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Generalized Riemann Hypothesis

). In this paper, we give a proof of Generalized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory.

Introduction

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. The Riemann zeta function is defined [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] p. 807) by the series,

ζ(s) = ∞ n=1 1 n s , s ∈ C, (1) 
which is analytic in (s) > 1 (see [START_REF] Borwien | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF]). The first connection between zeta functions and prime numbers was made by Euler when he showed for s real the following beautiful identity (see [START_REF] Stein | Complex Analysis, Princeton Lectures in Analysis II[END_REF], [START_REF] Borwien | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF], [START_REF] Conrey | The Riemann Hypothesis[END_REF], [START_REF] Sabbagh | The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics[END_REF]):

ζ(s) = p∈P 1 - 1 p s -1 , s ∈ C; (s) > 1, (2) 
where P def = {2, 3, 5, 7, 11, 13, ...} is the set of prime positive integers p. On the other side, Riemann proved that ζ(s) has an analytic continuation to the whole complex plane except for a simple pole at s = 1 (see [START_REF] Riemann | Über die Anzahl der Prinzahlen unter einer gegebener gröse[END_REF], H.M. [START_REF] Edwards | Riemann's zeta function[END_REF]). Moreover, he showed that ζ(s) satisfies the functional equation (see [START_REF] Titchmarsh | The Theory of the Riemann Zeta-function, 2nd edition[END_REF],H.M. [START_REF] Edwards | Riemann's zeta function[END_REF], [START_REF] Borwien | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF]),

ζ(s) = 2 s π s-1 sin( πs 2 )Γ(1 -s)ζ(1 -s), (3) 
where Γ(s) is the complex gamma function. It was also shown that (see [START_REF] Titchmarsh | The Theory of the Riemann Zeta-function, 2nd edition[END_REF]) We know that the zeta function was introduced as an analytic tool for studying prime numbers and some of the most important applications of the zeta functions belong to prime number theory. Indeed, it was shown independently in 1896 by Hadamard and de la Vallée-Poussin, that ζ(s) has no zeros on (s) = 1 (see Titchmarsh (1986) p. 45), which provided the first proof of the Prime Number Theorem:

1. ζ(s) is nonzero in (s) < 0,
π(x) ∼ x log x (x → +∞), (4) 
where π(x) def = { number of primes p for which p ≤ x} (where x > 0). Their proof comes with an explicit error estimate: they showed in fact (see for example Theorem 6.9 in [START_REF] Montgomery | Multiplicative Number Theory I: Classical Theory[END_REF]),

π(x) = li(x) + O x exp(c √ log x) , (5) 
uniformly for x ≥ 2. Here li(x) is the logarithmic integral, li(x

) def = x 2 dt log t .
Later, Von Koch proved that the Riemann hypothesis is equivalent to the "best possible" bound for the error of the Prime Number Theorem (see [START_REF] Koch | Sur la distribution des nombres premiers[END_REF]), namely Riemann hypothesis is equivalent to,

π(x) = li(x) + O √ x log(x) . (6) 
The Riemann zeta function ζ(s) and the Riemann Hypothesis have been the object of a lot of generalizations and there is a growing literature in this regard comparable with that of the classical zeta function itself. The most direct generalization, which is also what we will mainly deal with, concerns the Dirichlet L-functions with the corresponding Generalized Riemann Hypothesis. Dirichlet defined his L-functions in 1837 as follows.

A function χ : Z -→ C is called a Dirichlet character modulo k if it satisfies the following criteria:

(i) χ(n) = 0 if (n, k) = 1; (ii) χ(n) = 0 if (n, k) > 1;
(iii) χ is periodic with period k : that is χ(n + k) = χ(n) for all n;

(iv) χ is (completely) multiplicative : that is χ(mn) = χ(m)χ(n) for all integers m and n.

The principal character (or trivial character) is the one such that χ 0 (n) = 1 whenever (n, k) = 1. Then, one can define the Dirichlet series for (s) > 1,

L(s, χ) = ∞ n=1 χ(n) n s . (7) 
L(χ, s) can be analytically continued to meromorphic functions in the whole complex plane (see Theorem 10.2.14 in [START_REF] Cohen | Number theory[END_REF]). If χ : Z -→ C * is a principal character, then L(s, χ) has a simple pole at s = 1 and is analytic everywhere, otherwise L(s, χ) is analytic everywhere (see Theorem 12.5 in [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF], see also Theorem 10.2.14 in [START_REF] Cohen | Number theory[END_REF]).

As in the case of the Riemann zeta function, by multiplicativity, there is an Euler product decomposition over the primes, for (s) > 1 (see [START_REF] Davenport | Multiplicative Number Theory[END_REF], [START_REF] Ellison | Prime Numbers[END_REF], [START_REF] Serre | A Course in Arithmetic[END_REF]),

L(s, χ) = p∈P 1 - χ(p) p s -1 . ( 8 
)
Thanks to (8), we get (see [START_REF] Cohen | Number theory[END_REF][Corollary 10.2.15])

L(χ, s) = 0 for all s ∈ C; (s) > 1. ( 9 
)
For any Dirichlet character χ mod k there is a smallest divisor k |k such that χ agrees with a Dirichlet character χ mod k on integers coprime with k. The resulting χ is called primitive and has many distinguished properties. First of all, χ being induced from χ means analytically that

L(s, χ) = L(s, χ ) p|k (1 -χ (p)p -s ),
whence L(s, χ) and L(s, χ ) have the same zeros in the critical strip 0 ≤ (s) ≤ 1. Zeros outside this strip are well understood, indeed L(s, χ) = 0 if (s) > 1 and for a primitive character χ, the only zeros of L(s, χ) for (s) < 0 are as follows s = ε -2m, ε ∈ {0, 1} such that χ(-1) = (-1) ε and m positive integer (see e.g Montgomery and Vaughan (2006)[Corollary 10.8], see also [START_REF] Cohen | Number theory[END_REF][Corollary 10.2.15 and Definition 10.2.16]), as well as s = 0 in case χ is a non principal (or non-trivial) even character (see Theorem 12.20 in [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF]). These zeros of L(χ, s) are the so-called trivial zeros. Furthermore from [START_REF] Cohen | Number theory[END_REF][Section 10.5.7], we get that L(χ, s) = 0 for (s) = 1. It follows that the nontrivial zeros of L(χ, s) are exactly those lying in the critical strip 0 < (s) < 1. Now let us assume that χ is primitive (i.e. χ = χ ), then we have the following beautiful functional equation, discovered by Riemann in 1860 for the case k = 1 (Riemann zeta function) and worked out for general k by Hurwitz in 1882 (see e.g [START_REF] Montgomery | Multiplicative Number Theory I: Classical Theory[END_REF], Corollary 10.8):

k s/2 Γ R (s + η)L(s, χ) = ε(χ)k (1-s)/2 Γ R (1 -s + η)L(1 -s, χ). ( 10 
)
Here Γ R (s) := π -s/2 Γ(s/2), η ∈ {0, 1} such that χ(-1) = (-1) η , and ε(χ) is an explicitly computable complex number of modulus 1. It follows that there are infinitely many zeros ρ with real part at least 1/2 (see [START_REF] Bombieri | On the distribution of zeros of linear combinations of euler products[END_REF]); in fact it seems that all zeros in the critical strip have real part equal to 1/2. Similar to the Riemann zeta function, there is a Generalized Riemann Hypothesis:

Conjecture 1.2 (Generalized Riemann Hypothesis). For any Dirichlet character χ modulo k, the Dirichlet L-function L(χ, s) has all its non trivial zeros on the critical line (s) = 1 2 .

Or, in other words, that L(s, χ), for a Dirichlet character χ modulo k, has no zeros with real part different from 1 2 in the critical strip 0 < (s) < 1, since we can exclude non-trivial zeros outside.

Proof of Generalized Riemann Hypothesis

In this section, through Theorem 2.1 we prove that the Generalized Riemann Hypothesis is true. To this end, we will need to establish a series of Lemmata. The analytic-algebraic structure of Dirichlet L-functions was the key for the resolution of the Generalized Riemann Hypothesis. Let us first record some immediate consequences from definition of Dirichlet character modulo k. For any integer n we have χ 1) by (iv), and since χ(n) = 0 for some n by (i), we conclude that χ(1) = 1. Next, if (n, k) = 1 then, using ((iv), (iii)) and Euler's theorem which states that n ϕ(k) ≡ 1 (mod k) with ϕ the Euler's totient function (see e.g Theorem 5.17 in Apostol ( 1976)), we infer that

(n) = χ(n • 1) = χ(n)χ(
χ(n) ϕ(k) = χ(n ϕ(k) ) = χ(1) = 1, so that χ(n) is a ϕ(k)-th root of unity. Therefore, we get, |χ(n)| = 1 if (n, k) = 1, |χ(n)| = 0 if (n, k) > 1. ( 11 
)
Now, we introduce some L-functions and some subsets of the complex plane. For any Dirichlet character χ, we introduce the Generalized prime Dirichlet L-function P defined by the series

P (χ, s) = p∈P χ(p) p -s , s ∈ C (12)
which is analytic for (s) > 1. Indeed, the series converges absolutely when (s) > 1. We recall that P is the set of prime numbers. For any Dirichlet character χ, we introduce P 2 the L-function defined by the series

P 2 (χ, s) = p∈P χ(p) 2 p -s , s ∈ C (13)
which is analytic for (s) > 1.

For any Dirichlet character χ, we introduce also Q the L-function defined by the series

Q(χ, s) = p∈P χ(p) 2 p -2s ∞ r=0 χ(p) r p -rs r + 2 , s ∈ C which is analytic for (s) > 1 2
, indeed, the series converges absolutely when (s) > 1 2 . Let us denote by A the complex half plane

A = {s ∈ C : (s) > 1}.
For any Dirichlet character χ, we denote also by M χ the set

M χ = s ∈ C\{1} : (s) > 1 2 , L(χ, s) = 0 .
Lemma 2.1. Let χ be a Dirichlet character. For all s ∈ A, we have log L(χ, s) = P (χ, s) + Q(χ, s).

Proof. For any s ∈ A, thanks to (8) we get

log L(χ, s) = - p∈P log(1 -χ(p)p -s ). (14) 
Furthermore, for any p ∈ P we have for all s ∈ A.

-

log(1 -χ(p)p -s ) = ∞ r=1 χ(p) r p -rs r = χ(p)p -s + p -2s ∞ r=2 χ(p) r p -(r-2)s r . (15) 
After plugging Equation ( 15) into ( 14 Proof. Let us assume that ( 16) holds. We take the module in Equation ( 16) to obtain

|χ(p a)| |(p a) s | = |χ(q b)| |(q b) s | .
Thanks to (11) and since |(p a) s | = (p a) (s) , |(q b) s | = (q b) (s) , we deduce that

1 (p a) (s) = 1 (q b) (s) .
Then, we infer that q b p a

(s) = 1. which implies since (s) = 0 q b p a = 1.
Then we get qb = pa.

(17)

Since p = q, from (17) we deduce that q divides a and hence there exists k ∈ N * such that a = kq. By plugging the new value of a in (17), we deduce b = kp.

Then, we conclude the first part of proof.

Let us assume now that there exists k ∈ N * such that a = kq and b = kp. On one hand, we have

χ(p a) (p a) s = χ(p k q) (p k q) s .
On the other hand, we have

χ(q b) (q b) s = χ(q k p) (q k p) s .
Then we infer that

χ(p a) (p a) s = χ(q b) (q b) s ,
which completes the proof Owing to Lemma 2.2, Lemma 2.3 appears as an extension of Theorem 1 of [START_REF] Vassilev-Missana | A note on prime zeta function and Riemann zeta function[END_REF]. Although the proof of Lemma 2.3 is similar as the one given in Vassilev-Missana ( 2016), we give here the details of the proof as it is at the heart of the Theorem obtained in this paper. For this, we borrow the arguments used in Vassilev-Missana (2016).

Lemma 2.3. Let χ be a Dirichlet character. For s ∈ A, we have

(1 -P (χ, s)) 2 L(χ, s) -(P 2 (χ, 2s) -1)L(χ, s) = 2.
Proof. Let P be the set of all composite numbers (the numbers which are not prime) strictly greater than one. We introduce P the L-function defined by

P (χ, s) = m∈P χ(m) m s , s ∈ C, (18) 
which is analytic for (s) > 1. We observe that we can re-write P (χ, s) as follows

P (χ, s) = m∈P,χ(m) =0 χ(m) m s .
From ( 7), ( 12) and ( 18), we have for all s ∈ A P (χ, s)

+ P (χ, s) = L(χ, s) -1. ( 19 
)
For any s ∈ A, we consider P (χ, s)(L(χ, s) -1) and then we get

P (χ, s)(L(χ, s) -1) =   p∈P χ(p) p s   ∞ n=2 χ(n) n s =   p∈P,χ(p) =0 χ(p) p s     ∞ n=2,χ(n) =0 χ(n) n s   = p∈P,χ(p) =0,n∈N,n≥2,χ(n) =0 χ(p) p s χ(n) n s = p∈P,n∈N,n≥2,χ(p n) =0 χ(p n) (p n) s , (20) 
where we have used (iv). Furthermore, since 2 and 3 are prime numbers, we observe for any composite number m > 1 there exists p ∈ P and n ∈ N, n ≥ 2 such that m = pn and χ(m) = 0 if and only if χ(p) = 0 and χ(n) = 0 thanks to (iv).

Then for any s ∈ A, the sum

p∈P,n∈N,n≥2,χ(p n) =0 χ(p n) (p n) s yields P (χ, s) but also,
some repeating terms will be there. Thanks to Lemma 2.2, for s ∈ A we deduce that the sum of these repeating terms is given by S(χ, s) def = k∈N * ,(p,q)∈P 2 ,χ(kpq) =0,p<q

χ(kpq) (kpq) s . (21) 
Notice that we have p < q instead of p = q in order to count the term χ(kpq) (kpq) s only one time and not twice. Then, we have for all s ∈ A p∈P,n∈N,n≥2,χ(p n) =0 χ(p n) (p n) s = P (χ, s) + S(χ, s).

By using (20), we get that for all s ∈ A P (χ, s)(L(χ, s) -1) = P (χ, s) + S(χ, s).

(

) 22 
From ( 21) and thanks to (iv), we observe that for all s ∈ A S(χ, s) = k∈N * ,(p,q)∈P 2 ,p<q

χ(kpq) (kpq) s = k∈N * ,(p,q)∈P 2 ,p<q χ(k)χ(p)χ(q)) k s p s q s = ∞ k=1 χ(k) k s   (p,q)∈P 2 ,p<q χ(p)χ(q)) p s q s   = L(χ, s) J (s) χ , (23) 
where

J (s) χ def = (p,q)∈P 2 ,p<q χ(p)χ(q)) p s q s . ( 24 
)
Owing to ( 22) and ( 23), we get for all s ∈ A P (χ, s)(L(χ, s) -1) = P (χ, s) + L(χ, s) J (s) χ ,

which is re-written as

P (χ, s) = P (χ, s)(L(χ, s) -1) -L(χ, s) J (s) χ . (25) 
By plugging ( 25) into ( 19), we obtain that for all s ∈ A

P (χ, s)L(χ, s) -L(χ, s) J (s) χ = L(χ, s) -1. ( 26 
)
It remains only to find J (s)

χ , but we have for all s ∈ A:

(P (χ, s)) 2 =   p∈P χ(p) p s   2 = p∈P χ(p) 2 p 2s + 2 (p,q)∈P 2 ,p<q
χ(p)χ(q) p s q s = P 2 (χ, 2s) + 2J (s) χ .

Then, we get that for all s ∈ A

J (s) χ = (P (χ, s)) 2 -P 2 (χ, 2s) 2 . ( 27 
)
After replacing ( 27) into (26) we obtain that for all s ∈ A

(1 -P (χ, s)) 2 L(χ, s) -(P 2 (χ, 2s) -1)L(χ, s) = 2, which concludes the proof.

In the Lemma below, by means of analytic continuation, we extend the results obtained in Lemmata 2.1 and 2.3 on the complex half plane A to M χ .

Lemma 2.4. Let χ be a Dirichlet character. We get that P (χ, •) is analytic on M χ . Furthermore for all s ∈ M χ , we have

1 = 1 2 (1 -P (χ, s)) 2 L(χ, s) -(P 2 (χ, 2s) -1)L(χ, s) .
and log L(χ, s) = P (χ, s) + Q(χ, s).

We thus deduce that for any α > 0 lim s→s0,s∈Us 0 \{s0}

|L(χ, s)| | log |L(χ, s)|| α = 0, (38) 
thanks also to (42). By using the definition of the complex logarithm function, we have for all s ∈ U s0 \{s 0

} log L(χ, s) = log |L(χ, s)| + iarg(L(χ, s)), (39) 
where arg(L(χ, s)) ∈] -π, π]. We thus obtain that for all s ∈ U s0 \{s 0

} |L(χ, s)(log L(χ, s)) 2 | = | log L(χ, s)| 2 |L(χ, s)| = ((log |L(χ, s)|) 2 + (arg(L(χ, s))) 2 )|L(χ, s)| ≤ (| log |L(χ, s)|| 2 + π 2 )|L(χ, s)| (40) 
Then thanks to (37) and ( 38 Owing to (36), ( 41) and (43), after taking the limit in Equation ( 35) as s → s 0 , s ∈ U s0 \{s 0 }, we obtain that 1 = 0 which leads to a contradiction. Hence, we deduce that there is no zeros of the Dirichlet L-function L(χ, •) in U and then we conclude the proof.

Conclusion

In this paper, we have proved the Generalized Riemann Hypothesis and as a immediate consequence by taking the Dirichlet character χ = 1 we get also the proof of Riemann Hypothesis. Thus, our proof yields to the best possible bound for the error of the Prime Number Theorem (see ( 6)). It leads to the veracity of several theorems whose statements begin by assuming the Riemann Hypothesis or the Generalized Riemann Hypothesis is true (see [START_REF] Borwien | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF]). It leads also to the veracity of theorems which are equivalent to Riemann Hypothesis or Generalized Riemann Hypothesis (see [START_REF] Borwien | The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike[END_REF]). In particular, thanks to our result, the Goldbach's Weak Conjecture holds (see [START_REF] Deshouillers | A complete Vinogradov 3-primes theorem under the Riemann Hypothesis[END_REF]).
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Proof. Thanks to Lemma 2.3, we get that for any s ∈ A 1 = 1 2 (1 -P (χ, s)) 2 L(χ, s) -(P 2 (χ, 2s) -1)L(χ, s) .

(28)

Thanks to Lemma 2.1, we have for any s ∈ A log L(χ, s) = P (χ, s) + Q(χ, s).

Since Q(χ, •) is analytic on the complex half plane

by means of analytic continuation, we infer from Equation (29) that P (χ, •) is analytic on M χ and since s → P 2 (χ, 2s) is analytic on B then Equations ( 28) and ( 29) are valid on M χ . Then we conclude the proof.

In the following Lemma, we derive a new equation satisfied by any Dirichlet L-function. This equation is the key point in obtaining the proof of our Theorem 2.1.

Lemma 2.5. Let χ be a Dirichlet character. For all s ∈ M χ , we have

Proof. Thanks to Lemma 2.4, we have for all s ∈ M χ ,

and

After plugging Equation ( 31) into (30), we obtain for all s ∈ M χ ,

Then, we conclude the proof. Now, we turn to the proof of our Theorem.

Theorem 2.1. For any Dirichlet character χ modulo k, the Dirichlet L-function L(χ, s) has all its non trivial zeros on the critical line (s) = 1 2 .

Proof. Let χ be a Dirichlet character. From [START_REF] Cohen | Number theory[END_REF][Section 10.2.4], we have that all the non trivial zeros of L(χ, •) lie in the critical strip :

From the functional equation ( 10) and the elementary property L(χ, s) = L(χ, s) we get that the zeros of L(χ, s) in S are symmetric with respect to the critical line (s) = 1 2 , then to prove our Theorem it suffices to show that there is no zeros of L(χ, •) in the following critical strip :

Then for a contradiction, let us assume that there exists s 0 ∈ U such that L(χ, s 0 ) = 0. Due to the analyticity of the Dirichlet L-function L(χ, •) on U , we infer that the zeros of the Dirichlet L-function L(χ, •) are isolated and then there exists U s0 ⊂ U an open neighbourhood of s 0 such that U s0 \{s 0 } contains no zeros of the Dirichlet L-function L(χ, •).

That means that for all s ∈ U s0 \{s 0 },

We thus observe that U s0 \{s 0 } ⊂ M χ , then thanks to Lemma 2.5 for all s ∈ U s0 \{s 0 },

Since the complex functions s → Q(χ, s), s → P 2 (χ, 2s) are analytic on

(36) where we have used the fact that L(χ, s 0 ) = 0. Furthermore, for any α > 0 we have lim (37)