START_REF] Ahlfors | Complex Analysis[END_REF] is ρ = e C 0 . But this ρ is exactly the one given in b), thanks to Lemmas 2.6 and 2.8. We now turn to the proof of c). On the one hand, it is clear from the definition of f that f is smooth up to the boundary. Since |f | = e C 0 on ∂ω 0 , we have f (∂ω 0 ) ⊂ z ; |z| = exp -2π cap(A) ; similarly, we have f (∂Ω) ⊂ {z ; |z| = 1}.

On ∂ω 0 , we have ∂ϕ ∂τ = ∂η ∂ν < 0 and

∂ω 0 ∂ϕ ∂τ = ∂ω 0 ∂η ∂ν = -2π.. (3.4) 
Thus (with the natural orientations), f is an orientation preserving diffeomorphism from ∂ω 0 into z ; |z| = exp -2π cap(A) . Similar assertion holds for ∂Ω. Finally, f preserves the natural orientation of any simple curve in A, since it does so for ∂ω 0 .

We now turn to a general A = Ω \ ∪ k j=0 ω j . Recall the following Definition 3.2. ( [START_REF] Ahlfors | Complex Analysis[END_REF]) A canonical slit region is a set E of the form

E = {z ; ρ < |z| < R} \ ∪ k j=1 Γ j . (3.5) 
Here, each Γ j is a closed circular arc properly contained into some circle {z ; |z| = R j }, ρ < R j < R, and these arcs are mutually disjoint.

We quote the following version of Lemma 3.1, essentially proved in [START_REF] Ahlfors | Complex Analysis[END_REF] :

Lemma 3.2. Assume A = Ω \ ∪ k j=0 ω j . Then : a) the map f A, u is a conformal representation of A into a canonical slit region C of radii R = 1, ρ = exp - 2π cap(A) ; b) f extends to a C 1 -diffeomorphism from A ∪ ∂Ω ∪ ∂ω 0 into C ∪ {z ; |z| = 1} ∪ z ; |z| = exp - 2π cap(A) such that f (∂Ω) = {z ; |z| = 1} and f (∂ω 0 ) = z ; |z| = exp -2π cap(A)
. Moreover, Proof : Let v be a testing map in (4.1). Since |∇v| 2 ≥ 2|Jac v| pointwise, we find that

f
n κ = Inf 1 2 U |∇v| 2 + κ 2 4 U (1 -|v| 2 ) 2 ; v ∈ H 1 (A; C | ), |v| = 1 a.e. on ∂U, deg (v, ∂U ) = 1 .
1 2 U |∇v| 2 ≥ U |Jac v| ≥ U Jac v = 1 2 ∂U v ∧ ∂v ∂τ = π deg (v, ∂U ) = π, (4.2) 
by Lemma 2.1 and the degree formula (1.5). Thus n κ ≥ π. We claim that there is no testing map v such that 1 2

U |∇v| 2 + κ 2 4 U (1 -|v| 2 ) 2 = π. (4.3)
Indeed, by (4.2) this would require |v| = 1 a.e., so that v ∈ H 1 (U ; S 1 ). However, in this case Lemma 2.2 implies that deg (v, ∂U ) = 0, which is the desired contradiction. We complete the proof by showing that n κ = π. Since U is smooth, U can be conformally represented into the unit disc ID through a map w which extends as a C 1 -diffeomorphism from U into ID. Moreover, since U is bounded, w preserves the natural orientations, so that we have deg (w, ∂U ) = 1 ; thus w is in the class of testing maps. Consider now, for a ∈ ID, α ∈ S 1 , the Moebius conformal representations of ID into itself,

u a,α (z) = α z -a 1 -az , ∀ z ∈ ID, (4.4) 
and let u a = u a,1 . Set v a = u a • w, which is again a testing map, since u a preserves the orientation of S 1 . By using repeatedly conformality, we have

1 2 U |∇v a | 2 = U | Jac v a | = U Jac v a = area(v a (U )) = π. (4.5)
On the other hand, if we consider a real, a ∈ (0, 1), we claim that lim

aր1 κ 2 4 U (1 -|v a | 2 ) 2 = lim aր1 κ 2 4 ID (1 -|u a | 2 ) 2 Jac w = 0. (4.6)
Indeed, the last equality in (4.6) follows by dominated convergence, using the fact that, for each fixed z ∈ ID, we have u a (z) → -1 as a ր 1.

Remark 4.1. Here is another similar example : Let A = Ω \ ω 0 and consider the class

J = {u ∈ H 1 (A; C | ) ; |u| = 1 on ∂A, deg(u, ∂Ω) = 1, deg(u, ∂ω 0 ) = 0}.
Then one may prove that, for each κ ≥ 0, we have

Inf{E κ (u) ; u ∈ J} = π,
and that this infimum is never attained.

The class J

We now turn to the study of the class J . As in Section 2, we will consider, more generally, the class

J = J D, d 0 , . . . , d k = {u ∈ H 1 (A; C | ); |u| = 1 a.e. on ∂A, deg(u, ∂Ω) = D, deg(u, ∂ω j ) = d j , j = 0, . . . , k}. (4.7)
In contrast with Lemma 2.2 and Lemma 2.3 b), we have Lemma 4.2. The class J is always nonempty and never closed with respect to weak H 1 convergence.

Proof : Fix a j ∈ ω j , j = 0, . . . , k and a ∈ A and let

v(z) = k j=0 z -a j |z -a j | -d j z -a |z -a| D+ k j=0 d j . (4.8) Let g = v |∂A .
Then any smooth extension of g to A is in J.

In order to prove the second property, let v be any smooth map in J D -1, d 0 , . . . , d k . Let w be a conformal representation of Ω into ID and let u a be the map defined by (4.4). Set v a = u a • w : Ω → ID. We are going to modify v a in order to obtain a map having modulus 1 on ∂A ; v a does not have this property, since we only have |v a | = 1 on ∂Ω. We start by estimating |v a | on ∪ k j=0 ∂ω j . Let K = w(∪ k j=0 ω j ), which is a compact in ID. It is easy to see that there is some

C > 0 such that |u a (z)| ≥ 1 -C(1 -a), ∀ z ∈ K, ∀ a ∈ (1/2, 1), (4.9) 
and thus

|v a (z)| ≥ 1 -C(1 -a), ∀ z ∈ ∪ k j=0 ∂ω j , ∀ a ∈ (1/2, 1). ( 4.10) 
We define now the following family of maps Φ

t : C | → ID, 0 < t < 1/4 : Φ t (z) =              z, if |z| ≤ 1 -2t z |z| , if |z| ≥ 1 -t 2 - 1 -2t |z| z, if 1 -2t ≤ |z| ≤ 1 -t , which clearly satisfies Φ t (z) = z |z| , if |z| ≥ 1 -t, |∇Φ t -∇id| ≤ Ct if |z| ≤ 1, |∇Φ t | ≤ C, (4.11) 
for some constant C independent of t. Let

w a (z) = v(z)Φ √ 1-a • v a (z), ∀ z ∈ A, ∀ a ∈ (1/2, 1).
By (4.10) and (4.11), w a ∈ J provided a is sufficiently close to 1. Moreover, we have w a → -v ∈ J a.e. as a ր 1. This proves the lack of weak closedness of J provided we establish that (w a ) is bounded in H 1 (A). This is clear since on the one hand we have |w a | ≤ |v| ≤ C and on the other hand we have

A |∇w a | 2 ≤ 2 A (|v| 2 |∇(Φ √ 1-a • v a )| 2 + |Φ √ 1-a • v a | 2 |∇v| 2 ) ≤ C A (|∇v a | 2 + |∇v| 2 ) ≤ C, (4.12) 
by (4.5).

We next establish a lower bound for maps in J that will be useful later.

Lemma 4.3. Let u ∈ J. Then 1 2 A |∇u| 2 ≥ π D + k j=0 d j . (4.13) 
Proof : We have, by Lemma 2.1 and the degree formula (1.5),

1 2 A |∇u| 2 ≥ A |Jac u| ≥ A Jac u = 1 2 ∂A u ∧ ∂u ∂τ = π D + k j=0 d j . (4.14) 

Smoothness of critical points

We state here the following regularity result, whose proof is presented in Appendix C Lemma 4.4. Let v κ ∈ J be a critical point of the Ginzburg-Landau energy E κ with respect to J . Then :

a) v κ ∈ C ∞ (A).
In particular, near ∂A we may locally write v κ = ρe ıψ ; b) v κ satisfies the system

       -∆v κ = κ 2 v κ (1 -|v κ | 2 ) in A ρ = 1 on ∂A ∂ψ ∂ν = 0 on ∂A ; (4.15) c) |v κ | ≤ 1 in A.
Remark 4.2. Near ∂A, the (local) phase ψ of v κ is not unique. However, ∇ψ is uniquely determined and may be computed as

v κ |v κ | ∧ ∇ v κ |v κ |
. Thus, the last equation in (4.15) is meaningful.

Remark 4.3. For later use, we mention that, if in the set {z ; v κ = 0}, we write locally (i.e., on simply connected domains V ), v κ = ρ κ e ıψκ = ρe ıψ , then ρ and ψ satisfy

-∆ρ = κ 2 ρ(1 -ρ 2 ) -ρ|∇ψ| 2 in V ρ = 1 on ∂A ∩ V (4.16)
and respectively

-div(ρ 2 ∇ψ) = 0 in V ν • ∇ψ = 0 on ∂A ∩ V . (4.17)
5 On the existence of minimizers

A sufficient condition for the existence of minimizers

This part is devoted to the proof of the following Proposition 5.1. Assume that m κ < 2π. Then m κ is attained.

Proof : Let (u n ) be a minimizing sequence for E κ in J and let u be such that, up to a subsequence

u n ⇀ u weakly in H 1 (A). Set g n = tr ∂A u n , g = tr ∂A u, so that g n ⇀ g weakly in H 1/2 (∂A). Since H 1/2 (∂A) is compactly embedded into L 2 (∂A), we have g n → g in L 2 (∂A).
In particular, up to some further subsequence, we may assume that g n → g a.e. Thus |g| = 1 a.e. on ∂A, and therefore u ∈ J D, d 0 , . . . , d k for some integers D, d 0 , . . . , d k . By the Fatou lemma, we have

E κ (u) ≤ lim n→∞ E κ (u n ) = m κ . (5.1)
Therefore, it suffices to prove that D = 1, d 0 = -1, d j = 0, j = 1, . . . , k, i.e., that u ∈ J . We have 1 2

A |∇u n | 2 = 1 2 A |∇((u n -u) + u)| 2 = 1 2 A |∇(u n -u)| 2 + 1 2 A |∇u| 2 + A ∇(u n -u) • ∇u, (5.2) which implies 1 2 A |∇u n | 2 = 1 2 A |∇(u n -u)| 2 + 1 2 A |∇u| 2 + o(1) as n → ∞, (5.3) 
since u nu ⇀ 0 weakly in H 1 (A). Let v n , v be the harmonic extensions of g n , g respectively. Using the fact that g n ⇀ g weakly in H 1/2 (∂A), we find that v n → v in C 1 loc (A), by standard elliptic estimates ( [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). Consider smooth bounded disjoint neighborhoods of the ω j 's, U 0 , . . . , U k , such that

ω j ⊂ U j , j = 0, . . . , k, U j ⊂ Ω, j = 0, . . . , k, U j ∩ U l = ∅, j = l, (5.4) 
and let U be a smooth domain such that

∪ k j=0 U j ⊂ U ⊂ U ⊂ Ω. (5.5) Since 1 2 A |∇(u n -u)| 2 ≥ 1 2 A |∇(v n -v)| 2 ≥ Ω\U |∇(v n -v)| 2 + k j=0 U j \ω j |∇(v n -v)| 2 , (5.6) 
we find, using the pointwise inequality

|∇(v n -v)| 2 ≥ 2|Jac (v n -v)| and Lemma 2.1, that 1 2 A |∇(u n -u)| 2 ≥ 1 2 ∂(Ω\U ) (v n -v) ∧ ∂(v n -v) ∂τ + 1 2 k j=0 ∂(U j \ω j ) (v n -v) ∧ ∂(v n -v) ∂τ . (5.7) Recalling that v n → v in C 1 loc (A), we obtain ∂(Ω\U ) (v n -v) ∧ ∂(v n -v) ∂τ = ∂Ω (v n -v) ∧ ∂(v n -v) ∂τ + o(1), as n → ∞ (5.8) 
and

∂(U j \ω j ) (v n -v) ∧ ∂(v n -v) ∂τ = ∂ω j (v n -v) ∧ ∂(v n -v) ∂τ + o(1), j = 1, . . . , k, as n → ∞. (5.9)
Since u n and v n (respectively u and v) agree on ∂A we have, by the degree formula (1.5),

∂Ω v n ∧ ∂v n ∂τ = 2π, ∂Ω v ∧ ∂v ∂τ = 2πD, (5.10 
)

∂ω 0 v n ∧ ∂v n ∂τ = -2π, ∂ω 0 v ∧ ∂v ∂τ = 2πd 0 (5.11)
and

∂ω j v n ∧ ∂v n ∂τ = 0, ∂ω j v ∧ ∂v ∂τ = 2πd j , j = 1, . . . , k.
(5.12)

Using the weak convergence of traces in H 1/2 , we also have, for any component Γ of ∂A, that

Γ v n ∧ ∂v ∂τ = Γ v ∧ ∂v ∂τ + o(1), as n → ∞. (5.13)
Finally, we use the fact that

Γ v ∧ ∂v n ∂τ = - Γ ∂v ∂τ ∧ v n = Γ v n ∧ ∂v ∂τ .
(5.14)

The above equality is clear, using integration by parts, when both v n and v are smooth. The general is obtained through approximation with smooth functions. By combining (5.3) with (5.7)-(5.14), we find

2π > m κ ≥ lim inf 1 2 A |∇u n | 2 ≥ π |D -1| + |d 0 + 1| + k j=1 |d j | + 1 2 A |∇u| 2 , (5.15) 
which proves the Price Lemma (Lemma 1). Using the lower bound provided by Lemma 4.3, we are finally led to

2π > π |D -1| + |d 0 + 1| + k j=1 |d j | + π D + k j=0 d j ≡ πM + πN. (5.16) 
We claim that the right-hand side of (5.16) is ≥ 2π unless

D = 1, d 0 = -1, d j = 0, j = 1, . . . , k ; (5.17) 
in other words, that (5.16) implies that u ∈ J . Indeed, if (5.17) does not hold, then : either exactly one of the equalities in (5.17) is violated, and thus D + k j=0 d j = 0, and the conclusion is clear, since M ≥ 1 and N ≥ 1 ; or, at least two of the inequalities in (5.17) are false, and then the conclusion is again clear, since M ≥ 2. Therefore, u ∈ J and the proof of the proposition is complete.

If we examine the above proof, we see that it has as a byproduct the following

Corollary 5.1. Assume that (u n ) ⊂ J is such that u n ⇀ u weakly in H 1 (A) to some u ∈ J . Then lim inf n→∞ 1 2 A |∇u n | 2 ≥ max 2π , π + 1 2 A |∇u| 2 ≥ 2π. (5.18)
Corollary 5.2. Assume that I 0 < 2π. Then m κ is attained for each κ > 0.

Proof : Since any minimizer u of (1.14)-(1.15) belongs to J , we have

m κ ≤ E κ (u) = I 0 < 2π. (5.19)
Corollary 5.3. Assume that I 0 = 2π. Then m κ is attained for each κ > 0.

Proof : Let u be a minimizer of (1.14)-(1.15)and g be the restriction of u to ∂A. Let w attain the minimum of E κ in the following subclass of J :

L = {v ∈ H 1 (A; C | ); tr ∂A v = g}. (5.20)
The minimum is clearly attained, and any minimizer w belongs to J and satisfies the Ginzburg-Landau equation

-∆w = κ 2 w(1 -|w| 2 ). (5.21)
We claim that u (which belongs to L) is not a minimizer of E κ in L. Indeed, otherwise we would have, by (5.21) and the fact that |u| = 1, that ∆u = 0. Using once again the fact that |u| = 1, we find that u is a constant. This contradicts the fact that u ∈ K. In conclusion,

E κ (w) < E κ (u) = I 0 = 2π, (5.22) 
so that m κ < 2π and the conclusion follows from Proposition 5.1.

Corollary 5.4. Assume that m κ ′ < 2π for some κ ′ . Then there is some

κ ′′ > κ ′ such that m κ is attained if k ′ < κ < κ ′′ . Proof : Let v ∈ J be such that E κ ′ (v) < 2π. Then clearly E κ (v) < 2π if κ is sufficiently close to κ ′
, and we conclude by applying Proposition 5.1 to any such κ.

Existence of minimizers for small κ when

A = Ω \ ω 0
Throughout this part, we assume that A is an annular domain, i.e., that A = Ω \ ω 0 . In this case, we prove that, for small values of κ, there is a minimizer of (1.1)-(1.3). Moreover, we will determine the exact value of m 0 , as well as all the minimizers of (1.1)-(1.3). We start with the following Lemma 5.1. Assume that A = Ω \ ω 0 . Then m 0 < 2π.

By combining Lemma 5.1 and Corollary 5.4 we obtain the following Corollary 5.5. Assume that A = Ω \ ω 0 . Then there is some

κ 1 > 0 such that m κ is attained for 0 ≤ κ < κ 1 .
Proof of Lemma 5.1 : We could obtain Lemma 5.1 directly from Proposition 5.2. However, we feel that the argument below, which provides, for a given harmonic map, the harmonic extension of its trace, has its own interest.

Let u be a fixed minimizer of (1.14)-(1.15) and let η be as in Lemma 2.4. Let f be a smooth real function to be determined later and set u 0 = f (η)u. Then

1 2 A |∇u 0 | 2 = 1 2 A (f ′2 (η)|∇η| 2 + f 2 (η)|∇u| 2 ) = 1 2 A (f ′2 (η) + f 2 (η))|∇η| 2 , (5.23) 
by Lemma 2.4. By the coarea formula (see, e.g., [START_REF] Federer | Geometric measure theory[END_REF]) and (5.23), we have

1 2 A |∇u 0 | 2 = 1 2 IR ( {η=t} (f ′2 (t) + f 2 (t))|∇η|dl)dt = π IR (f ′2 (t) + f 2 (t))dt ; (5.24)
the last equality in (5.24) follows from Lemma 2.5. Recall that, by Lemma 2.4, η is constant on ∂Ω and on ∂ω 0 ; more specifically, by Lemma 2.7 we have η = 0 on ∂Ω and η = C 0 on ∂ω 0 , where

C 0 = - I 0 π . Assuming now that f (0) = f (C 0 ) = 1, we obtain u 0 ∈ J . If f (0) = f (C 0 ) = 1,
the right-hand side of (5.24) is minimal for f (t) = ae t + be -t , where a, b satisfy a + b = 1 and ae C 0 + be -C 0 = 1. Substituting this f into (5.24) yields

m 0 ≤ 1 2 A |∇u 0 | 2 = 2π 1 -e C 0 1 + e C 0 = 2π 1 -e -I 0 /π 1 + e -I 0 /π < 2π. (5.25)
In particular, for a circular annulus A = {z ; ρ < |z| < R}, we obtain, with the help of Lemma 2.6, that

m 0 ≤ 2π R -ρ R + ρ . (5.26) 
Remark 5.1. It is easy to see that the map u 0 we constructed above may be also obtained in the following way : let u be a minimizer of (1.14)-(1.15) and let g be its restriction to ∂A. Then u 0 is the harmonic extension of g to A. Recall that, by Lemma 2.4, the minimizers u of I 0 are unique up to a phase shift. Therefore, the maps u 0 constructed above are unique up to a phase shift. We will see below that the above construction is optimal, in the sense that the above maps u 0 are precisely the minimizers of (1.1)-(1.3) for κ = 0 and that "≤" in (5.25) is actually "=".

Remark 5.2. If we repeat the above construction when

A = Ω \ (∪ k j=0 ω j ) with k ≥ 1, in general we obtain 1 2 A |∇u 0 | 2 > 2π ;
this can be proved by considering appropriate A's. Thus, when k ≥ 1, we can not derive from the above construction that m 0 is attained.

We next prove that the above construction is optimal.

Proposition 5.2. Assume that A = Ω \ ω 0 . Then :

a) m 0 = 2π 1 -e C 0 1 + e C 0 ; b) the minimizers of (1.1)-(1.
3) for κ = 0 are precisely the maps u 0 = f (η)u, where f (t) = ae t + be -t , a + b = 1 and ae C 0 + be -C 0 = 1 and u is a minimizer of (1.14)- (1.15).

Proof : We start with the case where A is a circular annulus, A = {z ; ρ < |z| < R}. Recall that, by Lemma 2.6, in this case we have u(z) = α z |z| . By Remark 5.1, u 0 is the harmonic extension to A of the restriction of u to ∂A. Therefore, in polar coordinates, we have

u = α r 2 + Rρ r(R + ρ) e ıθ .
(5.27) By Lemma D.3, the maps given by (5.27) are precisely the minimizers of (1.1)-(1.3) for κ = 0 and a) holds for this A. In particular, in this case the minimizers of (1.1)-(1.3) for κ = 0 are unique up to a phase shift.

We now turn to a general A = Ω \ ω 0 . Recall that, by Lemma 3.1 c), there is a conformal representation F from A into C that extends to a C 1 orientation preserving diffeomorphism from A into C that preserves the natural orientations of curves ; here, C = {z ; ρ < |z| < R} and R ρ = e I 0 /π . Thus, with obvious notations, we find that

J (A) ∋ v → v • F -1 ∈ J (C) (5.28)
is a bijection. Moreover, since F is a conformal representation, we have 1 2

A |∇v| 2 = 1 2 C |∇(v • F -1 )| 2 .
(5.29)

In particular, using obvious notations, we find that

m 0 (A) = m 0 (C) = 2π R -ρ R + ρ == 2π 1 -(R/ρ) -1 1 + (R/ρ) -1 = 2π 1 -e -I 0 /π 1 + e -I 0 /π , (5.30) 
the last equality following from Lemma 3.1. Therefore, the maps constructed in Lemma 5.1 are, in A, minimizers of (1.1)-(1.3) for κ = 0. Moreover, since in C the minimizers of (1.1)-(1.3) for κ = 0 are determined up to a phase shift and so are the maps constructed in Lemma 5.1, it follows that these maps are all the minimizers in A of (1.1)-(1.3) for κ = 0.

6 Bounds for the minimal energy m κ

Upper bounds for m κ

We start by constructing appropriate test functions needed in order to derive sharp upper bounds for m κ .

Lemma 6.1. There is a sequence (u n ) ⊂ J 1, 0, . . . , 0 such that : a)

|u n | ≤ 1 in A, ∀ n ; b) u n → -1 in C 1 loc (A \ ∂Ω) ; c) lim n→∞ A |∇u n | 2 = 2π.
Proof : We make use of the functions considered in the proof of Lemma 4.1. Let w be a conformal representation of Ω into ID that extends smoothly up to the boundary, let (a n ) ⊂ (0, 1) be a sequence such that a n → 1 and set v n = u an • w. We next correct the map v n in order to have modulus 1 on the boundary. To this purpose, we start by noting that

|v n + 1| ≤ C(1 -a n ) on ∂A \ ∂Ω. With Φ t as in the proof of Lemma 4.2, we set u n = Φ √ 1-an • v n in A.
Then this u n belongs to J 1, 0, . . . , 0 for sufficiently large n. Properties a) and b) are clear for this choice of u n , by construction. Moreover, if we extend u n (the extension being still denoted by u n ) to Ω by the same formula, properties a) and b) still hold with A replaced by Ω. On the other hand, we clearly have, by the property (4.11) of Φ t , that

|∇u n -∇v n | ≤ C √ 1 -a n |∇v n | in Ω. (6.1)
Therefore,

lim n→∞ A |∇u n | 2 = lim n→∞ Ω |∇u n | 2 = lim n→∞ Ω |∇v n | 2 = 2 Ω |Jac v n | = 2 Ω Jac v n = 2 area (ID) = 2π, (6.2) since v n is a conformal representation of Ω into ID.
Similarly, we have Lemma 6.2. There is a sequence (v n ) ⊂ J 0, -1, 0, . . . , 0 such that : a)

|v n | ≤ 1 in A, ∀ n; b) v n → -1 in C 1 loc (A \ ∂ω 0 ) ; c) lim n→∞ A |∇v n | 2 = 2π.
Proof : We may assume that 0 ∈ ω 0 . Let g(z) = 1/z and B = g(A). Then B = O \ ∪ k j=0 U j , where O is the domain enclosed by g(∂ω 0 ), U 0 the domain enclosed by g(∂Ω), and U j the domain enclosed by g(∂ω j ), j = 1, . . . , k. Construct, in B, a sequence (u n ) as in Lemma 6.1 and let

v n = u n • g = u n • g -1 .
Clearly, (v n ) has the properties a) and b). As for c), it follows from Lemma 6.1 c) and the fact that

A |∇v n | 2 = A |∇(u n • g)| 2 = B |∇u n | 2 = B |∇u n | 2 , (6.3)
since g is a conformal representation.

Remark 6.1. In Section 11, we will give a geometrical interpretation of the maps u n and v n constructed above.

We may now establish the following upper bounds Proposition 6.1. We have, for each κ ≥ 0 and each A, the following upper bounds m κ ≤ 2π (6.4) and m κ < I 0 . (6.5)

Proof : Inequality (6.5) follows from the proof of Corollary 5.3, where we establish that, with u a minimizer of (1.14)-(1.15), there is some

w ∈ J such that E κ (w) < E κ (u) = I 0 .
For the proof of (6.4), let w n = u n v n , where u n , v n are given by the two preceding lemmas. By (2.13), we have w n ∈ J . On the one hand, we have

lim n→∞ A (1 -|w n | 2 ) 2 = 0, (6.6) 
by dominated convergence, thanks to a) and b) in Lemma 6.1 and Lemma 6.2.

On the other hand, let U , V be smooth open sets such that

U, V ⊂ A, U ∩ V = ∅, U ∪ V = A, ∂Ω ⊂ U , ∂ω 0 ⊂ V .
Then, by Lemma 6.1. and Lemma 6.2, we find

U |u n ∇v n + v n ∇u n | 2 = U |∇u n | 2 + o(1), V |u n ∇v n + v n ∇u n | 2 = V |∇v n | 2 + o(1) as n → ∞, (6.7) 
so that

A |∇w n | 2 = A |u n ∇v n + v n ∇u n | 2 = U |∇u n | 2 + V |∇v n | 2 + o(1) = 4π + o(1) as n → ∞ ; (6.8)
for the last equality, we use again Lemma 6.1 b) and Lemma 6.2 b). By combining (6.6) and (6.8), we find that lim n→∞ E κ (w n ) = 2π, (6.9) and (6.4) follows.

Corollary 6.1. Assume that m κ ′ is attained for some κ ′ > 0. Then m κ is attained for 0 ≤ κ < κ ′ . Proof : Let u κ ′ be a minimizer of (1.1)-(1.3) for κ = κ ′ . Since u κ ′ satisfies -∆u κ ′ = κ ′ 2 u κ ′ (1 -|u κ ′ | 2 ), (6.10) 
we noticed, during the proof of Corollary 5.3, that we can not have

|u κ ′ | = 1. Therefore, A (1 -|u κ ′ | 2 ) 2 > 0, (6.11) 
and thus

E κ (u κ ′ ) < E κ ′ (u κ ′ ) ≤ 2π if 0 ≤ κ < κ ′ . (6.
12)

The conclusion follows now from Proposition 5.1.

Corollary 6.2. Assume that m κ ′ is not attained for some κ ′ ≥ 0. Then m κ ′ = 2π and m κ is not attained for κ > κ ′ .

Corollary 6.3. For each A, there is some

κ ′ ∈ [0, ∞] such that : a) m κ is always attained for 0 ≤ κ < κ ′ ; b) m κ is never attained for κ > κ ′ . If, in addition, κ ′ < ∞, then m κ ′ = 2π and m κ = 2π for κ > κ ′ .
Remark 6.2. When A has a single hole, it follows from Proposition 5.2. that κ ′ > 0. We do not know whether, when A has more than one hole, we always have κ ′ > 0.

Remark 6.3. The conjecture mentioned in the introduction is equivalent to:

I 0 > 2π =⇒ κ ′ < ∞.

Asymptotic behavior of m κ

Among other facts, we prove below that the upper bounds established in Proposition 6.1 are asymptotically optimal as κ → ∞. Proof : First note that m κ is non-decreasing with κ, so that the limit in a) exists. Let u be such that, along some subsequence, u κn ⇀ u weakly in H 1 (A) and a.e. Since

1 2 A |∇u| 2 ≤ lim inf n→∞ 1 2 A |∇u κn | 2 ≤ lim inf n→∞ E κn (u κn ) = lim κ→∞ E κ (u κ ) ≤ I 0 < 2π, (6.13) 
we find by Corollary 5.1 that u ∈ J and that

1 2 A |∇u| 2 ≤ I 0 . (6.14)
On the other hand,

A (1 -|u κ | 2 ) 2 ≤ 4 κ 2 E κ (u κ ) → 0 as κ → ∞, (6.15) 
so that |u| = 1 a.e. Therefore, u ∈ K, so that u has to be a minimizer of (1.14)-(1.15), by (6.14). Recalling (6.13) , we find that

lim n→∞ A |∇u κn | 2 = A |∇u| 2 , (6.16) 
and thus u κn → u strongly in H 1 (A). Part a) follows from (6.13) and (6.16).

Corollary 6.5. Assume that I 0 = 2π. Then lim κ→∞ m κ = I 0 = 2π.

Proof : Let u be such that, up to some subsequence, u κn ⇀ u weakly in H Proof : Due to the corrolaty 6.3 if κ ′ < ∞ then conlsuion follows. Thus we assume that κ ′ = ∞ so m k is attained and we can consider a sequence of minimizers u κn " Let u be such that, up to some subsequence, u κn ⇀ u weakly in H 1 (A) and a.e. Since

1 2 A |∇u| 2 ≤ lim inf n→∞ 1 2 A |∇u κn | 2 ≤ lim inf n→∞ E κn (u κn ) = lim κ→∞ E κ (u κ ) ≤ 2π, (6.18) 
we cannot have u ∈ J . For otherwise, as in the proof of Corollary 6.4, we would have u ∈ K and

2π < I 0 ≤ 1 2 A |∇u| 2 ≤ 2π, (6.19) 
which is impossible. Thus u ∈ J and the conclusion follows by combining (6.18) with Corollary 5.1.

We will need later the following refinement of (6.5) Lemma 6.3. There are some constants

C = C(A) > 0 and κ ′ = κ ′ (A) > 0 such that m κ ≤ I 0 - C κ 2 , ∀ κ > κ ′ . (6.

20)

Proof : Let u be a minimizer of (1.14)-(1.15) and g =tr ∂A u. Let, for κ > 0, v κ ∈ J be the minimizer of E κ in the class L given by (5.20). We claim that

v κ → u strongly in H 1 (A) as κ → ∞. (6.21)
Indeed, let v be any possible weak limit of some subsequence of (u κ ). Since E κ (v κ ) ≤ E κ (u) = I 0 , we find as in the proof of Corollary 6.4 that |v| = 1 and 1 2

A |∇v| 2 ≤ I 0 . On the other hand, we have tr ∂A u=tr ∂A v, so that v ∈ K. Therefore, v is a minimizer of (1.14)- (1.15). By Lemma 2.4, there is some α ∈ S 1 such that v = αu. This α has to be 1, since u and v agree on ∂A. Finally, we proceed as in the proof of Corollary 6.4 to obtain the strong H 1 convergence claimed in (6.21).

We now invoke the following result in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] Lemma 6.4. ( [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF]) We have

κ 2 (1 -|v κ | 2 ) → |∇u| 2 in C loc (A) as κ → ∞ (6.22)
and

lim κ→∞ E κ (v κ ) = 1 2 A |∇u| 2 = I 0 . (6.23) 
Actually, the above result was obtained in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] for minimizers of the Ginzburg-Landau energy E κ with a fixed Dirichlet boundary data g under the additional assumption that A is simply connected. However, the simple connectedness of A is used in their proof only for establishing (6.21). Since we proved above (6.21), we may apply Lemma 6.4 to our case. Note that u is smooth and non constant. Therefore, we may find a compact K ⊂ A and constants

c = c(A) > 0, κ ′ = κ ′ (A) > 0 such that κ 2 (1 -|v κ | 2 ) ≥ c in K for κ > κ ′ (A). ( 6.24) 
Let now κ > κ ′ (A). Using (6.23), we find that

I 0 -E κ (v κ ) = n≥0 (E 2 n+1 κ (v 2 n+1 κ ) -E 2 n κ (v 2 n κ )). (6.25)
By the minimality of v κ with respect to E κ , we have

E 2 n+1 κ (v 2 n+1 κ ) -E 2 n κ (v 2 n κ ) ≥ E 2 n+1 κ (v 2 n+1 κ ) -E 2 n κ (v 2 n+1 κ ) = 3 4 4 n κ 2 A (1 -|v 2 n+1 κ | 2 ) 2 . (6.26)
Combining (6.24) and (6.26), we find

E 2 n+1 κ (v 2 n+1 κ ) -E 2 n κ (v 2 n κ ) ≥ 3 4 4 n κ 2 K (1 -|v 2 n+1 κ | 2 ) 2 ≥ 3c 2 4 -n-3 κ -2 |K|. (6.27)
Going back to (6.25), we obtain, for κ > κ ′ (A), that

m κ ≤ E κ (v κ ) ≤ I 0 - n≥0 3c 2 4 -n-3 κ -2 |K| = I 0 - C κ 2 .
(6.28)

Properties of quasi-minimizers

We start by defining the quasi-minimizers we alluded to in the Introduction.

Definition 7.1. A family of quasi-minimizers is a family (u κ ) ⊂ J , κ ≥ 0, such that :

E κ (u κ ) ≤ m κ + 1 e κ (7.1)
and u κ is a minimizer of the Ginzburg-Landau energy with respect to its own boundary condition, i.e.,

E κ (u κ ) ≤ E κ (v) if tr ∂A v = tr ∂A u κ . (7.2) 
Note that quasi-minimizers always exist. Moreover, any minimizer u κ of m κ , if it exists, is a quasi-minimizer. It also follows from the maximum principle that

|u κ | ≤ 1 in A. (7.3)
On the other hand, quasi-minimizers satisfy

-∆u κ = κ 2 u κ (1 -|u κ | 2 ) in A (7.4)
and thus they are smooth in A. Note also that, in view of Proposition 6.1, we have the following uniform bound

E κ (u κ ) ≤ 2π + 1 = C. (7.5) 
The main tool for determining the asymptotic behavior of the quasi-minimizers is the following Lemma 7.1. ( [START_REF] Mironescu | Explicit bounds for solutions to a Ginzburg-Landau type equation[END_REF]) Set, for z ∈ A, d(z) = dist(z, ∂A). Under the assumptions (7.3)-(7.5), we have

|D l u κ (z)| ≤ C l d l (z) , l ∈ IN, z ∈ A (7.6) and |D l (1 -|u κ | 2 )(z)| ≤ C l κ 2 d l+2 (z) , l ∈ IN, z ∈ A. (7.7)
Here, C l are explicit constants depending only on l and the constant C in (7.5).

Actually, the above estimates were established in [START_REF] Mironescu | Explicit bounds for solutions to a Ginzburg-Landau type equation[END_REF] when d(z) = 1 ; the general case follows by scaling. Note that these estimates deteriorate when we approach the boundary ; in fact, it is not reasonable to expect uniform estimates up to the boundary.

Corollary 7.1. Let (u κ ) be a family of quasi-minimizers. Then, up to subsequences, (u κ ) converges, weakly in H 1 (A) and strongly in C l loc (A), l ∈ IN, to some u ∈ C ∞ (A) such that |u| = 1. Proposition 7.1. Assume that I 0 > 2π and let (u κ ) be a family of quasi-minimizers. Then there are constants α κ ∈ S 1 such that (α κ u κ ) converges, weakly in H 1 (A) and strongly in C l loc (A), l ∈ IN, to 1.

Proof : We start by proving that any possible limit as in Corollary 7.1 is a constant of modulus 1. Indeed, let u be any S 1 -valued smooth map such that, along some subsequence, (u κ ) converges, weakly in H 1 (A) and strongly in C l loc (A), l ∈ IN, to u. First of all, the proof of Corollary 6.6 implies that u ∈ K. Thus u is in some class K D, d 0 , . . . , d k with (D, d 0 , . . . , d k ) = (1, -1, 0, . . . , 0). Since We orient Γ δ and γ δ as boundaries of Ω δ and ω δ , respectively. By Lemma 2.2 applied to u in Ω δ and in ω δ , we have deg(u, Γ δ ) = -D and deg(u,

γ δ ) = -d 0 . (7.8) 
We now argue as in the proof of Proposition 5.1. Assume that u κ l ⇀ u as in Corollary 7.1. Then we have

2π ≥ lim inf m κ l ≥ lim inf 1 2 A |∇u κ l | 2 = lim inf 1 2 A |∇(u κ l -u)| 2 + 1 2 A |∇u| 2 , (7.9) 
so that 2π ≥ lim inf 1 2

Ω δ |∇(u κ l -u)| 2 + 1 2 ω δ |∇(u κ l -u)| 2 + 1 2 A |∇u| 2 . (7.10) Now lim inf 1 2 Ω δ |∇(u κ l -u)| 2 ≥ lim inf Ω δ Jac (u κ l -u) = lim inf 1 2 ∂Ω δ (u κ l -u) ∧ ∂(u κ l -u) ∂τ . (7.11)
Using the C 1 loc (A) convergence of u κ l to u, we find that lim inf 1 2

Ω δ |∇(u κ l -u)| 2 ≥ lim inf 1 2 ∂Ω (u κ l -u) ∧ ∂(u κ l -u) ∂τ . (7.12)
As in the proof of Proposition 5.1, we obtain lim inf 1 2

Ω δ |∇(u κ l -u)| 2 ≥ π|D -1|. (7.13) Similarly, lim inf 1 2 ω δ |∇(u κ l -u)| 2 ≥ π|d 0 + 1|. (7.14)
By combining (7.10), (7.13), (7.14) and the fact that D = 1, d 0 = -1, we are led to

A |∇u| 2 = 0, so that u is a constant of modulus 1.
We next prove the existence of the family (α κ ). Set As a consequence of the above proposition, we obtain that quasi-minimizers have to vanish at least twice in the supercritical case Lemma 7.2. Assume that A is supercritcal, i.e., that I 0 > 2π. Let (u κ ) be a family of quasiminimizers. Fix some small δ > 0. Then there is some κ ′ = κ ′ (A) such that, for κ > κ ′ , u κ has at least a zero at distance < δ from ∂Ω and at least a zero at distance < δ from ∂ω 0 . Remark 7.1. We will see in Section 11 that u κ has exactly two zeroes for large κ, but the argument is rather involved.

β κ = 1 |A| A u κ . ( 7 
Proof of Lemma 7.2 : We reason near ∂Ω, the situation being similar near ∂ω 0 . Fix some δ > 0 and let Γ = {z ∈ A ; dist(z, ∂Ω) = δ}. Let κ ′ be such that, for κ > κ ′ , we have |α κ u κ -1| < 1/2 on Γ. Then, for any such κ, we have deg(α κ u κ , Γ) = 0, and thus deg(u κ , Γ) = 0. Argue by contradiction and asume that, for such a κ, u κ does not vanish in the domain U enclosed by Γ and ∂Ω. We claim that, in this case, there is a constant

C = C(κ) such that C ≤ |u κ | ≤ 1 in U .
Assuming the claim proved, for the moment, it follows that the map v = u κ /|u κ | is in H 1 (U ; S 1 ), and it has degrees 1 on ∂Ω and 0 on Γ. (The fact that ∇v ∈ L 2 (U ) follows from the pointwise inequality |∇v| ≤ |∇u κ |/C in U .) But this is impossible, by Lemma 2.2. Returning to the claim, we start by noting that there is some ε = ε κ > 0 such that |u κ (z)| ≥ 1/2 if dist(z, ∂Ω) > ε i; this follows from the proof of Lemma 4.4. On the other hand, there is some D = D(κ) > 0 such that |u κ (z)| ≥ D when ε ≤dist(z, ∂Ω) ≤ δ, since u κ is smooth and non vanishing. The claim follows with C =Min{1/2, D}. The proof of the lemma is complete.

8 Asymptotic behavior of the minimizers in the subcritical case I 0 < 2π Throughout this section, we always assume that we are in the subcritical case, i.e., that

I 0 < 2π. (8.1)
If we combine Corollary 5.2, Corollary 6.4 and Corollary 7.1, we already know that in the subcritical case we have

m κ < I 0 < 2π, (8.2) 
lim κ→∞ m κ = I 0 , (8.3) 
m κ is attained for each κ ≥ 0 (8.4)

and, if u κ is a minimizer of (1.1)-(1.3) then, up to some subsequences,

u κ → u strongly in H 1 (A) and in C l loc (A), ∀ l ∈ IN,
where u is a minimizer of (1.14) -(1.15). (8.5) The aim of this section is to improve the property (8.5), by proving that u κ converges to u in some better spaces.

We start with a preliminary remark : the minimization problem (1.1)-(1.3 is degenerate, in the sense that, if u κ is a minimizer, so is αu κ , for α ∈ S 1 . It will be convenient to reduce degeneracy by replacing each u κ with some appropriate rotation of u κ . This is done in Lemma 8.1. Assume I 0 < 2π and let, for each κ ≥ 0, u κ be a minimizer of (1.1)-(1.3). Fix some minimizer u ∞ of I 0 . Then there is a family (α κ ) ⊂ S 1 such that

v κ = α κ u κ → u ∞ strongly in H 1 (A) and in C l loc (A), ∀ l ∈ IN. (8.6) 
Proof : We proceed as at the end of the proof of Proposition 7.1. Set

β κ = 1 |A| A u κ u ∞ . (8.7) 
We first claim that |β κ | → 1 as κ → ∞. Indeed, by (8.5), up to some subsequence we have u κ → u in H 1 (A) for some minimizer u of I 0 . By Lemma 2.4, there is some α ∈ S 1 such that u = αu ∞ , and thus β κ → α along such a subsequence. Obviously, this implies that

|β κ | → 1 as κ → ∞. Now let α κ = β κ |β κ | , (8.8) 
which is well-defined for sufficiently large κ. Then, clearly,

A α κ u κ u ∞ → 1 as κ → ∞. (8.9) 
Invoking once again (8.5) and Lemma 2.4, we find that (8.6) holds for this choice of α κ .

The key ingredient in improving (8.5) is the following Lemma 8.2. We have

|u κ | → 1 uniformly in A as κ → ∞. (8.10) 
Proof : It suffices to work with v κ instead of u κ . Recall that |v κ | ≤ 1, by (7.3), so that, for 0 < a < 1, it suffices to prove that there is some κ a ≥ 0 such that

|v κ | ≥ a in A, ∀ κ ≥ κ a . (8.11) 
We start by noting that (8.11) holds "far away" from ∂A. Indeed, by (7.7) in Lemma 7.1, we have

|v κ (z)| ≥ a if d(z) ≥ C 0 κ 2 (1 -a 2 ) = C a κ , (8.12) 
where d(z) =dist(z, ∂A).

We next prove that (8.11) holds "near" ∂A. For this purpose, we need the following Lemma 8.3. ( [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]) Let (g n ) ⊂ VMO(∂A; S 1 ) be such that g n → g strongly in VMO(∂A). Then, for each 0 < a < 1, there is some δ > 0 independent of n such that

a ≤ | g n (z)| ≤ 1 if d(z) < δ. (8.13)
Here, g n is the harmonic extension of g n to A.

Proof of Lemma 8.2 continued : Set g κ =tr ∂A v κ and g =tr ∂A u ∞ . Since v κ → u ∞ strongly in H 1 (A), we have g κ → g strongly in H 1/2 (∂A). Using the fact that H 1/2 ֒→VMO in 1-D, we find from Lemma 8.1 and Lemma 8.3 that there are some δ > 0, κ a

1 such that 1 + a 2 ≤ | g κ (z)| ≤ 1 if d(z) < δ and κ ≥ κ a 1 . (8.14) 
Write now v κ = g κ + w κ , where w κ satisfies Then, for some constant C A depending only on A, we have 

-∆w κ = κ 2 v κ (1 -|v κ | 2 ) in A w κ = 0 on ∂A . ( 8 
∇u L ∞ (A) ≤ C A u 1/2 L ∞ (A) f 1/2 L ∞ (A) . ( 8 
|∇w κ | ≤ √ 2C A κ in A. (8.20) 
Recalling that w κ = 0 on ∂A, we obtain, for some constant D A depending only on A, that

|w κ (z)| ≤ D A κ d(z) in A. (8.21) 
By combining (8.14) and (8.21) we find, for large κ,

|v κ (z)| ≥ a if d(z) ≤ 1 -a 2D a κ = D a κ . (8.22) 
We complete the proof of Lemma 8.2 by establishing that (8.11) holds in the region of A uncovered by the estimates (8.12) and (8.22). This part of the proof follows [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF]. We may assume that D a ≤ C a , for otherwise the whole of A is covered by these estimates. First, note that, by applying (7.6) to v κ , we have

|∇v κ (z)| ≤ E A κ if D a 2κ ≤ d(z) ≤ C a κ , (8.23) 
where E A is independent of large κ. Assume that there is some z ∈ A such that

|v κ (z)| ≤ a and D a κ ≤ d(z) ≤ C a κ . (8.24) 
¿From (8.23) and (8.24), we derive the existence of some c a < D a such that

|v κ (y)| ≤ 1 + a 2 if |y -z| ≤ c a κ . (8.25) 
Pick now κ a 2 such that

{y ; |y -z| ≤ c a κ } ⊂ A if D a κ ≤ d(z) ≤ C a κ and κ ≥ κ a 2 . (8.26) 
Then

κ 2 4 A (1 -|v κ | 2 ) 2 ≥ κ 2 4 
{y;|y-z|≤c a /κ}

(1 -|v κ | 2 ) 2 ≥ π(c a ) 2 (1 -a)(1 + 3a) 4 if κ ≥ κ a 2 . (8.27) 
We will finally prove that (8.27) (and thus (8.24)) can not hold for sufficiently large κ. (This will complete the proof, in view of (8.12) and (8.22).) To this purpose, it suffices to establish that

lim κ→∞ κ 2 4 A (1 -|v κ | 2 ) 2 = 0. (8.28) 
This is an easy consequence of (8.3) and (8.5), since

κ 2 4 A (1 -|v κ | 2 ) 2 = m κ - 1 2 A |∇v κ | 2 → I 0 - 1 2 A |∇u ∞ | 2 = 0 as κ → ∞. (8.29)
One of the useful consequences of Lemma 8.2 is that it allows us to rewrite, for large values of κ, the Ginzburg-Landau equation in terms of the modulus and the phase of u κ . Let κ 2 be such that

|u κ | ≥ 1/2 for κ ≥ κ 2 . Set ρ = ρ κ = |u κ |, for κ ≥ κ 2 . Then u κ ρ ∈ J . By Lemma 2.3 a), we may write u κ ρ = u ∞ e ıψ for some ψ = ψ κ ∈ H 1 (A; IR) ; actually, ρ, ψ ∈ C ∞ (A; IR), by Lemma 4.4.
Moreover, we noted in the statement of Lemma 2.4 that u ∞ = e ıϕ , where ϕ is only locally defined, but it has a globally defined gradient. We may thus write, locally in A,

u κ = ρe ı(ϕ+ψ) = ρ κ e ı(ϕ+ψκ) = ρ κ e ıψκ u ∞ , (8.30) 
the last expression in (8.30) being globally defined. It follows immediately from (4.16) and (4.17) that ψ and ρ satisfy

-∆ρ = κ 2 ρ(1 -ρ 2 ) -ρ|∇(ϕ + ψ)| 2 in A ρ = 1 on ∂A (8.31)
and respectively

   -div(ρ 2 ∇ψ) = div(ρ 2 ∇ϕ) = 2ρ∇ρ • ∇ϕ in A ∂ψ ∂ν = 0 on ∂A . (8.32)
Two remarks about the equation of ψ : on the one hand, it has a global meaning, since ∇ϕ is globally defined. On the other hand, the second equality in (8.32) comes from the fact, by Lemma 2.4, we have div(∇ϕ) =div(-∂η/∂y, ∂η/∂x) = 0.

Lemma 8.5. We have

ψ κ - 1 |A| A ψ κ → 0 in W 1,p (A), 1 < p < ∞, as κ → ∞. (8.33) 
Proof : We rewrite (8.32) as

   ∆ψ = div((1 -ρ 2 )∇(ϕ + ψ)) in A ∂ψ ∂ν = 0 on ∂A . (8.34)
By standard elliptic estimates ( [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) we have, for 1 < p < ∞,

∇ψ L p (A) ≤ C p (1 -ρ 2 )∇(ϕ + ψ) L p (A) ≤ C p 1 -ρ 2 L ∞ (A) ( ∇ϕ L p (A) + ∇ψ L p (A) ). (8.35)
By Lemma 8.2, we have C p 1ρ 2 L ∞ (A) ≤ 1/2 for sufficiently large κ, and thus, for such κ, we obtain

∇ψ L p (A) ≤ 2C p 1 -ρ 2 L ∞ (A) ∇ϕ L p (A) → 0 as κ → ∞. (8.36)
The conclusion of Lemma 8.5 follows from (8.36) and the Poincaré-Wirtinger inequality.

For the next result, we follow the unpublished paper [START_REF] Mironescu | Uniqueness of solutions of the Ginzburg-Landau equations through algebraic methods[END_REF].

Lemma 8.6. We have, for sufficiently large κ and a constant C A depending only on A, the estimate

A (1 -ρ 2 κ ) 2 ≤ C A κ 4 . ( 8 

.37)

Proof : A straightforward computation shows that 

E κ (u κ ) = 1 2 A |∇ρ| 2 + 1 2 A ρ 2 |∇ϕ| 2 + 1 2 A ρ 2 |∇ψ| 2 + A ρ 2 ∇ϕ • ∇ψ + κ 2 4 A (1 -ρ 2 ) 2 . ( 8 
E κ (u κ ) = 1 2 A |∇ρ| 2 + 1 2 A ρ 2 |∇ϕ| 2 + 1 2 A ρ 2 |∇ψ| 2 + A (ρ 2 -1)∇ϕ • ∇ψ + κ 2 4 A (1 -ρ 2 ) 2 . (8.41)
We now use the minimality of u κ . Since u ∞ ∈ J , we have

m κ = E κ (u κ ) ≤ E κ (u ∞ ) = I 0 = 1 2 A |∇ϕ| 2 . (8.42)
Using (8.41) together with (8.42), we obtain

1 2 A |∇ρ| 2 + 1 2 A ρ 2 |∇ψ| 2 + κ 2 4 A (1 -ρ 2 ) 2 ≤ 1 2 A (1 -ρ 2 )|∇ϕ| 2 + A (1 -ρ 2 )∇ϕ • ∇ψ. (8.43) 
We estimate the integrals on the right-hand side of (8.43) using the Cauchy-Schwartz inequality and obtain 1 2

A (1 -ρ 2 )|∇ϕ| 2 ≤ κ 2 16 A (1 -ρ 2 ) 2 + 4 κ 2 A |∇ϕ| 4 (8.44)
and respectively

A (1 -ρ 2 )∇ϕ • ∇ψ ≤ κ 2 16 A (1 -ρ 2 ) 2 + 4 κ 2 A |∇ψ| 2 |∇ϕ| 2 . (8.45)
Combining (8.43), (8.44) and (8.45), we find

1 2 A |∇ρ| 2 + 1 2 A (ρ 2 - 4 κ 2 |∇ϕ| 2 )|∇ψ| 2 + κ 2 8 A (1 -ρ 2 ) 2 ≤ 4 κ 2 A |∇ϕ| 4 . (8.46)
Recall that, by Lemma 2.4, ∇ϕ is smooth in A, and thus bounded. Recall also that ρ → 1 uniformly in A, by Lemma 8.2. Therefore, for sufficiently large κ, we have the estimate

1 2 A |∇ρ| 2 + 1 3 A |∇ψ| 2 + κ 2 8 A (1 -ρ 2 ) 2 ≤ C κ 2 , (8.47)
and the conclusion of Lemma 8.6 follows.

Corollary 8.1. ρ κ remains bounded in H 2 (A) as κ → ∞.

Proof : Set f κ = κ 2 ρ(1 -ρ 2 ) -ρ|∇(ϕ + ψ)| 2 .
Then (8.31) may be rewritten as The conclusion of the corollary follows now from (8.48) and (8.49), using standard elliptic estimates ( [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]).

-∆ρ = f κ in A ρ = 1 on ∂A . ( 8 
Estimates (8.10), (8.33) and (8.37) are the key ingredients that allow us to follow from now on the strategy developed in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] in order to obtain further asymptotic estimates. This is done in the remaining part of this section. Lemma 8.7. ψ κ remains bounded in W 2,p (A), 1 < p < ∞, as κ → ∞.

Proof : We write, for sufficiently large κ, (8.32) as

       ∆ψ = - 2 ρ ∇ρ • ∇(ϕ + ψ) = g κ in A ∂ψ ∂ν = 0 on ∂A . (8.50)
Using (8.33) and (8.37) together with the fact that |∇ϕ| is bounded in A, we obtain that g κ remains bounded in L p (A), 1 < p < ∞, as κ → ∞, so that the conclusion follows.

Lemma 8.8. ρ κ remains bounded in W 2,p (A), 1 < p < ∞, as κ → ∞.

Proof : By Corollary 8.1, the conclusion is clear when p ≤ 2. As in the proof of Corollary 8.1, it suffices to establish, for sufficiently large κ, the estimate

A (1 -ρ 2 ) p ≤ C κ 2p , 2 < p < ∞. (8.51) Set w = w κ = 1 -ρ κ .
Using the fact that |u κ | ≤ 1, we see that w κ ≥ 0. On the other hand, we may rewrite (8.31) as

-∆w + κ 2 ρ(1 + ρ)w = ρ|∇(ϕ + ψ)| 2 in A w = 0 on ∂A . (8.52)
By (8.10), for sufficiently large κ we have 

-∆w + κ 2 w ≤ |∇(ϕ + ψ)| 2 = h = h κ in A w = 0 on ∂A . ( 8 
(1 -ρ 2 ) p ≤ 4 A w p ≤ C κ 2p , (8.56) 
which is the desired conclusion.

Corollary 8.2. Let α κ ∈ S 1 be defined as in Lemma 8.1. Then

α κ u κ → u ∞ in C 1,β (A), 0 < β < 1, as κ → ∞. ( 8 

.57)

Proof : By Lemma 8.7 and Lemma 8.8, ρ κ and ψ κ are bounded in W 2,p (A), 1 < p < ∞. For a given β such that 0 < β < 1, pick some p such that 1 -2/p > β. For such a choice of p, the embedding W 2,p (A) ֒→ C 1,β (A) is compact. Since u ∞ ∈ C ∞ (A), we find that, up to some subsequence and for some u, v κ = ρ κ e ıψκ u ∞ → u in C 1,β (A) as κ → ∞. By Lemma 8.1, the limit u must coincide with u ∞ , and the conclusion follows immediately.

We end by noting that all the further estimates obtained in [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF] may be also established in our case by straightforward adaptations of the arguments therein. 9 Asymptotic behavior of the minimizers in the critical case I 0 = 2π

The aim of this section is to extend the results obtained in the previous section to the critical case I 0 = 2π. If we examine the proof of the estimates obtained in the subcritical case, we see that the only point where the subcriticality intervenes is via (8.5), more specifically, via the fact that the family (u κ ) converges, up to subsequences and strongly in H 1 (A), to some minimizer u of (1.14)-(1.15) . We will obtain below that, in the critical case, minimizers u κ of(1.1) converge in H 1 (A), up to subsequences, to some minimizer u of (1.14)- (1.15). Once this will be done, all the results in Section 8 will then automatically follow when I 0 = 2π.

We start by proving a weaker fact, namely Lemma 9.1. Assume I 0 = 2π. Let u ∈ H 1 (A; S 1 ) ∩ C ∞ (A) be such that, up to some subsequence, u κ converges to u, weakly in H 1 (A) and strongly in C l loc (A), l ∈ IN. Then : either a) u is a minimizer of (1.14)-(1.15) or b) u is a constant of modulus 1.

Proof : Assume first that u ∈ K. Then, by Corollary 6.5, we have, along some subsequence such that u κn ⇀ u weakly in H 1 (A),

I 0 = 2π = lim κ→∞ m κ ≥ lim n→∞ 1 2 A |∇u κn | 2 ≥ 1 2 A |∇u| 2 ≥ I 0 , (9.1) 
so that u has to be a minimizer of (1. 

A |∇u κn | 2 ≥ π |D -1| + |d 0 + 1| + k j=0 |d k | + 1 2 A |∇u| 2 ≥ 2π + 1 2 A |∇u| 2 , (9.3) 
so that u has to be a constant of modulus 1.

We next exclude possibility b) in Lemma 9.1.

Lemma 9.2. Assume I 0 = 2π. Let u ∈ H 1 (A; S 1 ) ∩ C ∞ (A) be such that, up to some subsequence, u κ converges to u, weakly in H 1 (A) and strongly in C l loc (A), l ∈ IN. Then u is a minimizer of (1.14)-(1.15) in K.

Proof : Argue by contradiction and assume that there is some subsequence such that u κn ⇀ α weakly in H 1 (A) and strongly in C l loc (A), l ∈ IN for some constant α ∈ S 1 . For simplicity, we drop from now on the subscript n.

Let, for δ > 0 fixed and sufficiently small, Γ = {z ∈ A ; dist(z, ∂Ω) = δ}. Let U be the domain enclosed by ∂Ω and Γ and let

V = A \ U . Then ∂U = ∂Ω ∪ Γ and ∂V = Γ ∪ k j=0 ∂ω j , (9.4) 
provided δ > 0 is sufficiently small. We orient Γ as part of ∂U . By Lemma 7.1, Corollary 7.1 and the fact that u is a constant, we may find some κ 2 such that

1 2 ≤ |u κ (z)| ≤ 1 and |∇u κ (z)| ≤ 1 2π|Γ| if z ∈ Γ and κ ≥ κ 2 . (9.5)
For κ ≥ κ 2 , we may write, locally on Γ, u κ = ρ κ e ıϕκ , where ∇ϕ κ is globally defined on Γ. Moreover, we have

|∇u κ | 2 = |∇ρ κ | 2 + ρ 2 κ |∇ϕ κ | 2 ≥ 1 4 |∇ϕ κ | 2 on Γ. (9.6)
Therefore,

|∇ϕ κ | ≤ 1 π|Γ| on Γ. (9.7) Thus 2π |deg(u κ , Γ)| = Γ ∂ϕ κ ∂τ ≤ Γ |∇ϕ κ | ≤ π. (9.8) 
Hence, for κ ≥ κ 2 , we have deg(u κ , Γ) = 0, and thus Γ ∂ϕ κ ∂τ = 0 for κ ≥ κ 2 . (9.9)

We next use the pointwise inequality |∇u κ | 2 ≥ 2|Jac u κ |, Lemma 2.1 and the degree formula (1.5) in order to obtain

1 2 U |∇u κ | 2 ≥ U Jac u κ = 1 2 ∂Ω u κ ∧ ∂u κ ∂τ + 1 2 Γ u κ ∧ ∂u κ ∂τ = π + 1 2 Γ ρ 2 κ ∂ϕ κ ∂τ (9.10)
and similarly 1 2

V |∇u κ | 2 ≥ - V Jac u κ = π + 1 2 Γ ρ 2 κ ∂ϕ κ ∂τ . (9.11) 
By combining (9.9), (9.10) and (9.11) we find

1 2 A |∇u κ | 2 ≥ 2π + Γ ρ 2 κ ∂ϕ κ ∂τ = 2π + Γ (ρ 2 κ -1) ∂ϕ κ ∂τ , (9.12 
) so that, by (9.6), we have

m κ ≥ 1 2 A |∇u κ | 2 ≥ 2π - Γ (1 -ρ 2 κ )|∇ϕ κ | ≥ 2π -2 Γ (1 -ρ 2 κ )|∇u κ | for κ ≥ κ 2 .
(9.13) Invoking (7.7), we find, with some constant C independent of κ, the estimate

m κ ≥ 2π - C κ 2 Γ |∇u κ | for κ ≥ κ 2 . (9.14)
Recalling that we argued by contradiction and supposed that u κ converges in C l loc (A), l ∈ IN to some constant, we obtain from (9.14) and the upper bound (6.20) given by Lemma 6.3 that, for some constants κ 3 and D > 0, we have

2π -o 1 κ 2 ≤ m κ ≤ 2π - D κ 2 for κ ≥ κ 3 . (9.15)
We obtain a contradiction for sufficiently large κ. This completes the proof of Lemma 9.2.

Once we know that the only possible limits (in the sense of Corollary 7.1) of (u κ ) are the minimizers of (1.14)-(1.15), we may repeat the proof of Corollary 6.4 and obtain the following Lemma 9.3. Assume I 0 = 2π. Then, along subsequences, u κ → u strongly in H 1 (A) as κ → ∞, where u is some minimizer of (1.14)-(1.15).

The conclusion of Lemma 9.3 suffices for obtaining, in the critical case I 0 = 2π, all the results proved in Section 8. For the convenience of the reader, we state these results as Corollary 9.1. Assume I 0 = 2π. Fix some minimizer u ∞ of I 0 in K. Then : a) there is a family (α κ ) ⊂ S 1 such that

v κ = α κ u κ → u ∞ strongly in H 1 (A) and in C l loc (A), ∀ l ∈ IN ; (9.16) b) u κ remains bounded in W 2,p (A), 1 < p < ∞, as κ → ∞ ; c) α κ u κ → u ∞ in C 1,β (A), 0 < β < 1, as κ → ∞.
10 "Uniqueness" of the minimizers in the subcritical and critical case 10.1 Uniqueness modulo a phase shift

As already noticed in the Introduction, if u κ is a minimizer of (1.1)-(1.3), so is αu κ for α ∈ S 1 . This is why we can, at best, prove uniqueness modulo a phase shift. The following result asserts uniqueness modulo a phase shift. Its proof is based on a technique developed in [START_REF] Comte | Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation[END_REF] ; see also [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF] or [START_REF] Mironescu | Uniqueness of solutions of the Ginzburg-Landau equations through algebraic methods[END_REF].

Proposition 10.1. Assume that A is either subcritical or critical, i.e., that I 0 ≤ 2π. Then there is some κ 0 such that, if κ ≥ κ 0 and u κ , v κ are two minimizers of (1.1)-(1.3), then v κ = αu κ for some α ∈ S 1 .

Proof : Let κ 2 be such that 1/2 ≤ |u κ |, |v κ | ≤ 1 if κ ≥ κ 2 .
For such κ we may write v κ = u κ ρ κ w κ = u κ ρw, where w ∈ H 1 (A; S 1 ) and ρ = |v κ |/|u κ |. It is obvious that w ∈ K 0, 0, . . . , 0 . Applying (2.2) with v = 1, we find that w κ = e ıψκ = e ıψ for some globally defined ψ ∈ H 1 (A; IR).

To summarize, we have

v κ = u κ ρ κ e ıψκ = u κ ρe ıψ , with ρ = |v κ | |u κ | , 1 2 ≤ ρ ≤ 2, ψ ∈ H 1 (A; IR), if κ ≥ κ 2 . (10.1)
On the other hand, we may write, locally in A,

u κ = ζ κ e ıϕκ = ζe ıϕ , with ζ = |u κ |, 1 2 ≤ ζ ≤ 1, ∇ϕ globally defined in A, if κ ≥ κ 2 . (10.2)
We may now invoke the following By combining (10.3) and (10.5), we obtain

Lemma 10.1. ([21]) We have, for κ ≥ κ 2 , E κ (v κ ) = E κ (u κ ) + 1 2 A ζ 2 |∇ρ| 2 + 1 2 A ζ 2 ρ 2 |∇ψ| 2 + A ζ 2 ρ 2 ∇ϕ • ∇ψ + κ 2 4 A ζ 4 (1 -ρ 2 ) 2 . ( 10 
E κ (v κ ) = E κ (u κ ) + 1 2 A ζ 2 |∇ρ| 2 + 1 2 A ζ 2 ρ 2 |∇ψ| 2 + A ζ 2 (ρ 2 -1)∇ϕ • ∇ψ + κ 2 4 A ζ 4 (1 -ρ 2 ) 2 . (10.6)
By Cauchy-Schwartz, we have 

A ζ 2 (ρ 2 -1)∇ϕ • ∇ψ ≤ κ 2 8 A ζ 4 (1 -ρ 2 ) 2 + 2 κ 2 A |∇ϕ| 2 |∇ψ| 2 . ( 10 
A ζ 2 (ρ 2 -1)∇ϕ • ∇ψ ≤ κ 2 8 A ζ 4 (1 -ρ 2 ) 2 + C κ 2 A |∇ψ| 2 (10.8)
for some constant C independent of sufficiently large κ. Inserting (10.8) into (10.6), we obtain

E κ (v κ ) ≥ E κ (u κ ) + 1 2 A ζ 2 |∇ρ| 2 + 1 2 A ζ 2 ρ 2 - 2C κ 2 |∇ψ| 2 + κ 2 8 A ζ 4 (1 -ρ 2 ) 2 .
(10.9)

By Lemma 8.2 and Corollary 9.1, we have

ζ 2 ρ 2 = |v κ | 2 → 1 uniformly in A as κ → ∞. (10.10)
By combining (10.9) and (10.10), we find that, for sufficiently large κ, For further use, we also mention the following consequence of the method in [START_REF] Comte | Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation[END_REF] Lemma 10.2. Assume that I 0 ≤ 2π. Let (v κ ) ⊂ J be a family of solutions of the Ginzburg-Landau system

E κ (v κ ) ≥ E κ (u κ ) + 1 2 A ζ 2 |∇ρ| 2 + 1 3 A |∇ψ| 2 + κ 2 8 A ζ 4 (1 -ρ 2 ) 2 . ( 10 
-∆v κ = κ 2 v κ (1 -|v κ | 2 ) in A v κ ∧ (ν • ∇v κ ) = 0
on ∂A (10.12)

such that E κ (v κ ) ≤ I 0 and, up to subsequences, v κ → u strongly in H 1 (A), where u is some minimizer of (1.14)- (1.15). Then there is some κ 0 such that, for κ ≥ κ 0 , v κ is a minimizer of (1.1)-(1.3).

Proof : Let u κ be a minimizer of (1.1)-(1.3). On the one hand, since E κ (v κ ) ≤ I 0 and v κ → u strongly in H 1 (A), we may obtain as in the proof of Lemma 8.2 that |v κ | → 1 uniformly in A as κ → ∞. As explained in Section 9, the fact that v κ → u in H 1 (A) together with the fact that |v κ | → 1 uniformly in A as κ → ∞ imply that the conclusions of Corollary 9.1 apply to the family (v κ ). This allows us to proceed as in the proof of Proposition 10.1 in order to obtain (10.11). (The hypothesis (10.12) is needed in Lemma 10.1.) By reversing the roles of u κ and v κ , we thus also have, for sufficiently large κ,

E κ (u κ ) ≥ E κ (v κ ) + 1 2 A ζ 2 ρ 2 ∇ 1 ρ 2 + 1 3 A |∇ψ| 2 + κ 2 4 A ζ 4 ρ 2 1 - 1 ρ 2 2 .
(10.13) ¿From (10.13) and the fact that E κ (u κ ) ≤ E κ (v κ ), we find as above that v κ = α κ u κ , so that v κ is a minimizer of (1.1)-(1.3).

Minimizers in presence of symmetries

The remaining part of this section is devoted to providing a more precise description of minimizers in presence of symmetries. To start with, we consider the case of a circular annulus. Assume that A = Ω \ ω 0 , where Ω = {z ; |z| < R}, ω 0 = {z ; |z| < ρ} and ρ < R. In this case, it is easy to see that (10.12) has a special solution, of the form

w κ (z) = f κ (|z|) z |z| = f κ (r)e ıθ . Moreover, this w κ belongs to J and f = f κ satisfies              -f ′′ - f ′ r + f r 2 = κ 2 f (1 -f 2 ) in [ρ, R] f (ρ) = f (R) = 1 2 √ Rρ R + ρ ≤ f ≤ 1 in [ρ, R] (10.14) 
(see, e.g., [START_REF] Golovaty | On uniqueness of vector-valued minimizers of the Ginzburg-Landau functional in annular domains[END_REF]). This solution is obtained by minimizing E κ in the class

L = {v ∈ H 1 (A; C | ) ; v(z) = g(|z|) z |z| , g ∈ H 1 ([ρ, R]), g(ρ) = g(R) = 1}.
Since, by Lemma 2.4, one the minimizers of (1.

14)-(1.15) is, for this A, u ∞ (z) = z |z| ∈ L, it follows that E κ (w κ ) ≤ I 0 .
Proposition 10.2. Assume that A = Ω \ ω 0 , where Ω = {z ; |z| < R}, ω 0 = {z ; |z| < ρ} and ρ < R. Assume also that A is subcritical or critical, i.e., that R/ρ ≤ e 2 . Then there is some κ 0 such that, for κ ≥ κ 0 , each minimizer u κ of m κ is of the form u κ (z) = α κ f κ (|z|) z |z| for some

α κ ∈ S 1 .
Proof : We already noted that E κ (w κ ) ≤ I 0 . Therefore, in view of Lemma 10.2, it suffices to prove that (10.15) where

w κ → u ∞ in H 1 (A) as κ → ∞. An easy computation shows that A (|∇(w κ -u ∞ )| 2 + |w κ -u ∞ | 2 ) = 2π R ρ (f -1) 2 r + 1 r + rf ′2 ≤ C R ρ ((f -1) 2 + f ′2 ),
C = 2π max{R + 1 R , ρ + 1 ρ , R}. (10.16)
If we multiply the first equation in (10.14) by r(f -1), integrate and take the last property in (10.14) into account, we find

R ρ ρf ′2 + 2κ 2 √ Rρ R + ρ ρ(f -1) 2 ≤ R ρ (rf ′2 +κ 2 rf (f -1) 2 (1+f )) = R ρ 1 r f (1-f ) ≤ 1 ρ R ρ
(1-f ). ( 10.17)

By Cauchy-Schwartz, we have

1 ρ R ρ (1 -f ) ≤ κ 2 √ Rρ R + ρ ρ R ρ (f -1) 2 + R + ρ 4κ 2 ρ 3 √ Rρ R ρ 1.
(10.18) Inserting (10.18) into (10.17), we are led to

R ρ ρf ′2 + κ 2 √ Rρ R + ρ ρ(f -1) 2 ≤ D κ 2 . (10.19)
By combining (10.15) and ( 10. [START_REF] Brezis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF], we find that w κ → u ∞ in H 1 (A). The proof of Proposition 10.2 is complete.

We now turn to domains which are symmetric in the sense of Definition 2.3.

Proposition 10.3. Assume that A is O-symmetric. Assume also that A is subcritical or critical, i.e., that I 0 ≤ 2π.Then there is some κ 0 such that, if κ ≥ κ 0 , there is a minimizer

v κ of m κ such that v κ (O(z)) = O(v κ (z)), ∀ z ∈ A. ( 10 

.20)

Proof : Since circular annuli were treated in Proposition 10.2, we may assume that O is either a symmetry with respect to a line, or a rotation of angle 2π/n for some integer n ≥ 2.

We start with the case of a symmetry, which we may assume with respect to Ox. Fix some z 0 ∈ A ∩ Ox and let (u κ ) be a family of minimizers of (1.1)-(1.3). For sufficiently large κ, we have 1/2 ≤ |u κ | ≤ 1, so that there is exactly one

α κ ∈ S 1 such that α κ u κ (z 0 ) ∈ (0, 1]. Set v κ = α κ u κ . Let w κ (z) = v κ (z), which is clearly a minimizer of (1.1)-(1.3). Since w κ (z 0 ) = v κ (z 0 ), Proposition 10 
.1 implies that w κ = v κ for sufficiently large κ. Thus v κ (z) = v κ (z) in A, for sufficiently large κ, which is the desired conclusion. Assume now that O is a rotation of angle 2π/n, for example around the origin. Let (u κ ) be a family of minimizers of (1.1)- (1.3). As in the case of a symmetry, for sufficiently large κ, there is some

α κ ∈ S 1 such that u κ • O = α κ u κ . Since u κ • O n = u κ
, we find that α κ must be of the form α κ = e ı2lπ/n for some integer l with 0 ≤ l ≤ n -1. Fix some z 0 ∈ ∂Ω and let z k = O k (z 0 ), k = 1, . . . , n, so that z n = z 0 . Without any loss of generality, we may assume that u κ (z 0 ) = 1. Denote by Γ k the directly oriented arc of ∂Ω joining z k-1 to z k . These arcs form a partition of ∂Ω and O(Γ k-1 ) = Γ k the quasi-minimizers. Roughly speaking, we are going to prove that "everything happens near ∂Ω and near ∂ω 0 " ; rigorous statements will be given below.

To start with, we are going to prove that, for large κ, almost all the energy of u κ is concentrated near the two distinguished parts of the boundary, ∂Ω and ∂ω 0 .

Lemma 11.1. Let K be a fixed compact in A \ (∂Ω ∪ ∂ω 0 ). Then, for any m ∈ IN, we have

lim κ→∞ κ m κ 2 A (1 -|u κ | 2 ) 2 + K |∇u κ | 2 = 0. (11.1)
Proof : We argue by induction, starting with m = 2. Fix some compact K ⊂ A \ (∂Ω ∪ ∂ω 0 ). Let, for δ > 0 fixed and sufficiently small, Γ = Γ δ = {z ∈ A ; dist(z, ∂Ω) = δ} and γ = γ δ = {z ∈ A ; dist(z, ∂ω 0 ) = δ}. Let U = U δ be the domain enclosed by ∂Ω and Γ, V = V δ be the domain enclosed by ∂ω 0 and γ and set

W = W δ = A \ (U ∪ V ). Then K ⊂ W, ∂U = ∂Ω ∪ Γ, ∂V = ∂ω 0 ∪ γ, (11.2) 
provided δ is sufficiently small. Following the argument that led us to the inequality (9.13) in the proof of Lemma 9.2, we find successively for sufficiently large κ, that (11.4) and finally that We next assume that (11.1) holds for some m ≥ 2 and all compacts K and establish (11.1) for m + 1 and all compacts K, which will complete the proof. Fix a compact K ⊂ A \ (∂Ω ∪ ∂ω 0 ). Fix some sufficiently small 0 < δ 1 < δ 2 such that , for δ 1 < δ < δ 2 , (11.2) holds. By (11.1) applied to m and to the compact

E κ (u κ ) ≥ 1 2 U |∇u κ | 2 + 1 2 V |∇u κ | 2 + 1 2 K |∇u κ | 2 + κ 2 4 A (1 -|u κ | 2 ) 2 , (11.3) then E κ (u κ ) ≥ 1 2 K |∇u κ | 2 + κ 2 4 A (1 -|u κ | 2 ) 2 + 2π - Γ (1 -|u κ | 2 )|∇u κ | - γ (1 -|u κ | 2 )|∇u κ |,
E κ (u κ ) ≥ 1 2 K |∇u κ | 2 + κ 2 4 A (1 -|u κ | 2 ) 2 + 2π -o 1 κ 2 as κ → ∞. ( 11 
L = (U δ 2 \ U δ 1 ) ∪ (V δ 2 \ V δ 1 ), we find that lim κ→∞ κ m κ 2 L (1 -|u κ | 2 ) 2 + L |∇u κ | 2 = 0. (11.7)
By Fubini and (11.7), there is some

δ = δ κ ∈ (δ 1 , δ 2 ) such that lim κ→∞ κ m κ 2 Γ δ ∪γ δ (1 -|u κ | 2 ) 2 + Γ δ ∪γ δ |∇u κ | 2 = 0. (11.8) Thus Γ δ ∪γ δ (1 -|u κ | 2 )|∇u κ | ≤ Γ δ ∪γ δ (1 -|u κ | 2 ) 2 Γ δ ∪γ δ |∇u κ | 2 1/2 = o 1 κ m+1 as κ → ∞.
(11.9)

By combining (11.4), (11.6) and (11.9), we obtain (11.1) for m + 1 and K. Proof : Argue by contradiction and assume that, for some m ∈ IN and some t ∈ (0, 1), we may find sequences

κ l → ∞, (z l ) ⊂ A κ l m such that |u κ l (z l )| ≤ t.
We first claim that the sequence (z l ) stays far away from ∪ k j=1 ∂ω j . Indeed, let U ⊂ A be a smooth open set such that On the other hand, by Proposition 7.1, we may find a family (α κ ) ⊂ S 1 such that

∪ k j=1 ∂ω j ⊂ U ⊂ A \ (∂Ω ∪ ∂ω 0 ). ( 11 
α κ u κ ⇀ 1 weakly in H 1 (A) as κ → ∞. (11.15)
By (11.14) and (11.15), we find that

v κ = α κ u κ → 1 strongly in H 1 (U ) as κ → ∞. (11.16)
Since it suffices to prove (11.12) for v κ , we work from now on with v κ instead of u κ (note that v κ is also a quasi-minimizer). Set

g = g κ =tr ∪ k j=1 ∂ω j v κ , so that g → 1 in H 1/2 (∪ k j=1 ∂ω j ). Set also h = h κ =tr ∂Ω∪∂ω 0 v κ -1. We split v κ = a + b + c = a κ + b κ + c κ ,
where a, b, c satisfy respectively :

     ∆a = 0 in A a = g on ∪ k j=1 ∂ω j a = 1 on ∂Ω ∪ ∂ω 0 , (11.17)      ∆b = 0 in A b = 0 on ∪ k j=1 ∂ω j b = h on ∂Ω ∪ ∂ω 0 (11.18) and -∆c = κ 2 v κ (1 -|v κ | 2 ) in A c = 0 on ∂A . (11.19) 
By Lemma 8.3, there is some δ > 0 independent of sufficiently large l such that

|a(z)| ≥ 1 + t 2 if dist(z, ∂A) ≤ δ. (11.20)
On the other hand, since v κ is bounded in H 1 (A), it follows that h is bounded in H 1/2 (∂Ω ∪ ∂ω 0 ). By standard elliptic estimates ( [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we find that

|∇b(z)| ≤ C for z ∈ U , (11.21) 
for some constant C independent of l. Since b = 0 on ∪ k j=1 ∂ω j , this implies that

|b(z)| ≤ C dist(z, ∪ k j=1 ∂ω j ) for z ∈ U. (11.22)
Finally, by Lemma 11.1 we have ∆c L p (A) → 0 as l → ∞, so that c W 2,p (A) → 0 as l → ∞, for 1 < p < ∞. In particular, by the Sobolev embeddings and the fact that c = 0 on ∂A, we have

|c(z)| + |∇c(z)| → 0 uniformly in A as l → ∞. (11.23)
By combining (11.20), (11.22) and (11.23), we find that there is some ε > 0 independent of sufficiently large l such that

|v κ (z)| > t if dist(z, ∪ k j=1 ∂ω j ) ≤ ε, (11.24) 
that is, as claimed, the points z l are far away from ∪ k j=1 ∂ω j . We next prove that the points z l are close to ∂Ω ∪ ∂ω 0 . Indeed, since |v κ l (z l )| ≤ t, we find from Lemma 7.1 that dist(z l , ∂A) → 0 as l → ∞.

By (11.24) and (11.25) and the hypothesis z l ∈ A κ l m , we obtain that 1

κ m l ≤ d = d l = dist(z l , ∂Ω ∪ ∂ω 0 ) → 0 as l → ∞. (11.26) 
Finally, we will see that the existence of the points z l contradicts the conclusion of Lemma 11.1.

We start from the fact that a + b satisfies

∆(a + b) = 0 in A |a + b| = 1 on ∂A , (11.27) 
so that |∇(a + b)(z)| ≤ C dist(z, ∂A) for z ∈ A, (11.28) 
for some constant C independent of z and l, by standard estimates for the Green function. By combining (11.23), (11.26) and (11.28), we see that for sufficiently large l and a constant D independent of l we have

B = B l = {z ; |z -z l | < d l /2} ⊂ A and |∇v κ l (z)| ≤ D d l in B. (11.29) 
By (11.29) and the hypothesis |v κ l (z l )| ≤ t, we find that there is some 0 < c < 1/2 independent of large l such that

|v κ l (z)| ≤ 1 + t 2 for z such that |z -z l | < c d l . (11.30) 
By (11.29) and (11.30), we find

κ 2 l A (1 -|v κ l | 2 ) 2 ≥ κ 2 l {z ;|z-z l |<c d l } (1 -|v κ l | 2 ) 2 ≥ Eκ 2+2m l , (11.31) 
for some E > 0 independent of large l. This contradicts Lemma 11.1, and thus completes the proof of Lemma 11.2.

As a final step towards a sharp description of the quasi-minimizers, we prove that, in compact subsets of A, u κ is very close to a constant of modulus 1.

Lemma 11.3. There are constants β κ ∈ S 1 such that, for any fixed compact K ⊂ A and any integers l ∈ IN, m ∈ IN, we have

β κ -u κ C l (K) = o 1 κ m as κ → ∞. (11.32) 
Proof : For the convenience of the reader, we divide the proof into several steps.

Step 1. Estimates for the C 1 convergence of the phase Fix any point z 0 ∈ A and set, for large κ,

β κ = u κ (z 0 ) |u κ (z 0 )| ∈ S 1 ;
we are going to prove that (11.32) is satisfied for this choice of β κ . Let a κ be such that β κ = e ıaκ . Fix a compact K ⊂ A.

In view of the statement we want to prove, we may assume that z 0 ∈ K and that K is simply connected. Fix also a smooth simply connected open set U such that K ⊂ U ⊂ U ⊂ A. In view of Proposition 7.1, for sufficiently large κ we have |u κ | ≥ 1/2 in U , and thus we may write, globally in U , u κ = ρe ıψ = ρ κ e ıψκ , for some smooth ρ and ψ. We may always assume that ψ κ (z 0 ) = a κ . Set, for δ > 0 sufficiently small, Γ δ = {z ∈ U ; dist(z, ∂U )} = δ}. By Fubini and Lemma 11.1, for any fixed m ∈ IN we may find a δ = δ(m, κ) such that Γ δ encloses K and

Γ δ (κ 2 (1 -|u κ | 2 ) 2 + |∇u κ | 2 ) = o 1 κ 2m as κ → ∞. (11.33) 
Since |∇ψ| ≤ 2|∇u κ |, it follows in particular that

Γ δ |∇ψ| 2 = o 1 κ 2m as κ → ∞, (11.34) 
so that max{ψ(z) ; z ∈ Γ δ } -min{ψ(z) ; z ∈ Γ δ } = o 1 κ m as κ → ∞. (11.35) 
Recall that, by (4.17), ψ satisfies div(ρ 2 ∇ψ) = 0 in U. (11.36) By (11.35) and the fact that ψ κ (z 0 ) = a κ , we find that

max{|ψ(z) -a κ | ; z ∈ Γ δ } = o 1 κ m as κ → ∞, (11.37) 
so that the maximum principle applied to ψ yields

max{|e ıψ(z) -β κ | ; z ∈ K} = o 1 κ m as κ → ∞. (11.38) 
We next estimate the rate of convergence of ψ to a κ in C 1 . To this purpose, we rewrite (11.36) as

-∆ψ = -∆(ψ -a κ ) = f = f κ = 2 ρ ∇ρ • ∇ψ in U. (11.39) 
Thus, by standard elliptic interior estimates, we have, for p > 2, Step 2. Estimates for the uniform convergence of the modulus By (4.16), the equation of

∇ψ L ∞ (K) ≤ C p ( f L p (U ) + ψ -a κ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞. ( 11 
ζ = ζ κ = 1 -ρ = 1 -ρ κ is ∆ζ = g = g κ = κ 2 ρ(1 -ρ 2 ) -ρ|∇ψ| 2 in U. (11.41) 
By Lemma 11.1 and Step 1 applied to the compact U , we have

g L 2 (U ) = o 1 κ m as κ → ∞. (11.42) 
On the other hand, the inequality |∇ρ| ≤ |∇u κ | together with (11.33) imply that

Γ δ (κ 2 (1 -ρ 2 ) 2 + |∇ρ| 2 ) = o 1 κ 2m as κ → ∞, (11.43) 
which in turn yields

ζ L ∞ (Γ δ ) = o 1 κ m as κ → ∞. (11.44) 
By (11.42), (11.44) and standard elliptic interior estimates, we obtain

1 -ρ L ∞ (K) = ζ L ∞ (K) ≤ C( g L 2 (U ) + ζ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞ (11.45) and, for 1 ≤ p < ∞, ∇ρ L p (K) = ∇ζ L p (K) ≤ C p ( g L 2 (U ) + ζ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞. (11.46) 
By combining (11.38), (11.40), (11.45) and (11.46), we find that

u κ -β κ W 1,p (K) = o 1 κ m as κ → ∞, ∀ K, ∀ 1 ≤ p < ∞. (11.47) 
Step 3. The bootstrap argument Let f be as in (11.39). By (11.40) and (11.46) applied to the compact U , we have

f L p (U ) = o 1 κ m as κ → ∞, ∀ 1 < p < ∞. (11.48) 
By combining (11.37), (11.39) and (11.48) we find, using standard elliptic interior estimates, that

ψ -a κ W 2,p (K) ≤ C p ( f L p (U ) + ψ -a κ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞, ∀ 1 < p < ∞, (11.49) so that ψ -a κ C 1,a (K) = o 1 κ m as κ → ∞, ∀ 0 < a < 1, (11.50) 
by the Sobolev embeddings. Let now g be as in (11.41). By (11.40) and (11.45) applied to the compact U , we find that

g L p (U ) = o 1 κ m as κ → ∞, ∀ 1 < p < ∞. (11.51) 
From (11.41), (11.44) and (11.51) we obtain, using standard elliptic interior estimates, that

1 -ρ W 2,p (K) ≤ C p ( g L p (U ) + 1 -ρ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞, ∀ 1 < p < ∞, (11.52) 
and thus

1 -ρ C 1,a (K) = o 1 κ m as κ → ∞, ∀ 0 < a < 1, (11.53) 
using once again the Sobolev embeddings. By combining (11.50) and (11.53), we are led to

u κ -β κ C 1,a (K) = o 1 κ m as κ → ∞, ∀ 0 < a < 1. (11.54) 
We complete the proof of Lemma 11.3 by establishing by a straightforward induction the estimate

u κ -β κ C l,a (K) = o 1 κ m as κ → ∞, ∀ 0 < a < 1, ∀ l ∈ IN. (11.55) 
Assuming that (11.55) holds for l and all the compact subsets of A, we find, with f and g given respectively by (11.39) and (11.41), that

f C l-1,a (U ) = o 1 κ m , g C l-1,a (U ) = o 1 κ m as κ → ∞, ∀ 0 < a < 1. (11.56) 
We next replace (11.50) and (11.52) by the appropriate Schauder interior estimates

ψ-a κ C l+1,a (K) ≤ C a ( f C l-1,a (U ) + ψ-a κ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞, ∀ 0 < a < 1, (11.57) 
and respectively

1 -ρ C l+1,a (K) ≤ C a ( g C l-1,a (U ) + 1 -ρ L ∞ (Γ δ ) ) = o 1 κ m as κ → ∞, ∀ 0 < a < 1. (11.58)
It follows from (11.57) and (11.58) that

u κ -β κ C l+1,a (K) = o 1 κ m as κ → ∞, ∀ 0 < a < 1. (11.59)
The proof of Lemma 11.3 is complete.

The profile of quasi-minimizers for large κ

In order to better explain the results we will establish in the remaining part of this section, we start by taking a closer look to the upper bound m κ ≤ 2π established in Proposition 6.1. More specifically, we will give a more intuitive description of the testing maps w n = u n v n constructed during the proof of Proposition 6.1. To start with, let us recall the construction that led to u n . Fix a conformal representation F of Ω into ID (this map was denoted w in the proof of Lemma 6.1) and let, for a ∈ ID, F a to be the conformal representation of Ω into ID given by F a = u a • F , where u a is the Moebius map, u a (z) = za 1az . Thus F a is holomorphic and has exactly one zero z a = F -1 (a). In particular, this zero tends to ∂Ω as |a| ր 1 ; more precisely, dist(z a , ∂Ω) is of the order of 1 -|a|. Another easily seen property of F a is that F a → -1 uniformly on compact subsets of Ω as |a| ր 1 ; more specifically, on any compact K ⊂ Ω, the quantity |F a + 1| is of the order of 1 -|a|. Another useful remark is that the map F a is determined, up to a phase shift, by its zero z a : if H is a conformal representation of Ω into ID such that H(z a ) = 0, then there is some α ∈ S 1 such that H = αF a (see, e.g., [START_REF] Ahlfors | Complex Analysis[END_REF]). The maps u n constructed in the proof of Lemma 6.1 were essentially given by u n ≈ F an for some sequence (a n ) ⊂ (0, 1) such that a n ր 1. Here, ≈ accounts for the fact that the modulus of F an was slightly corrected in order to have |u n | = 1 on ∂A ; however, this correction is less and less important as n → ∞. We also note that, for the purpose of Lemma 6.1, any sequence (a n ) such that |a n | → 1 would have been useful. For later use, it will be convenient to describe the map F a not in terms of the parameter a in the Moebius transform, but rather in terms of its unique zero. For a given z ∈ Ω, we will denote F z the map F F (z) , which is the only map of the form F a that vanishes at z. We next recall the construction of v n . Let G be a conformal representation of C | ∪ {∞} \ ω 0 into ID ; it is easy to see that G extends as a smooth map from ∂ω 0 into S 1 . Set, as above,

G a = u a • G.
It is a simple exercice that the map v n constructed in the proof of Lemma 6.2 essentially agrees with some G a : v n ≈ G bn , provided we choose the right G, for some sequence (b n ) ⊂ (0, 1) such that b n ր 1. Similarly, we define

G z = G G(z) , for z ∈ C | \ ω 0 .
Finally, the testing maps in Proposition 6.1 are given by

w n ≈ F an G bn = F ζn G ξn , where ζ n = F -1 (a n ), ξ n = G -1 (b n ). (11.60) 
In particular, w n has exactly two zeroes : ζ n near ∂Ω, ξ n near ∂ω 0 . Moreover, intuitively speaking, w n is "almost" holomorphic far away from ∂ω 0 (since v n ≈ -1, so that w n ≈ -u n there) and, similarly, "almost" anti-holomorphic far away from ∂Ω. A straightforward adaptation of the proof of Proposition 6.1 yields the following result, whose proof will be omitted Lemma 11.4. Let F be a conformal representation of Ω into ID and G be a conformal represen-

tation of C | \ ω 0 into ID. Define, for ζ, ξ ∈ A and α ∈ S 1 , w ζ,ξ,α = αF ζ G ξ , w ζ,ξ,α : A → C | . Then : a) w ζ,ξ,α → α uniformly on the compacts of A \ (∂Ω ∪ ∂ω 0 ) as ζ → ∂Ω and ξ → ∂ω 0 ; b) lim ζ→∂Ω, ξ→∂ω 0 E κ (w ζ,ξ,α ) = 2π.
Since, in principle we can have m κ < 2π, we can not infer that, for a fixed κ, w ζ,ξ,α satisfies the upper bound (7.1) required in the definition of a quasi-minimizer, even if we choose ζ, ξ very close to ∂Ω, to ∂ω 0 respectively. However, if we assume A supercritical, we know from Corollary 6.6 that m κ ≈ 2π for large values of κ, so that, for large κ, w ζ,ξ,α becomes a good candidate for a quasiminimizer, provided we take ζ and ξ sufficiently close to ∂Ω, respectively to ∂ω 0 . Unfortunately, this is unrealistic. Indeed, the above construction can be modified in the following way, which we present informally : take a map that is close to αF ζ near ζ and close to βG ξ near ξ. Here, α = β, α, β ∈ S 1 . Then "glue" these maps by considering an S 1 -valued transition map from ζ to ξ, that is equal to -α near ζ and to -β near ξ. If the transition map is properly choosen, then we obtain a map with energy close to 2π. Therefore, we may prove at best that, near its zeroes, a quasi-minimizer looks like some αF ζ (if the zero is close to ∂Ω), respectively like some βG ξ (near ∂ω 0 ). We will eventually prove that this is indeed the case for large κ.

We state informally the main results of this section : assume A supercritical. Then, for sufficiently large κ, the following properties hold : (P1) each quasi-minimizer u κ has exactly two zeroes, one, say ζ, near ∂Ω, the other one, say ξ, near ∂ω 0 ; (P2) each quasi-minimizer u κ is "almost" holomorphic far away from ∂ω 0 and "almost" antiholomorphic far away from ∂Ω ; (P3) near ζ, u κ is close (in a sense to be made precise later) to αF ζ for some α ∈ S 1 . Similarly, near ξ, u κ is close to some βG ξ ; (P4) ζ is a zero of degree 1 and ξ is a zero of degree -1.

We start by giving a precise version of property (P2). Recall that f is holomorphic if and only if |∇f | 2 = 2Jac f ; for a general map f , we have only the pointwise inequality |∇f | 2 ≥ 2Jac f . Similarly, g is anti-holomorphic if and only if |∇g| 2 = -2Jac g, while in general we have only |∇g| 2 ≥ -2Jac g. Lemma 11.5. Assume that I 0 > 2π and let (u κ ) be a family of quasi-minimizers. Let K be a fixed compact set in A \ ∂ω 0 , L be a fixed compact set in A \ ∂Ω. Then, for each m ∈ IN, we have

K (|∇u κ | 2 -2Jac u κ ) = o 1 κ m and L (|∇u κ | 2 + 2Jac u κ ) = o 1 κ m as κ → ∞. (11.61)
Proof : By Lemma 11.3, the conclusion is clear if either K or L are compact subsets of A \ (∂Ω ∪ ∂ω 0 ). Therefore, without any loss of generality, we may assume that K = U , L = V , where U, V ⊂ A are smooth open sets such that

∂Ω ⊂ U ⊂ A \ (∪ k j=0 ∂ω j ), ∂ω 0 ⊂ V ⊂ A \ (∂Ω ∪ ∪ k j=1 ∂ω j ), U ∩ V = ∅. (11.62) 
Set Γ = ∂U \ ∂Ω, γ = ∂V \ ∂ω 0 , which are smooth (possibly multiply connected) curves in A.

We proceed as in the proof of Lemma 11.1. We have

E κ (u κ ) ≥ K 1 2 |∇u κ | 2 -Jac u κ + K Jac u κ + L 1 2 |∇u κ | 2 + Jac u κ - L Jac u κ . (11.63)
Since, by Lemma 2.1, the degree formula (1.5) and Lemma 11.3, we have

K Jac u κ = 1 2 ∂Ω u κ ∧ ∂u κ ∂τ + 1 2 Γ u κ ∧ ∂u κ ∂τ = π + o 1 κ m as κ → ∞ (11.64) 
and similarly If we examine the above proof, the argument we used yields in a straightforward way the following result, whose proof will be omitted Lemma 11.6. Let U , V ⊂ A be two smooth open sets such that (11.62) holds. Then, for each m ∈ IN, we have

- L Jac u κ = - 1 2 ∂ω 0 u κ ∧ ∂u κ ∂τ - 1 2 γ u κ ∧ ∂u κ ∂τ = π + o 1 κ m as κ → ∞, ( 11 
U 1 2 |∇u κ | 2 + κ 2 4 (1-|u κ | 2 ) 2 ) = π+o 1 κ m , V 1 2 |∇u κ | 2 + κ 2 4 (1-|u κ | 2 ) 2 = π+o 1 κ m , as κ → ∞.
(11.67)

We next start preparing the proof of property (P3). To this purpose, it will be convenient to approximate u κ with a product, one of the factors "living" near ∂Ω, the other one near ∂ω 0 . This is done in the following way : set v κ = β κ u κ , where β κ is given by Lemma 11.3. Fix two small numbers 0 < δ 1 < δ 2 and set U j = {z ∈ A ; dist(z, ∂Ω} < δ j }, V j = {z ∈ A ; dist(z, ∂Ω} < δ j }, j = 1, 2.

(11.68) By Lemma 11.3, we may extend v κ|U 1 from U 1 to Ω, the extension being denoted by f κ , such that, for each m ∈ IN, we have

f κ = v κ in U 1 , f κ = 1 in Ω \ U 2 , f -1 C l (K) = o 1 κ m , as κ → ∞, ∀ l ∈ IN, ∀ K compact in Ω.
(11.69) Similarly, we may find, in C | \ ω 0 , a map g κ such that, for each m ∈ IN, we have

g κ = v κ in V 1 , f κ = 1 in C | \V 2 , f -1 C l (K) = o 1 κ m , as κ → ∞, ∀ l ∈ IN, ∀ K compact in C | \ω 0 .
(11.70) Note that, by construction, we have

u κ = β κ f κ g κ in U 1 ∪ V 1 .
(11.71) By Lemma 11.1, we also have

u κ -β κ f κ g κ H 1 (A) = o 1 κ m , as κ → ∞, ∀ m ∈ IN. (11.72)
Moreover, by Lemma 11.6, we obtain

Ω 1 2 |∇f κ | 2 + κ 2 4 (1 -|f κ | 2 ) 2 = π + o 1 κ m , as κ → ∞ (11.73) and C | \ω 0 1 2 |∇g κ | 2 + κ 2 4 (1 -|g κ | 2 ) 2 = π + o 1 κ m , as κ → ∞. (11.74) 
Note also that, by construction, the zeroes of u κ which are close to ∂Ω coincide, for large κ, with the zeroes of f κ , and the zeroes of u κ close to ∂ω 0 with the ones of g κ . We next note that, by the proof of lemma 4.4, for a fixed κ, the zeroes of a critical point u κ of E κ in J can not tend to ∂A, applies also to the case of the quasi-minimizers. Indeed, the argument in the proof of Lemma The following result is the main step in establishing (P3).

Lemma 11.7. Let κ l → ∞. Then there is some α ∈ S 1 such that, up to some subsequence,

f κ l • (F ζκ l ) -1 → α id strongly in H 1 (ID).
Proof : We split the proof into several steps.

Step 1. Existence of a holomorphic weak

H 1 limit w for f κ l • (F ζκ l ) -1 Set a = a κ = f • (F ζ ) -1 = f κ • (F ζκ ) -1 : ID → C | . Since F ζ is a conformal representation, we have ID |∇a| 2 = Ω |∇f | 2 = 2π + o 1 κ m , as κ → ∞, ∀ m ∈ IN, (11.78) 
by (11.73).

Using again the fact that F ζ is a conformal representation (and thus an orientation preserving diffeomorphism), we also have Step 2. w is not constant We start by excluding the first possibility, i.e., we prove that w is not a constant of modulus 1. Intuitively speaking, this comes from the fact that a(0) = 0. Fix some 0 < ε < 1. We will find some δ > 0 such that, for all sufficiently large κ, |a(z

ID (|∇a| 2 -2Jac a) = Ω (|∇f | 2 -2Jac f ) = o 1 κ m ,
)| ≤ ε if |z| ≤ δ. Set d = d κ =dist(ζ, ∂Ω) =dist(ζ κ , ∂Ω).
It is clear from the definition of F ζ ( and explained in Appendix X) that there are some constants C(δ) > 0, for 0 < δ < 1, independent of large κ, such that

|(F ζ ) -1 (z) -(F ζ ) -1 (0)| = |(F ζ ) -1 (z) -ζ| ≤ C(δ)d|z| if |z| ≤ δ. (11.88)
On the other hand, recall the estimate (11.29), which with our notations becomes, for large κ,

|∇f (z)| = |∇u κ (z)| ≤ D d if |z -ζ| ≤ d 2 , (11.89) 
for some constant D independent of κ. By combining (11.88) and (11.89), we see that, for each ε > 0, there is some

δ = δ(ε) > 0 such that |a(z)| ≤ ε if |z| ≤ δ. As a consequence, |w(z)| ≤ ε if |z| ≤ δ.
Therefore, w is not a constant, as claimed. Moreover, since w is holomorphic, and thus smooth in ID, we may also infer the fact that w(0) = 0. (11.90)

Step 3.

Conclusion

We know that w is a holomorphic map in ID such that w(0) = 0 and |w| = 1 on S 1 . Therefore, there is some α ∈ S 1 such that w = α id, by the Schwartz lemma (see, e.g., [START_REF] Ahlfors | Complex Analysis[END_REF]). On the other hand, by (11.78) and (11.87) we find that ID |∇a| 2 → ID |∇w| 2 . Therefore, up to subsequences, a strongly converges in H 1 (ID) to α id, as claimed.

Similarly, we have Lemma 11.8. Let κ l → ∞. Then there is some β ∈ S 1 such that, up to some subsequence, g κ l • (G ξκ l ) -1 → β id strongly in H 1 (ID).

We may now prove the precise statement concerning property (P3), which is a trivial consequence of Lemmas 11.7 and 11.8 : Lemma 11.9. Let (u κ ) be a family of quasi-minimizers. Let U , V be two smooth open sets such that (11.62) holds. Then there are constants

α κ ∈ S 1 , γ κ ∈ S 1 such that U |∇(u κ -α κ F ζ )| 2 → 0 as κ → ∞ (11.91)
and respectively We now start the proof of (P1). The first step consists in proving that the energy of u κ is essentially concentrated in a ball of radius of order dist(ζ, ∂Ω) around ζ and in a ball of radius of order dist(ξ, ∂ω 0 ) around ξ.

V |∇(u κ -γ κ G ξ )| 2 → 0 as κ → ∞. ( 11 
Lemma 11.10. Let δ > 0. Then there are constants R δ > 0 and r δ > 0 such that, for sufficiently large κ, we have 1 2

U (ζ) |∇u κ | 2 ≥ π - δ 3 , (11.96) 1 2 
V (ξ) Here, 

|∇u κ | 2 ≥ π - δ 3 
U (ζ) = {z ∈ A ; |z -ζ| ≤ R δ dist(ζ, ∂Ω) , dist(z, ∂Ω) ≥ r δ dist(ζ, ∂Ω)} (11.99) and V (ξ) = {z ∈ A ; |z -ξ| ≤ R δ dist(ξ, ∂ω 0 ) , dist(z, ∂ω 0 ) ≥ r δ dist(ξ, ∂ω 0 )}. ( 11 
|∇u κ | 2 = (F ζ ) -1 ({z ; |z|<ρ}) |∇f | 2 = {z ; |z|<ρ} |∇a| 2 > π - δ 3 . (11.103)
The conclusion of Lemma 11.10 follows then trivially from the fact that, by the definition of F ζ , there are clearly some constants R δ > 0 and r δ > 0 such that, for sufficiently large κ, we have (see also Appendix X):

(F ζ ) -1 ({z ; |z| < ρ}) ⊂ {z ∈ A ; |z -ζ| ≤ R δ dist(ζ, ∂Ω) , dist(z, ∂Ω) ≥ r δ dist(ζ, ∂Ω)}. (11.104)
We next prove that, if u κ has, near ∂Ω, a zero different from ζ, then that zero is "far away" from ζ in a suitable scale. By the form of F ζ (see also Appendix X), there is some compact smooth convex K ⊂ ID, independent of κ, such that B ⊂ (F ζ ) -1 (K). On the other hand, using again the form of F ζ , there are constants ρ > 0, r > 0 such that

B ⊂ (F ζ ) -1 (K) ⊂ C = C κ = {z ∈ A ; |z -ζ| ≤ ρ dist(ζ, ∂Ω), dist(z, ∂Ω) ≥ r dist(ζ, ∂Ω)}. (11.
106) The conclusion of Lemma 11.11 is an immediate consequence of the following Claim. For sufficiently large κ, the restriction of u κ to B is a C 1 diffeomorphism into its image.

Proof of the Claim : Split u κ = v 1 + v 2 , where

-∆v 1 = 0 in A v 1 = u κ on ∂A (11.107)
and

-∆v 2 = h = h κ = κ 2 u κ (1 -|u κ | 2 ) in A v 2 = 0 on ∂A . (11.108)
Since v 1 is harmonic and |v 1 | = 1 on ∂A, we find, by standard estimates for the Green function, that

|∇v 1 (z)| ≤ C 1 dist(z, ∂Ω)
and

|D 2 v 1 (z)| ≤ C 1 (dist(z, ∂Ω)) 2 in A, (11.109) 
for some C 1 independent of large κ. Taking the definition of the set C into account, this implies that

|∇v 1 (z)| ≤ C 2 dist(ζ, ∂Ω)
and

|D 2 v 1 (z)| ≤ C 2 (dist(ζ, ∂Ω)) 2 in C.
(11.110) By interpolation, this yields, with some constant C 3 independent of large κ, the estimate

|∇v 1 (z) -∇v 1 (z ′ )| ≤ C 3 |z -z ′ | b (dist(ζ, ∂Ω)) 1+b in C, ∀ 0 < b < 1.
(11.111)

On the other hand, we find from Lemma 11.1 and the inequality |u κ | ≤ 1, valid for quasiminimizers, that h L p (A) → 0 as κ → ∞, and thus v 2 W 2,p (A) → 0 as κ → ∞, for 1 < p < ∞. By the Sobolev embedings, this implies that 

v 2 C 1,b (A) → 0 as κ → ∞, ∀ 0 < b < 1. ( 11 
(z) -∇u κ (z ′ )| ≤ C 4 |z -z ′ | b (dist(ζ, ∂Ω)) 1+b in C, ∀ 0 < b < 1, ( 11 
.113) where C 4 depends only on b. We next transport the above estimates to ID with the help of F ζ . Note that, by construction, we have 

|∇(F ζ ) -1 (z)| ≤ C 5 dist(ζ, ∂Ω) and |D 2 (F ζ ) -1 (z)| ≤ C 5 dist(ζ, ∂Ω) in K. ( 11 
= a κ = u κ • (F ζ ) -1 , that |∇a(z) -∇a(z ′ )| ≤ C 6 (|z -z ′ | + |z -z ′ | b ) ≤ C 7 |z -z ′ | b in K, ∀ 0 < b < 1, (11.115) 
where C 7 depends only on b. Therefore, the family (a κ ) is relatively compact in C 1,b (K), for 0 < b < 1. On the other hand, recall that, by Lemma 11.7, up to subsequences, a κ converges strongly in H 1 (A) to α id, for some α ∈ S 1 . Therefore, for sufficiently large κ, a κ is a C

1 diffeomorphism in K. Since F ζ is a diffeomorphism, we find that a • F ζ is a diffeomorphism in (F ζ ) -1 (K) ; in particular, u κ is a C 1 diffeomorphism in B.
This completes the proof of Lemma 11.11.

Remark 11.1. With a little more work, the above proof yields the following estimate :

|u κ (z)| ≥ C 8 |z -ζ| dist(ζ, ∂Ω) in B, (11.116) 
for some constant independent of large κ.

We may now establish property (P1), which we state as Proposition 11.1. Assume that I 0 > 2π. Then each quasi-minimizer u κ has exactly two zeroes, provided κ is sufficiently large.

Proof : It suffices to reason near ∂Ω, the proof being similar near ∂ω 0 . Argue by contradiction and assume that, along some sequences, there is some λ = λ κ = ζ such that dist(λ, ∂Ω) → 0 as κ → ∞ and u κ (λ) = 0. Let 0 < δ < π. With the notations of Lemma 11.10, there are some R δ > 0 and r δ > 0 such that, for sufficiently large κ, we have 1 2

U (ζ) |∇u κ | 2 ≥ π - δ 3 > 2π 3 . (11.117) 
Since the proof of Lemma 11.10 does not use the fact that ζ is the zero of u κ closest to ∂Ω, we also have 1 2 

U (λ) |∇u κ | 2 ≥ π - δ 3 > 2π 3 . ( 11 
-λ| ≤ R δ dist(ζ, ∂Ω)+ R δ r δ dist(z, ∂Ω) ≤ R δ dist(ζ, ∂Ω)+ R 2 δ r δ dist(ζ, ∂Ω) ≡ Rdist(ζ, ∂Ω). ( 11 
| ≥ δ in the set A \ (U (ζ) ∪ V (ξ)).
We end this section by establishing the property (P4).

Lemma 11.12. For sufficiently large κ, ζ κ is a zero of degree 1 of u κ , while ξ κ is a zero of degree -1 of u κ .

Proof : We reason for ζ, the argument being similar for ξ. Fix some 0 < r <dist(ζ, ∂Ω). We have to prove that deg(u κ , C) = 1, where C = {z |z -ζ| = r} and the orientation on C is the direct one. Fix some sufficiently small δ > 0 (independent of κ). Let 

U = {z ∈ A ; dist(z, ∂A) < δ, |z -ζ| > r}. ( 11 

Existence of stable critical points in the supercritical case

From what we know by now, if A is supercritical, then : either (i) there is some finite κ 1 such that the minimizers of (1.1)-(1.3) do not exist for κ > κ 1 or (ii) for large κ, the minimizers have two zeroes. In this section, we prove that, for large values of κ, there are locally minimizing critical points of E κ that do not vanish. In particular, these critical points are not minimizers. The construction we present below is also valid when A is sub critical or critical, but it is easy to see that in these cases it actually yields minimizers. The same idea could be used to obtain stable solution of the Neumann problem, in the spirit of [START_REF] Jimbo | Stability of non constant steady-state solutions to a Ginzburg-Landau equation in higher space dimensions[END_REF] and [START_REF] Jimbo | Ginzburg-Landau equations and stable solutions in a rotational domain[END_REF]. However, the method in [START_REF] Jimbo | Stability of non constant steady-state solutions to a Ginzburg-Landau equation in higher space dimensions[END_REF] seems to be very much related to radial symmetry, while our works in general domains.

We will need the following variant of Lemma 8.2 :

Lemma 12.1. Let u be a minimizer of (1.14)- (1.15). Let (u n ) ⊂ K be such that u n → u strongly in H 1 (A). Set g n =tr ∂A u n , g =tr ∂A u. Let κ n → ∞ and, for each n, let u n be a minimizer of E κn in the class {u ∈ H 1 (A) ; tr ∂A u = g n }.

Then |u n | → 1 uniformly in A as n → ∞.

Proof : All we need in order to be able to repeat the proof of Lemma 8.2 is the estimate

lim n→∞ κ 2 n A (1 -|u n | 2 ) 2 = 0. (12.1) Since E κn (u n ) ≤ E κn (u n ) = 1 2 A |∇u n | 2 → 1 2 A |∇u| 2 = I 0 , (12.2) 
we find that, up to subsequences, u n ⇀ v weakly in H 1 (A) to some v ∈ H 1 (A; S 1 ) such that

1 2 A |∇v| 2 ≤ 1 2 A |∇u| 2 . ( 12.3) 
Since we also have tr ∂A v =tr ∂A u, it follows that v ∈ K ; therefore, v = u, by Lemma 2.4. Going back to (12.2), we find that u n → u strongly in H 1 (A) and (12.1) follows by using again (12.2).

We may now start our construction of stable critical points. Set 

J ′ = {u ∈ J ; 1/2 ≤ |u|
= |∇ρ| 2 + ρ 2 |∇v| 2 , ∀ u ∈ J ′ . (12.6) 
Indeed, the second equality in (12.6) follows by differentiating the identity vv ≡ 1 ; here, we use the fact that

∇(f g) = f ∇g + g∇f if f, g ∈ H 1 ∩ L ∞ ; (12.7)
see, e.g., [START_REF] Brezis | Analyse fonctionnelle[END_REF]. The third equality is a straightforward consequence of the first two, so it remains to establish the first equality in (12.6). This identity is clear since, for u ∈ J ′ , ρ is bounded, and thus we may use (12.7). Let now (u n ) be a minimizing sequence for n κ . We may write

u n = ρ n v n , with v n ∈ K, ρ n ∈ H 1 (A), 1/2 ≤ ρ n ≤ 2, tr ∂A ρ n = 1. By (12.6), we have 1 2 A |∇ρ n | 2 + 1 8 A |∇v n | 2 ≤ A E κ (u n ) = 1 2 A |∇ρ| 2 + 1 2 A (ρ n ) 2 |∇v n | 2 + κ 2 4 A (1-(ρ n ) 2 ) 2 ≤ I 0 +o (1) ; 
(12.8) the last inequality comes from the fact that any minimizer u of I 0 belongs to J ′ , so that n κ ≤ I 0 . It follows that the sequences (ρ n ) and (v n ) are bounded in H 1 (A) (for ρ n , we also use the fact that it has trace 1). Up to some sequence, we may find some ρ, v ∈ H 1 (A) such that ρ n ⇀ ρ, v n ⇀ v weakly in H 1 (A). On the one hand, we clearly have 1/2 ≤ ρ ≤ 1. On the other hand, recall that, by Lemma 2.3 b), the class K is closed with respect to weak H 1 convergence, and therefore v ∈ K. Set u = ρv. It is then straightforward that u ∈ J ′ and that u is a minimizer of (12.5), which completes the proof of the lemma.

As for the proof of a), we argue by contradiction. Assume that there is a sequence κ n → ∞ and that there are maps v κn ∈ J such that u κnv κn H 1 (A) < 1/n and E κn (v κn ) < E κn (u κn ). Passing to a subsequence, we may assume that u κn → u strongly in H 1 (A), where u is a minimizer of (1.14)- (1.15). Let w κn attain the minimum of E κ among all the functions that agree with v κn on ∂A ; thus E κn (w κn ) ≤ E κn (v κn ) < E κn (u κn ). Starting from

E κn (w κn ) < E κn (u κn ) ≤ I 0 , (12.11) 
we find that, up to subsequences, w κn ⇀ v weakly in H 1 (A) to some v ∈ H 

of E κ in J such that u κ • O = O • u κ .
Assume now that A is a circular annulus, A = {z ; ρ < |z| < R}. Arguing as at the end of the Section 10, we obtain the existence of a local minimizer E κ in J of the form u κ (z) = f (|z|) z |z| ; moreover, we may assume that f (ρ) = f (R) = 1. In particular, this u κ must satisfy the Ginzburg-Landau equation. However, it is well known that there is exactly one f such that f (ρ) = f (R) = 1 and such that u κ satisfies the Ginzburg-Landau equation ; see, e.g., [START_REF] Golovaty | On uniqueness of vector-valued minimizers of the Ginzburg-Landau functional in annular domains[END_REF]. We are thus led to the following Corollary 12.2. Assume that A = {z ; ρ < |z| < R}. Then, for large κ, the only solution of the Ginzburg-Landau equation of the form u κ

(z) = f (|z|) z |z| , where f (ρ) = f (R) = 1, is a local minimizer of E κ in J .
Then clearly w ∈ H 1 (Ω; S 1 ). Since Ω is simply connected, we may thus lift w in H 1 , i.e., we may write w = e ı φ for some φ ∈ H 1 (Ω; IR). If ϕ is the restriction of φ to A, then u = ve ıϕ and ϕ ∈ H 1 (A; IR). This completes the proof of a).

Proof of b) : let (u n ) ⊂ K be a bounded sequence. Write u n = ve ıϕn , with ϕ n ∈ H 1 (A; IR). Since

|∇ϕ n | = |∇(e ıϕn )| = |∇(u n v)| = |u n ∇v + v∇u n | ≤ |∇v| + |∇u n |,
it follows that (ϕ n ) is bounded in H 1 , so that, up to a subsequence, ϕ n ⇀ ϕ weakly in H 1 and a.e. for some ϕ ∈ H 1 (A; IR). Then clearly u n → u = ve ıϕ a.e., so that u n ⇀ u weakly in H 1 . By a), this u belongs to K.

Proof of lemma 2.5 : Clearly, η is not constant. Let x 0 be a minimum point of η, which has to belong to ∂A. Let Γ be the connected component of ∂A containing x 0 . Since η is constant on Γ, we must have ∂η ∂ν < 0 on Γ, by the Hopf boundary lemma. Therefore, Γ ∂η ∂ν < 0, and thus Γ = ∂ω 0 . In conclusion, any minimum point of η is on ∂ω 0 . Similarly, any maximum point of η is on ∂Ω, so that a) follows. For b), let t ∈ (C 0 , 0) be a regular value of η and let Γ be a connected component of the level set {η = t}. Note that t = C j , j = 1, . . . , k. Indeed, ∂η ∂τ = 0 on ∂ω j and, if j ≥ 1, ∂η ∂ν has to vanish somewhere on ∂ω j . Thus ∇η has to vanish somewhere on ∂ω j , so that C j is a critical value for j ≥ 1. Consider the smooth domain U enclosed by Γ and let V = U ∩ A. Then there is a family F ⊂ {0, . . . , k} such that where f = e η u 0 is a holomorphic map, by (2.10). Thus, the analytic maps u 0 and z → u 0 (z) , that coincide in B, must coincide in A. In other words, u 0 (z) = u 0 (z) in A. This is the desired symmetry property of u 0 .

∂V = Γ ∪ j∈F ∂ω j .
We now turn to the case where O is a rotation of angle θ = 2π/n. Without loss of generality, we may assume the rotation centered at the origin. As above, we have, with η = η • O, that η = η. Fix now a smooth simple curve Γ ⊂ A which encloses 0 and is symmetric with respect to O. Such curves exist : for example, if δ > 0 is sufficiently small, we may take Γ = {z ∈ A ; dist (z, ∂Ω) = δ}.

Note that, if we orient Γ with the natural orientation, then deg (u, Γ) = 1.

this property was established in [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF] for harmonic extensions of VMO maps. In our case, tr v ∈ H 1/2 (∂A), and H 1/2 ֒→VMO in 1D ; therefore, (B.2) applies to our case. We find that 1/8 ≤ |u(z)| ≤ 4 if z is sufficiently close to ∂A. Finally, the existence of a is a consequence of the continuity of u in A.

Consider the map U = u/|u| ; this map is well-defined, by the preceding discussion. On the other hand, since U is S 1 -valued, Lemma 2. On the other hand, given a map g ∈ VMO(∂A ; S 1 ), its harmonic extensions to A, g, has modulus "almost" 1 near ∂A, that is g ∈ VMO(∂A ; S 1 ), 0 < ε < 1 =⇒ ∃ δ > 0 such that 1ε ≤ |g(z)| ≤ 1 if dist(z, ∂A) < δ (C.5) (for the definition of VMO and the proof of (C.5), see [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]). Since H 1/2 ֒→VMO in 1D, the conclusion of (C.5) holds for our g. We are eventually going to prove that ρ, ψ are smooth in the neighborhood of each point z 0 ∈ ∂A, which will complete the proof of the Lemma.

Step 3. We have ∇ψ ∈ L p (V ), 1 ≤ p < ∞ Fix some z 0 ∈ ∂A. In order to simplify the proof, we make the following assumptions : we suppose that z 0 = 0, that A ⊂ {z ; Im(z) > 0}, and that ∂A ⊂ IR in the neighborhood of z 0 . (However, these assumptions are not essential for carrying out the arguments below.) Let R > 0 to be specified later such that the disc D R of radius R is contained in U and the upper half disc By scaling, the constant C p depends on p, but not on R. Next we note that

D + R = D R ∩ {z ; Im(z) > 0} is contained in V .
F L p (D R ) ≤ 1 -ρ2 L ∞ (D R ) ∇ ψ L p (D R ) = 1 -ρ 2 L ∞ (D R ) ∇ ψ L p (D R ) ≤ 1 2C p ∇ ψ L p (D R ) , (C.13)
provided R is sufficiently small, by (C.6) and the definition of ρ. We next note that, for a.e. R > 0 such that D + R ⊂ V , we have tr ∂D R ∩A ψ ∈ H 1 (∂D R ∩ A), so that for any such R we have tr ∂D R ψ ∈ H 1 (∂D R ) ֒→ W 1-1/4,4 (∂D R ), (C.14) by the Sobolev embeddings. Taking any R such that both (C.13) with p = 4 and (C.14) hold, we find from (C.12) that ∇ψ ∈ L 4 near z 0 . Using the fact that v κ ∈ C ∞ (A), we obtain that ∇ψ ∈ L 4 (V ). We use this argument to bootstrap : as above, for a.e. R > 0 such that D + R ⊂ V we have tr ∂D R ψ ∈ W 1,4 (∂D R ) ֒→ W 1-1/8,8 (∂D R ).

(C.15)

We find similarly that ∇ψ ∈ L 8 (V ), and by induction that ∇ψ ∈ L 2 n (V ) for n ≥ 1. Therefore, ∇ψ ∈ L p (V ) for 1 ≤ p < ∞.

(C.16)

Step 4. The bootstrap argument Going back to the equation (C.7), we find from (4.31) that ∆ρ ∈ L p (V ), 1 < p < ∞. If W is a neighborhood of ∂A such that W ⊂ U , this implies, by standard elliptic estimates ( [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), that ρ ∈ W 2,p (W ∩ A), 1 < p < ∞, and therefore, ρ ∈ W 2,p (V ), 1 < p < ∞, (C.17 Remark D.1. It follows from Lemma D.1 that the right-hand side of (D.1) yields a "standard" semi-norm on H 1/2 (∂A), in the following sense : this quantity is a norm, equivalent to the usual ones, on codimension one subspaces of H 1/2 (∂A) that do not contain non zero constants. For example, a possible choice would be {g ∈ H 1/2 (∂A) ; 

  a) if |v -w| < Min{|v(z)|, |w(z)| ; z ∈ Γ}, then deg v= deg w. In particular, the degree is continuous with respect to uniform convergence ; b) deg(vw) =deg v+deg w ; c) deg v = -deg v ; d) if a, b ∈ C | lie in the same connected component of C | \ v(Γ), then deg (v, Γ, a) =deg (v, Γ, b) ; e) if v ∈ C 1 (S 1 ; S 1 ) has the Fourier expansion v = n∈Z Z
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 12 Figure 1: u equals 1 except on D and ∆

  κ = π ; b) n κ is never attained.

Corollary 6 . 4 .

 64 Assume that I 0 < 2π. Then : a) lim κ→∞ m κ = I 0 ; b) up to subsequences, minimizers u κ → u strongly in H 1 (A) as κ → ∞, where u is some minimizer of (1.14)-(1.15).

  u ∈ H 1 (A ; S 1 ), Lemma 2.2 implies that D+ k j=0 d j = 0. Therefore, among the degrees D, d 0 , . . . , d k , there are at least two degrees different from the corresponding degrees 1, -1, 0, . . . , 0. Let us assume, for simplicity, that D = 1 and d 0 = -1, the analysis being similar in the other cases. Fix some small δ > 0 and let Γ δ = {z ∈ A ; dist(z, ∂Ω) = δ}, Ω δ = {z ∈ A ; dist(z, ∂Ω) < δ} and respectively γ δ = {z ∈ A ; dist(z, ∂ω 0 ) = δ}, ω δ = {z ∈ A ; dist(z, ∂ω 0 ) < δ}.

. 15 )

 15 Since any possible limit u is a constant of modulus 1, it is easy to see that |β κ | → 1 as κ → ∞. If we set, for sufficiently large κ, α κ = β κ |β κ | , then for this choice the conclusion of the proposition is straightforward.

. 15 )

 15 In order to estimate |w κ |, we rely on the followingLemma 8.4. ([9]) Let u ∈ C 2 (A) satisfy ∆u = f in A u = 0 on ∂A . (8.16) 

  14)-(1.15). Assume next that u ∈ K. Let D, d 0 , . . . , d k be integers such that u ∈ K D, d 0 , . . . , d k . By Lemma 2.2 and the fact that |u| = 1 in A, we find that D + k j=0 d j = 0. Since u ∈ K, this implies that |D -1| + |d 0 + 1| +

. 3 )

 3 Proof of Proposition 10.1 completed : Since |u κ | ≥ 1/2 in A for κ ≥ κ 2 , (4.17) becomes, for u κ and κ ≥ κ 2 , -div(ζ 2 ∇ϕ) = 0 in A ν • ∇ϕ = 0 on ∂A . (10.4) If we multiply (10.4) by ψ and integrate, we find A ζ 2 ∇ϕ • ∇ψ = 0. (10.5)

. 11 )

 11 Since both u κ and v κ are minimizers of (1.1)-(1.3),(10.11) implies that ρ = 1 and ψ = c for some constant c ∈ IR. Taking the definitions of ρ and ψ into account, this in turn implies that v κ = αu κ , where α = e ıc ∈ S 1 .

. 5 )

 5 By(6.4) and (7.1), we have on the other hand thatE κ (u κ ) ≤ 2π + 1 e κ . (11.6) Estimate (11.1) for m = 2 follows from (11.5) and (11.6).

Corollary 11 . 1 .A κ m |u κ | = 1 ,

 1111 Assume that I 0 > 2π. Then 2πo 1 κ m ≤ m κ ≤ 2π as κ → ∞, for m ∈ IN.(11.10)We next prove that the zeroes of u κ are very close to ∂Ω ∪ ∂ω 0 . For this purpose, we define the setsA κ m = z ∈ A ; dist(z, ∂Ω ∪ ∂ω 0 ) ≥ 1 κ m ,for m ∈ IN. (11.11) By Lemma C.1, u κ has to vanish near ∂Ω and near ∂ω 0 . The next results implies in particular that, for each fixed m ∈ IN, the zeroes of u κ are at distance o 1 κ m from ∂Ω ∪ ∂ω 0 as κ → ∞ : Lemma 11.2. We have lim κ→∞ inf for m ∈ IN. (11.12)

  .40) Here, we use the fact that |f | ≤ 8|∇u κ | 2 in U , together with Lemma 11.1 and (11.35).

  .65) the conclusion of Lemma 11.5 follows by combining (11.63), (11.64) and (11.65) together with the upper bound E κ (u κ ) ≤ m κ + 1 e κ ≤ 2π + 1 e κ (11.66) required in the definition of quasi-minimizers.

4 . 4

 44 requires only that |u κ | = 1 on ∂A and that u κ satisfies the Ginzburg-Landau equation, which is the case for quasi-minimizers. Therefore, for large κ, there are two (possibly not unique) points inA, ζ = ζ κ , ξ = ξ κ , such that u κ (ζ) = f κ (ζ) = 0 and u κ (z) = 0 =⇒ dist(z, ∂Ω) ≥ dist(ζ, ∂Ω)(11.75) and respectively u κ (ξ) = g κ (ξ) = 0 and u κ (z) = 0 =⇒ dist(z, ∂ω 0 ) ≥ dist(ξ, ∂ω 0 ). (11.76) Moreover, by Lemma 11.3, these zeroes are very close to ∂Ω or ∂ω 0 , more specifically dist(ζ, ∂Ω) = o 1 κ m , dist(ξ, ∂ω 0 ) = o 1 κ m , as κ → ∞, ∀ m ∈ IN. (11.77)

∞c

  l=0 l e ılθ and, by the degree formula (1.6), its degree isdeg b = ∞ l=1 l|c l | 2 .(11.85)On the other hand, since w is holomorphic, it coincides with the harmonic extension of b, and thus, after a simple computation, we findID |∇w| 2 = 2π ∞ l=1 l|c l | 2 . (11.86) If we compare (11.84), (11.85) and (11.86), we find that either deg b = 0, and then b (and thus w) has to be a constant of modulus 1, or deg b = 1, and then ID |∇w| 2 = 2π. (11.87)

  (ζ)∪V (ξ)) |∇u κ | 2 ≤ δ.(11.98)

Lemma 11 . 11 .

 1111 Let R > 0. Then, for sufficiently large κ, the only zero of u κ in the set {z ∈ A ; dist(z, ζ) ≤ R dist(ζ, ∂Ω)} is ζ. Proof : By our choice of ζ as the zero of u κ closest to ∂Ω, we have u κ (z) = 0 if dist(z, ∂Ω) ≤dist(ζ, ∂Ω). Therefore, it suffices to prove that ζ is the only zero of u κ in the set B = B κ = {z ∈ A ; |z -ζ| ≤ R dist(ζ, ∂Ω), dist(z, ∂Ω) ≥ dist(ζ, ∂Ω)}. (11.105)

14 ) 8 :

 148 on Γ, we see that 0 ∈ F. (In other words, Γ encloses ∂ω 0 .) Thus proof of b) by establishing that {η = t} = Γ. Argue by contradiction and assume that {η = t} has at least two components, say Γ 1 and Γ 2 . Then one of these curves must enclose the other one (since they both enclose ∂ω 0 ). Consider the domain W contained between the two curves and let Y = W ∩ A. Since η is constant on each component of ∂Y , it follows as above, from the Hopf boundary lemma, that η attains its maximum or minimum on Y only on Γ 1 ∪ Γ 2 . Thus η is constant in Y , which contradicts the fact that t is a regular value of η. Finally, c) follows from Lemma 2.4 c) and the fact that A Proof of Lemma 2.6 : The function η defined in b) clearly satisfies (2.13) with C 0 = ln ρln R. By the uniqueness of η, this proves b) and c), while d) follows from c) and Lemma 2.5. For a), we rely on Lemma 2.4 d). We have, locally in A, u = e ıϕ , where ϕ satisfiesϕ x = -y/|z| 2 , ϕ y = x/|z| 2 .(A.15)In the simply connected domain U = A \ IR -, the solutions of (A.15) are θ + C, C ∈ IR ; here,θ = θ(z) ∈ (-π, π) is the principal argumenet of z. Thus u(z) = α z |z| in U , with α = e ıC ∈ S 1 .By continuity, we find that u(z) = α z |z| in A.Proof of Lemma 2.7 : Let v attain cap(A). Then v solves lemma follows by combining (A.18) and (A.[START_REF] Brezis | Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents[END_REF]).Proof of Lemma 2.We start with the case of a symmetry. Without loss of generality, we may assume that O(z) = z. Let η be as in Lemma 2.4 and set η = η • O. Clearly, since η satisfies (2.13), so does η, so that η = η, by uniqueness. Thus∂η ∂x (z) = ∂η ∂x (z), ∂η ∂y (z) = -∂η ∂y (z), ∀ z ∈ A. (A.20)By Lemma 2.4 d), e), it follows that, if u is a minimizer of (1.14)-(1.15) and we write locally u = e ıϕ , then ∂ϕ ∂x , ∀ z ∈ A. (A.21) Fix now a point z 0 ∈ A ∩ IR and let u be a minimizer of (1.14)-(1.15). Set u 0 = u(z 0 )u, so that u 0 is still a minimizer of (1.14)-(1.15) and u 0 (z 0 ) = 1. Consider a ball B ⊂ A centered at z 0 and let J = B ∩ IR. We may write, globally in B, u 0 = e ıϕ , with ϕ(z 0 ) = 0. By (A.21), we have ∂ϕ ∂x = 0 on J, so that ϕ = 0 on J. Using again (A.21), we find that ϕ(z) = -ϕ(z) in B. In other words, the maps u 0 and z → u 0 (z) coincide in B. It turns out that u 0 is analytic. Indeed, u 0 = f /|f |,

  It follows that ∇η(O(z)) = O(∇η(z)), ∀ z ∈ A, (A.22)and consequently, if we write locally u = e ıϕ , then∇ϕ(O(z)) = O(∇ϕ(z)), ∀ z ∈ A. (A.23) 

  2 implies that deg(u/|u|, ∂Ω) + k j=0 deg(u/|u|, ∂ω j ) = 0. (B.3) This contradicts assumption (B.1) and completes the proof of Lemma B.1.

. 6 ) 2 .

 62 By combining (C.4) and (C.5), we find that |v κ (z)| → 1 uniformly as dist(z, ∂A) → 0.(CStep We rewrite the Ginzburg-Landau equation near ∂AWe fix a neighborhood U of ∂A such that |v κ | ≥ 1/2 in U ∩ A. From now on, we work only inV = U ∩ A. In V we may write v κ = ρη, where ρ = |v κ | and η = v κ |v κ | . Since η ∈ C ∞ (V ; S 1 )we may write, in simply connected subdomains of V , η = e ıψ . The vector field ∇ψ = η ∧ ∇η is globally defined in V , and clearly ∇ψ ∈ L 2 (V ), since η ∈ H 1 (V ). It is easy to see that ρ and ψ are weak solutions of-∆ρ = κ 2 ρ(1ρ 2 ) -ρ|∇ψ| 2 in V ρ = 1 on ∂A (C.7) and respectively -div(ρ 2 ∇ψ) = 0 in V ν • ∇ψ = 0 on ∂A . (C.8) The last condition in (C.8) is obtained via the fact that d dt E κ (v κ e ıtζ ) t=0 = 0, ∀ ζ ∈ C ∞ (A) such that supp ζ ⊂ V . (C.9)

1 F 2

 12 We extend ψ, ρ and F = (1ρ 2 )∇ψ = F from the upper half disc D + R to D R . These extensions will be denoted by ψ, ρ and F and are given, in the lower half disc D R \ A, byψ(z) = ψ(z), ρ(z) = ρ(z), F (z) = F 1 (z) -F 2 (z) . (C.10)Then, clearly, ψ is a weak solution of∆ ψ = div F (z) in D R . (C.11)By standard elliptic estimates ([START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), we have∇ ψ L p (D R ) ≤ C p ( tr ∂D R ψ W 1-1/p,p (∂D R ) + F L p (D R ) ), ∀ 1 < p < ∞.(C.12)

  ) since v κ ∈ C ∞ (A).Finally, we bootstrap the equation (C.7) and the equation (C.8) of ψ. For this purpose, we pick, for each z 0 ∈ ∂A, a disc D centered at z 0 such that D ∩ V is simply connected. We may thus choose, in D ∩ V , a single-valued phase ψ of v κ . Then, in D ∩ V , we may rewrite (C.

∂Ωg 2 H 1 / 2 2 H 1 / 2 1 R 2 A 1 C 2 ( 1 1 C 2 ( 1

 21221212121121 = 0}. Moreover, for any standard norm on H 1/2 (∂A), we haveC 1 g -1 2πR ∂Ω g (∂A)≤ r.h.s. of (D.1) ≤ C 2 g -1 2πR∂Ω g (∂A)(D.6) for some C 1 > 0, C 2 > 0 independent of g. Lemma D.2. There are constants C 1 > 0, C 2 > 0 such thatC 1 |b 0 -a 0 | 2 + n =0 |n|(|a n | 2 +|b n | 2 ) ≤ r.h.s. of (D.1) ≤ C 1 |b 0 -a 0 | 2 + n =0 |n|(|a n | 2 +|b n | 2 ) . (D.7)Proof : In view of (D.1), it suffices to establish, for n = 0, with some constantsC 1 , C 2 independent of n, a n , b n , the inequality C 1 (|a n | 2 +|b n | 2 ) ≤ 1 R 2|n|ρ 2|n| [(|a n | 2 +|b n | 2 )(R 2|n| +ρ 2|n| )-2(a n b n +a n b n )R |n| ρ |n| ] ≤ C 2 (|a n | 2 +|b n | 2 ).(D.8) On the one hand, we have(|a n | 2 +|b n | 2 )(R 2|n| +ρ 2|n| )-2(a n b n +a n b n )R |n| ρ |n| ≥ (|a n | 2 +|b n | 2 )(R 2|n| +ρ 2|n| )-2(|a n | 2 +|b n | 2 )R |n| ρ |n| , (D.9) so that (|a n | 2 + |b n | 2 )(R 2|n| + ρ 2|n| ) -2(a n b n + a n b n )R |n| ρ |n| ≥ (|a n | 2 + |b n | 2 )(R |n|ρ |n| ) 2 , (D.10) and thus 1 R 2|n|ρ 2|n| [(|a n | 2 + |b n | 2 )(R 2|n| + ρ 2|n| ) -2(a n b n + a n b n )R |n| ρ |n| ] ≥ Rρ R + ρ (|a n | 2 + |b n | 2 ) ; (D.11)here, we use the fact thatR |n|ρ |n| R |n| + ρ |n| ≥ Rρ R + ρ .Similarly, starting from(|a n | 2 +|b n | 2 )(R 2|n| +ρ 2|n| )-2(a n b n +a n b n )R |n| ρ |n| ≤ (|a n | 2 +|b n | 2 )(R 2|n| +ρ 2|n| )+2(|a n | 2 +|b n | 2 )R |n| ρ |n| , 2|n|ρ 2|n| [(|a n | 2 + |b n | 2 )(R 2|n| + ρ 2|n| ) -2(a n b n + a n b n )R |n| ρ |n| ] ≤ R + ρ Rρ (|a n | 2 + |b n | 2 ), (D.13) since R |n| + ρ |n| R |n|ρ |n| ≥ R + ρ Rρ .The conclusion of Lemma D.2 follows from (D.11) and (D.13).Corollary D.1. The mapH 1/2 (∂A) ∋ g → |g| 2 H 1/2 (∂A) = |b 0a 0 | 2 + n =0 |n|(|a n | 2 + |b n | 2 ) (D.14)is a norm equivalent with the usual ones on H 1/2 (∂A) modulo constants. Lemma D.3. Let A = {z ; ρ < |z| < R}. Then : a) m 0 = 2π Rρ R + ρ ; b) the only minimizers of (1.1)-(1.3) for κ = 0 are, in polar coordinates, of the form u = α r 2 + Rρ r(R + ρ) e ıθ . Proof : Clearly, the map given in b) belongs to J and is the harmonic extension to A of g : ∂A → C | , g(z) = α z |z| . Moreover, by (D.1), the Dirichlet integral of this u is given by 1 |∇u| 2 = 2π Rρ R + ρ . Therefore, it suffices to prove that the only minimizers of (1.1)-(1.3) are those given in b). Let v in J . Let g ∈ H 1/2 (∂A) be the trace of v to ∂A and let u be the harmonic extension to A. The starting point is (D.10), that yields, after substitution in (D.1),A |∇u| 2 ≥ 2π |b 0a 0 | 2 ln Rln ρ + n =0 |n|(R |n|ρ |n| ) R |n| + ρ |n| (|a n | 2 + |b n | 2 ) . (D.15)Equality in (D.15) requires equality in (D.10), which holds if and only ifa n = b n for n = 0. (D.16) It follows from (D.15) that A |∇u| 2 ≥ 2π n>0 n(Rρ) R + ρ (|a n | 2 + |b n | 2 ), (D.17)Proof. We may clearly assume α = 1. Set a = φ(η), w = φ(ζ). we haveζ ∈ φ -1 η,1 ( Dr ) ⇐⇒ φ η,1 (ζ) = w ∈ Dr ⇐⇒ wa 1āw ≤ r=⇒ by (E.7) and (E.8)|w -a| ≤ 2r 1r (1 -|a|) and 1 -|w| ≥ 1r 1 + r (1 -|a|).(E.12)Lemma E.4 combined with (E.12) yields|ζ -η| ≤ 2C 2 r C 1 (1r) dist(η, ∂Ω) (E.13) and dist(ζ, ∂Ω) ≥ C 1 (1r) C 2 (1 + r) dist(ξ, ∂Ω), (E.14)which proves a). Lemma E.4 implies thatM = {ζ ∈ Ω; |ζ -η| ≤ k 1 dist(η, ∂Ω), dist(ζ, ∂Ω) ≥ k 2 dist(η, ∂Ω)} ⊂ N = {ζ ∈ Ω; |φ(ζ)φ(η)| ≤ k 1 C -|φ(η)|) and 1 -|φ(ζ)| ≥ k 2 C -|φ(η)|)}. For ζ ∈ N , Lemma E.3 implies that |φ η,1 (ζ)| = w -1 (M ) ⊂ φ η,1 (N ) ⊂ Dr .13Update A short version of this preprint appeared as Leonid Berlyand, Petru Mironescu, Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices, Journal of Functional Analysis 239 (2006), 76-99. This paper contains essentialy the proof of Theorem 1 and a soft version of the estimates in Section 11. The main question left open in this preprint is non existence, for large κ, of minimizers of E κ when

  of η, then the level set {η = t} consists of a single simple curve which encloses ∂ω 0 and

	In case of a circular annulus, we have explicit formulae for u, η, I 0 and C 0 :
	Lemma 2.6. Assume that A = {z ; ρ < |z| < R}, i.e., Ω = {z ; |z| < R} and ω 0 = {z ; |z| < ρ}. Then :
	a) all the minimizers of (1.14)-(1.15) are of the form u
		{η=t}	|∇η| = 2π;	(2.15)
	c) I 0 and C 0 are related by	C 0 = -	I 0 π	.	(2.16)

  R/ρ is uniquely determined by A. Indeed, circular annuli are conformally rigid, i.e., two annuli {z ;ρ 1 < |z| < R 1 } and {z ; ρ 2 < |z| < R 2 } are conformally equivalent if and only if R 1 /ρ 1 = R 2 /ρ 2 ([1]). It turns out that the ratio R/ρ is related to cap(A) in a simple way and that the maps defined in Lemma 2.4, namely u and η, provide an explicit representation of A into {z ; ρ < |z| < R}.

	Definition 3.1. If u is a minimizer of (1.14)-(1.15) and η is the map defined in Lemma 2.4, let
		f = f A, u = e η u.		(3.1)
	It is clear from Lemma 2.4 that f is holomorphic.		
	Part of the following result is proved in [1] :			
	Lemma 3.1. Assume that A = Ω \ ω 0 . Then : a) if ρ, R are such that A can be conformally represented into {z ; ρ < |z| < R}, then	
	R ρ	= exp	2π cap(A)	;	(3.2)
	b) the map f is a conformal representation of A into the circular annulus	

  preserves the natural orientation of simple curves ; c) Γ j = f (∂ω j ), j = 1, . . . , k ; d) if A can be represented into a canonical slit region F of radii ρ < R through some conformal mapping h such that |h| |∂ω 0 < |h| |∂Ω , then there are some α ∈ C | \ {0}, β ∈ S 1 such that F = αC and h = αβf .

	In particular,	R ρ	= exp	2π cap(A)	.	(3.6)
	4 Properties of the class J				
	4.1 On Example 1					
	We begin this section by discussing in detail the Example 1 mentioned in the Introduction. We
	will prove the following slightly more general fact			
	Lemma 4.1. Let U be a smooth bounded simply connected domain in C | . Set, for κ > 0,	

  1 (A) and a.e. If u ∈ J , then u is a minimizer of (1.14)-(1.15) and the conclusion follows as in the previous Corollary. If

u ∈ J, by Corollary 5.1 we find that

2π ≥ lim κ→∞ E κ (u κ ) = lim inf n→∞ E κn (u κn ) ≥ lim inf n→∞ 1 2 A |∇u κn | 2 ≥ 2π,

(6.17)

and the conclusion follows again.

Corollary 6.6. Assume that I 0 > 2π. Then lim κ→∞ m κ = 2π.

  .7) By (9.6), (10.7) and the fact that, by Corollary 8.2 and Corollary 9.1, u κ remains bounded in C 1 (A), we find that

  Set b =tr S 1 w ∈ H 1/2 (S 1 ; S 1 ). Since w is holomorphic, the Fourier expansion of b is of the form

	By (11.81) and the identity											
	|∇w| 2 -2Jac w =	∂ Re w ∂x	-	∂ Im w ∂y	2	+	∂ Re w ∂y	+	∂ Im w ∂x	2	,	(11.82)
	it follows that, in the distribution sense, we have				
	∂ Re w ∂x	=	∂ Im w ∂y		and	∂ Re w ∂y	= -	∂ Im w ∂x	,	(11.83)
	so that w is holomorphic in ID. Moreover, it follows from (11.78) that
				ID	|∇w| 2 ≤ 2π.			(11.84)
												as κ → ∞, ∀ m ∈ IN,	(11.79)
	by (11.69) and Lemma 11.5.											
	Also note that											
	(11.80) From (11.78) and (11.80) it follows that, up to subsequences, a ⇀ w weakly in H 1 (ID) for some |a| = 1 on S 1 .
	map w such that |w| = 1 on S 1 . Moreover, since the map	
		H 1 (A) ∋ u →	A	(|∇u| 2 -2 Jac u)
	is convex and continuous, (11.79) together with the fact that a ⇀ w weakly in H 1 (ID) imply that
			ID	(|∇w| 2 -2Jac w) ≤ 0.	(11.81)

  By(11.70) and the fact that, by construction, ∇F ζ → 0 on compact subsets of Ω, this immediately implies (11.91) for α κ = β κ δ κ , where the β κ are given by Lemma 11.3. The proof of (11.92) is similar.

	Thus, we may find a family (δ κ ) ⊂ S 1 such that
	lim κ→∞	ID	|∇(a κ -δ κ id)| 2 = 0.	(11.94)
	In turn, this implies, since F ζ is a conformal representation, that
	lim κ→∞	Ω	|∇(f κ -δ κ F ζκ )| 2 = 0.	(11.95)
						.92)
	Proof : By Lemma 11.7, we have				
	lim κ→∞	inf α∈S 1	ID	|∇(a κ -α id)| 2 = 0.	(11.93)

  .120) This contradicts the conclusion of Lemma 11.11 for large κ. The proof of Proposition 11.1 is complete. With more work, one may prove that |u κ | is close to 1 if we are far away from from ζ and ξ in the respective scales dist(ζ, ∂Ω) and dist(ξ, ∂ω 0 ), that is : for each 0 < δ < 1, there are constants R δ and r δ such that, for large κ, we have |u κ

	Remark 11.2.

  .121)As in the proof of Lemma 7.2, for sufficiently large κ there is some D > 0 such that D < |u κ | ≤ 1 in U . Arguing again as in the proof of Lemma 7.2, the map v = u κ /|u κ | belongs to H 1 (U ; S 1 ), and if we orient the components of ∂U with the orientations inherited from U , we have deg(v, Γ) = 0,

deg(v, ∂Ω) = 1 and deg(v, C) = -deg(u κ , C). By Lemma 2.2 applied to U , we find that deg(v, C) = -1, so that deg(u κ , C) = 1.

  1 (A; S 1 ). Moreover, by taking traces, we have tr ∂A v =tr ∂A u, so that v ∈ K. As in the proof of Lemma 12.1, this implies that v = u and that w κn → u strongly in H 1 (A). By the proof of Lemma 8.2, this implies that |w κn | → 1 uniformly in A as n → ∞. Therefore, for large n we have w κn ∈ J ′ , and thus E κn (w κn ) ≥ E κn (u κn ), which is the desired contradiction.

As explained at the end of Section 10, the above result implies the following Corollary 12.1. Assume that A is O-symmetric in the sense of Definition 2.3. Then, for large κ, there is a local minimizer
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for k = 1, . . . , n -1. Since each Γ k is simply connected, we may write, on Γ k , u κ (z) = e ıψ k (z) for some smooth ψ k . Moreover, we may assume that ψ k+1 (z k ) = ψ k (z k ) for k = 1, . . . , n -1, and that ψ 1 (z 0 ) = 0. Using the fact that u κ (z 1 ) = α κ = e ı2lπ/n , we find that ψ 1 (z 1 ) = 2lπ/n + 2mπ for some integer m, that is ψ 2 (O(z 0 )) = ψ 1 (z 0 ) + 2lπ/n + 2mπ. Since u κ • O = α κ u κ , we must then have ψ 2 (O(z)) = ψ 1 (z) + 2lπ/n + 2mπ for all z ∈ Γ 1 , by connectivity of Γ 1 . Reiterating this argument, we find that, with the same m, we have ψ k+1 (O(z)) = ψ k (z) + 2lπ/n + 2mπ for all z ∈ Γ k , for k = 1, . . . , n -1. Finally, since

we find that l = 1 and m = 0. This implies that u κ • O = e ı2π/n u κ , that is u κ • O = O • u κ , which is the desired result.

Corollary 10.1. Assume that, for some κ, m κ is attained and that the minimizers of (1.1)- (1.3) are unique up to a phase shift. Assume also that A is O-symmetric. Then : a) if O is a symmetry with respect to a straight line, there is a minimizer u κ of m κ such that Remark 10.1. In the above statement, we do not assume A subcritical or critical.

Proof of Corollary 10.1 : When O is a symmetry, property a) was obtained in Proposition 10.3 using two ingredients : uniqueness up to a phase shift and the existence of a point z 0 ∈ A such that |u κ (z 0 )| ≥ 1/2. However, such a point exists each time m κ is attained. Indeed, recall that, by Lemma 4.4, we have u κ ∈ C ∞ (A), and the existence of z 0 follows from the fact that |u κ | = 1 on ∂A.

Similarly, for δ > 0 sufficiently small, we have

If O is a rotation of angle 2π/n, then this Γ is O-symmetric. We may consider this Γ in the proof of Proposition 10.3 and obtain symmetry of minimizers. Finally, in case c), minimizers are symmetric with respect to rotations of angle 2π/n, for all n, and the conclusion follows by density of rational rotations among all the rotations.

11 Asymptotic behavior of the quasi-minimizers in the supercritical case I 0 > 2π Throughout this section, we assume that I 0 > 2π. We consider a family (u κ ) of quasi-minimizers in the sense of the Definition 7.1. The purpose of this section is to give a precise description of ¿From now on, we will denote by u κ a minimizer of (12.5) and we set g κ =tr ∂A u κ . With obvious notations, we may write u κ = ρ κ v κ , and then g κ =tr ∂A v κ .

Lemma 12.3. Up to subsequences, we have

where u is a minimizer of (1.14)- (1.15).

Proof : As in the proof of Lemma 12.2, starting from

we may derive that, up to subsequences, u κ → u strongly in H 1 (A), for some minimizer u of

Finally, the two previous convergences combined with the fact that v κ = u κ 1 ρ κ yield v κ → u strongly in H 1 (A) ; here, we use the fact that H 1 ∩ L ∞ is an algebra.

Lemma 12.4. There is some κ 0 > 0 such that, for κ > κ 0 , u κ attains Min{E κ (w) ; tr ∂A w = g κ }.

(12.10)

Proof : Let u κ attain the above minimum. By combining Lemma 12.1 and Lemma 12.3, we find that |u κ | → 1 uniformly in A. Therefore, u κ ∈ J ′ for large κ and thus

The opposite inequality E κ (u κ ) ≤ E κ (u κ ) being clear from the definition of u κ , we find that E κ (u κ ) = E κ (u κ ), and thus u κ attains the minimum in the statement of the Lemma.

Lemma 12.5. For large κ, u κ is a critical point of E κ in J .

Proof : By the preceding Lemma, for large κ, u κ satisfies the Ginzburg-Landau equation, since it is a minimizer of E κ with respect to its own boundary trace. On the other hand, if ψ ∈ C ∞ (A; IR), then u κ e ıtψ ∈ J ′ , and thus E κ (u κ e ıtψ ) ≥ E κ (u κ ), t ∈ IR. This inequality together with the fact that u κ satisfies the Ginzburg-Landau equation implies immediately that, in the weak sense, we have u κ ∧ ∂u κ ∂ν = 0 on ∂A, that is, u κ is a critical point of E κ in J .

We are now ready to prove that the above u κ 's are local minimizers of E κ in J .

Proposition 12.1. There are constants κ ′ > 0 and δ > 0 such that :

, then v κ is a minimizer of (12.5) if and only if there is some α ∈ S 1 such that v κ = αu κ .

Proof : For b), we argue as as in the proof of Lemma 10.2. As explained there, since, up to subsequences, u κ → u strongly in H 1 (A), we find subsequently, as in Section 9 that

Appendix A. Degree of H 1/2 maps and capacity

We prove below some results stated in Section 2.

Proof of Lemma 2.1 : When u ∈ C ∞ (A; C | ), the above equality is clear by integration by parts.

The case of a general u ∈ H

and passing to the limits in (2.2) applied to u n .

Proof of lemma 2.2 : "⇐" Fix a j ∈ ω j , j = 0, . . . , k, and set

Then, clearly, deg(u, ∂ω j ) = d j , j = 0, . . . , k, and deg(u,

3), so that u ∈ K. "⇒" Assume K = ∅ and let u ∈ K. By Lemma 2.1 and the degree formula (1.5), we have

Since |u| 2 = 1 a.e., we find u • u x = 0 and u • u y = 0 a.e. (A.3) Hence, a.e., the vectors u x and u y are both orthogonal to the non-zero vector u. Therefore, u x u y a.e., so that Jac u = 0 a.e.. Thus

and the lemma follows by combining (A.2) and (A.4).

Proof of Lemma 2.3 : a) "⊃" Recall that, for s > 0, H s ∩ L ∞ is an algebra, i.e. :

(see, e.g., [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser[END_REF]). We will also use the following well-known fact : if f is a C 1 map such that f ′ is bounded and if U is smooth and bounded, then, for 0 < s ≤ 1, the map

is well-defined and continuous (see, e.g., [START_REF] Triebel | Theory of function spaces[END_REF]). It follows from the above results that the map

is well-defined and continuous. By taking traces we find, with Γ any connected component of ∂A,

is well-defined and continuous. Since the degree is continuous with respect to H 1/2 convergence, we find that deg (tr

We claim that deg (w, ∂ω j ) = 0, j = 0, . . . , k. The claim is a straightforward consequence of the following Lemma A.1. ( [START_REF] Brezis | Vorticité de Ginzburg-Landau[END_REF]) Let Γ be a smooth simple closed planar curve and u, v ∈ H 1/2 (Γ; S 1 ). Then

Proof of Lemma A.1 : All the properties are clear when u and v are smooth. In full generality, (A.7) follows from the smooth case and the continuity of the degree in H 1/2 , using the fact that C ∞ (Γ; S 1 ) is dense in H 1/2 (Γ; S 1 ) (see [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]). As for (A.8), it also follows by density, using in addition the fact that H 1/2 ∩ L ∞ is an algebra. Implication "⇐" in (A.9) follows from the fact that the map

is well-defined and continuous. Thus the degree of F (t) with respect to Γ is constant, and this constant has to be 0, since F (0) is a constant. In order to prove "⇒" in (A.9), let U be the interior of Γ. Take a sequence (u n ) ⊂ C ∞ (Γ; S 1 ) such that u n → u in H 1/2 (here, we use again the density of C ∞ (Γ; S 1 ) into H 1/2 (Γ; S 1 )). Since H 1/2 ∩ L ∞ is an algebra, we have v n = uu n → 1 in H 1/2 . We will make use of the following fact : there is an ε > 0 such that, if v ∈ H 1/2 (Γ; S 1 ) is such that v -1 H 1/2 < ε and ṽ is the harmonic extension of v to U , then 1/2 ≤ |ṽ| ≤ 1 in U (see [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF]). Using (A.7), (A.8), the continuity of the degree for H 1/2 convergence and the above mentioned result, we find that, for large n, we have

For any such n, set w = v n /| v n |, so that tr Γ w = v n and w ∈ H 1 (U ; S 1 ). Since Γ is simple, U is simply connected. We now invoke the fact that S 1 -valued H 1 maps in a simply connected domain U "lift" in H 1 , i.e., we may write w = e ıψ for some ψ ∈ H 1 (U ; IR) (see [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF]). On the other hand, since deg (u n , Γ) = 0, we may write u n = e ıη for some η ∈ C ∞ (Γ; IR). Finally, let ϕ = η+ tr Γ ψ.

Then ϕ ∈ H 1/2 (Γ; IR) and clearly u = e ıϕ .

Proof of Lemma 2.3 completed : Recall that deg (w, ∂ω j ) = 0, j = 0, . . . , k. By Lemma A.1, we may thus write w = e ıϕ j on each ∂ω j , for some ϕ j ∈ H 1/2 (∂ω j ; IR). Let ϕ j be the harmonic extension of ϕ j to ω j ; this ϕ j belongs to H 1 (ω j ). Set w = w, in A e ı ϕ j , in ω j , j = 0, . . . , k .

Set v = u |z| z . Since deg (v, Γ) = 0, we may write v = e ıψ on Γ, for some smooth globally defined ψ. By (A.23), with τ (z) the direct tangent vector to Γ at z, we have

It follows that, for some C ∈ IR, we have The last possible case is k = 0 and O rotation of angle θ, with θ ∈ πQ | . But then A has to be a circular annulus, and in this case the conclusion follows from Lemma 2.6.

Appendix B. Zeroes of complex valued maps

We present below an analogue of the property f) of the degree mentioned in the Introduction, in case where we consider maps which are not smooth up to the boundary. For a more refined statement, see [START_REF] Brezis | Degree Theory and BMO, Part I: Compact manifolds without boundaries[END_REF].

Then u vanishes at least once in A.

Proof : Argue by contradiction. We first claim that there is some a > 0 such that 1/a ≤ |u| ≤ a in A. Indeed, write u = v + w, where v is the hamonic extension of tr u. Since ∆w ∈ L 2 , we find that w is continuous in A (and vanishes on ∂A). On the other hand, tr v takes its values into the closed set

Appendix C. Smoothness of critical points

This appendix is devoted to the Proof of Lemma 4.4 : For the convenience of the reader, we divide the proof, which is rather long and technical, into several steps.

Step 1. We have |v κ (z)| → 1 uniformly as dist(z, ∂A) → 0 Let g = tr ∂A v κ ∈ H 1/2 (∂A; S 1 ). Since in particular v κ is a critical point of the Ginzburg-Landau energy in the class

v κ satisfies the first equation in (4.15). Property c) follows from the first equation in (4.15), the maximum principle and the fact that |g| = 1 (see [START_REF] Bethuel | Asymptotics for the minimization of a Ginzburg-Landau functional[END_REF]). By a standard bootstrap argument, the first equation in (4.15) also implies that v κ ∈ C ∞ (A). The non trivial assertion of the Lemma is smoothness up to the boundary, and the remaining part of the proof is devoted to establishing this assertion. We split v κ = w + g, where w and g solve respectively

Since H 1 (A) ֒→ L q (A), 1 ≤ q < ∞, we find that ∆w ∈ L p (A), for 1 < p < ∞. Thus w ∈ W 2,p (A), 1 < p < ∞, by standard elliptic estimates (see, e.g., [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). In particular, by the Sobolev embeddings we have w ∈ C 1,α (A) for 0 < α < 1. Since w = 0 on ∂A, this implies that

Appendix D. On the harmonic extension in a circular annulus

Here, we make explicit some straightforward and well known computations we needed in Section 5. Throughout this Appendix, we asume that A is a circular annulus, A = {z ; ρ < |z| < R}. Let g ∈ H 1/2 (A). We may thus write, on

b n e ınθ , with

Lemma D.1. Let u be the harmonic extension of g to A.

Proof : Since u is harmonic in A, we may write in polar coordinates

Identification of the coefficients on ∂A yields

and and equality in (D.17) holds if and only if

, by the degree formula (1.6). Thus, we finally obtain 

Proof. We have

which proves (E.1). The identity (E.2) can be easily checked. We finally prove (E.3). The proof of (E.4) being identical to the one of (E.3). Firstly, we may assume a ≥ 0, since w-a 1-āw = e iθ w-e iθa 1-e iθ ae iθ w ,and the conclusion depends only on |a|, |w|. Then, squaring (E.3), we find that

Clearly, for |w| = ρ fixed, the left hand side of (E.5) is minimal when w + w is minimal, i.e. for w = -ρ. Thus LHS of (x5)

and it is easy to see that the RHS of (E.6) coincides with the RHS of (E.5).

Lemma E.2. Let r ∈ (0, 1) be fixed. If

Proof. We have, by (E.1) and (H)

so that (E.7) follows.

On the other hand (E.4) and (H) yield

. (E.9)

Proof. Using (E.2), (H1) and (H2), we find that

Let Ω be a smooth bounded simply connected domain in R 2 and let φ: Ω → D be a conformal representation. Then, with constants G depending only on φ, we have

Proof. (E.10) is a trivial consequence of the fact that φ extends as a diffeomorphism of Ω into D. as for (E.11), on the one hand we have

On the other hand,

(these are all the conformal mappings of Ω into D vanishing at η). a) Fix some r ∈ (0, 1). Then there are constants k 1 , k 2 ≥ 0 independent of α, η such that

Then there is some r ∈ (0, 1) independent of α, η such that A has a single hole and is supercritical. This was (positively) answered in the note Leonid Berlyand, Dmitry Golovaty, Volodymyr Rybalko, Nonexistence of Ginzburg-Landau minimizers with prescribed degree on the boundary of a doubly connected domain