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COMPLEMENTS TO THE PAPER “LIFTING, DEGREE
AND THE DISTRIBUTIONAL JACOBIAN REVISITED”

JEAN BOURGAIN® HAIM BREZIS®)(3)
AND PETRU MIRONESCU®

1. Existence of a degree and optimal estimates.

Let 0 < s < 00,1 <p<ooandset X =WP(SN;SN). We say that there is a
(topological) degree in X if

a) C°(SN; SN) is dense in X;
b) the mapping g — deg g, defined on C*°(S™; SV), extends by continuity to X.
We recall the following result, which is part of the folklore:

Lemma 1.1. There is a degree in X if and only if sp > N.

Proof. Property a) holds for each s and p. When s is not an integer and sp < N,
this was proved in [15]. When s = 1 and p < N, this assertion can be found in [4];
the same argument holds when s > 2 is an integer and sp < N.

When sp > N, property a) follows immediately from the embedding W*? < C©.
Finally, property a) when sp = N is essentially established in [13].

We next turn to property b). When sp > N, it is easy to see that the usual
Brouwer degree of the (continuous) maps in W*? has the required properties. When
sp = N, we have WP — V MOQO; in this case, the degree of VMO maps (studied in
[13]) is the desired extension. Finally, we prove that b) does not hold when sp < N.

We fix a map g € C°(RY; SV) such that g(x) = P when |z| > 1 and degg = 1;
here, P is the North pole of S™. Let 7 : SV — R¥ be the stereographic projection
and set g(r) = g(kn(z)), * € SN. Then degg, = 1,Vk. However, it is easy to
see that g — P strongly in W#®P and, therefore, the degree is not preserved in the
strong limit.

In view of Lemma 1.1, it is natural to ask whether, for sp > N, there is a control
of the form

(1.1) |deg g| < F(|gls,p), Vg € WHP(S™;5%).
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It follows from Theorem 0.6 and the Sobolev embeddings that the answer is
yes. Indeed, if sp > N and (s,p) # (1,1), then there is some ¢ > N such that
WP (SN, §N) s WN/44(§N. SN On the other hand, if s = p = N = 1, we have

the estimate
1 g 1
% = < —lg
m Jg1 g 2T

We next examine the optimality of the estimates in Theorem 0.6, which we
restate in a slightly more general form.

Theorem 1. Let 1 < p < oo and g € WN/PP(SN: SN) Then

|degg| = 1,1

(1.2) |degg| < Cp.nlgl/p

Proof. When p > N, this is the content of Theorem 0.6. When p = N, estimate
(1.2) is an immediate consequence of the Kronecker formula

(1.3) degg:LN/ det(Vg).
[SY] Jsw

Finally, when 1 < p < N, (1.2) follows from (1.3) and the Gagliardo-Nirenberg
type inequality

N 1-p/N
(1.4) gl < lglbf ) gl

Estimate (1.2) is optimal in the following sense:
Lemma 1.2. For 1 < p < oo, there is a sequence (g,) C WN/PP(SN: SNY such
k
that |gk|n/pp — o0 and deg gy > C;;,N’gk|§)v/p,p~

Proof. Let h : RN — S¥ be such that h(z) = P for |x| > 1. Then, clearly,
|h o T|N/ppsyy ~ |hN/pp@yy. In view of this remark, it suffices to construct
a sequence (hy) € WN/PP(RN; SN such that Pkl N /pp Y 00, by, = P for |z| >
1,deg hy > C;),N|hk|§)v/p,p- Fix a map g € C°(R";SY) such that degg = 1 and
g(z) = P for |x| > 1. For k > 1, we fix k distinct points ay,... ,ax € By. Let

Irk(T) = P+é(g—P) (x_/\aj) A > 0.

It is easy to see that

A—0
]JDV/p,p - k|g‘§)\7/p,p'

In addition, for sufficiently small A, the map gy j is S™V-valued, has degree k, and
equals P for |z| > 1. If we set, for sufficiently large A\g, hx, = g, &, then |hg|

k and deg hy = k.

‘gA,k

p Y
N/p,p



2. Existence of a distributional Jacobian.

As in the previous section, we discuss whether, given 0 < s < 00,1 < p < o0,
there is a notion of a distributional Jacobian in W*P(SV+1: §N)  As noted in
the discussion before Theorem 0.8, the answer is yes in WN/PP(SN+1, GN) and
therefore also in W*P(SN+1 SNY if sp > N (via the Sobolev embeddings). On the
other hand, there is no natural notion of distribution Jacobian if sp < N. Indeed,
in this case C°°(SN*1; SV) is dense in W*P(SN+1: §N) (this follows from [4] and

/
[5]). Let g : SNT1 — SN g(a, xny1) = %, for which Det(Vg) # 0. Consider a
sequence (gx) C C°(SN*+1; SN) such that gp — ¢ in W*P. If a natural Det(V)
would exist, this would yield

0= liin Det (Vgi) = Det (Vg) # 0, impossible .

However, the answer given by Theorem 0.8 is not completely satisfactory. Indeed,
the perfect analogs of a), b) in Section 1 are, for 0 < s < 00,1 < p < oo such that
N<sp< N+1:

a’) that the class Ry, = {g € WSP(SNTL; GN): g € C™ except a finite set,
g € WHN1 is dense in W#P(SN+L, N,

b’) that Det(V) extends by continuity from R, to W*P.

The proof of Theorem 0.8 combined with the Sobolev embeddings shows that
b’) holds, provided a’) holds. However, we established a’) only for 0 < s < 1; when
s =1, a’) holds also, see [4]. It is plausible that a’) holds for any s.

Concerning the estimate

(2.1) | Det (Vg)llwr.=)- < Clg| g€ WNPP(SNTLGN) p > N,

P
N/p,p’
Theorem 2.4 implies its optimality.

3. The closure of C*°(SN*1; SN),

As we have already noted, C*°(SN*1; SN) in dense in WSP(SN+L SN if sp < N
or sp > N + 1. It is easy to see that this is not true if N < sp < N + 1.

We mention the following straightforward generalization of a result due to Bethuel
[19] when p = N.

Theorem 2. Let N < p < co. For g € WN/Pr(SN+1. GNY) " the following are

equivalent:
wN/p.p

a) g € C=(SN+1; GN) :
b) Det (Vg) = 0.
A proof is presented in [20].

It is plausible that the assumptions s < 1,sp = N are irrelevant here.
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Question. Let 0 < s < 00,1 < p < o0 be such that N < sp < N + 1. It is true
that

N/p,p

g e Cx(SN+L M"Y 4 Det (Vg) = 07

4. An Alternative proof of Theorem 0.1.
In this section, we present another argument that yields the estimate

(4.1) |elsmom) < Cp(le’? Ilj/p,p([) + 1% ppn), 1<p<oo, p€ WP ().

We start with some preliminary results.

4.1. Basic estimates. )
If o € LY(I), with I C R interval, we set ¢; = m /(p.
I

Lemma 4.1. Let p € C°((—p,p)). Assume that

(4.2) |€w|1/p,p(—p,p) <G

and

(4.3) |l BrMO(=p,0) @l BMOW©,p) < Co.
Then

(4.4) [P(=p,0) = P(0,p)| < C(1+CT)(1 + Ca).

Proof. We start by introducing some notations. For 0 < l; < Iy < p, set

fl1) = @0,0n) — ©—11,0);
h(l17 l2) = So(ll,lg) - 90(—12,—[1)'

Let C3 = 2+ 2C5. If | f(p)] < 103C3, there is nothing to prove. Otherwise, assume,

t
e.g., f(p) >0 and set t = % > 103, Let J = {5} —1. Forj=1,...,J, we will
3
construct inductively 0 < p; < ... < py < p such that, for j=1,... ,J —1,
(4.5) f(pjr1) — fp;) € [C3,2C3];
(4.6) Pit+1 > 2pj;

4



(47) dist (h’(pj7 pj-l—l)a 27TZ) >

N | =

Assume the p;’ s constructed, for the moment. By Corollary A.5, it follows that

i |P ; — —
|e |1/1771?((/%'7pj+1)U(—Pj+17—Pj)) 2C j=1....J-1,
and thus

7 > C(J—1) 2 C'f(p).

1/p7p(_p7p)

from which the conclusion of the lemma follows.

It remains to construct the p;’s. Let p; be the first [ > 0 such that f(I) = Cs.
Assuming py,...,p; constructed (j < J), let a be the largest [ > 0 such that
f(l) = f(pj) + Cs and let b be the smallest [ > a such that f(I) = f(p;) + 2C5.

We claim that

(4.8) a > 4p;

N =

(4.9) for at least one [ € [a, b], it holds that dist (h(p;,!),27Z) >

Properties (4.5) - (4.7) follow immediately from (4.8) - (4.9); it suffices to take
pj+1 =1, where [ € [a, b] is such that (4.9) holds. It is also clear from our construc-
tion that the p;’s exist up to j = J.

Proof of (4.8).

By Lemma A.1, we have
03 = |f(CL) - f(p])| §|30(O,a) - (p(O,pj)‘ + |90(—a,0) - (p(—pj,O)
Pj Pi
| SEJ (lelBMO(=p,0) + l€lBMO®,p)) < ;]02’
and (4.8) follows from our choice of Cs.

Proof of (4.9). Argue by contradiction and assume that

dist (h(pj,1),27Z) < =, VI € [a,b].

N | =

Since [ — h(p;,1) is continuous, there is some fixed d € Z such that

1
\h(p;,1) —2md| < 5,‘v’l € [a,b].
5)



In particular, |h(pj,a) — h(p;,b)| < 1. By Lemma A.2, we have

h(pj,a) = —— f(a) — —2— f(p;) = f(p;) + Cs

CL—,Oj a—pj CL—pj7

and similarly

b
h(ps,b) = f(pj) +2Cs—.

— Py

Thus ;
Cs|2 L
b—pj a—p;
. b a 1 a a . .
Since 2 — > — , we find that C3 < 2, which is impossible,
—pj a—p; 2a-—p; a = pj

since C3 > 2.
Corollary 4.2. Let J,K be two adjacent intervals and ¢ € C°(J U K). Assume
that
(410) |ei@|1/p,p(JUK) < Cl
and
(4.11) lelBMo(s) + [elBmok) < Co.
Then
(4.12) lplBMorur) < C(1+ CT)(1+ Ca).

Proof. Let L C JU K be an interval. We have to prove that
1 P
17 L\90—90L|§C(1+Cl)(1+02).

If L C Jor L C K, this is clear. Otherwise, assume, e. g., L = (—a,b), with
(—a,0) C J and (0,b) C K. By Lemma A.3, we have

1
m/ [ — or] < 3(l¢l BMO(=a,0) + |©lBMO0,6) + |9(=a,0) — P(0,0)])
L

and the conclusion follows from Lemma 4.1.

We will also need the following variant of Lemma 4.1
6



1
Lemma 4.3. Let 0 < p’ < G and o € C°((p, p) U (—p, —p")).

Assume that

(4.13) |€w’1/p,p((4p’,p)U(*p,f4p’)) <G
and

(4.14) | olBMO((o p)U(—p—p)) < C-
Then

(4.15) (Pt p) = Pl=pr—p)) = (P(or20) = Pl=tpr—p))| < C(1L+CT)(1 + Cs).
Proof. Let C5 = 24 3C5. We may assume, e. g., that
3
tCs = ((.0) = P(=p=p) — (Pl 491) = P(=ap,—p)) 2 10°C.

/

t
Let J = [Z_l] —1. We construct inductively p;,7 =1,...,J, as follows: set p; = 4p".

Assume py, ..., p; already constructed such that
(4.16) (@ on) = P=prr=) = (Lo prr) = Pl=prri—p)) € [C5,2C5];
(4.17) Pk = 2Pk—1;
. 1
(4.18) dist (SO(Pk—lvpk) - W(*Pkﬁpk—l)ﬂﬂz) > 92’
E=1,...,7.

Let a be the largest [ > p; such that

() = P-1,-p1) = (P01 p5) = P(=ps—)) = C3,
and let b be the smallest | > a such that

(‘P(p’,l) - ‘P(*lﬁp’)) - (‘P(p’w) - @(*p,fp’)) = 2C5.
As in the proof of Lemma 4.1, we claim that

(4.19) a > 2pj;
7



1
(4.20) there is some I € [a,b] such that dist (¢(,, 1) = P(-1,p,), 27Z) > 3

Proof of (4.19). We have, by Lemma A.1,

Cs = [((p'.a) = P 0) = (P(ar—p) = P(=pji—p’))
< ‘90(9’,&) - SO(PIij)| + “P(—av—p’) — P(=pj.p')
a — p/ /

/
a—p a—p

[lBMO(p,p) + —— | @lBMO(=p,—p) < Cs,
pi—p' (p',p) pi— 1 (=p,—p") pi—p

<

so that

C3 C3+C,
> . — —— 5" >99.
a 02,0] s P Pjs

the last inequality follows from the inequalities C3 > 3C5 and p; > 4p.

Proof of (4.20). Argue by contradiction. As in the proof of Lemma 4.1, it follows
that

| (P(o5,0) = Pl=ar=ps)) = (Plo10) = P(=b,-py)) | £ 1.
Starting from the identity

/ /

o) = —— 0y — L
(pjra) = Py (pha) = Py (p"sp5)3
we obtain, as in the proof of Lemma 4.1, that
b A A
Cs|2 p_a—pe <1.
b—pj a—p;

/

a—p
a—pj

As in the proof of Lemma 4.1, this implies that C3 < 2, which is impossible,

since C3 > 2.
The remaining part of the proof of Lemma 4.3 is identical to the one of Lemma
4.1 and will be omitted.

Proof of Theorem 0.1. We may assume that ¢ € CO N W/PP_ As explained in the
main paper, when |e*?|;,, , is sufficiently small, (4.1) follows from the inequality
l9lemo(r) < Clgli/pp(r) combined with



Lemma 4.4 ([14]). Let ¢ € VMO(I). There are constants C' > 0,0 > 0 such that

(4.21) lelemo) < Clelemomy  if € |Bymor) < 0.

Let v = min(6/7, §). Tt suffices to establish (4.1) when |e*| > 4. Let N

P
be the smallest integer > /PP We consider a partition of I with N successive

p
1/p,p(I)

intervals Iy, ..., In chosen such that |6i(p|§)/p(llumulj) =jv,j=1,...,N—1. Thus
€1 ppizy) < 75V
It suffices to establish the estimate

1 i
(4.22) I /I o = 1l < Cle [ by

In view of lemmas A.6 and 4.4, we have
1 1
m/f@ —pr| <Cy+ iE > LIeller, — el
Jk
so that (4.22) bounds to proving

1 i
(4.23) g > _LillEller, = erl < Cle®l, -
7,k

The remaining part of the proof is devoted to estimating the differences
lo1, — @1, |- Without any loss of generality, we will assume j = 1.

Lemma 4.5. Assume that |I,| = |I| > jmax|[|. Let ly be such that |I;)| =
max{|[;|;2 <1< k—1} and set J =1, U---UI_1. Assume that |I1| < 4|J|, and

consider the following intervals

pictt_n"e B 3 }
(with 11| = |T,| = Ti,| = |74 = 31T, ]). Then

1]
(4.24) o —enl <ler, —on, |+ leg, — 5| +C (1 + log Tk
0

Proof. We have

(4.25) |en, —en| <len—enl+len —en [ +lern, —e5, [+ler, = [+ler, —enl
By Lemma A.7, we have

1
420 len—vnl+len, — e, |+ lor, —onl <€ (14108 ).

and the conclusion follows.



Lemma 4.6. Same hypotheses as above, except that we assume |I1| > 4|J|. Let
IT, I be as below.

picture

(with |IF| = |Iz| = 4]J]). Then

(4.27)
41|

|9011 _SOIk‘ < |901_90f10’+“/7fl g0]k|—|—C(1—|—log |I | "He |1/pp((11\1*)U(Ik\I*))>

Proof. We have

(4.28) lor, — e1.| < lorr — o1l + [(or, — ¢17) — (o1, — 17)|-

By Lemma 4.5, we have

4|J|
(4.29) lory —er| < lvn —en, | +ler, —vrl+C (1 +log IIzOI) '

On the other hand, Lemma 4.3 (with (—p/, p’) replaced by J and (—p, p) replaced
by Iy U J U Ij) yields

(430) o — 1)~ (or, — i) < C (141690, iy )

and the conclusion follows.

Corollary 4.7. If |I| = |Ix]| > %2<Ilr1<a£< 1\Jl|, then (with ly as above)

lon = enl <ler, —en | +leg, — @5+
min{4[J|, [}
¢ (1 Flog = 1 o)
(Here, I1 \ I{ and I \ I} could be empty).

Lemma 4.8. Assume that |I,| = |I;| > 1 7, 08% |Ji|. Then

(4.31)

(4.32) or, = er, < Clk+1e1 1, b))

Proof. We start by applying Corollary 4.7. We note that, by construction, we may
apply again Corollary 4.7 to the consecutive intervals Iy, I, ..., I;,_1, I;,, respec-

tively to IlO,IZOH, v I, Ik, next we iterate this procedure.
10



We find that

2(k—1)

(4.33) lor, —enl < > les — x| +2C(k —1) + £y + .
=1

Here, J;, K; are adjacent intervals of equal length, each one contained into one of
the original I;’s; 3; is the sum of the logarithmic terms, while 35 is the sum of the

| ¥ /p,p LETTOS. Lemma 4.1 implies that
2(k—1)
(4.34) > e —vr| <Clk—1) < Ck.
=1

On the other hand, the | 713 o terms we consider appear on disjoint intervals, and
thus

(4.35) Sp < Cle® IlJ/p,p(I)'
Therefore,
(4.36) ler, =l < Ch+Clel ), ) + 51

Claim We have »; < Ck. In order to prove the claim, we give a formal description
of how ¥; is computed.

Let Zy = {2,...,k — 1} and let s4 € Zy be such that |I,,| = max|[s| (with the
notations used up to now, we have sy = ly). Let Z) = {2,...,8¢ — 1}, Z(1) =
{s¢ +1,...,k — 1} if s4 is closer to 2 than to k — 1; otherwise, let Zy = {s¢ +
L...,k—=1}Z1) =1{2,...,584 — 1}. We have

Zo| =1+ 1Zoy| + |Z )| | Z(0)] < 121y
Assuming Z. constructed, we proceed to constructing Z. oy and Z. 1) as above.
More specifically, if Z. # ¢, we pick s. € Z. such that |I; | = m%x|Is]. We
S€lL.

next write Z. \ {sc} = Zc,0) U Z(e,1), With Z(c 0y, Z(c,1) intervals of integers and
|Z(C’0)| S |Z(c’1)|. If Zc = @, we StOp.
If Z.={m,m+1,...,n}, then the corresponding term in ¥; is of the form

min{|K[,43 5, U]}

(4.37) :
| Zs..|

here, K is an interval contained in I,,—; and of length < min{|,,,—1,|In+1|}
11



Assume ¢ # (). If ¢ is the predecessor of ¢, we have either m — 1 € Z,, or
n+ 1€ Z;, and thus |K| < |Is.]|.
In conclusion,

in{4|.J|.|I min{ |, |,> ", I,
(4.38) ElgClogmm{ /1, | 1|}+C’Zlog4 {|Zs.| Zezc| |}

|Ilol 20 \ |IsC’ )

R.
in{|J|, [T
Setting Ry = %’7"1’}, the claim amounts to proving that
lo

(4.39) > "log(4R.) < Ck.

This is an immediate consequence of the two following

Lemma 4.9. We have

(4.40) D logRe < Ck+ Y _log|Z(c,)-

Lemma 4.10. We have

(4.41) > "10g|Zc,0)| < Ck.

Proof of Lemma 4.9. Let t be the largest integer such that Z(l, 1,...,1,0) #* .

t times
Set ag = Z(O),al = Z(lyo),...,at = Z(l,l,...,l,O)’xO = R¢,$1 = R(l),...,l‘t =

t times
t times
Writing
Zy = (ZoyU{s¢}) U (Za,0)U{s)}) U(Za,0Uisant)U...,

we find that

Zs |IS| Is Is IS
R¢g%: 3 L] | > ‘I‘+ > ||I||+""

¢| SGZ(O)U{5¢>}| S¢‘ 56Z(1,0)U{51}’ S¢| s€Z1,1,0U{s1,1,00} 5¢
12




so that

sy | Lsin)l
Ry < 2Zo)| + 2| Z(1,0)] Is(l) +2|Z(1,1,0)] SI(M)
| 3¢>| | S¢|
Since
|I5(1)| < 1 |IS(1,1)| _ |IS(1,1)| . |IS<1)| < 1
|IS¢| B R(l) |IS¢| ‘Is(l)| |IS¢’ N R(l)R(l,l)
we obtain
1 a a a
(4.42) “ro<agd+ 24 22 4y
2 r1  IT1Xo T1X9 ... T
and similarly
1 as ag
Sn <At 2
2 To To...T¢

(4.43)

1 ag
T < a1+ —.
2 Tt

Noting that x; = 1, we find from (4.42) - (4.43) by backward induction on j that

t—j
Tj...xp < E 2m E Hal.
m=1 JCH{j,...,t}led
|J|=m

In particular, since a; > 1,Vj, we obtain
(4.44)

t t t t
v m <y Y Halgzw(t;l)nalgsmnal.
m=1 0 0

m=1  JC{0,...t}|J|=ml€J

Similarly, for any fixed ¢ we have

(4.45) II Reo< I GlZeeol:

c contains c contains
only 1’s only 1’s

Since each ¢ can be uniquely written as ¢ = (¢, 0,¢) where ¢ contains only 1’s,
by multiplying the inequalities of type (4.45) we find that

1R <3* [ 120l

13



from which the conclusion of the lemma follows.

Proof of Lemma 4.10. Let, for 1 >0, S, = {c; |Z(. 0| € [2,2"7)}. We claim that
[C 7& C/, c, c e Sl] = Z(C,O) N Z(c’,O) = ¢.

Argue by contradiction and assume that Z(. 0y N Z( o) # ¢-
Then, for example, we have Z(. ) ; Z(e 0y, 80 that Z. C Z (. ), by construction.

1 1
Thus |Z(,0)| < §|Zc| < §|Z(C/’0)|, which is impossible if ¢, ¢’ € S;. Therefore,

[logy k]+1 [log, k]+1
H | Z(c0)| = H H | Z(c,0)] < H olSil < Hzlk/zl — oAk
=1 cES] =1 I>1
where A = Y127,
I>1

Lemma 4.11. Assume that |I1| > |I}|,l = 2,...,k. Then

i 1]
(4.46) lor, —er| <C <k + e p/p p(Iyu--UI) T log 7 | I |
Proof. Let lp =1 and define inductively l; such that |[;;| = max. ]I 1] Then

o, — ol <Y len, , =, |-
Jj=1

Let I_ij1 be as follows:

picture
(such that |I,,_,| = |I,,]). We may apply Lemma 4.7 to the sequence of intervals
Iskl, ..+, Is;, and find that

S C(Sj — Sj—l —|— |€icp p

(447) |¢fsj_1 - SO[SJ, ]-/p»p(ISj,lU"'UISj))‘

On the other hand, Lemma A.7 yields

I,
(4.48) o1, | — gpfsj71| <C (1 + log %) .

By summing up all the inequalities of type (4.47)-(4.48), we find that (4.46) holds.
14



Lemma 4.12. For each j, k we have

L 11?
(449) |S01j — Splk’ < C (|k7 _j’ + |€ ¥ p/pp(j) +10g |I ||Ik|

Proof. Assume j = 1. If I (or I) is the largest among the intervals Iy, ..., Ix, the
conclusion follows from Lemma 4.11. Otherwise, let [ € {2,...,k— 1} be such that
|I;| > |I;|,t =1,..., k. By Lemma 4.11, we have

|1i]

450) Lo —nl <O (U= D+ 190 iy + 108 1
and

(4.51) or, —on | < C((k=1)+ e +1og 2

. SDIIC SDIk — 1/p7p(IlU"'UIk) S — |Ik’

from which the lemma follows.

Corollary 4.13. We have

; 7|
(4.51) o1, —en| <C (N 1 oy '

VI 1]

Proof of Theorem 0.1. We have to estimate the r.h.s. of (4.23). In view of Corollary
4.13, we have

1 . C
WZ il Lkller; — e, | <C <N+ e If/p,p(l)) + i IIARETARE
ak gk

<C (N + e Zf/p,p<1>> < Cle 1} piry;

. y p
since N < Cle'? 1pp(1)”
5. An improvement of Theorem 0.1 and the answer to OP2 when N = 1.

If I C Ris an interval and g : I — C, we set, for 6 > 0,

1
s~ | 1
{(zw)el2|g(x)—g(y)| 28} 1T — Y]

In this section, we prove the following generalization of Theorem 0.1.
15



Theorem 3. For sufficiently small 6 > 0, we have
(51) ’W‘BMO([) SC((5+J(€Z¢,5,I)), V(,OECO(I,R)
An immediate consequence is the following

Theorem 4. Let g € C°(SY; SY). Then, for sufficiently small § > 0, we have
(5.2) |degg| < CJ(g,6,5").

This answer OP 2 when N = 1.

Proof of Theorem 4. By Lemma A.8, we have |g|gmo(st) < 0+ 2J(g, 6, S1). Recall
that degg = 0 provided |g|gmo(s1) is sufficiently small (see [13]). Thus (5.2) holds
(for small 6 > 0) provided J(g,d,S*) is sufficiently small.

When J(g,6,S') is not to small, estimate (5.2) is obtained from (5.1) in the
same way (0.6) follows from Theorem 0.1.

Proof of Theorem 3. The proof is the same as the one of Theorem 0.1, except that
| If/p,p has to be replaced by J(g,0,I). The only two places where | f/p,p comes
into the picture are the inequality

(5.3) l9lBmor) < 19l /pp(n)

and Lemma A.4 (together with Corollary A.5). The substitute of (5.3) is Lemma
A.8. The analog of Lemma A.4/Corollary A.5 are Lemma A.9/Corollary A.10
presented into the appendix.
Appendix. Elementary properties of averages.

K
Lemma A.1. Let J C K. Then |p; — ¢x| < %|¢|BMO(K).

|
Proof. We have

/(@@)Kl/!w@‘ |K|1/I<P90!<|K’\<P|
—¥YK >~ T —PK| = T T —¥YK| > 74 BMO(K):
; 7] Jx ] K] Jx ] l

The following identities are trivial:

| ==
PCJ—PK| = 7=
]

Lemma A.2. Let J, K be two adjacent intervals. Then
K] _ I+ K] K]

Al — = _ N e L it | I el
( ) YJg — PIJUK ]J| ]K\ (SOJ SOK)aSDJ \J] PIUK \J] YK
and
| K| |J|
A2 - A bl B
( ) PIUK |J|+]K|¢K |J\+|K|('0J

16



Lemma A.3. Let 0 < a <b. Then

1 b
> / lo — ©(—ap| <3 (lelBMO(=a,0) + |@lBMO©0.5)) T [€(—a0) — 0,0)l-

Proof. We have

b 0 0
M = | — V(—ap)l S/ | — V(—a,0)] +/ |©(—a,0) — P(—ap) |+

—a

b b
/ | — wo,p)| + / [©0,) = P(—ap)]
0 0

<aleBMmo(—a,0) + bl@lBMO0,5) + @lV(—a,0) = P(—ap)| T blP0,6) = P(—ap)l-

By Lemma A.2, we further obtain

2ab
M < (a+0) (|90|BM0(—a,o) + |<P|BMO(o,b)) +a T b\@(—a,O) - 90(0,1;)|
N

<N+ 2ab| I+ 2ab’ |

> atb P(—a,0) — ¥(0,a) atb ¥(0,a) — P(0,b) 5
and Lemma A.1 implies that
(A.3) M N2 1+ 221

. > atb ¥(—a,0) — P(0,a) atb PIBMO(0,b) -

Dividing (A.3) by a + b, we find that

1 b
=y b/ | — ©(—a.p)| <l@lBMO(=a,0) + |©IBMO0,0)+

2ab 2b2
(a+b)2 (0,00 = PO+ m|§0|BMO(O,b)

<3 (l¢lBMO(=a,0) + |€lBMO©0.8)) + [€(—a0) — P0.0)l-

Lemma A.4. Let L > 21 >0 and p € C°((I, L) U (=L, -1)). There is some v > 0
such that

) 1
dist (¢@,z) — Y(-1.—1),27Z) > 3 and [plpmoq,n) + |¢lBMo(—1,—1) < 7| =
17



L =l ie(x) _ Lie(y)|p
[
l —L (95 - y)

here, v and C' depend only on I, L, ¢.
Proof. We have, with I = (I, L),J = (—L, —1),

1
L——l /I |90 - 901|p < O|Q0|I]_;,MO([)>

with C' independent of I (this is the scale invariant form of the John-Nirenberg
inequality). Thus

1t 1
(A4) z/l le"? — 1P < L—_Z/I|90_901|p§0|90|g1\/[o(1)5

a similar inequality holds for J.
Since, for x € I,y € J, we have

(A.5) |ez‘901 _ ei@J‘p < 3P (lei@(w) _ 61’@1’? + ’eigo(ac) _ eigo(y)’p + ‘eicp(y) _ eigDJ’p) :

we find that

// |€is01_€iw|p < 3p// <|eiso(w) _ eler P+ |€i<p(w) _ 6i<»0(y)|p + |eis0(y) _ 62‘@J|p> :
1JJ 1JJ

so that
|ei901 _ eiw|p <€ /|eiso(w) _ eiw’p +/ |ei<P(y) _ ewJ|p +
L \Js J

(A.6) %// |ete(@) _ gie)|p

, |eup(x) _ eZLP(y)lp
<’ <|90|BM0(1) + |90‘BMO(J)) +C // (x —y)? '

Thus

io(x) _ oie(y)|p . .
|€ e | C/// ipr g |P p p
|e"Pt — "7 |P — “P|BMO(1) - |90|BMO(J) ’

from which the lemma follows immediately.

18



Corollary A.5. Let L > 21> 0 and ¢ € C°((I,L) U (—L,—1)).
Then

. 1 i
dist (00,1) = P(-1,-1),27Z) > 5 = |€%l1ppa.Lyu-1,-1) 2 C,
for some C independent of I, L, ¢.

Proof. 1f |p|gmoq,z) + [¢BMo(—L,—1) < 7, the conclusion follows from Lemma A.4.
Otherwise, Lemma 4.4 combined with the embedding W1/?? cVMO implies that
|ei‘p|1/p7p(l’L) + |ei"°|1/p,p(_L,_l) > (C for some C depending only on v, and the
conclusion follows again.

Lemma A.6. Let ¢ € BMO(I) and consider a partition I = \J;I; of I with
intervals. If |o|gmo(r;) < Ca, Vj, then

1 1
m/}w—m <o+ o I leller, — ol
J.k

Proof. We have

i 1) V) J,

o7 | e —erl = o —@r < 7 © =]+ Pr— e
I AP Y Al u@(ﬂ | I,' |
1 1

:mZ|Ij|m/j_|90—901j|+

Lemma A.7. Let J C K be intervals. Then

m e -

K
s — K| <C (1 + log ||J||) lolBMO(K) -

Proof. If |.J| > 1| K|, the conclusion follows from Lemma A.1. Otherwise, let [ € N

L/ . .
be such that W € [2 ,27") and consider a sequence of intervals Ji, ..., o,
such that J; = J, Ji C Jx41, 142 = K, ’Jk’ = Qk_l_Q,k =2,...,0l+ 1. Then
I+1 I+1 ;|
|90J - (PK| < Z |¢Jj+1 - (ij| < |90’BMO(K) Z |f]—|
Jj=1 j=1 J

K
<2(l+ 1)|¢lBmox) < C (1 + log |’J|’> lelBMO(K);
here, we use again Lemma A.1.

19
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Lemma A.8. We have, for g € C°(I;S%), |glsmo) < 6+ 2J(g,6,1).
Proof. Let K C I be an interval. Then

|g — g | < // dmdy+
|K|2/ / |K|2 {(z,y)€K?;|g(x)—g(y)| <5}

- dxdy
| K |2 //{(z,y)eKQ;g(m)—g(y)lzé}

<6 +2J(g,6,K) <6+ 2J(g,9, ).

Lemma A.9. Let L > 21 >0 and p € C°((I, L) U (=L, —1)). There is some v > 0
such that

. 1
[dISt (SO(Z,L) - SO(fL,fl),QWZ) > B} and [plmoq,r) + [¢lBMo(—L,—1) < 7] =

1
j .
{ze(.L) ye(~L,—1)ilg(z)—g(y)|>5} (T —¥)

here, v and C' depend only on 1, L, and § is small.
Proof. We start from (A.6). With g = €'?, we have

Cl < |6 ©r _esﬁJ‘P SC/(‘SDV};Mo(I) +’¢|%MO(J))+E/I/J|€ »( )_ew(y)lp

<C'(lelBao() + 12lBMon)+

2
o dady+ %5 [ dedy,
L2 J J{g(=)—g(y) <6} L2 J J{9@)-g(y)1>6}

so that

1
(A8) C1 < Ol + Lol )+oa+c”//
' BMO(D) © FIBMO) {lo(@)—gw)>6} (T —9)?

dxdy,

and the lemma follows.

Corollary A.10. Leté > 0 be sufficiently small, L > 21 > 0 and ¢ € C° ((I, L) U (—L, —1)).
Then

i 1
dist (SO(l,L) — P(—=L,—1)> 27TZ) > 3 = //{

for some C independent of I, L, .

1
——dwdy > C,
1<|2].ly|<L:la(x)—g(w)|>6} (T —Y)

Proof. 1f |p|gmoq,z) + [¢BMo(—L,—1) < 7, the conclusion follows from Lemma A.9.
Otherwise, Lemma A.8 combined with Lemma 4.4 imply that

for C independent of I, L, ¢, and the lemma follows.
20



Additional References

19. Bethuel, F., A characterization of maps in HI(B?’7 SQ) which can be approrimated by smooth
maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 269-286.

20. Brezis, H., Mironescu, P. and Ponce, A. C.,, Complements to the paper “Whl-maps with
values into S, http://www.ann.jussieu.fr /publications/2004.php3 (2004), 387-404.

() INSTITUTE FOR ADVANCED STUDY
PRINCETON, NJ 08540
E-mail address: bourgain@math.ias.edu

(2) LABORATOIRE J. -L. LIONS
UNIVERSITE P. ET M. CURIE, B.C. 187
4 PL. JUSSIEU

75252 PARIS CEDEX 05

E-mail address: brezis@ccr. jussieu.fr

() RUTGERS UNIVERSITY

DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854
E-mail address: brezis@math.rutgers.edu

4) DEPARTEMENT DE MATHEMATIQUES
UNIVERSITE PARIS-SUD
91405 ORSAY

E-mail address: Petru.Mironescu@math.u-psud.fr

21



