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Decomposition of S 1 -valued maps in Sobolev spaces

Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. We prove that for each map u ∈ W s,p (S n ; S 1 ) one can find ϕ ∈ W s,p (S n ; R) and v ∈ W sp,1 (S n ; S 1 ) such that u = ve ıϕ . This yields a decomposition of u into a part that has a lifting in W s,p , e ıϕ , and a map "smoother" than u but without lifting, namely v. Our result generalizes a previous one of Bourgain and Brezis (which corresponds to the case s = 1 2, p = 2). As a consequence, we find an intuitive proof for the existence of the distributional Jacobian Ju of maps u ∈ W s,p (S n ; S 1 ) (originally due to Bourgain, Brezis and the author). By completing a result of Bousquet, we characterize the distributions of the form Ju.

Décomposition des applications unimodulaires dans les espaces de Sobolev. Soient n ≥ 2, s > 0, p ≥ 1 tels que 1 ≤ sp < 2. Nous montrons que, pour chaque u ∈ W s,p (S n ; S 1 ), il existe ϕ ∈ W s,p (S n ; R) et v ∈ W sp,1 (S n ; S 1 ) tels que u = ve ıϕ . Ceci donne une décomposition de u comme produit d'un facteur qui se relève dans W s,p , e ıϕ , et d'un facteur "plus régulier" que u mais qui ne se relève pas, à savoir v. Notre décomposition généralise un résultat antérieur de Bourgain et Brezis (qui ont traité le cas s = 1 2, p = 2). Une conséquence de notre résultat est une preuve intuitive de l'existence du jacobien au sens des distributions Ju pour les applications u ∈ W s,p (S n ; S 1 ) (résultat dû, avec un argument différent, à Bourgain, Brezis et l'auteur). En complétant un résultat de Bousquet, nous caractérisons les distributions de la forme Ju.

Decomposition of S -valued maps

Our main result is the following

Theorem 1 Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Let u ∈ W s,p (S n ; S 1
). Then there exist ϕ ∈ W s,p (S n ; R) and v ∈ W sp,1 (S n ; S 1 ) such that u = ve ıϕ . In addition, we have (with ⋅ W r,q standing for the semi-norm given by the highest order term in

⋅ W r,q ) ϕ W s,p ≲ u W s,p , v W sp,1 ≲ u p W s,p . (1) 
The special case s = 1 2, p = 2 of Theorem 1 is due to Bourgain and Brezis [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF]. (In [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], u is supposed to be in the H 1 2 -closure of C ∞ (S n ; S 1 ). This extra assumption was removed in [START_REF] Bourgain | H 1 2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation[END_REF].) In Theorem 1, S n does not play special role; one could replace, e. g., S n by any smooth bounded simply connected domain. Theorem 1 yields a satisfactory substitute to the lifting theory in W s,p (S n ; S 1 ), theory developed successively in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], [START_REF] Nguyen | Inequalities related to liftings and applications[END_REF] and [START_REF] Mironescu | Lifting default for S 1 -valued maps[END_REF]. As proved in these papers, when n ≥ 2 and sp ∈ [1, 2), one may characterize maps u ∈ W s,p (S n ; S 1 ) in terms of their liftings. (For a precise statement, we refer to [START_REF] Mironescu | S 1 -valued Sobolev maps[END_REF], Theorem 6.1, p. 15.) However, when 1 ≤ sp < 2, there is no satisfactory description of maps in terms of their phases. A typical example is the map C ∋ z ↦ z z , which belongs to W s,p (B(0, 1)) when sp < 2, but does not have a phase better than z ↦ arg z, which merely belongs to BV. Our result allows to decompose u into two parts, one as smooth as u and which admits a lifting in W s,p , the other one without lifting in W s,p , but "smoother" than u. In Theorem 1, one cannot replace W s,p (for ϕ) or W sp,1 (for v) by smaller Sobolev spaces. The proof of Theorem 1 is constructive: there is an explicit formula giving ϕ. Part of the proof is inspired by similar constructions of Bourgain and Brezis [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] and of the author [START_REF] Mironescu | Lifting default for S 1 -valued maps[END_REF]. We describe the main lines of the proof when s < 1 and 1 ≤ sp < 2, and when S n is replaced by B, the unit ball in R n . We extend u ∈ W s,p (B; S 1 ) to R n by reflections and cutoff. We let

Π ∈ C ∞ (R 2 ; R 2 ) such that Π(z) = z z when z ≥ 1 2 and let ρ be a suitable mollifier. With w(x, ε) ∶= u * ρ ε (x), x ∈ R n , ε > 0,
we set, inspired by [START_REF] Mironescu | Lifting default for S 1 -valued maps[END_REF],

ϕ 1 (x) ∶= - ∞ 0 Π ○ w(x, ε) ∧ ∂ ∂ε (Π ○ w)(x, ε) dε.
This

ϕ 1 satisfies ϕ 1 ∈ W s,p (B) U ∶= ue -ıϕ 1 ∈ W 1,sp (B). If sp = 1
, then we may take ϕ = ϕ 1 . When 1 < sp < 2, two more steps are needed. We extend U to R n by reflections and cutoff and define

ϕ 2 ∶= k j<k U j ∧ U k .
Here, U = U j is a Littlewood-Paley decomposition of U . The idea of improving the regularity of a map with the help of this phase originates in the paper [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF] of Bourgain and Brezis. This ϕ 2 satisfies ϕ 2 ∈ W 1,sp and U e -ıϕ 2 ∈ W sp,1 (B).

Third step: since ϕ 2 ∈ W 1,sp , we have ϕ 2 = ϕ 3 + ϕ 4 , where ϕ 3 ∈ W s,p and ϕ 4 ∈ W sp,1 ∩ W 1,sp . The regularity of ϕ 4 implies that e ıϕ 4 ∈ W sp,1 [START_REF] Brezis | Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces[END_REF], [START_REF] Maz'ya | An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces[END_REF]. Thus u = e ıϕ v, where ϕ ∶= ϕ 1 + ϕ 3 ∈ W s,p and v ∶= U e ıϕ 4 ∈ W sp,1 .

The distributional Jacobian revisited

We recall the definition of the distributional Jacobian for S 1 -valued maps [START_REF] Morrey | Multiple integrals in the calculus of variations[END_REF], [START_REF] Reshetnyak | The weak convergence of completely additive set functions[END_REF], [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF], [START_REF] Brezis | Harmonic maps with defects[END_REF], [START_REF] Jerrard | Functions of bounded higher variation[END_REF],

[1], [START_REF] Bourgain | H 1 2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation[END_REF], [START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF]. If u = (u 1 , u 2 ) ∈ W 1,1 (S 2 ; S 1 ), then Ju ∶= 1 2 d(u 1 du 2 -u 2 du 1 ). This distribution (current) coincides with the usual Jacobian 2-form du 1 ∧ du 2 if u is sufficiently smooth, say u ∈ H 1 . In the latter case, Ju = 0 for S 1 -valued maps u. As a distribution, Ju is defined by

⟨Ju, ζ⟩ = 1 2 S 2 (u 1 du 2 -u 2 du 1 ) ∧ dζ, ∀ ζ ∈ C ∞ (S 2 ; R). (2) 
More generally, when u ∈ W 1,1 (S n ; S 1 ), Ju is defined as an (n -2)-current through the formula

⟨Ju, ζ⟩ = 1 2 S n (u 1 du 2 -u 2 du 1 ) ∧ dζ, ∀ ζ ∈ Λ n-2 (S n ). (3) 
The following result was proved in [START_REF] Bourgain | H 1 2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation[END_REF].

Theorem 2 ([6]) Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Then W s,p ∩ W 1,1 (S n ; S 1
) is dense in W s,p (S n ; S 1 ). In addition, the map u ↦ Ju extends by continuity from W s,p ∩ W 1,1 (S n ; S 1 ) to W s,p (S n ; S 1 ).

Denoting by u ↦ Ju this extension, Theorem 1 sheds a new light on Theorem 2 via the following Proposition 3 Let n ≥ 2, s > 0, p ≥ 1 be such that 1 ≤ sp < 2. Let u ∈ W s,p (S n ; S 1 ) and write u = ve ıϕ , with ϕ ∈ W s,p and v ∈ W sp,1 . Then, for each choice of ϕ and v, we have

⟨Ju, ζ⟩ = 1 2 S n (v 1 dv 2 -v 2 dv 1 ) ∧ dζ, ∀ ζ ∈ Λ n-2 (S n ). ( 4 
)
3 Existence of maps with prescribed singularities. The two dimensional case

Set R ∶= {u ∈ W 1,1 (S 2 ; S 1 ); u is smooth outside some finite set A = A(u)}. When u ∈ R, we have ⟨Ju, ζ⟩ = π a∈A d a ζ(a), where the integers d a are the degrees of u on suitably oriented small circles around a ∈ A and satisfy

d a = 0 [12]. Thus Ju = π a∈A d a δ a . Since R is dense in W 1,1 (S 2 ; S 1 ) [3], one obtains that {Ju; u ∈ W 1,1 (S 2 ; S 1 )} ⊂ E 1,1 , where E 1,1 ∶= π (δ P j -δ N j ) (W 1,∞ ) *
. The reversed inclusion is true.

Theorem 4 ([1], [11]) We have {Ju; u ∈ W 1,1 (S 2 ; S 1 )} = E 1,1 .
Bousquet [START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF] partially completed this result.

Theorem 5 ([7]) Assume that s ≥ 1 and 1 ≤ sp < 2. Then {Ju; u ∈ W s,p (S 2 ; S 1 )} = E s,p , where

E s,p ∶= π (δ P j -δ N j ) (W 1,sp (sp-1) ) * ∩(W 2-s,p (p-1) ) * .
Note that the definition of E s,p suggests that different values of s and p yield different E s,p 's. Our first result in this direction is somewhat surprising.

Theorem 6 Assume that s ≥ 1 and 1 ≤ sp < 2. Then E s,p = E 1,sp .

In particular, if a (possible infinite) sum of the form (δ P j -δ N j ), with P j -N j < ∞, acts on W 1,r for some r ∈ (2, ∞), then it also acts on the Hölder space C 2-r (r-1) .

As a byproduct, the proof of the above theorem yields the following curious estimate

(δ P j -δ N j ) (C α ) * ≤ K α (δ P j -δ N j ) 2-α (W 1,(2-α) (1-α) ) * , (5) 
with K α depending on 0 < α < 1 but independent of the P j 's and N j 's.

Our next result completes Theorem 5.

Theorem 7 Assume that 1 ≤ sp < 2. Then {Ju; u ∈ W s,p (S 2 ; S 1 )} = E 1,sp .

4 Existence of maps with prescribed singularities. The higher dimensional case

In dimension 3 or higher, the class R is defined as R ∶= {u ∈ W 1,1 (S n ; S 1 ); u is smooth outside some (n-2)-submanifold without boundaryA = A(u) of S n }.

If u ∈ R, then we may identify Ju with the (n -2)-current π d j Γ j

, where Γ j are the (orientable, without boundary) connected components of A and the integers d j are the degrees of u on suitably oriented small circles linking to the Γ j 's [START_REF] Jerrard | Functions of bounded higher variation[END_REF], [START_REF] Alberti | Functions with prescribed singularities[END_REF], [START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF]. We then define, for 1 < q < 2, E 1,q ∶= π d j Γ j (W 1,q (q-1) ) *

. For q = 1, the suitable higher dimensional analog of E 1,1 was pointed out by Alberti, Baldo, Orlandi [START_REF] Alberti | Functions with prescribed singularities[END_REF] and is given by E 1,1 ∶= π {∂M ; M is a rectifiable (n -1) -current}. With these notations, we have Theorem 8 Assume that n ≥ 3 and 1 ≤ sp < 2. Then {Ju; u ∈ W s,p (S n ; S 1 )} = E 1,sp .

The case s = 1, p = 1 was known before [START_REF] Alberti | Functions with prescribed singularities[END_REF]. The case sp = 1 was obtained jointly with Bousquet [8].

The case 1 < sp < 2 relies on Theorem 1 and on techniques from [START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF]. Finally, the analog of ( 5) is given by

d j Γ j (C α ) * ≤ K α d j Γ j 2-α (W 1,(2-α) (1-α) ) * , 0 < α < 1. (6) 
Detailed proofs will appear in [START_REF] Mironescu | Sobolev spaces of circle-valued maps[END_REF].
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