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Bourgain and Brezis established, for maps

Their arguments are quite different. We present an elementary property of fundamental solutions of the biharmonic operator in two dimensions. This property unifies, in two dimensions, the two approaches, and implies another (apparently unrelated) estimate of Maz'ya and Shaposhnikova. We discuss higher dimensional analogs of the above results.

Résumé

Sur certaines inégalités de Bourgain, Brezis, Maz'ya et Shaposhnikova concernant les champs de vecteurs dans L 1 . Bourgain and Brezis ont montré que, si f ∈ L n (T n ) est de moyenne nulle, alors [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] div ⃗ Y = f a une solution ⃗ Y ∈ W 1,n ∩ C 0 . Maz'ya a prouvé que si, de plus, on a f ∈ H n 2-1 (T n ), alors il existe une solution de (1) dans H n 2 ∩ L ∞ . Les deux preuves sont distinctes. Dans cette note, nous présentons une propriété élémentaire des solutions fondamentales de l'opérateur biharmonique en dimension deux. Cette propriété unifie, en dimension deux, les approches de Bourgain-Brezis et Maz'ya, et implique une autre estimation de Maz'ya et Shaposhnikova (apparemment non liée aux précédentes). Nous discutons des variantes de ces résultats en dimension supérieure.

In their pioneering work [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], Bourgain and Brezis proved that, when a map

f ∈ L n (T n ) has zero average, div ⃗ Y = f (1) 
has a solution ⃗ Y ∈ W 1,n ∩ C 0 . By duality, this result is trivially equivalent to the estimate

u L n (n-1) ≲ ∇u W -1,n ′ +L 1 , ∀u ∈ L n (T n ) such that T n u = 0. (2) 
The proof of (1) is very elaborate (the construction of ⃗ Y is explicit and based on a nonlinear mechanism). So far, there is no straightforward argument yielding (2) when n ≥ 3. However, when n = 2, Bourgain and Brezis [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] present a direct proof of (2) which relies on Fourier series, and more specifically on the fact that

m∈Z 2 ∖{0} m 1 m 2 (m 2 1 + m 2 2 ) 2 e ım⋅x ∈ L ∞ and m∈Z 2 ∖{0} m 2 1 -m 2 2 (m 2 1 + m 2 2 ) 2 e ım⋅x ∈ L ∞ .
(3) * Université de Lyon, Université Lyon1, CNRS, UMR 5208 Institut Camille Jordan, Bâtiment du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F -69200 Villeurbanne Cedex, France. Email address: mironescu@math.univ-lyon1.fr Assertion ( 1) is equivalent to the fact that for every vector field ⃗

X ∈ W 1,n (T n ) there is some ⃗ Y ∈ W 1,n ∩ C 0 such that ⃗ X = ⃗ Y + ⃗ Z,
where div ⃗ Z = 0. For n ≥ 3, a more involved version of this this result has been established by Bourgain and Brezis [START_REF] Bourgain | New estimates for the Laplacian, the div-curl, and related Hodge systems[END_REF], [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF]: in the previous decomposition, one may pick ⃗ Z such that curl ⃗ Z = 0. This implies new regularity results for the Hodge decomposition [START_REF] Bourgain | New estimates for the Laplacian, the div-curl, and related Hodge systems[END_REF], [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF]. For example, when n = 3, Bourgain and Brezis [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF] prove, for vectors fields ⃗ f ∈ L 3 (T 3 ) such that div ⃗ f = 0 and

T 3 ⃗ f = 0, the existence of a ⃗ Y ∈ W 1,3 ∩ C 0 (T 3 ) such that curl ⃗ Y = ⃗ f . (4) 
Maz'ya [START_REF] Maz'ya | Bourgain-Brezis type inequality with explicit constants[END_REF] studied the solvability of (1) when f ∈ H n 2-1 (T n ) has zero average. The main result there is the existence of a solution ⃗ Y ∈ H n 2 ∩ L ∞ of (1). The proof of Maz'ya [START_REF] Maz'ya | Bourgain-Brezis type inequality with explicit constants[END_REF] is by duality, based on the estimate

u H 1-n 2 ≲ ∇u H -n 2 +L 1 , ∀ u ∈ H 1-n 2 (T n ) such T n u = 0. (5) 
Actually, [START_REF] Maz'ya | Bourgain-Brezis type inequality with explicit constants[END_REF] contains a version of ( 5) in R n instead of T n and with sharp constants. The proof of ( 5) is based on explicit formulae for the Fourier transform of singular integral operators, in the spirit of Stein, Weiss [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF], Chapter IV, Theorem 4.5, p. 164. In dimension two, ( 5) is the same as ( 2) and provides a third argument leading to the solvability of ( 1) in

H 1 ∩ C 0 (T 2 ).
In a different direction, Maz'ya and Shaposhnikova [START_REF] Maz'ya | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF] proved the following estimates: for u ∈ C ∞ (T n ), one has

T n ∂ 1 u∂ 2 u + T n ((∂ 1 u) 2 -(∂ 2 u) 2 ) ≲ (-∆) n 4+1 2 u 2 . ( 6 
)
Their approach is again based on Fourier transform formulae for singular integral operators, in the spirit of the proofs of (5) in [START_REF] Maz'ya | Bourgain-Brezis type inequality with explicit constants[END_REF] and of the H 3 2 -regularity result in [START_REF] Maz'ya | Estimates for differential operators of vector analysis involving L 1 -norm[END_REF], and apparently unrelated to the proof of (2) via (3) in [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF]. Our first contribution is the following: we revisit and connect, in two dimensions, (3) and ( 6) using a partial differential equations viewpoint. More specifically, our starting point is the following

Proposition 1 In R 2 , the operator ∆ 2 has a fundamental solution F such that ∂ 1 ∂ 2 F, ∂ 2 1 F -∂ 2 2 F ∈ L ∞ . Proof. Let F (x) = 1 8π x 2 ln x - 1 16π
x 2 . One checks easily that ∂ 2 j F = [START_REF] Maz'ya | Bourgain-Brezis type inequality with explicit constants[END_REF]. Then H = ϕF may be identified with a map on

1 4π ln x + 1 4π x 2 j x 2 , ∂ 1 ∂ 2 F = 1 4π x 1 x 2 x 2 . In particular, ∆F = 1 2π ln x , so that ∆ 2 F = δ, while ∂ 1 ∂ 2 F, ∂ 2 1 F -∂ 2 2 F ∈ L ∞ . ◻ Corollary 2 Let G be the (unique modulo constants) solution of ∆ 2 G = δ -(1 2π) 2 on T 2 . Then ∂ 1 ∂ 2 G and ∂ 2 1 G -∂ 2 2 G belong to L ∞ . Equivalently, (3) holds. Proof. Let ϕ ∈ C ∞ c (B(0, 1 2)) with ϕ = 1 in B(0, 1 
T 2 . Since ∆ 2 (G -H) ∈ C ∞ , we have G -H ∈ C ∞ . We conclude via ∂ 1 ∂ 2 H, ∂ 2 1 H -∂ 2 2 H ∈ L ∞ . Noting that, up to a constant, we have G = m∈Z 2 ∖{0} 1 (m 2 1 + m 2 2
) 2 e ım⋅x , we find that Corollary 2 is equivalent to [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF]. ◻ Remark 1 Corollary 2 implies (6) when n = 2. Here is the proof. We treat, e. g., the first integral in [START_REF] Maz'ya | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF]. We have

∂ 1 u∂ 2 u = [(∆ 2 G) * ∂ 1 u] ∂ 2 u = -[(∂ 1 ∂ 2 G) * (∆u)] (∆u).
We deduce that

∂ 1 u∂ 2 u ≤ (∂ 1 ∂ 2 G) * (∆u) L ∞ ∆u L 1 ≤ ∂ 1 ∂ 2 G L ∞ ∆u L 1 ∆u L 1 ≲ ∆u 2 L 1 . ◻
Next we discuss the higher dimensional analogs of Proposition 1 and Corollary 2, as well as their connection to ( 5) and [START_REF] Maz'ya | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF].

Proposition 3 In R n , the operator (-∆) n 2+1 has a fundamental solution F such that ∂ 1 ∂ 2 F ∈ L ∞ and ∂ 2 1 F -∂ 2 2 F ∈ L ∞ .
Here, when n is odd, a fundamental solution F is a temperate solution of (-∆) n 2+1 2 F = F -1 ((2π ξ ) -1 ).

Proof. One may check that, with

α n ∶= 1 2 n+1 π n 2 Γ(n 2 + 1)
, the map F (x) ∶= α n { x 2 ln xx 2 2} is a fundamental solution. In addition, we have

∂ 1 ∂ 2 F = 2α n x 1 x 2 x -2 and ∂ 2 1 F -∂ 2 2 F = 2α n (x 2 1 -x 2 2 ) x -2 . ◻
The analogs of Corollary 2 and formula (3) are given by Proposition 4 Let G be the (unique up to constants) solution of (-∆)

n 2+1 G = δ -(1 2π) n on T n . Then ∂ 1 ∂ 2 G and ∂ 2 1 G -∂ 2 2 G belong to L ∞ . Equivalently, m∈Z n ∖{0} m 1 m 2 m n+2 e ım⋅x ∈ L ∞ and m∈Z n ∖{0} m 2 1 -m 2 2 m n+2 e ım⋅x ∈ L ∞ . (7) 
Sketch of proof. When n is even, (-∆) n 2+1 is a local operator, so that we may repeat the proof of Corollary 2. When n is odd, we mimic the proof of (3) in [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], p. 405-406. ◻ Remark 2 In the same way that Corollary 2 implies (6) when n = 2, Proposition 4 implies (6) for all n.

Remark 3 One can recover estimate (5) of Maz'ya by combining [START_REF] Maz'ya | A collection of sharp dilation invariant integral inequalities for differentiable functions[END_REF] to some arguments used by Bourgain and Brezis [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] in the proof of (2). The starting point of the proof is the following estimate, reminiscent of [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], p. 404, and valid when u has zero average:

u 2 H 1-n 2 ∼ j<k ∂ j ∂ k (-∆) -n 4-1 2 u 2 L 2 + (∂ 2 j -∂ 2 k )(-∆) -n 4-1 2 u 2 L 2 . ( 8 
) Let ∇u = ⃗ U + ⃗ V , ⃗ U ∈ H -n 2 , ⃗ V ∈ L 1 .
Inspired by [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], p. 403-405, we treat, e. g., the first term in (8) for j = 1, k = 2 using the identity

∂ 1 ∂ 2 (-∆) -n 4-1 2 u 2 L 2 = {[∂ 1 ∂ 2 (-∆) -n 4-1 2 u][(-∆) -n 4-1 2 (∂ 1 U 2 + ∂ 2 U 1 )] -[∂ 1 (-∆) -n 4-1 2 U 2 ][∂ 2 [(-∆) -n 4-1 2 U 1 ] + [∂ 1 (-∆) -n 4-1 2 V 2 ][∂ 2 (-∆) -n 4-1 2 V 1 ]}. (9) 
Using standard elliptic estimates for the first two integrals on the right-hand side of (9) and Proposition 4 for the last integral, we find that

∂ 1 ∂ 2 (-∆) -n 4-1 2 u 2 L 2 ≲ ∂ 1 ∂ 2 (-∆) -n 4-1 2 u L 2 U H -n 2 + U 2 H -n 2 + V 2 L 1 , i. e., u H 1-n 2 ≲ U H -n 2 + V L 1 .
◻
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