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Abstract

Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. We prove that for each map u ∈W s,p(Sn;S1) one
can find ϕ ∈ W s,p(Sn;R) and v ∈ W sp,1(Sn;S1) such that u = veıϕ. This yields a decomposition
of u into a part that has a lifting in W s,p, eıϕ, and a map "smoother" than u but without lifting,
namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to
the case s = 1/2, p = 2). As a consequence, we find an intuitive proof for the existence of the
distributional Jacobian Ju of maps u ∈ W s,p(Sn;S1) (originally due to Bourgain, Brezis and the
author). By completing a result of Bousquet, we characterize the distributions of the form Ju.
Résumé

Décomposition des applications unimodulaires dans les espaces de Sobolev. Soient
n ≥ 2, s > 0, p ≥ 1 tels que 1 ≤ sp < 2. Nous montrons que, pour chaque u ∈ W s,p(Sn;S1), il
existe ϕ ∈ W s,p(Sn;R) et v ∈ W sp,1(Sn;S1) tels que u = veıϕ. Ceci donne une décomposition de
u comme produit d’un facteur qui se relève dans W s,p, eıϕ, et d’un facteur "plus régulier" que
u mais qui ne se relève pas, à savoir v. Notre décomposition généralise un résultat antérieur de
Bourgain et Brezis (qui ont traité le cas s = 1/2, p = 2). Une conséquence de notre résultat est
une preuve intuitive de l’existence du jacobien au sens des distributions Ju pour les applications
u ∈ W s,p(Sn;S1) (résultat dû, avec un argument différent, à Bourgain, Brezis et l’auteur). En
complétant un résultat de Bousquet, nous caractérisons les distributions de la forme Ju.

1 Decomposition of S1-valued maps
Our main result is the following

Theorem 1 Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Let u ∈ W s,p(Sn;S1). Then there exist
ϕ ∈W s,p(Sn;R) and v ∈W sp,1(Sn;S1) such that u = veıϕ.
In addition, we have (with ∣⋅∣W r,q standing for the semi-norm given by the highest order term in ∥⋅∥W r,q)

∣ϕ∣W s,p ≲ ∣u∣W s,p , ∣v∣W sp,1 ≲ ∣u∣pW s,p . (1)

The special case s = 1/2, p = 2 of Theorem 1 is due to Bourgain and Brezis [4]. (In [4], u is supposed
to be in the H1/2-closure of C∞(Sn;S1). This extra assumption was removed in [6].) In Theorem 1,
Sn does not play special role; one could replace, e. g., Sn by any smooth bounded simply connected
domain. Theorem 1 yields a satisfactory substitute to the lifting theory in W s,p(Sn;S1), theory
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developed successively in [5], [18] and [14]. As proved in these papers, when n ≥ 2 and sp /∈ [1,2), one
may characterize maps u ∈ W s,p(Sn;S1) in terms of their liftings. (For a precise statement, we refer
to [15], Theorem 6.1, p. 15.) However, when 1 ≤ sp < 2, there is no satisfactory description of maps
in terms of their phases. A typical example is the map C ∋ z ↦ z/∣z∣, which belongs to W s,p(B(0,1))
when sp < 2, but does not have a phase better than z ↦ arg z, which merely belongs to BV. Our
result allows to decompose u into two parts, one as smooth as u and which admits a lifting in W s,p,
the other one without lifting in W s,p, but "smoother" than u. In Theorem 1, one cannot replace W s,p

(for ϕ) or W sp,1 (for v) by smaller Sobolev spaces.
The proof of Theorem 1 is constructive: there is an explicit formula giving ϕ. Part of the proof is
inspired by similar constructions of Bourgain and Brezis [4] and of the author [14]. We describe the
main lines of the proof when s < 1 and 1 ≤ sp < 2, and when Sn is replaced by B, the unit ball in
Rn. We extend u ∈ W s,p(B;S1) to Rn by reflections and cutoff. We let Π ∈ C∞(R2;R2) such that
Π(z) = z/∣z∣ when ∣z∣ ≥ 1/2 and let ρ be a suitable mollifier. With w(x, ε) ∶= u ∗ ρε(x), x ∈ Rn, ε > 0,
we set, inspired by [14],

ϕ1(x) ∶= −∫
∞

0
Π ○w(x, ε) ∧ ∂

∂ε
(Π ○w)(x, ε)dε.

This ϕ1 satisfies ϕ1 ∈ W s,p(B) U ∶= ue−ıϕ1 ∈ W 1,sp(B). If sp = 1, then we may take ϕ = ϕ1. When
1 < sp < 2, two more steps are needed. We extend U to Rn by reflections and cutoff and define
ϕ2 ∶=∑

k

∑
j<k

Uj ∧Uk. Here, U =∑Uj is a Littlewood-Paley decomposition of U . The idea of improving

the regularity of a map with the help of this phase originates in the paper [4] of Bourgain and Brezis.
This ϕ2 satisfies ϕ2 ∈W 1,sp and Ue−ıϕ2 ∈W sp,1(B).
Third step: since ϕ2 ∈ W 1,sp, we have ϕ2 = ϕ3 + ϕ4, where ϕ3 ∈ W s,p and ϕ4 ∈ W sp,1 ∩W 1,sp. The
regularity of ϕ4 implies that eıϕ4 ∈ W sp,1 [10], [13]. Thus u = eıϕv, where ϕ ∶= ϕ1 + ϕ3 ∈ W s,p and
v ∶= Ueıϕ4 ∈W sp,1.

2 The distributional Jacobian revisited
We recall the definition of the distributional Jacobian for S1-valued maps [17], [19],[2], [9],[12],

[1], [6], [7]. If u = (u1, u2) ∈ W 1,1(S2;S1), then Ju ∶= 1

2
d(u1du2 − u2du1). This distribution (current)

coincides with the usual Jacobian 2-form du1∧du2 if u is sufficiently smooth, say u ∈H1. In the latter
case, Ju = 0 for S1-valued maps u. As a distribution, Ju is defined by

⟨Ju, ζ⟩ = 1

2 ∫S2
(u1du2 − u2du1) ∧ dζ, ∀ ζ ∈ C∞(S2;R). (2)

More generally, when u ∈W 1,1(Sn;S1), Ju is defined as an (n − 2)-current through the formula

⟨Ju, ζ⟩ = 1

2 ∫Sn
(u1du2 − u2du1) ∧ dζ, ∀ ζ ∈ Λn−2(Sn). (3)

The following result was proved in [6].

Theorem 2 ([6]) Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Then W s,p ∩W 1,1(Sn;S1) is
dense in W s,p(Sn;S1). In addition, the map u↦ Ju extends by continuity from W s,p ∩W 1,1(Sn;S1) to
W s,p(Sn;S1).

Denoting by u↦ Ju this extension, Theorem 1 sheds a new light on Theorem 2 via the following
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Proposition 3 Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Let u ∈W s,p(Sn;S1) and write u = veıϕ,
with ϕ ∈W s,p and v ∈W sp,1. Then, for each choice of ϕ and v, we have

⟨Ju, ζ⟩ = 1

2 ∫Sn
(v1dv2 − v2dv1) ∧ dζ, ∀ ζ ∈ Λn−2(Sn). (4)

3 Existence of maps with prescribed singularities. The two
dimensional case

Set R ∶= {u ∈ W 1,1(S2;S1);u is smooth outside some finite set A = A(u)}. When u ∈ R, we have
⟨Ju, ζ⟩ = π∑

a∈A

daζ(a), where the integers da are the degrees of u on suitably oriented small circles

around a ∈ A and satisfy ∑da = 0 [12]. Thus Ju = π∑
a∈A

daδa. Since R is dense in W 1,1(S2;S1) [3],

one obtains that {Ju;u ∈ W 1,1(S2;S1)} ⊂ E1,1, where E1,1 ∶= π{∑(δPj − δNj)}
(W 1,∞

)
∗

. The reversed
inclusion is true.

Theorem 4 ([1], [11]) We have {Ju;u ∈W 1,1(S2;S1)} = E1,1.

Bousquet [7] partially completed this result.

Theorem 5 ([7]) Assume that s ≥ 1 and 1 ≤ sp < 2. Then {Ju;u ∈ W s,p(S2;S1)} = Es,p, where

Es,p ∶= π{∑(δPj − δNj)}
(W 1,sp/(sp−1)

)
∗
∩(W 2−s,p/(p−1)

)
∗

.

Note that the definition of Es,p suggests that different values of s and p yield different Es,p’s. Our
first result in this direction is somewhat surprising.

Theorem 6 Assume that s ≥ 1 and 1 ≤ sp < 2. Then Es,p = E1,sp.
In particular, if a (possible infinite) sum of the form ∑(δPj − δNj), with ∑ ∣Pj −Nj ∣ <∞, acts on W 1,r

for some r ∈ (2,∞), then it also acts on the Hölder space C2−r/(r−1).

As a byproduct, the proof of the above theorem yields the following curious estimate

∥∑(δPj − δNj)∥(Cα)∗ ≤Kα ∥∑(δPj − δNj)∥
2−α

(W 1,(2−α)/(1−α)
)∗ , (5)

with Kα depending on 0 < α < 1 but independent of the Pj’s and Nj’s.
Our next result completes Theorem 5.

Theorem 7 Assume that 1 ≤ sp < 2. Then {Ju;u ∈W s,p(S2;S1)} = E1,sp.

4 Existence of maps with prescribed singularities. The higher
dimensional case

In dimension 3 or higher, the class R is defined as

R ∶= {u ∈W 1,1(Sn;S1);u is smooth outside some (n−2)−submanifold without boundaryA = A(u) of Sn}.

If u ∈ R, then we may identify Ju with the (n − 2)-current π∑dj ∫
Γj
, where Γj are the (ori-

entable, without boundary) connected components of A and the integers dj are the degrees of u
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on suitably oriented small circles linking to the Γj’s [12], [1], [7]. We then define, for 1 < q < 2,

E1,q ∶= π{∑dj ∫
Γj
}
(W 1,q/(q−1)

)
∗

. For q = 1, the suitable higher dimensional analog of E1,1 was pointed

out by Alberti, Baldo, Orlandi [1] and is given by E1,1 ∶= π {∂M ;M is a rectifiable (n− 1)− current}.
With these notations, we have

Theorem 8 Assume that n ≥ 3 and 1 ≤ sp < 2. Then {Ju;u ∈W s,p(Sn;S1)} = E1,sp.

The case s = 1, p = 1 was known before [1]. The case sp = 1 was obtained jointly with Bousquet [8].
The case 1 < sp < 2 relies on Theorem 1 and on techniques from [7]. Finally, the analog of (5) is given
by

∥∑dj ∫
Γj
∥
(Cα)∗

≤Kα ∥∑dj ∫
Γj
∥

2−α

(W 1,(2−α)/(1−α)
)∗
, 0 < α < 1. (6)

Detailed proofs will appear in [16].
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