Complements to the paper ${ }^{"} W^{1,1}$-maps with values into $S^{1 "}$

Haïm Brezis, Petru Mironescu, Augusto C. Ponce

To cite this version:

Haïm Brezis, Petru Mironescu, Augusto C. Ponce. Complements to the paper " $W^{1,1}$-maps with values into S^{11}. 2004. hal-00747667

HAL Id: hal-00747667
https://hal.science/hal-00747667
Preprint submitted on 31 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COMPLEMENTS TO THE PAPER " $W^{1,1}$-MAPS WITH VALUES INTO S^{1} "
 07/05/04

Haïm $\operatorname{BreziS}^{(1),(2)}$, Petru Mironescu ${ }^{(3)}$ and Augusto C. Ponce $^{(1),(2)}$

The purpose of these notes is to complement some of our results in [BMP]. We also establish some of the claims we stated there without proof.

A. Extending Theorem 10 to other seminorms in $W^{1,1}\left(\Omega ; S^{1}\right)$.

In view of Theorem 10, it is natural to introduce the following quantity

$$
\rho(P, N)=\frac{1}{2 \pi} \operatorname{Inf}\left\{[g]_{W^{1,1}} ; g \in W^{1,1}\left(\Omega ; S^{1}\right), T(g)=2 \pi\left(\delta_{P}-\delta_{N}\right)\right\} .
$$

Here, []$_{W^{1,1}}$ is a general given semi-norm on $W^{1,1}\left(\Omega ; \mathbb{R}^{2}\right)$ equivalent to $\left|\left.\right|_{W^{1,1}}\right.$. We require from [] $W_{W^{1,1}}$ some structural properties :
(P1) $[\alpha g]_{W^{1,1}}=[g]_{W^{1,1}}, \forall g \in W^{1,1}\left(\Omega ; \mathbb{R}^{2}\right), \forall \alpha \in S^{1} ;$
(P2) $[\bar{g}]_{W^{1,1}}=[g]_{W^{1,1}}, \forall g \in W^{1,1}\left(\Omega ; \mathbb{R}^{2}\right)$;
(P3) $[g h]_{W^{1,1}} \leq\|g\|_{L^{\infty}}[h]_{W^{1,1}}+\|h\|_{L^{\infty}}[g]_{W^{1,1}}, \forall g, h \in W^{1,1}\left(\Omega ; \mathbb{R}^{2}\right) \cap L^{\infty}$.
It follows from (P3) that ρ is a distance.
[We refer the reader to [Mi] for the solution of the exercise given at the end of Section 3.]

Alternatively, we may define ρ starting from maps in \mathcal{R} :
Lemma A1. We have

$$
\rho(P, N)=\frac{1}{2 \pi} \operatorname{Inf}\left\{\begin{array}{l|l}
{[g]_{W^{1,1}}} & \begin{array}{l}
g \in C^{\infty}\left(\Omega \backslash\{P, N\} ; S^{1}\right) \cap W^{1,1} \\
\operatorname{deg}(g, P)=+1, \operatorname{deg}(g, N)=-1
\end{array}
\end{array}\right\} .
$$

Proof. It suffices to prove that, for $g \in W^{1,1}\left(\Omega ; S^{1}\right)$ such that $T(g)=2 \pi\left(\delta_{P}-\delta_{N}\right)$, we may find a sequence $\left(g_{n}\right) \subset \mathcal{R}$ such that $T\left(g_{n}\right)=2 \pi\left(\delta_{P}-\delta_{N}\right)$ and $g_{n} \rightarrow g$
in $W^{1,1}$. Note that the desired conclusion is invariant with respect to orientationpreserving diffeomorphisms of Ω. Therefore, we may assume that $\Omega=S^{2}$ and that P, N are respectively the North and the South pole of S^{2}. Let $h(x, y, z)=\frac{(x, y)}{|(x, y)|}$. Then $h \in \mathcal{R}, T(h)=2 \pi\left(\delta_{P}-\delta_{N}\right)$. It follows that $k=g \bar{h} \in Y$. Thus, we may find a sequence $\left(k_{n}\right) \subset C^{\infty}\left(\Omega ; S^{1}\right)$ such that $k_{n} \rightarrow k$ in $W^{1,1}$. Set $g_{n}=h k_{n}$. Then $g_{n} \in \mathcal{R}, T\left(g_{n}\right)=2 \pi\left(\delta_{P}-\delta_{N}\right)$ and $g_{n} \rightarrow g$ in $W^{1,1}$.

Another simple property of ρ is

$$
\begin{equation*}
C_{1} d(P, N) \leq \rho(P, N) \leq C_{2} d(P, N) \tag{A1}
\end{equation*}
$$

for some $C_{1}, C_{2}>0$ independent of P, N. This follows from the equivalence of $\left|\left.\right|_{W^{1,1}}\right.$ and []$_{W^{1,1}}$.

Part of Theorem 10 holds in this more general setting :
Theorem A1. Let $P_{i}, N_{i} \in \Omega$ be such that

$$
\left.\sum \rho\left(P_{i}, N_{i}\right)<\infty \quad \text { (or, equivalently, } \sum d\left(P_{i}, N_{i}\right)<\infty\right)
$$

Set

$$
\widetilde{L}=\operatorname{Inf}\left\{\sum \rho\left(\widetilde{P}_{j}, \widetilde{N}_{j}\right) ; \sum\left(\delta_{\widetilde{P}_{j}}-\delta_{\widetilde{N}_{j}}\right)=\sum\left(\delta_{P_{i}}-\delta_{N_{i}}\right)\right\} .
$$

Then

$$
\frac{1}{2 \pi} \operatorname{Inf}\left\{[g]_{W^{1,1}} ; g \in W^{1,1}\left(\Omega ; S^{1}\right), T(g)=2 \pi \sum\left(\delta_{P_{i}}-\delta_{N_{i}}\right)\right\} \leq \widetilde{L}
$$

Proof. Let $\varepsilon>0$ and let $\widetilde{P}_{j}, \widetilde{N}_{j}$ be such that

$$
\sum\left(\delta_{\widetilde{P}_{j}}-\delta_{\widetilde{N}_{j}}\right)=\sum\left(\delta_{P_{i}}-\delta_{N_{i}}\right) \quad \text { and } \quad \sum \rho\left(\widetilde{P}_{j}, \widetilde{N}_{j}\right) \leq \widetilde{L}+\varepsilon
$$

By definition, for each j we may find some $g_{j} \in W^{1,1}\left(\Omega ; S^{1}\right)$ such that

$$
T\left(g_{j}\right)=2 \pi\left(\delta_{\widetilde{P}_{j}}-\delta_{\widetilde{N}_{j}}\right)
$$

and

$$
\left[g_{j}\right]_{W^{1,1}} \leq 2 \pi \rho\left(\widetilde{P}_{j}, \widetilde{N}_{j}\right)+\frac{\varepsilon}{2^{j}}
$$

We claim that there is a sequence $k_{n} \rightarrow \infty$ such that $\Pi_{j=1}^{k_{n}} g_{j} \xrightarrow{n} g$ in $W^{1,1}$ for some $g \in W^{1,1}\left(\Omega ; S^{1}\right)$. By Lemma 1, this implies that

$$
T(g)=2 \pi \sum_{j}\left(\delta_{\widetilde{P}_{j}}-\delta_{\widetilde{N}_{j}}\right)=2 \pi \sum_{i}\left(\delta_{P_{i}}-\delta_{N_{i}}\right)
$$

Using (P3), we will also have $[g]_{W^{1,1}} \leq 2 \pi \widetilde{L}+\varepsilon$. Therefore, the conclusion of Theorem A1 follows if we prove the existence of the sequence $\left(k_{n}\right)$. We adapt below an argument used in [BBM2]. Set $H=\sum_{j \geq 1}\left|\nabla g_{j}\right| \in L^{1}$ (this uses the equivalence of $\left|\left.\right|_{W^{1,1}}\right.$ and []$\left._{W^{1,1}}\right)$. Since $\left|\nabla\left(\Pi_{j=1}^{k} g_{j}\right)\right| \leq H, \forall k$, we may find a sequence $k_{n} \rightarrow \infty$ and a map $g \in B V\left(\Omega ; S^{1}\right)$ such that $h_{n}=\Pi_{j=1}^{k_{n}} g_{j} \rightarrow g$ a.e. Then, for $m>n$, we have

$$
\begin{aligned}
\left|h_{m}-h_{n}\right|_{W^{1,1}} & =\left|h_{n}\left(h_{m} \bar{h}_{n}-1\right)\right|_{W^{1,1}} \\
& \leq\left|h_{m} \bar{h}_{n}\right|_{W^{1,1}}+\left\|\left(1-h_{m} \bar{h}_{n}\right) \nabla h_{n}\right\|_{L^{1}} \\
& \leq \sum_{j=k_{n}+1}^{k_{m}}\left\|\nabla g_{j}\right\|_{L^{1}}+\left\|\left(1-h_{m} \bar{h}_{n}\right) H\right\|_{L^{1}}=A_{m, n}+B_{m, n}
\end{aligned}
$$

Let $0<\delta<1$. Then, clearly, $A_{m, n}<\delta$ provided m, n are sufficiently large. On the other hand,

$$
B_{m, n} \leq \delta\|H\|_{L^{1}}+2 \int_{\left\{x:\left|1-h_{m}(x) \bar{h}_{n}(x)\right| \geq \delta\right\}}|H| .
$$

Note that

$$
\left\{x ;\left|1-h_{m}(x) \bar{h}_{n}(x)\right| \geq \delta\right\} \subset\left\{x ;\left|g(x)-h_{m}(x)\right| \geq \frac{\delta}{3}\right\} \cup\left\{x ;\left|g(x)-h_{n}(x)\right| \geq \frac{\delta}{3}\right\}
$$

Since $h_{n} \rightarrow g$ a.e., we find that $B_{m, n} \leq \delta\left(\|H\|_{L^{1}}+1\right)$, provided m, n are sufficiently large. Therefore, $\left(h_{n}\right)$ is a Cauchy sequence in $W^{1,1}$ and converges to the above g in $W^{1,1}$.

It is not clear whether the reverse inequality in Theorem A1 is valid in general :
Open Problem 8. Let $P_{i}, N_{i} \in \Omega$ be such that $T(g)=2 \pi \sum_{i}\left(\delta_{P_{i}}-\delta_{N_{i}}\right)$. Is it true that

$$
[g]_{W^{1,1}} \geq 2 \pi \widetilde{L} ?
$$

Note that, by definition, the answer is yes if $T(g)=2 \pi\left(\delta_{P}-\delta_{N}\right)$.

B. Proof of Theorems $\mathbf{1}^{\prime}, 3^{\prime}$, and 5^{\prime}.

Proof of Theorem 3'. Let us first assume that $g \in C^{\infty}\left(\bar{\Omega} \backslash\left\{a_{1}, \ldots, a_{k}\right\} ; S^{1}\right) \cap W^{1,1}$. It is then easy to see that

$$
\langle T(g), \zeta\rangle=2 \pi \sum_{j=1}^{k} d_{j} \zeta\left(a_{j}\right)+\int_{\partial \Omega}\left(g \wedge g_{\tau}\right) \zeta, \quad \forall \zeta \in \operatorname{Lip}(\Omega ; \mathbb{R})
$$

where d_{j} denotes the topological degree of g with respect to any small circle centered at a_{j}. In particular,

$$
\begin{equation*}
\langle T(g), \zeta\rangle=2 \pi \sum_{j=1}^{k} d_{j} \zeta\left(a_{j}\right), \quad \forall \zeta \in W_{0}^{1, \infty}(\Omega) \tag{B1}
\end{equation*}
$$

Note that, in general, $\sum_{j} d_{j} \neq 0$. This means that we do not have necessarily the same number of positive and negative points as before. In order to compensate this, we insert points from $\partial \Omega$ into (B1). Since $\zeta=0$ on $\partial \Omega$, equality in (B1) remains true. We can then relabel the points a_{j} as $P_{1}, \ldots, P_{\ell}, N_{1}, \ldots, N_{\ell}$, according to their multiplicity d_{j}, so that (B1) becomes

$$
T(g)=2 \pi \sum_{j=1}^{\ell}\left(\delta_{P_{j}}-\delta_{N_{j}}\right) \quad \text { in } W_{0}^{1, \infty}(\Omega)
$$

For a general $g \in W^{1,1}\left(\Omega ; S^{1}\right)$, we argue by density using Lemma 2 to conclude that

$$
T(g)=2 \pi \sum\left(\delta_{P_{i}}-\delta_{N_{i}}\right) \quad \text { in }\left[W_{0}^{1, \infty}(\Omega)\right]^{*} .
$$

Note that d_{Ω} induces a metric on the space $\bar{\Omega} / \partial \Omega$, where $\partial \Omega$ is identified with a single point. Moreover, Lipschitz functions ζ on $\bar{\Omega} / \partial \Omega$ with $|\zeta|_{\text {Lip }} \leq 1$ and $\zeta(\partial \Omega)=0$ correspond to elements in $W_{0}^{1, \infty}(\Omega)$ such that $\|\nabla \zeta\|_{L^{\infty}} \leq 1$. Applying Lemma 12^{\prime} in [BBM2] to $\bar{\Omega} / \partial \Omega$, we obtain

$$
L(g)=\operatorname{Inf} \sum_{i} d_{\Omega}\left(P_{i}, N_{i}\right) .
$$

Remark B1. The main new feature when Ω is a bounded domain in \mathbb{R}^{2} is that a minimal connection is made of segments from a positive singularity P_{i} to some negative N_{j}, but we can also have line segments joining the singularities P_{i}, N_{i} to the boundary $\partial \Omega$. This is the analog of Example 3 in [BCL].
Proof of Theorem 1'. The proof of $E(g)=E_{\text {rel }}(g)$ is exactly the same as in Proposition 2 and we shall omit it.

We are left to show that

$$
\begin{equation*}
E(g)=\int_{\Omega}|\nabla g|+2 \pi L(g) \tag{B2}
\end{equation*}
$$

Let $\varphi \in B V(\Omega ; \mathbb{R})$ be such that $g=\mathrm{e}^{i \varphi}$. Using Vol'pert's chain rule as in the proof of Lemma 5, we have

$$
\begin{equation*}
|D \varphi|_{\mathcal{M}(\Omega)}=|g|_{W^{1,1}}+|g \wedge \nabla g-D \varphi|_{\mathcal{M}(\Omega)} \tag{B3}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
|g \wedge \nabla g-D \varphi|_{\mathcal{M}(\Omega)} \geq 2 \pi L(g) \tag{B4}
\end{equation*}
$$

In fact, for every $\zeta \in C_{0}^{\infty}(\Omega)$ such that $\|\nabla \zeta\|_{L^{\infty}} \leq 1$,

$$
|g \wedge \nabla g-D \varphi|_{\mathcal{M}(\Omega)} \geq \int_{\Omega}(g \wedge \nabla g) \cdot \nabla^{\perp} \zeta-\int_{\Omega} D \varphi \cdot \nabla^{\perp} \zeta=\langle T(g), \zeta\rangle
$$

Taking the supremum with respect to ζ, we conclude that (B4) holds.
Inequality \geq in (B2) follows immediately from (B3) and (B4).
We now establish \leq in (B2). Let us assume for the moment that g is smooth outside finitely many points a_{1}, \ldots, a_{k}, and that g has topological degree ± 1 at each one of those points. Let \mathcal{C} be a minimal connection between those points with respect to the distance d_{Ω}.

Note that on any closed curve contained in $\Omega \backslash \mathcal{C}, g$ has zero topological degree. We conclude that g has a smooth lifting φ on $\Omega \backslash \mathcal{C}$. Moreover, as we cross any one of the line segments of \mathcal{C}, φ jumps by 2π. Thus, $\varphi \in B V(\Omega ; \mathbb{R})$ and

$$
\int_{\Omega}|D \varphi|=\int_{\Omega}|\nabla g|+2 \pi|\mathcal{C}|=\int_{\Omega}|\nabla g|+2 \pi L(g) .
$$

We can now argue by density, using Lemma 2 , to conclude that for any $g \in$ $W^{1,1}\left(\Omega ; S^{1}\right)$ there exists $\varphi \in B V(\Omega ; \mathbb{R})$ such that $g=\mathrm{e}^{i \varphi}$ a.e. in Ω and

$$
\begin{equation*}
\int_{\Omega}|D \varphi| \leq \int_{\Omega}|\nabla g|+2 \pi L(g) . \tag{B5}
\end{equation*}
$$

This concludes the proof of the theorem.
Proof of Theorem 5'. Using exactly the same argument as in the proof of Proposition 3, we have

$$
\begin{equation*}
|\langle\operatorname{Det}(\nabla g), \zeta\rangle| \leq T V(g)\|\zeta\|_{L^{\infty}}, \quad \forall \zeta \in C_{0}^{\infty}(\Omega) \tag{B6}
\end{equation*}
$$

Thus, if $T V(g)<\infty$, then $\operatorname{Det}(\nabla g) \in \mathcal{M}(\Omega)$. We now apply Proposition 3.2 in $[\mathrm{S}]$ (see also $[\mathrm{P}]$) to the quotient space $\bar{\Omega} / \partial \Omega$. We conclude that there exist distinct points $a_{1}, \ldots, a_{k} \in \Omega$ and nonzero integers d_{1}, \ldots, d_{k} such that

$$
\begin{equation*}
\operatorname{Det}(\nabla g)=\pi \sum_{j=1}^{k} d_{j} \delta_{a_{j}} \tag{B7}
\end{equation*}
$$

We now define

$$
h(x):=\left(\frac{x-a_{1}}{\left|x-a_{1}\right|}\right)^{-d_{1}} \cdots\left(\frac{x-a_{k}}{\left|x-a_{k}\right|}\right)^{-d_{k}} g(x) \quad \text { for a.e. } x \in \Omega .
$$

Clearly, $\operatorname{Det}(\nabla h)=0$ in $\mathcal{D}^{\prime}(\Omega)$. It follows from the analog of Theorem 7 for domains in \mathbb{R}^{2} (see also [D]) that h has a lifting in $W^{1,1}$. In other words, we can find $\varphi \in W^{1,1}(\Omega ; \mathbb{R})$ such that $h=\mathrm{e}^{i \varphi}$ a.e. in Ω. We then conclude that

$$
g(x)=\left(\frac{x-a_{1}}{\left|x-a_{1}\right|}\right)^{d_{1}} \cdots\left(\frac{x-a_{k}}{\left|x-a_{k}\right|}\right)^{d_{k}} \mathrm{e}^{i \varphi(x)} \quad \text { for a.e. } x \in \Omega .
$$

Arguing as in the proof of Theorem 5, this implies that

$$
\begin{equation*}
T V(g) \leq \pi \sum_{j=1}^{k}\left|d_{j}\right| \tag{B8}
\end{equation*}
$$

The reverse inequality already follows from (B6). We then conclude that (6.8) holds.

Conversely, if $\operatorname{Det}(\nabla g) \in \mathcal{M}(\Omega)$, then (B7) holds. The above argument then shows that $T V(g)<\infty$ and

$$
T V(g)=|\operatorname{Det}(\nabla g)|_{\mathcal{M}}=\pi \sum_{i=1}^{k}\left|d_{i}\right|
$$

C. Proof of Theorem $3^{\prime \prime \prime \prime}$.

Theorem $3^{\prime \prime \prime \prime}$ follows immediately from Theorem 3 and the next
Lemma C1. Given $g \in W^{1,1}\left(S^{2} ; \Gamma\right)$, we define

$$
g_{j}:=\frac{g-a_{j}}{\left|g-a_{j}\right|} \in W^{1,1}\left(S^{2} ; S^{1}\right) .
$$

Then,

$$
\begin{equation*}
\operatorname{Det}(\nabla g)=\frac{1}{\pi} \sum_{j}\left|A_{j}\right| \operatorname{Det}\left(\nabla g_{j}\right) \quad \text { in } \mathcal{D}^{\prime}\left(S^{2}\right) \tag{C1}
\end{equation*}
$$

The proof of Lemma C1 relies on the following

Lemma C2. For any $u \in W^{1,1}\left(S^{1} ; \Gamma\right)$, we have

$$
\begin{equation*}
\frac{1}{2} \int_{S^{1}} u \wedge u_{\tau}=\sum_{j}\left|A_{j}\right| \operatorname{deg} \frac{u-a_{j}}{\left|u-a_{j}\right|} \tag{C2}
\end{equation*}
$$

Proof of Lemma C2.

Step 1. Γ is a simple curve.
It is well-known that (C 2) holds if $u \in C^{1}\left(S^{1} ; \Gamma\right.$) (see, e.g., [N$]$). By approximation, we conclude that (C 2) is also true for any $u \in W^{1,1}\left(S^{1} ; \Gamma\right)$.
Step 2. Assume Γ has finitely many self-intersections, say q_{1}, \ldots, q_{k}.
Since u is continuous, the set

$$
S^{1} \backslash u^{-1}\left(\left\{q_{1}, \ldots, q_{k}\right\}\right)
$$

is open and can be written as a countable union of open arcs in S^{1}. Let α_{1} be such an arc. It is easy to see that we can select disjoint $\operatorname{arcs} \alpha_{2}, \ldots, \alpha_{j}$ (oriented anticlockwise) such that u at the positive endpoint of α_{i} coincides with the value of u at the negative endpoint of α_{i+1} for $i=1, \ldots, j$, with the convention that $\alpha_{j+1}=\alpha_{1}$. By removing arcs from this list if necessary, we can assume that each point q_{i} appears only twice in the list

$$
\left\{u\left(\partial \alpha_{1}\right), \ldots, u\left(\partial \alpha_{j}\right)\right\}
$$

This construction induces a function $\tilde{u} \in W^{1,1}\left(S^{1} ; \Gamma\right)$ such that
(a) $\tilde{u}=u$ on $\alpha_{1} \cup \cdots \cup \alpha_{j}$;
(b) \tilde{u} is locally constant on $S^{1} \backslash \alpha_{1} \cup \cdots \cup \alpha_{j}$.

By construction, $\tilde{u}\left(S^{1}\right)$ is a subset of a Jordan curve $\tilde{\Gamma}$ contained in Γ. Let $A_{t_{1}}, \ldots, A_{t_{\ell}}$ be the components of $\mathbb{R}^{2} \backslash \Gamma$ enclosed by $\tilde{\Gamma}$. By our first step, we have

$$
\begin{equation*}
\frac{1}{2} \int_{S^{1}} \tilde{u} \wedge \tilde{u}_{\tau}=\left|A_{t_{1}} \cup \cdots \cup A_{t_{\ell}}\right| \operatorname{deg} \frac{\tilde{u}-a}{|\tilde{u}-a|} \tag{C3}
\end{equation*}
$$

for some point a inside $\tilde{\Gamma}$. Note, however, that

$$
\operatorname{deg} \frac{\tilde{u}-a}{|\tilde{u}-a|}=\operatorname{deg} \frac{\tilde{u}-a_{t_{s}}}{\left|\tilde{u}-a_{t_{s}}\right|}, \quad \forall s=1, \ldots, \ell ;
$$

moreover,

$$
\operatorname{deg} \frac{\tilde{u}-a_{j}}{\left|\tilde{u}-a_{j}\right|}=0, \quad \text { if } j \notin\left\{t_{1}, \ldots, t_{\ell}\right\} .
$$

We can thus rewrite (C3) as

$$
\begin{equation*}
\frac{1}{2} \int_{S^{1}} \tilde{u} \wedge \tilde{u}_{\tau}=\sum_{s=1}^{\ell}\left|A_{t_{s}}\right| \operatorname{deg} \frac{\tilde{u}-a_{t_{s}}}{\left|\tilde{u}-a_{t_{s}}\right|}=\sum_{j}\left|A_{j}\right| \operatorname{deg} \frac{\tilde{u}-a_{j}}{\left|\tilde{u}-a_{j}\right|} \tag{C4}
\end{equation*}
$$

We can proceed with the construction of \tilde{u} and "decompose" $u \in W^{1,1}\left(S^{1} ; \Gamma\right)$ as $\tilde{u}_{1}, \tilde{u}_{2}, \ldots$ so that
(a) $\tilde{u}_{i} \in W^{1,1}\left(S^{1} ; \Gamma\right)$ and $\tilde{u}_{i}\left(S^{1}\right)$ is contained in some Jordan curve for every i;
(b) $u_{\tau}=\tilde{u}_{1 \tau}+\tilde{u}_{2 \tau}+\cdots$ in S^{1};
(c) \tilde{u}_{i} coincides with u on finitely many arcs in $S^{1} \backslash u^{-1}\left(\left\{q_{1}, \ldots, q_{k}\right\}\right)$ and \tilde{u}_{i} is locally constant outside those arcs.

By (C4), we have

$$
\frac{1}{2} \int_{S^{1}} \tilde{u}_{i} \wedge \tilde{u}_{i \tau}=\sum_{j}\left|A_{j}\right| \operatorname{deg} \frac{\tilde{u}_{i}-a_{j}}{\left|\tilde{u}_{i}-a_{j}\right|}, \quad \forall i
$$

Note that, by (b) and (c),

$$
\int_{S^{1}} u \wedge u_{\tau}=\sum_{i} \int_{S^{1}} \tilde{u}_{i} \wedge \tilde{u}_{i \tau} .
$$

For the same reason,

$$
\operatorname{deg} \frac{u-a_{j}}{\left|u-a_{j}\right|}=\sum_{i} \operatorname{deg} \frac{\tilde{u}_{i}-a_{j}}{\left|\tilde{u}_{i}-a_{j}\right|}, \quad \forall j .
$$

We conclude that (C2) holds.
Proof of Lemma C1. Let $g \in W^{1,1}\left(S^{2} ; \Gamma\right)$. By the coarea formula (see [BBM2]), we have

$$
\begin{equation*}
\langle\operatorname{Det}(\nabla g), \zeta\rangle=\int_{\mathbb{R}}\left(\int_{\Sigma_{\lambda}} g \wedge g_{\tau}\right) d \lambda \tag{C5}
\end{equation*}
$$

where $\zeta \in C^{\infty}\left(S^{2}\right)$, and $\Sigma_{\lambda}=\left\{x \in S^{2} ; \zeta(x)=\lambda\right\}$ is equipped with the appropriate orientation, whenever λ is a regular value of ζ.

Recall that, for a.e. $\lambda \in \mathbb{R},\left.g\right|_{\Sigma_{\lambda}}$ belongs to $W^{1,1}$. Applying Lemma C 2 to $\left.g\right|_{\Sigma_{\lambda}}$ for such λ s we get

$$
\int_{\Sigma_{\lambda}} g \wedge g_{\tau}=2 \sum_{j}\left|A_{j}\right| \operatorname{deg} g_{j}=\frac{1}{\pi} \sum_{j}\left|A_{j}\right| \int_{\Sigma_{\lambda}} g_{j} \wedge g_{j \tau}
$$

Integrate both sides of the identity above with respect to λ. Using (C5), we conclude that

$$
\langle\operatorname{Det}(\nabla g), \zeta\rangle=\frac{1}{\pi} \sum_{j}\left|A_{j}\right|\left\langle\operatorname{Det}\left(\nabla g_{j}\right), \zeta\right\rangle, \quad \forall \zeta \in C^{\infty}\left(S^{2}\right)
$$

This establishes (C1).
We also call the attention of the reader to the following analog of Lemma 12^{\prime} in [BBM2]:
Proposition C1. Let X be a metric space. Given two sequences $\left(P_{i}\right),\left(N_{i}\right)$ in X and nonnegative numbers α_{i} such that $\sum_{i} \alpha_{i} d\left(P_{i}, N_{i}\right)<\infty$, let

$$
\begin{equation*}
T=\sum_{i} \alpha_{i}\left(\delta_{P_{i}}-\delta_{N_{i}}\right) \quad \text { in }[\operatorname{Lip}(X)]^{*} \tag{C6}
\end{equation*}
$$

Define

$$
L=\operatorname{Sup}_{\substack{\zeta \in \operatorname{Lip}(X) \\|\zeta|_{\text {Lip }} \leq 1}}\langle T, \zeta\rangle .
$$

Then,

$$
\begin{equation*}
L=\operatorname{Inf} \sum_{i} \alpha_{i} d\left(P_{i}, N_{i}\right) \tag{C7}
\end{equation*}
$$

where the infimum is taken over all sequences $\left(P_{i}\right),\left(N_{i}\right)$ in X and numbers $\alpha_{i} \geq 0$ such that (C6) holds.
Proof. Let us denote by \tilde{L} the infimum in (C7). Clearly, $L \leq \tilde{L}$. We now establish the reverse inequality.

Let $\varepsilon>0$. We take $k \geq 1$ sufficiently large so that

$$
\sum_{i>k} \alpha_{i} d\left(P_{i}, N_{i}\right)<\varepsilon
$$

Without loss of generality, we can assume that each α_{i} is rational for $i=1, \ldots, k$. We then choose an integer $J \geq 1$ sufficiently large so that $J \alpha_{i}$ is an integer for every $i=1, \ldots, k$. Write the points P_{i}, N_{i} as p_{1}, p_{2}, \ldots and n_{1}, n_{2}, \ldots, with multiplicity $J \alpha_{i}$. It follows from Lemma 4.2 in [BCL] that we can find $\zeta_{0} \in \operatorname{Lip}(X)$, with $\left|\zeta_{0}\right|_{\text {Lip }} \leq 1$, such that, after relabeling the points n_{j} if necessary, we have:

$$
\sum_{i=1}^{k} J \alpha_{i}\left[\zeta_{0}\left(P_{i}\right)-\zeta_{0}\left(N_{i}\right)\right]=\sum_{j}\left[\zeta_{0}\left(p_{j}\right)-\zeta_{0}\left(n_{j}\right)\right]=\sum_{j} d\left(p_{j}, n_{j}\right)
$$

Thus,

$$
\begin{aligned}
L & \geq \sum_{i=1}^{\infty} \alpha_{i}\left[\zeta_{0}\left(P_{i}\right)-\zeta_{0}\left(N_{i}\right)\right] \\
& \geq \sum_{i=1}^{k} \alpha_{i}\left[\zeta_{0}\left(P_{i}\right)-\zeta_{0}\left(N_{i}\right)\right]-\varepsilon \\
& =\frac{1}{J} \sum_{j} d\left(p_{j}, n_{j}\right)-\varepsilon \geq \sum_{j} \frac{1}{J} d\left(p_{j}, n_{j}\right)+\sum_{i>k} \alpha_{i} d\left(P_{i}, N_{i}\right)-2 \varepsilon .
\end{aligned}
$$

Note that

$$
T=\sum_{j} \frac{1}{J}\left(\delta_{p_{j}}-\delta_{n_{j}}\right)+\sum_{i>k} \alpha_{i}\left(\delta_{P_{i}}-\delta_{N_{i}}\right) .
$$

We conclude that $L \geq \tilde{L}-2 \varepsilon$. Since $\varepsilon>0$ was arbitrary, this implies $L \geq \tilde{L}$. Thus, $L=\tilde{L}$ as claimed.

D. Proof of Theorems $1^{\prime \prime}$ and $2^{\prime \prime}$.

We begin with a few preliminary results
Lemma D1. Given $\varepsilon>0$, let $\Phi_{\varepsilon}: \bar{B}^{N} \rightarrow \bar{B}^{N}$ be defined as

$$
\Phi_{\varepsilon}(x)= \begin{cases}0 & \text { if }|x| \leq \varepsilon \\ \frac{|x|-\varepsilon}{1-\varepsilon} \frac{x}{|x|} & \text { if } \varepsilon<|x| \leq 1\end{cases}
$$

Then, for every $f \in C^{\infty}\left(\bar{B}^{N} ; \mathbb{R}^{M}\right)$, we have

$$
f \circ \Phi_{\varepsilon} \rightarrow f \quad \text { in } W^{1, N}\left(B^{N}\right) .
$$

Proof. Given $x \in B^{N},|x| \geq \varepsilon$, let $r=|x|$ and $\psi_{\varepsilon}(r)=\frac{r-\varepsilon}{(1-\varepsilon) r}$. Using this notation, we have

$$
\Phi_{\varepsilon}^{\prime}(x)=\psi_{\varepsilon}(r) \operatorname{Id}+\left(\frac{x_{i} x_{j}}{r} \psi_{\varepsilon}^{\prime}(r)\right)
$$

Since $\psi_{\varepsilon}^{\prime}(r)=\frac{\varepsilon}{(1-\varepsilon) r^{2}}$,

$$
\left|\frac{x_{i} x_{j}}{r} \psi_{\varepsilon}^{\prime}(r)\right| \leq \frac{C \varepsilon}{r} .
$$

Moreover,

$$
\left|\Phi_{\varepsilon}(x)-x\right| \leq C \varepsilon \quad \text { and } \quad\left|\psi_{\varepsilon}(r)-1\right| \leq \frac{C \varepsilon}{r}
$$

We then have

$$
\begin{aligned}
\left|\nabla f_{\varepsilon}(x)-\nabla f(x)\right| & =\left|{ }^{t} \Phi_{\varepsilon}^{\prime}(x) \nabla f\left(\Phi_{\varepsilon}(x)\right)-\nabla f(x)\right| \\
& \leq\left|\nabla f\left(\Phi_{\varepsilon}(x)\right)-\nabla f(x)\right|+\left|\nabla f\left(\Phi_{\varepsilon}(x)\right)\right|\left|\operatorname{Id}-{ }^{t} \Phi_{\varepsilon}^{\prime}(x)\right| \\
& \leq C\left|\Phi_{\varepsilon}(x)-x\right|+C\left|\psi_{\varepsilon}(r)-1\right|+\frac{C \varepsilon}{r} \leq \frac{C \varepsilon}{r}
\end{aligned}
$$

for $|x| \geq \varepsilon$. Therefore,

$$
\int_{B^{N}}\left|\nabla f_{\varepsilon}-\nabla f\right|^{N} \leq C \varepsilon^{N} \int_{\varepsilon \leq|x| \leq 1} \frac{d x}{|x|^{N}}+\int_{|x|<\varepsilon}|\nabla f| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Next, we establish the following
Lemma D2. Given $f \in C^{\infty}\left(\bar{B}^{N} \times[0,1] ; \mathbb{R}^{M}\right)$, let

$$
f_{\varepsilon}(x, t)=f\left(\Phi_{\varepsilon}(x), t\right)
$$

Then

$$
f_{\varepsilon} \rightarrow f \quad \text { in } W^{1, N}\left(B^{N} \times[0,1]\right) .
$$

Proof. Note that

$$
\frac{\partial f_{\varepsilon}}{\partial t}(x, t)-\frac{\partial f}{\partial t}(x, t)= \begin{cases}\frac{\partial f}{\partial t}(0, t)-\frac{\partial f}{\partial t}(x, t) & \text { if }|x|<\varepsilon \\ \frac{\partial f}{\partial t}\left(\Phi_{\varepsilon}(x), t\right)-\frac{\partial f}{\partial t}(x, t) & \text { if }|x| \geq \varepsilon\end{cases}
$$

Thus, since $\left|\Phi_{\varepsilon}(x)-x\right| \leq C \varepsilon$, we have

$$
\left|\frac{\partial f_{\varepsilon}}{\partial t}-\frac{\partial f}{\partial t}\right| \leq C \varepsilon
$$

The result now immediately follows from Lemma D1.
As a consequence of Lemma D2 above, any map $f \in C^{\infty}\left(\bar{B}^{N} \times[0,1] ; S^{k}\right)$ can be approximated in $W^{1, N}$ by maps f_{ε} such that

$$
f_{\varepsilon}=f \quad \text { on } S^{N-1} \times[0,1] \quad \text { and } \quad f_{\varepsilon}(x, t)=g_{\varepsilon}(t) \quad \text { if }|x| \leq \varepsilon .
$$

Lemma D3. Given $g \in C^{\infty}\left([0,1] ; \mathbb{R}^{M}\right)$, let

$$
f(x, t)=g(t) \quad \forall(x, t) \in \bar{B}^{N} \times[0,1] .
$$

Then, there exists a sequence $\left(f_{\varepsilon}\right)$ in $W^{1, N}$ such that

$$
f_{\varepsilon}(x, t)=\text { const } \quad \text { if }|x| \leq \varepsilon, \quad f_{\varepsilon}(x, t)=g(t) \quad \text { if }|x|=1,
$$

and

$$
f_{\varepsilon} \rightarrow f \quad \text { in } W^{1, N}\left(B^{N} \times[0,1]\right) .
$$

Proof. Let $\zeta_{\varepsilon}: \bar{B}^{N} \rightarrow \mathbb{R}$ be given by

$$
\zeta_{\varepsilon}(x)= \begin{cases}\frac{\log \frac{|x|}{\varepsilon}}{\log \frac{1}{\varepsilon}} & \text { if } \varepsilon \leq|x| \leq 1 \\ 0 & \text { if }|x|<\varepsilon\end{cases}
$$

It is easy to see that

$$
\int_{B^{N}}\left|\nabla \zeta_{\varepsilon}\right|^{N} \rightarrow 0 \quad \text { and } \quad \int_{B^{N}}\left|\zeta_{\varepsilon}-1\right|^{N} \rightarrow 0
$$

Since $N \geq 2$, there exists $Q \in S^{N}$ such that $Q \notin g([0,1])$. Let $\Psi: S^{N} \backslash\{Q\} \rightarrow \mathbb{R}^{N}$ denote the stereographic projection. Set $F=\Psi \circ f$. Clearly, in order to establish the lemma, it suffices to approximate F in $W^{1, N}$ by a sequence F_{ε} such that $\left|F_{\varepsilon}\right| \leq C$,

$$
F_{\varepsilon}(x, t)=\text { const } \quad \text { if }|x| \leq \varepsilon \quad \text { and } \quad F_{\varepsilon}(x, t)=F(x, t) \quad \text { if }|x|=1 .
$$

Set $G(t)=\Psi \circ g(t)$ and $F_{\varepsilon}(x, t)=\zeta_{\varepsilon}(x) G(t)$. We then have

$$
\iint\left|\nabla_{x} F_{\varepsilon}-\nabla F\right|^{N} d x d t=\int\left|\nabla \zeta_{\varepsilon}\right|^{N} \int|G|^{N} \rightarrow 0
$$

and

$$
\iint\left|\partial_{t} F_{\varepsilon}-\partial_{t} F\right|^{N} d x d t=\int\left|1-\zeta_{\varepsilon}\right|^{N} \int\left|G^{\prime}\right|^{N} \rightarrow 0
$$

The proof of Lemma D3 is complete.
We conclude from Lemma D3 that, given any $u \in W^{1, N-1}\left(S^{N} ; S^{N-1}\right), N \geq 3$, there exists a sequence $\left(u_{n}\right)$ such that $u_{n} \rightarrow u$ in $W^{1, N}$, where each u_{n} satisfies the following properties :
(i) u_{n} has a finite number of point singularities P_{i}, N_{i};
(ii) u_{n} is homogeneous of degree 0 in a neighborhood of each singularity ;
(iii) $u_{n} \equiv Q$ in some conic neighborhood of a geodesic joining P_{i} and N_{i}.

In fact, (ii) holds since every topological singularity may be approximated by homogeneous singularities (see Lemma E. 5 below). We then apply Lemmas D. 2 and D. 3 to obtain property (iii).

We shall say that a map is good if it satisfies properties (i)-(iii).
Proof of Theorem 2'1. Our goal is to show that, for every $u \in W^{1, N-1}\left(S^{N} ; S^{N-1}\right)$,

$$
\begin{equation*}
\inf _{v \in C^{\infty}\left(S^{N} ; S^{N-1}\right)} \int_{S^{N}}|D(u)-D(v)|=\sigma_{N} L(u) . \tag{D1}
\end{equation*}
$$

Proof of " \geq ". For every $\zeta \in \operatorname{Lip}\left(S^{N}\right)$ such that $\|\nabla \zeta\|_{L^{\infty}} \leq 1$, we have

$$
\int_{S^{N}}|D(u)-D(v)| \geq \int_{S^{N}}[D(u)-D(v)] \cdot \nabla \zeta=\int_{S^{N}} D(u) \cdot \nabla \zeta=\langle T(u), \zeta\rangle .
$$

Taking the supremum with respect to ζ, we get

$$
\int_{S^{N}}|D(u)-D(v)| \geq \sigma_{N} L(u) \quad \forall v \in C^{\infty}\left(S^{N} ; S^{N-1}\right)
$$

Proof of " \leq ". Assume u is a good map. We shall assume for simplicity that u has a single dipole P, N. Given $\varepsilon>0$, let $U_{\varepsilon}: S^{N-1} \rightarrow S^{N-1}$ be such that

$$
U_{\varepsilon} \equiv Q \quad \text { if }|x-P| \geq \frac{\varepsilon}{2} \quad \text { and } \quad \int_{S^{N-1}}\left|\nabla_{T} U_{\varepsilon}\right|^{N-1} \leq \sigma_{N}(N-1)^{\frac{N-1}{2}}+\varepsilon
$$

The existence of such map is established in [BCL, Section VIII].
Let W denote the ε-conic neighborhood of the geodesic segment joining P and N. We decompose W as $W=W_{1} \cup W_{2}$, where W_{1} is the cylindric part of W, and W_{2} is the union of the two conic caps. We then define u_{ε} as

$$
u_{\varepsilon}(x)=u(x) \quad \text { if } x \notin W, \quad u_{\varepsilon}(x)=U_{\varepsilon}(x) \quad \text { if } x \in W_{1}
$$

and u_{ε} is extended by homogeneity of degree 0 in W_{2}. We then have

$$
\int_{S^{N}}\left|D(u)-D\left(u_{\varepsilon}\right)\right|=\int_{W_{1}}\left|D\left(U_{\varepsilon}\right)\right|+o(1) .
$$

In [BCL, Section VIII], it is proved that

$$
\left|D\left(U_{\varepsilon}\right)\right|=\left|\nabla_{T} U_{\varepsilon}\right| \leq \frac{1}{(N-1)^{\frac{N-1}{2}}}\left|\nabla_{T} U_{\varepsilon}\right|^{N-1} .
$$

We conclude that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{S^{N}}\left|D(u)-D\left(u_{\varepsilon}\right)\right| \leq \sigma_{N} L(u) \tag{D2}
\end{equation*}
$$

On the other hand, since u_{ε} has only singularities of degree 0 , Hopf's theorem implies that $u_{\varepsilon} \in \overline{C^{\infty}\left(S^{N} ; S^{N-1}\right)}{ }^{W^{1, N-1}}$. It then follows from (D2) that inequality " \leq " in (D1) holds, at least when u is a good map.

We now establish \leq in (D1) for any map $u \in W^{1, N-1}\left(S^{N} ; S^{N-1}\right)$. Let (u_{n}) be a sequence of good maps such that $u_{n} \rightarrow u$ in $W^{1, N-1}$. For each $n \geq 1$, we have just shown that there exists $v_{n}: S^{N} \rightarrow S^{N-1}$ smooth such that

$$
\int_{S^{N}}\left|D\left(u_{n}\right)-D\left(v_{n}\right)\right| \leq \sigma_{N} L\left(u_{n}\right)+\frac{1}{n} .
$$

Thus

$$
\int_{S^{N}}\left|D(u)-D\left(v_{n}\right)\right| \leq \int_{S^{N}}\left|D(u)-D\left(u_{n}\right)\right|+\sigma_{N} L\left(u_{n}\right)+\frac{1}{n}=\sigma_{N} L(u)+o(1)
$$

which gives the desired result.
Proof of Theorem 1". We want to show that

$$
\begin{equation*}
E_{\mathrm{rel}}(u)=\int_{S^{N}}|\nabla u|^{N-1}+(N-1)^{\frac{N-1}{2}} \sigma_{N} L(u) . \tag{D3}
\end{equation*}
$$

Proof of " \leq ". It suffices to establish the result for good maps. In fact, if $u_{n} \rightarrow u$ in $W^{1, N-1}$, then

$$
E_{\text {rel }}(u) \leq \liminf _{n \rightarrow \infty} E_{\text {rel }}\left(u_{n}\right),
$$

while the right-hand side of (D3) is continuous with respect to the strong topology in $W^{1, N-1}$. Thus, we may assume that u is good and we can proceed exactly as in the proof of Theorem $2^{\prime \prime}$. We shall leave the details to the reader.
Proof of " \geq ". As in [BCL, Section VIII], we have

$$
\begin{equation*}
\left|\left(w \cdot v_{2} \wedge \cdots \wedge v_{N}, w \cdot v_{1} \wedge v_{3} \wedge \cdots \wedge v_{N}, \ldots\right)\right| \leq \frac{|w|\left(\sum_{j}\left|v_{j}\right|^{2}\right)^{\frac{N-1}{2}}}{(N-1)^{\frac{N-1}{2}}} \tag{D4}
\end{equation*}
$$

for every $w, v_{1}, \ldots, v_{N} \in \mathbb{R}^{N}$.

On the other hand, given a sequence $\left(u_{n}\right) \subset C^{\infty}\left(S^{N} ; S^{N-1}\right)$ such that $\left(u_{n}\right)$ is bounded in $W^{1, N-1}$ and $u_{n} \rightarrow u$ a.e., we have

$$
\begin{equation*}
\int_{S^{N}}\left|\nabla u_{n}\right|^{N-1}=\int_{S^{N}}|\nabla u|^{N-1}+\int_{S^{N}}\left|\nabla u_{n}-\nabla u\right|^{N-1}+o(1) . \tag{D5}
\end{equation*}
$$

Let $\zeta \in \operatorname{Lip}\left(S^{N}\right)$ be such that $\|\nabla \zeta\|_{L^{\infty}} \leq 1$. Applying (D4) to $w=u_{n}$ and $v=\nabla u_{n}-\nabla u$, we get

$$
\frac{\int_{S^{N}}\left|\nabla u_{n}-\nabla u\right|^{N-1}}{(N-1)^{\frac{N-1}{2}}} \geq \sum_{\sigma} \varepsilon_{\sigma} \int_{S^{N}} u_{n} \cdot\left(u_{n x_{\sigma 2}}-u_{x_{\sigma 2}}\right) \wedge \cdots \wedge\left(u_{n x_{\sigma N}}-u_{x_{\sigma N}}\right) \zeta_{x_{\sigma 1}},
$$

where the sum is taken with respect to all permutations σ of N elements, and $\varepsilon_{\sigma}= \pm 1$ denotes the sign of σ. Thus,

$$
\begin{equation*}
\int_{S^{N}}\left|\nabla u_{n}-\nabla u\right|^{N-1} \geq-(N-1)^{\frac{N-1}{2}} \int_{S^{N}} D(u) \cdot \nabla \zeta+R_{n}(\zeta) . \tag{D6}
\end{equation*}
$$

Assume for the moment that $R_{n}(\zeta) \rightarrow 0$. It follows from (D5) and (D6) that

$$
\liminf _{n \rightarrow \infty} \int_{S^{N}}\left|\nabla u_{n}\right|^{N-1} \geq \int_{S^{N}}|\nabla u|^{N-1}+(N-1)^{\frac{N-1}{2}}\langle T(u), \zeta\rangle .
$$

Taking the supremum over ζ, we obtain " \leq " in (D3).
Thus, in order to conclude the proof of Theorem $1^{\prime \prime}$, we need to show that $R_{n}(\zeta) \rightarrow 0$. Since each u_{n} is smooth,

$$
\int_{S^{N}} D\left(u_{n}\right) \cdot \nabla \zeta=0
$$

It then follows that

$$
R_{n}(\zeta)=S_{n}(\zeta)+o(1)
$$

where $S_{n}(\zeta)$ is a sum of integrals of the form

$$
I_{n}= \pm \int_{S^{N}} u_{n} \cdot v_{n x_{i_{1}}} \wedge \cdots \wedge v_{n x_{i_{k}}} \wedge u_{x_{j_{1}}} \wedge \cdots \wedge u_{x_{j_{l}}} \zeta_{x_{t}}
$$

where $k+l=N-1$ and $v_{n}=u_{n}-u$. It is important to notice that $k \geq 1$ and $l \geq 1$. Since

$$
\left(u_{n}-u\right) u_{x_{j_{1}}} \wedge \cdots \wedge u_{x_{j_{l}}} \rightarrow 0 \quad \text { strongly in } L^{\frac{N-1}{l}}
$$

we may replace I_{n} by

$$
\pm \int_{S^{N}} u \cdot v_{n x_{i_{1}}} \wedge \cdots \wedge v_{n x_{i_{k}}} \wedge u_{x_{j_{1}}} \wedge \cdots \wedge u_{x_{j_{l}}} \zeta_{x_{t}}
$$

We can now formally integrate by parts to write $S_{n}(\zeta)$ as a sum of integrals of the form

$$
\pm \int_{S^{N}} u_{x_{i_{1}}} \cdot v_{n} \wedge v_{n x_{i_{2}}} \wedge \cdots \wedge v_{n x_{i_{k}}} \wedge u_{x_{j_{1}}} \wedge \cdots \wedge u_{x_{j_{l}}} \zeta_{x_{t}} .
$$

Such integration by parts can be easily justified by approximation ; note that all the second derivatives are cancelled by symmetry.

Since

$$
v_{n} u_{x_{j_{1}}} \wedge \cdots \wedge u_{x_{j_{l}}} \rightarrow 0 \quad \text { strongly in } L^{\frac{N-1}{l+1}}
$$

we conclude that

$$
R_{n}(\zeta)=S_{n}(\zeta)+o(1)=o(1)
$$

The proof of Theorem 1^{\prime} is completed.

E. Proof of Theorem $5^{\prime \prime}$.

Throughout this section, we assume that $\Omega=\partial G$, where G is a domain in \mathbb{R}^{N}; more generally, Ω could be any smooth domain (with boundary) in ∂G. We start with

Lemma E1. Let $0<\sigma<\infty, 1 \leq q<\infty$. Then

$$
\overline{C^{\infty}\left(\Omega ; S^{N-1}\right) \cap W^{\sigma, q}} W^{\sigma, q}=\overline{C^{\infty}\left(\bar{\Omega} ; S^{N-1}\right)} W^{W^{\sigma, q}}
$$

In other words, for each map $u \in C^{\infty}\left(\Omega ; S^{N-1}\right) \cap W^{\sigma, q}$, there is a sequence $\left(u_{n}\right) \subset$ $C^{\infty}\left(\bar{\Omega} ; S^{N-1}\right)$ such that $u_{n} \rightarrow u$ in $W^{\sigma, q}$.

Proof. Let, for $t>0$ sufficiently small, $\Omega_{t}=\{x \in \Omega ; d(x, \partial \Omega)>t\}$. Consider, for any such t, a diffeomorphism $\Phi_{t}: \Omega \rightarrow \Omega_{t}$ such that

$$
\left\|D^{k} \Phi-D^{k} \operatorname{Id}\right\|_{L^{\infty}} \leq C_{k} t, \quad k=0,1,2 \ldots
$$

and set, for $u \in C^{\infty}\left(\Omega ; S^{N-1}\right), u^{t}=u \circ \Phi_{t}$. Then

$$
u^{t} \in C^{\infty}\left(\bar{\Omega} ; S^{N-1}\right) \quad \text { and } \quad u^{t} \rightarrow u \quad \text { in } W^{\sigma, q} .
$$

Lemma E2. Let $u \in W^{1, N}\left(\Omega ; S^{N-1}\right)$. Then

$$
L(u)=0 \quad \Longleftrightarrow \quad u \in{\overline{C^{\infty}\left(\Omega ; S^{N-1}\right) \cap W^{1, N}}{ }^{W^{1, N}} ~ . ~}
$$

Here,

$$
\langle T(u), \zeta\rangle=-\int_{\Omega} D(u) \cdot \nabla \zeta
$$

where $\zeta \in W^{1, \infty}(\Omega)$ and ζ is constant on each connected component of $\partial \Omega ; L(u)$ is computed accordingly. When $N=3$, this result is due to Bethuel [B1] ; the same proof yields Lemma E2.
Lemma E3. Let $1 \leq p<N$. For $g \in W^{1, p}\left(S^{N-1} ; S^{N-1}\right)$, set $\tilde{g}(x)=g\left(\frac{x}{|x|}\right)$ for $x \in B^{N}$. Then $\tilde{g} \in W^{1, p}$ and the map

$$
g \in W^{1, p}\left(S^{N-1} ; S^{N-1}\right) \quad \longmapsto \tilde{g} \in W^{1, p}\left(B^{N} ; S^{N-1}\right)
$$

is continuous and verifies $|\tilde{g}|_{W^{1, p}} \leq C|g|_{W^{1, p}}$.
Proof. Trivial computation.
Lemma E4. In the definition of $T V$, we may replace $C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$-maps by maps in $\operatorname{Lip}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$.

Proof. Clear, by approximation.
Lemma E5. Let $N \geq 2, N-1 \leq p<N$, and let $u \in W^{1, p}\left(\Omega ; S^{N-1}\right)$. Fix $a_{1}, \ldots, a_{k} \in \Omega$ and define, for $\rho>0$ sufficiently small,

$$
u_{\rho}(x)= \begin{cases}u(x), & \text { if } d\left(x,\left\{a_{1}, \ldots, a_{k}\right\}\right) \geq \rho \\ u(y), & \text { if, for some } j, d\left(x, a_{j}\right)<\rho \text { and } \\ & x \text { lies on the geodesic segment from } \\ & a_{j} \text { to } y, \text { where } d\left(a_{j}, y\right)=\rho\end{cases}
$$

(here, d denotes the geodesic distance in S^{N}.)
Then $u_{\rho_{n}} \rightarrow u$ for some sequence $\rho_{n} \rightarrow 0$.
Proof. For simplicity, we may assume Ω is flat near each a_{j}. Then the definition of u_{ρ} becomes

$$
u_{\rho}(x)= \begin{cases}u(x) & \text { if } d\left(x,\left\{a_{1}, \ldots, a_{k}\right\}\right) \geq \rho \\ u\left(\rho \frac{x-a_{j}}{\left|x-a_{j}\right|}\right) & \text { if }\left|x-a_{j}\right|<\rho\end{cases}
$$

Alternatively, denoting by $u_{j}^{\rho}(y)=u\left(a_{j}+\rho y\right), y \in S^{N-1}$, then

$$
u_{\rho}(x)=u_{j}^{\rho}\left(\frac{x-a_{j}}{\left|x-a_{j}\right|}\right) \quad \text { if }\left|x-a_{j}\right|<\rho .
$$

Assume, for simplicity, that there is only one singularity, say $a_{1}=0$.
Let, for $n \geq 1, \rho_{n}$ be such that $\frac{1}{2 n} \leq \rho_{n} \leq \frac{1}{n}$ and

$$
\frac{1}{2 n} \int_{S_{\rho_{n}}}|\nabla u|^{p} \leq \int_{\frac{1}{2 n}}^{\frac{1}{n}}\left(\int_{|x|=\rho}|\nabla u|^{p}\right) d \rho=\int_{\frac{1}{2 n} \leq|x| \leq \frac{1}{n}}|\nabla u|^{p} .
$$

Then

$$
\int_{B_{\rho_{n}}}\left|\nabla u_{\rho_{n}}\right|^{p} \leq C_{N, p} \rho_{n} \int_{S_{\rho_{n}}}|\nabla u|^{p} \leq C \int_{\frac{1}{2 n} \leq|x| \leq \frac{1}{n}}|\nabla u|^{p} \xrightarrow{n \rightarrow \infty} 0 .
$$

Thus

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{\rho_{n}}-\nabla u\right|^{p} & =\int_{B_{\rho_{n}}}\left|\nabla u_{\rho_{n}}-\nabla u\right|^{p} \\
& \leq C\left(\int_{B_{\rho_{n}}}\left|\nabla u_{\rho_{n}}\right|^{p}+\int_{B_{\rho_{n}}}|\nabla u|^{p}\right) \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

Proof of Theorem 5". The equivalence

$$
T V(u)<\infty \quad \Longleftrightarrow \quad \operatorname{Det}(\nabla u) \quad \text { is a measure }
$$

is established as in the proof of Theorem 5. As already noted, $T V(u)<\infty$ implies

$$
\operatorname{Det}(\nabla u)=\frac{\sigma_{N}}{N} \sum_{\text {finite }}\left(\delta_{P_{i}}-\delta_{N_{i}}\right) .
$$

Let a_{1}, \ldots, a_{k} be the collection of points P_{i}, N_{i}. Given $n \geq 1$, let

$$
\Omega^{n}=\left\{x \in \Omega ; d\left(x,\left\{a_{1}, \ldots, a_{k}\right\}\right)>\frac{1}{n}\right\}
$$

and

$$
A^{n}=\left\{x \in \Omega ; \frac{1}{n} \leq d\left(x,\left\{a_{1}, \ldots, a_{k}\right\}\right) \leq \frac{2}{n}\right\}
$$

Consider a sequence $\left(u_{n}^{m}\right) \subset C^{\infty}\left(\overline{\Omega^{n}} ; S^{N-1}\right)$ such that $u_{n}^{m} \rightarrow u$ in $W^{1, N-1}$ as $m \rightarrow \infty$ (clearly, $L\left(\left.u\right|_{\Omega_{n}}\right)=0$). There is some $\rho_{n} \in\left(\frac{1}{n}, \frac{2}{n}\right)$ such that, up to a subsequence in m,
(i) $\left.\left.u_{n}^{m}\right|_{\Sigma_{\rho_{n}}} \rightarrow u\right|_{\rho_{\rho_{n}}}$ in $W^{1, N-1}\left(\Sigma_{\rho_{n}}\right)$ as $m \rightarrow \infty$,
(ii) $\int_{\Sigma_{\rho_{n}}}|\nabla u|^{N-1} \leq C n \int_{A_{n}}|\nabla u|^{N-1}$.

Here, $\Sigma_{\rho}=\left\{x ; d\left(x,\left\{a_{1}, \ldots, a_{k}\right\}\right)=\rho\right\}$.
Extend u_{n}^{m} to Ω as in Lemma 5 (by homogeneity of degree 0); let $\left(u_{n}^{m}\right)_{\rho_{n}}=\tilde{u}_{n}^{m}$ be this extension. By (i) and Lemma E5, we have $\tilde{u}_{n}^{m} \rightarrow u_{\rho_{n}}$ in $W^{1, N-1}(\Omega)$ as $m \rightarrow \infty$. By (ii) and Lemma E3, we have $u_{\rho_{n}} \rightarrow u$ in $W^{1, N-1}(\Omega)$. Thus we may find a sequence $\left(v_{n}\right) \subset \operatorname{Lip}_{\text {loc }}\left(\Omega \backslash\left\{a_{1}, \ldots, a_{k}\right\} ; S^{N-1}\right)$ such that
(a) v_{n} is homogeneous of degree 0 near each a_{j};
(b) $v_{n} \rightarrow u$ in $W^{1, N-1}(\Omega)$;
(c) near each a_{j}, the degree of v_{n} is d_{j}.

Assertion (c) follows from (i), the continuity of degree of maps from S^{N-1} into S^{N-1} for $W^{1, N-1}$ convergence and the following clear fact

$$
T\left(v_{n}\right)=\sigma_{N} \sum_{j} \operatorname{deg}\left(v_{n}, a_{j}\right) \delta_{a_{j}} \rightharpoonup T(u)=\sigma_{N} \sum_{j} d_{j} \delta_{a_{j}}
$$

For the remaining part of the proof, assume for simplicity that there is only one singularity $a=0$ of degree $d>0$ and that Ω is flat near a. Let ρ_{n} be such that v_{n} is homogenous of degree 0 in $B_{\rho_{n}}(0)$. Here, $B_{\rho}(0)$ is a ball in Ω centered at $a=0$. Fix d distinct points p_{1}, \ldots, p_{d} in B_{1}.

Let $\varepsilon>0$ be sufficiently small. For $w \in \operatorname{Lip}\left(\partial B_{1} ; S^{N-1}\right)\left(B_{1}\right.$ is the unit ball in \mathbb{R}^{N}), with $\operatorname{deg} w=d$, let $\tilde{w}: B_{1} \backslash \bigcup_{j} B_{\varepsilon}\left(p_{j}\right) \rightarrow S^{N-1}$ be such that $\left.\tilde{w}\right|_{\partial B_{1}}=w$, $\tilde{w}(x)=\frac{x-p_{j}}{\left|x-p_{j}\right|}$ if $\left|x-p_{j}\right|=\varepsilon, j=1, \ldots, d$ and \tilde{w} is a Lipschitz function. (Such a map exists, since $\operatorname{deg} w=d$.) We then extend \tilde{w} to B_{1} by setting $\tilde{w}(x)=\frac{x-p_{j}}{\varepsilon}$, if $\left|x-p_{j}\right| \leq \varepsilon$. Thus \tilde{w} is still Lipschitz.

Define, for $0<\rho<\rho_{n}$,

$$
v_{n, \rho}(x)= \begin{cases}v_{n}(x), & \text { if } d(x, 0)>\rho \\ \tilde{w}_{n}\left(\frac{x}{\rho}\right), & \text { if } d(x, 0) \leq \rho\end{cases}
$$

here, $w_{n}(x)=v_{n}\left(\rho_{n} x\right)$, if $|x|=1$. Lemma E5 yields

$$
v_{n, \rho} \rightarrow v_{n} \quad \text { in } W^{1, N-1} \quad \text { as } \rho \rightarrow 0
$$

Clearly, by the definition of $v_{n, \rho}$, we have

$$
\int_{\Omega}\left|\operatorname{Jac} v_{n, \rho}\right|=\omega_{N} d
$$

Considering now the case of several singularities, we obtain by a diagonal procedure a sequence $\left(w_{n}\right) \subset \operatorname{Lip}\left(\Omega ; \mathbb{R}^{N}\right)$ such that

$$
w_{n} \rightarrow u \quad \text { in } W^{1, N-1} \quad \text { and } \quad \int_{\Omega}\left|\operatorname{Jac} w_{n}\right|=\omega_{N} \sum_{j}\left|d_{j}\right| .
$$

F. Proof of Theorems $5^{\prime \prime \prime}$.

We start with the following well-known
Lemma F1. Let $1 / p<s<1$ and $1<p<\infty$. Given $u \in W_{0}^{1, p}\left(\mathbb{R}_{+}^{N}\right)$, let

$$
\tilde{u}(x)= \begin{cases}u(x) & \text { if } x_{N}>0 \\ 0 & \text { if } x_{N} \leq 0\end{cases}
$$

Then, $u \mapsto \tilde{u}$ is a continuous mapping from $W_{0}^{1, p}\left(\mathbb{R}_{+}^{N}\right)$ into $W^{1, p}\left(\mathbb{R}^{N}\right)$.
Proof. By density, it suffices to deal with $u \in C_{0}^{\infty}\left(\mathbb{R}_{+}^{N}\right)$. Using the Besov seminorm, we have
(F1) $|\tilde{u}|_{W^{s, p}}^{p} \sim|u|_{W^{s, p}}^{p}+\|u\|_{L^{p}}^{p}+\int_{0}^{\infty} \int_{\mathbb{R}^{R}} \int_{\mathbb{R}^{N-1}} \frac{\left|\tilde{u}\left(x^{\prime}, t+\tau\right)-\tilde{u}\left(x^{\prime}, t\right)\right|^{p}}{\tau^{1+s p}} d x^{\prime} d t d \tau$.
Denote by I the last term in the right-hand side of (F1). Clearly, it suffices to estimate I :

$$
\begin{equation*}
I \sim \int_{\mathbb{R}^{N-1}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{\left|u\left(x^{\prime}, t\right)-u\left(x^{\prime}, \sigma\right)\right|^{p}}{|t-\sigma|^{1+s p}} d \sigma d t d x^{\prime}+\int_{\mathbb{R}^{N-1}} \int_{0}^{\infty} \frac{\left|u\left(x^{\prime}, t\right)\right|^{p}}{t^{s p}} d t d x^{\prime} \tag{F2}
\end{equation*}
$$

It then suffices to estimate the last term in (F2). By Fubini, it suffices to consider the 1-dimensional integral

$$
\int_{0}^{\infty} \frac{|u(t)|^{p}}{t^{s p}} d t, \quad u \in C_{0}^{\infty}(0, \infty)
$$

This is a trivial consequence of the following

Lemma F2. Let $1 / p<s<1$ and $1<p<\infty$. Given $u \in C_{0}^{\infty}(0, \infty)$, we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{|u(t)|^{p}}{t^{s p}} d t \leq C \int_{0}^{\infty} \int_{0}^{\infty} \frac{|u(x)-u(y)|^{p}}{|x-y|^{1+s p}} d x d y \tag{F3}
\end{equation*}
$$

Proof. We first point out that both integrals are finite. Given $0<\alpha<\beta<1$, we have

$$
|u(t)| \leq|u(x)|+|u(t)-u(x)| \quad \forall x \in[\alpha t, \beta t]=: I_{t} .
$$

Thus,

$$
|u(t)|^{p} \leq 2|u(x)|^{p}+C|u(t)-u(x)|^{p} \quad \forall x \in I_{t} .
$$

Integrating over $x \in I_{t}$, we get

$$
\begin{equation*}
|u(t)|^{p} \leq \frac{2}{(\beta-\alpha) t} \int_{0}^{\infty}|u(x)|^{p} d x+\frac{C}{(\beta-\alpha) t} \int_{I_{t}}|u(t)-u(x)|^{p} d x \tag{F4}
\end{equation*}
$$

Since $\alpha, \beta<1$, we have $|t-x| \sim t$ for every $x \in I_{t}$. Integrating (F4) with respect to t we then have
$\int_{0}^{\infty} \frac{|u(t)|^{p}}{t^{s p}} d t \leq \frac{2}{\beta-\alpha} \int_{0}^{\infty} \int_{I_{t}} \frac{|u(x)|^{p}}{t^{s p}} d x d t+\frac{C}{\beta-\alpha} \int_{0}^{\infty} \int_{0}^{\infty} \frac{|u(t)-u(x)|^{p}}{|t-x|^{1+s p}} d x d t$

$$
\begin{equation*}
=\frac{2\left(\beta^{s p}-\alpha^{s p}\right)}{s p(\beta-\alpha)} \int_{0}^{\infty} \frac{|u(x)|^{p}}{x^{s p}} d x+\frac{C}{\beta-\alpha} \int_{0}^{\infty} \int_{0}^{\infty} \frac{|u(t)-u(x)|^{p}}{|t-x|^{1+s p}} d x d t \tag{F5}
\end{equation*}
$$

Note that $\frac{\frac{\beta}{}_{s p}-\alpha^{s p}}{s p(\beta-\alpha)}=\gamma^{s p-1}$ for some $\gamma \in[\alpha, \beta]$. Thus, by taking $\beta \ll 1 / 2$ sufficiently small, we have

$$
\frac{2\left(\beta^{s p}-\alpha^{s p}\right)}{s p(\beta-\alpha)} \leq \frac{1}{2}
$$

With such choice, (F3) trivially follows from (F5).
Lemma F3. Let ω_{1}, Ω be two smooth domains, $\omega_{1} \subset \subset \Omega$. Set $\omega_{2}=\Omega \backslash \bar{\omega}_{1}$. Assume that $u_{n} \rightarrow u$ in $W^{s, p}\left(\omega_{1}\right)$ and $v_{n} \rightarrow v$ in $W^{s, p}\left(\omega_{2}\right)$, with $\operatorname{tr} u_{n}=\operatorname{tr} v_{n}$ on $\partial \omega_{1}$. Let

$$
w_{n}=\left\{\begin{array}{ll}
u_{n} & \text { in } \omega_{1} \\
v_{n} & \text { in } \omega_{2}
\end{array} \quad \text { and } \quad w=\left\{\begin{array}{ll}
u & \text { in } \omega_{1} \\
v & \text { in } \omega_{2}
\end{array} .\right.\right.
$$

Then

$$
w_{n} \rightarrow w \quad \text { in } W^{s, p}(\Omega)
$$

Proof. It suffices to show that

$$
\|w\|_{W^{s, p}(\Omega)} \leq C\left(\|u\|_{W^{s, p}\left(\omega_{1}\right)}+\|v\|_{W^{s, p}\left(\omega_{2}\right)}\right) .
$$

Let $\eta=\operatorname{tr} u=\operatorname{tr} v$. By the standard trace theory,
(i) $\|\eta\|_{W^{s-1 / p, p}} \leq C\|u\|_{W^{s, p}\left(\omega_{1}\right)}$;
(ii) $\|\eta\|_{W^{s-1 / p, p}} \leq C\|v\|_{W^{s, p}\left(\omega_{2}\right)}$;
(iii) there exists an extension $g \in W^{s, p}(\Omega)$ of η to ω_{1} and ω_{2} such that

$$
\|g\|_{W^{s, p}(\Omega)} \leq C\|\eta\|_{W^{s-1 / p, p}}
$$

Let

$$
\tilde{w}= \begin{cases}u-g & \text { in } \omega_{1}, \\ v-g & \text { in } \omega_{2} .\end{cases}
$$

By Lemma F1, $\tilde{w} \in W^{s, p}(\Omega)$ and

$$
\|\tilde{w}\|_{W^{s, p}(\Omega)} \leq C\left(\|u\|_{W^{s, p}\left(\omega_{1}\right)}+\|v\|_{W^{s, p}\left(\omega_{2}\right)}\right)
$$

Since $w=\tilde{w}+g$ a.e. in Ω, Lemma F. 3 follows.
In the sequel, we shall denote by C the cube $(-1,1)^{N}$. Let $\|x\|_{\infty}=\operatorname{Max}_{i}\left\{\left|x_{i}\right|\right\}$.
Lemma F4 (Brezis-Mironescu [BM1]). Let $0<s<1$ and $1<p<\infty$, with $s p<N$. Given $f \in W^{s, p}(\partial C)$, set $\tilde{f}(x)=f\left(x /\|x\|_{\infty}\right), x \in C$. Then, $\tilde{f} \in W^{s, p}(C)$ and the mapping

$$
f \mapsto \tilde{f}
$$

is continuous from $W^{s, p}(\partial C)$ into $W^{s, p}(C)$.
We refer the reader to [BM1, Lemma D.1] for a proof of Lemma F4.
We denote by $C_{\varepsilon}=(-\varepsilon, \varepsilon)^{N}$. The following lemma is a variant of the approximation procedure in [BM2]:

Lemma F5. Let $0<s<1$ and $1<p<\infty$, with $s p<N$. Let $f \in W^{s, p}\left(\mathbb{R}^{N}\right)$. Given $\varepsilon>0$ and $Q \in C_{\varepsilon}$, set

$$
f_{\varepsilon, Q}(x)= \begin{cases}f(x) & \text { if } x \notin C_{\varepsilon}(Q) \\ f\left(\pi_{\varepsilon, Q}(x)\right) & \text { if } x \in C_{\varepsilon}(Q)\end{cases}
$$

where $\pi_{\varepsilon, Q}(x)=Q+\varepsilon \frac{x-Q}{\|x-Q\|_{\infty}}$ is the projection of x to $\partial C_{\varepsilon}(Q)$, with respect to Q. Then, there exist $\varepsilon_{n} \rightarrow 0$ and $Q_{n} \in C_{\varepsilon_{n} / 2}$ such that

$$
f_{\varepsilon_{n}, Q_{n}} \rightarrow f \quad \text { in } W^{s, p}\left(\mathbb{R}^{N}\right)
$$

Proof. Set $g_{\varepsilon, Q}=f_{\varepsilon, Q}-f$. We have

$$
\begin{aligned}
\left|g_{\varepsilon, Q}\right|_{W^{s, p}}^{p}= & 2 \int_{\mathbb{R}^{N} \backslash C_{\varepsilon}(Q)} d y \int_{C_{\varepsilon}(Q)} \frac{\left|f_{\varepsilon, Q}(x)-f(x)\right|^{p}}{|x-y|^{N+s p}} d x+ \\
& \quad+\int_{C_{\varepsilon}(Q)} \int_{C_{\varepsilon}(Q)} \frac{\left|g_{\varepsilon, Q}(x)-g_{\varepsilon, Q}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y \\
\sim & \int_{C_{\varepsilon}(Q)} \frac{\left|f_{\varepsilon, Q}(x)-f(x)\right|^{p}}{d\left(x, \partial C_{\varepsilon}(Q)\right)^{s p}} d x+ \\
& \quad+\int_{C_{\varepsilon}(Q)} \int_{C_{\varepsilon}(Q)} \frac{\left|f_{\varepsilon, Q}(x)-f_{\varepsilon, Q}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y+o(1) \\
= & I_{\varepsilon, Q}+J_{\varepsilon, Q}+o(1) .
\end{aligned}
$$

It suffices to show that

$$
\int_{0}^{1} \frac{d \varepsilon}{\varepsilon}\left\{\int_{C_{\varepsilon}}\left(I_{\varepsilon, Q}+J_{\varepsilon, Q}\right) d Q\right\}<\infty
$$

The proof of

$$
\int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \int_{C_{\varepsilon}} J_{\varepsilon, Q} d Q<\infty
$$

may be found in [BM2, Appendix A]. Next,

$$
\int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \oint_{C_{\varepsilon}} I_{\varepsilon, Q} d Q \leq \int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \int_{C_{2 \varepsilon}} d x \oint_{C_{\varepsilon}(x)} \frac{\left|f_{\varepsilon, Q}(x)-f(x)\right|^{p}}{d\left(x, \partial C_{\varepsilon}(Q)\right)^{s p}} d Q
$$

We now make the change of variables $Q=x-y, y \in C_{\varepsilon}$. We get

$$
\int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \int_{C_{\varepsilon}} I_{\varepsilon, Q} d Q \leq \int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \int_{C_{2 \varepsilon}} d x \oint_{C_{\varepsilon}} \frac{\left|f(x)-f\left(x-y+\varepsilon \frac{y}{\|y\| \|}\right)\right|^{p}}{\left\lvert\, y-\varepsilon \frac{y}{\|y\|^{s p}}\right.} d y .
$$

Let $z=-y+\varepsilon \frac{y}{\|y\|}$, whose Jacobian is $O\left(\left(\frac{\varepsilon}{\|z\|^{N-1}}\right)\right)$ (see [BM2]). We then have

$$
\begin{aligned}
\int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \oint_{C_{\varepsilon}} I_{\varepsilon, Q} d Q & \leq C \int_{0}^{1} \frac{d \varepsilon}{\varepsilon} \int_{C_{2 \varepsilon}} d x \oint_{C_{\varepsilon}} \frac{|f(x)-f(x+z)|^{p}}{|z|^{N+s p-1}} \varepsilon^{N-1} d z \\
& \leq C \int_{C_{2}} d x \int_{C_{1}} \frac{|f(x)-f(x+z)|^{p}}{|z|^{N+s p-1}} d z \int_{|z|}^{1} \frac{d \varepsilon}{\varepsilon^{2}} \\
& \leq \iint \frac{|f(x)-f(x+z)|^{p}}{|z|^{N+s p}} d x d z<\infty
\end{aligned}
$$

This concludes the proof of Lemma F5.
Given $N-1<p \leq N$, any map $u \in W^{(N-1) / p, p}\left(S^{N} ; S^{N-1}\right)$ has a harmonic extension $U \in W^{N / p, p}\left(B^{N+1} ; \mathbb{R}^{N}\right) \subset W^{1, N}$. We then define $T(u)$ as

$$
\langle T(u), \zeta\rangle=-\sum_{j=1}^{N} \int_{B^{N+1}} \operatorname{det}\left(U_{x_{1}}, \ldots, U_{x_{j}}, u, U_{x_{j+1}}, \ldots, U_{x_{N+1}}\right) \xi_{x_{j}},
$$

where $\zeta \in \operatorname{Lip}\left(S^{N}\right)$ and ξ is any extension of ζ to B^{N+1}. One can see that this definition is independent of the extension ξ. Let

$$
L(u)=\frac{1}{\sigma_{N}} \operatorname{Max}_{\|\nabla\|_{L} \infty \leq 1}^{\operatorname{Max}}\langle T(u), \zeta\rangle .
$$

We have the following
Lemma F6. Assume $N \geq 2$. Let $1<p<\infty$ and $u \in W^{(N-1) / p, p}\left(S^{N} ; S^{N-1}\right)$. If $T(u)=0$, then $u \in{\overline{C^{\infty}}\left(S^{N} ; S^{N-1}\right)}^{W^{(N-1) / p, p}}$.
Proof.
Case 1. Proof of the lemma if $N \geq 3$.
Note that good maps are dense in $W^{1, N-1}\left(S^{N} ; S^{N-1}\right)$ and, by interpolation, in $W^{(N-1) / p, p}\left(S^{N} ; S^{N-1}\right)$. Thus, it suffices to show that if u is a good map, then there exists $v \in C^{\infty}\left(S^{N} ; S^{N+1}\right)$ such that

$$
\|u-v\|_{W^{1, N-1}} \leq C L(u)
$$

which can be done by a dipole construction. By interpolation, we obtain Lemma F6. Case 2. Proof of the lemma if $N=2$.

The interpolation argument does not work in this case. However, for any map $u \in \mathcal{R}$, the dipole construction in [BBM2] gives a sequence $\left(v_{n}\right)$ such that

$$
T\left(v_{n}\right)=T(u), \quad\left|v_{n}\right|_{W^{1 / p, p}}^{p} \leq C L(u), \quad \text { and } \quad v_{n} \rightarrow 1 \quad \text { a.e. }
$$

Clearly, $u \bar{v}_{n} \in \bar{C}^{\infty} W^{1 / p, p}$ and

$$
\begin{aligned}
\left|u-u \bar{v}_{n}\right|_{W^{1 / p, p}}^{p} & \leq 2\left|1-\bar{v}_{n}\right|_{W^{1 / p, p}}^{p}+K \iint\left|1-\bar{v}_{n}(x)\right|^{p} \frac{|u(x)-u(y)|^{p}}{|x-y|^{2}} d x d y \\
& \leq 2 C L(u)+o(1)
\end{aligned}
$$

Using the density of \mathcal{R} in $W^{1 / p, p}\left(S^{2} ; S^{1}\right)$, we obtain the desired result.
We also point out the following extension of Lemma F6 whose proof is left to the reader :

Lemma F7. Assume $N-1<p \leq N$. Let Ω be a smooth subdomain of S^{N}. For any $u \in W^{(N-1) / p, p}\left(S^{N} ; S^{N-1}\right), T\left(\left.u\right|_{\Omega}\right)$ is well-defined when computed against Lipschitz functions which are constant on each connected component of $\partial \Omega$. If $T\left(\left.u\right|_{\Omega}\right)=0$, then $\left.u\right|_{\Omega} \in{\overline{C^{\infty}\left(\bar{\Omega} ; S^{N-1}\right)}{ }^{W^{(N-1) / p, p}} .}$.

A key ingredient in the proof of Theorem $5^{\prime \prime \prime}$ is the following
Proposition F1. Assume $N-1<p \leq N$. Let $u \in W^{(N-1) / p, p}\left(S^{N} ; S^{N-1}\right)$ be such that

$$
T(u)=\sigma_{N} \sum_{\text {finite }} d_{i} \delta_{M_{i}} .
$$

Then, there exist $\left(u_{n}\right) \subset W^{(N-1) / p, p}\left(S^{N} ; S^{N-1}\right), \varepsilon_{n} \rightarrow 0$, and $M_{i}^{n} \rightarrow M_{i}$ such that
(i) $u_{n} \in C^{\infty}\left(S^{N} \backslash \bigcup_{i} C_{\varepsilon_{n}}\left(M_{i}^{n}\right) ; S^{N-1}\right)$;
(ii) u_{n} is homogeneous of degree 0 on each cube $C_{\varepsilon_{n}}\left(M_{i}^{n}\right)$;
(iii) $T\left(u_{n}\right)=\sigma_{N} \sum_{\text {finite }} d_{i} \delta_{M_{i}^{n}}$;
(iv) $u_{n} \rightarrow u$ in $W^{(N-1) / p, p}$.

Proof. We first observe that the set of good pairs (ε, Q), in the sense of Lemma F5, is "fat". More precisely, there exists a sequence $\varepsilon_{n} \rightarrow 0$ such that

$$
\frac{\left|\left\{Q \in C_{\varepsilon_{n} / 4} ;\left|f_{\varepsilon_{n}, Q}-f\right|_{W^{(N-1) / p, p}}<1 / n\right\}\right|}{\left|C_{\varepsilon_{n} / 4}\right|} \geq \frac{1}{2}
$$

In particular, $\left\{Q \in C_{\varepsilon_{n} / 4} ;\left|f_{\varepsilon_{n}, Q}-f\right|_{W^{(N-1) / p, p}}<1 / n\right\}$ intersects the complement of any null set of $C_{\varepsilon_{n} / 4}$. For $n \geq 1$ fixed, consider

$$
v_{n}=\left.u\right|_{S^{N}} \backslash \bigcup_{i} C_{\varepsilon_{n} / 4}\left(M_{i}\right) .
$$

Then, $T\left(v_{n}\right)=0$, so that there exists a sequence $\left(v_{n}^{k}\right)_{k}$,

$$
v_{n}^{k} \in C^{\infty}\left(S^{N} \backslash \bigcup_{i} C_{\varepsilon_{n} / 4}\left(M_{i}\right) ; S^{N-1}\right) \quad \forall k \geq 1
$$

such that

$$
v_{n}^{k} \rightarrow v_{n} \quad \text { in } W^{(N-1) / p, p}\left(S^{N} \backslash \bigcup_{i} C_{\varepsilon_{n} / 4}\left(M_{i}\right)\right) \quad \text { as } k \rightarrow \infty
$$

By Fubini, for a.e. $Q \in C_{\varepsilon_{n} / 4}$, we have

$$
\left.\left.v_{n}^{k}\right|_{\bigcup_{i} \partial C_{\varepsilon_{n}}\left(Q+M_{i}\right)} \rightarrow u\right|_{\bigcup_{i} \partial C_{\varepsilon_{n}}\left(Q+M_{i}\right)} \quad \text { in } W^{(N-1) / p, p} \quad \text { as } k \rightarrow \infty
$$

By Lemmas F3 and F4, for any such Q we have

$$
\tilde{v}_{n}^{k} \rightarrow \tilde{u}_{n} \quad \text { in } W^{(N-1) / p, p} \quad \text { as } k \rightarrow \infty,
$$

where \tilde{v}_{n}^{k} (resp., \tilde{u}_{n}) is v_{n}^{k} (resp., u) extended by homogeneity of degree 0 on each cube $C_{\varepsilon_{n}}\left(Q+M_{i}\right)$. By Lemma F5, we can choose $Q=Q_{n}$ such that $\tilde{u}_{n} \rightarrow u$ in $W^{(N-1) / p, p}$. Applying a diagonalization argument, u_{n} may be taken among $\left(\tilde{u}_{n}^{k}\right)$. We only need to show that (iii) holds.

Note that \tilde{v}_{n}^{k} is locally Lipschitz on $S^{N} \backslash \bigcup_{i} M_{i}^{n}$, where $M_{i}^{n}=Q_{n}+M_{i}$. Thus,

$$
T\left(\tilde{v}_{n}^{k}\right)=\sigma_{N} \sum_{\text {finite }} \tilde{d}_{i} \delta_{M_{i}^{n}}
$$

Since $T\left(u_{n}\right) \rightharpoonup T(u)$, for n large enough we have (iii). This concludes the proof of Proposition F1.

We may now present the
Proof of Theorem $5^{\prime \prime \prime}$.
Step 1. If $T V(u)<\infty$, then $\operatorname{Det}(\nabla u)$ is a measure and

$$
\begin{equation*}
|\operatorname{Det}(\nabla u)|_{\mathcal{M}} \leq T V(u) \tag{F6}
\end{equation*}
$$

Clearly, we may replace u_{n} in the definition of $T V(u)$ by

$$
\tilde{u}_{n}= \begin{cases}u_{n} & \text { if }\left|u_{n}\right| \leq 1 \\ \frac{u_{n}}{\left|u_{n}\right|} & \text { if }\left|u_{n}\right|>1\end{cases}
$$

We may thus assume that $\left|u_{n}\right| \leq 1$. Since $u_{n} \rightarrow u$ in $W^{(N-1) / p, p}$ and $\left|u_{n}\right| \leq 1$, we have

$$
\left\langle T\left(u_{n}\right), \zeta\right\rangle \rightarrow\langle T(u), \zeta\rangle
$$

for every $\zeta \in \operatorname{Lip}\left(S^{N} ; S^{N-1}\right)$. In addition,

$$
\left\langle T\left(u_{n}\right), \zeta\right\rangle=N \int_{S^{N-1}} \operatorname{Jac} u_{n} \zeta \leq T V(u)\|\zeta\|_{L^{\infty}}+o(1)
$$

Thus, $T(u)$ is a measure and (F6) holds.

Step 2. If $\operatorname{Det}(\nabla u)$ is a measure, then $T V(u)<\infty$ and

$$
\begin{equation*}
\frac{1}{\omega_{n}} T V(u)=\text { number of topological singularities of } u . \tag{F7}
\end{equation*}
$$

By Proposition F1, it suffices to compute $T V(u)$, where u is smooth outside finitely many (disjoint) cubes and u is homogeneous of degree 0 inside each one of these cubes. By (F6), we have " \geq " in (F7). It then suffices to show the reverse inequality.

Note that $u \in W^{1, q}\left(S^{N} ; S^{N-1}\right)$ for every $q<N$. As in the proof of the case $W^{1, N-1}\left(S^{N} ; S^{N-1}\right)$, we can find $\left(u_{n}\right) \subset C^{\infty}, u_{n} \rightarrow u$ in $W^{1, q}$, with

$$
\frac{1}{\omega_{N}} \int_{S^{N-1}}\left|\operatorname{Jac} u_{n}\right|=\text { number of topological singularities of } u \text {. }
$$

For $N-1<q<N$, we have $W^{1, q} \cap L^{\infty} \subset W^{(N-1) / p, p}$, so that $u_{n} \rightarrow u$ in $W^{(N-1) / p, p}$. We conclude that (F7) holds.

G. Proofs of Theorems 14-17.

We start by establishing the precise value of $E(g)$:
Lemma G1. Let $g \in B V\left(I ; S^{1}\right)$ and let A be the set of jump points of g. Then

$$
\begin{equation*}
E(g)=\left|\dot{g}_{d}\right|+\sum_{a \in A} d_{S^{1}}(g(a+), g(a-)) . \tag{G1}
\end{equation*}
$$

Proof. Let $\varphi \in B V(I ; \mathbb{R})$ be any lifting of g. We claim that

$$
\begin{equation*}
\left|\dot{\varphi}_{d}\right|_{\mathcal{M}(I)}=\left|\dot{g}_{d}\right|_{\mathcal{M}(I)} . \tag{G2}
\end{equation*}
$$

Indeed, recall that, by the chain rule, we have

$$
\dot{\varphi}_{d}=-i \bar{g}_{d} .
$$

Set $\nu=\dot{g}_{d}$ and $\mu=|\nu|$. Then there is some $k \in L^{\infty}\left((I, d \mu) ; S^{1}\right)$ such that $\nu=k \mu$. Since ν is diffuse and $-i \bar{g} \in B V$, we have $-i g \in L^{\infty}\left((I, d \mu) ; S^{1}\right)$, and thus $\dot{\varphi}_{d}=\ell \mu$, where $\ell=-i \bar{g} k \in L^{\infty}\left((I, d \mu) ; S^{1}\right)$. It follows that

$$
\left|\dot{\varphi}_{d}\right|_{\mathcal{M}(I)}=\operatorname{Sup}_{\substack{\zeta \in C_{0}(I ; \mathbb{C}) \\|\zeta| \leq 1}}\left\langle\dot{\varphi}_{d}, \zeta\right\rangle=\operatorname{Sup}_{\substack{\zeta \in C_{0}(I ; \mathbb{C}) \\|\zeta| \leq 1}}\langle\mu, \ell \zeta\rangle=\langle\mu,| \ell| \rangle=|\mu|_{\mathcal{M}(I)}=\left|\dot{g}_{d}\right|_{\mathcal{M}(I)}
$$

Let now B denote the set of the jump points of φ; clearly, $B \supset A$. For each $a \in A$, we have

$$
\left\{\begin{array}{l}
g(a+)=\mathrm{e}^{i \varphi(a+)} \\
g(a-)=\mathrm{e}^{i \varphi(a-)}
\end{array}\right.
$$

so that

$$
|\varphi(a+)-\varphi(a-)| \geq d_{S^{1}}(g(a+), g(a-)) .
$$

If $a \in B \backslash A$, then $\mathrm{e}^{i \varphi(a+)}=\mathrm{e}^{i \varphi(a-)}$; thus

$$
|\varphi(a+)-\varphi(a-)| \geq 2 \pi
$$

Consequently,

$$
\begin{align*}
|\dot{\varphi}|_{\mathcal{M}(I)} & =\left|\dot{\varphi}_{d}\right|_{\mathcal{M}(I)}+\sum_{a \in A}|\varphi(a+)-\varphi(a-)|+\sum_{a \in B \backslash A}|\varphi(a+)-\varphi(a-)| \\
& \geq\left|\dot{g}_{d}\right|+\sum_{a \in A} d_{S^{1}}(g(a+), g(a-))+2 \pi \operatorname{card}(B \backslash A) \tag{G3}\\
& \geq\left|\dot{g}_{d}\right|+\sum_{a \in A} d_{S^{1}}(g(a+), g(a-)) .
\end{align*}
$$

Equality holds if and only if

$$
|\varphi(a+)-\varphi(a-)|=d_{S^{1}}(g(a+), g(a-)) \quad \forall a \in A \quad \text { and } \quad B=A
$$

This proves " \geq " in (G1).
In order to prove " \leq ", we split A as $A=A_{1} \cup A_{2}$, where

$$
A_{1}=\{a \in A ;|g(a+)-g(a-)|=2\} \quad \text { and } \quad A_{2}=\{a \in A ;|g(a+)-g(a-)|<2\} .
$$

If $a \in A_{2}$ we may define a signed distance

$$
\delta_{S^{1}}(g(a+), g(a-))=\arg \left(\frac{g(a+)}{g(a-)}\right) .
$$

Here, arg stands for the argument in $(-\pi, \pi)$. Set

$$
\begin{equation*}
\mu=-i \dot{g}_{d}+\pi \sum_{a \in A_{1}} \delta_{a}+\sum_{a \in A_{2}} \delta_{S^{1}}(g(a+), g(a-)) \delta_{a} \tag{G4}
\end{equation*}
$$

We claim that μ is a measure. Indeed, A_{1} is finite, since $g \in B V$. On the other hand,

$$
\operatorname{Sup}_{a \in A_{2}}|g(a+)-g(a-)|=d<2
$$

(again since $g \in B V$). Thus there is some $C>0$ such that

$$
\left|\delta_{S^{1}}(g(a+), g(a-))\right| \leq C|g(a+)-g(a-)| .
$$

It follows that

$$
\sum_{a \in A_{2}}\left|\delta_{S^{1}}(g(a+), g(a-))\right| \leq C \sum_{a \in A_{2}}|g(a+)-g(a-)|<\infty .
$$

Assume that $I=(0, \alpha)$ for some $\alpha>0$ and set $\varphi_{0}(x)=\mu((0, x)), x \in I$. We claim that, up to a constant, φ_{0} is a lifting of g and that $\left|\dot{\varphi}_{0}\right|_{\mathcal{M}(I)}=E(g)$.

Indeed, using the chain rule for a product we have

$$
\begin{equation*}
\overline{g \mathrm{e}^{-i \varphi_{0}}}=\mathrm{e}^{-i \varphi_{0}} \dot{g}_{d}-i g \mathrm{e}^{-i \varphi_{0}}\left(\dot{\varphi}_{0}\right)_{d}+\sum_{a \in A}\left(g \mathrm{e}^{-i \varphi}(a+)-g \mathrm{e}^{-i \varphi_{0}}(a-)\right) \delta_{a} \tag{G5}
\end{equation*}
$$

Here, we have used the fact that φ is continuous outside A. For $a \in A$, we have

$$
\varphi_{0}(a+)=\varphi_{0}(a-)+\mu(\{a\}),
$$

so that

$$
\mathrm{e}^{-i \varphi_{0}(a+)}=\mathrm{e}^{-i \varphi_{0}(a-)} \frac{g(a-)}{g(a+)},
$$

by our definition of μ. Thus the sum in (G5) vanishes. On the other hand,

$$
\left(\dot{\varphi}_{0}\right)_{d}=-i \bar{g} \dot{g}_{d},
$$

so that

$$
\mathrm{e}^{-i \varphi_{0}} \dot{g}_{d}-i g \mathrm{e}^{-i \varphi_{0}}\left(\dot{\varphi}_{0}\right)_{d}=e^{-i \varphi_{0}}\left(\dot{g}_{d}-\dot{g}_{d}\right)=0
$$

Thus, there is some $C \in \mathbb{C}$ such that $\varphi=\varphi_{0}+C$ is a lifting of g.
On the other hand,

$$
\begin{aligned}
|\dot{\varphi}|_{\mathcal{M}(I)}=\left|\dot{\varphi}_{0}\right|_{\mathcal{M}(I)} & =\left|-i \bar{g} \dot{g}_{d}\right|_{\mathcal{M}(I)}+\pi \operatorname{card}\left(A_{1}\right)+\sum_{a \in A_{2}}\left|\delta_{S^{1}}(g(a+), g(a-))\right| \\
& =\left|\dot{g}_{d}\right|_{\mathcal{M}(I)}+\sum_{a \in A} d_{S^{1}}(g(a+), g(a-)) .
\end{aligned}
$$

The proof of Lemma G1 is complete.
Proof of Theorem 14. We shall prove a slightly stronger assertion, which implies all the properties stated in the theorem. Namely, a lifting $\varphi \in B V(I ; \mathbb{R})$ of g is a canonical lifting if and only if
(i) φ and g have the same jump sets ;
(ii) for $a \in A_{1}$, we have $\varphi(a+)-\varphi(a-)= \pm \pi$;
(iii) for $a \in A_{2}$, we have $\varphi(a+)-\varphi(a-)=\delta_{S^{1}}(g(a+), g(a-))$.

Property (i) was seen to be necessary for optimality in the proof of Lemma G1. Recall that, in addition to (i), equality in (G3) amounts to

$$
\begin{equation*}
|\varphi(a+)-\varphi(a-)|=d_{S^{1}}(g(a+), g(a-)) \quad \forall a \in A . \tag{G6}
\end{equation*}
$$

If $a \in A_{1}$, then

$$
|\varphi(a+)-\varphi(a-)|=\pi,
$$

so that (ii) holds. Assume $a \in A_{2}$. Since $\mathrm{e}^{i \varphi(a+)}=g(a+)$ and $\mathrm{e}^{i \varphi(a-)}=g(a-)$, then by (G6) we have

$$
\varphi(a+)-\varphi(a-)=\arg \left(\frac{g(a+)}{g(a-)}\right)
$$

which gives (iii). Conversely, it is easy to see that, if (i)-(iii) are fullfilled, then equality holds in (G3).

Proof of Theorem 15. We identify $S^{1} \backslash\{z\}$ with an interval I. Let A, A_{1}, A_{2} be defined as in the proof of Lemma G1. We claim that, for each choice of integers $\varepsilon_{a} \in\{-1,1\}, a \in A_{1}$, there is a canonical lifting φ of g on I such that

$$
\varphi(a+)-\varphi(a-)=\varepsilon_{a} \pi \quad \forall a \in A_{1} .
$$

This φ is obtained as in the proof of Lemma G1, as $\varphi=\mu((0, x))+C, x \in I$. One simply has to modify the definition of μ by taking

$$
\mu=-i \bar{g} \dot{g}_{d}+\sum_{a \in A_{1}} \varepsilon_{a} \pi \delta_{a}+\sum_{a \in A_{2}} \delta_{S^{1}}(g(a+), g(a-)) \delta_{a} .
$$

Moreover, the proof of Theorem 14 shows that, by this procedure, we obtain all canonical liftings. We claim that if φ is the canonical lifting corresponding to the choice $\varepsilon_{a}, a \in A_{1}$, and $\tilde{\varphi}$ the one corresponding to $\tilde{\varepsilon}_{a}, a \in A_{1}$, then

$$
\frac{\tilde{\varphi}(z-)-\tilde{\varphi}(z+)}{2 \pi}=\frac{\varphi(z-)-\varphi(z+)}{2 \pi}+\frac{1}{2} \sum_{a \in A_{1}}\left(\tilde{\varepsilon}_{a}-\varepsilon_{a}\right) \in \mathbb{Z}
$$

If we identify $S^{1} \backslash\{z\}$ with $I=(0, \alpha), \alpha>0$, this amounts to proving that

$$
\frac{\tilde{\varphi}(\alpha-)-\tilde{\varphi}(0+)}{2 \pi}=\frac{\varphi(\alpha-)-\varphi(0+)}{2 \pi}+\frac{1}{2} \sum_{a \in A_{1}}\left(\tilde{\varepsilon}_{a}-\varepsilon_{a}\right) .
$$

We have $\tilde{\varphi}(\alpha-)-\tilde{\varphi}(0+)=\tilde{\mu}(I)$ (where $\tilde{\mu}$ is the corresponding measure); a similar assertion holds for φ. Thus

$$
\frac{\tilde{\varphi}(\alpha-)-\tilde{\varphi}(0)}{2 \pi}-\frac{\varphi(\alpha-)-\varphi(0+)}{2 \pi}=\frac{(\mu-\tilde{\mu})(I)}{2 \pi}=\frac{1}{2} \sum_{a \in A_{1}}\left(\tilde{\varepsilon}_{a}-\varepsilon_{a}\right) .
$$

Let φ be the canonical lifting corresponding to the choice $\varepsilon_{a}=-1, a \in A_{1}$. Then it is clear that, with $d=\frac{\varphi(z-)-\varphi(z+)}{2 \pi}$ and $k=\operatorname{card} A_{1}$, we have

$$
\operatorname{Deg}_{1} g=\{d, d+d, \ldots, d+k\} .
$$

We next prove that d is an integer. This follows easily from the fact that $\mathrm{e}^{i \varphi(z-)}=$ $\mathrm{e}^{i \varphi(z+)}$, so that $\varphi(z-)-\varphi(z+) \in 2 \pi \mathbb{Z}$.

It remains to establish that $\operatorname{Deg}_{1} g$ does not depend on the choice of z. Let w be any other continuity point of g. Let ψ be a canonical lifting of g on $S^{1} \backslash\{w\}$. Since g is continuous at w, there is some $k \in \mathbb{Z}$ such that $\psi(w-)=\psi(w+)+2 k \pi$. We set

$$
\varphi(\xi)= \begin{cases}\psi(\xi) & \text { if } \xi \in(w+, z-) \\ \psi(\xi)-2 k \pi & \text { if } \xi \in(z+, w-)\end{cases}
$$

Clearly, $\varphi \in B V$ and φ is continuous at w. It is obvious that

$$
|\dot{\varphi}|_{\mathcal{M}\left(S^{1} \backslash\{z\}\right)}=|\dot{\psi}|_{\mathcal{M}\left(S^{1} \backslash\{z, w\}\right)}=|\dot{\psi}|_{\mathcal{M}\left(S^{1} \backslash\{w\}\right)} .
$$

It follows that φ is a canonical lifting of g on $S^{1} \backslash\{z\}$. Indeed, by Lemma G1 we have

$$
E\left(\left.g\right|_{S^{1} \backslash\{z\}}\right)=E\left(\left.g\right|_{S^{1} \backslash\{w\}}\right)=|g|_{B V S^{1}}
$$

if z, w are continuity points of g. Since

$$
\begin{aligned}
\varphi(z-)-\varphi(z+) & =\varphi(z-)-\varphi(w+)+\varphi(w+)-\varphi(w-)+\varphi(w-)-\varphi(z+) \\
& =\psi(w-)-\psi(w+)
\end{aligned}
$$

we find that the degrees obtained by cutting at z are among the ones obtained by cutting at w. By reversing the roles, we obtained that $\operatorname{Deg}_{1} g$ is independent of z.
Proof of Theorem 16. Let z be a continuity point of g and let φ be a canonical lifting of g in $S^{1} \backslash\{z\}$. Assume, e.g., that $z=1$; we identify $S^{1} \backslash\{1\}$ with $(0,2 \pi)$. Consider a sequence $\left(\varphi_{n}\right) \subset C^{\infty}([0,2 \pi])$ such that

$$
\int_{0}^{2 \pi}\left|\dot{\varphi}_{n}\right| \rightarrow|\dot{\varphi}|_{\mathcal{M}((0,2 \pi))} \quad \text { and } \quad \varphi_{n} \rightarrow \varphi \quad \text { a.e. }
$$

We may assume, in addition, that

$$
\varphi_{n}(0) \rightarrow \varphi(0+) \quad \text { and } \quad \varphi_{n}(2 \pi) \rightarrow \varphi(2 \pi-) .
$$

(This is the case, e.g., if the functions φ_{n} are obtained from φ by mollification).
By replacing φ_{n} with $\varphi_{n}+\alpha_{n} x+\beta_{n}$, for some appropriate $\alpha_{n} \rightarrow 0$ and $\beta_{n} \rightarrow 0$, we may further assume that

$$
\varphi_{n}(0)=\varphi(0+) \quad \text { and } \quad \varphi_{n}(2 \pi)=\varphi(2 \pi-) \quad \forall n \geq 1
$$

Set $g_{n}=\mathrm{e}^{i \varphi_{n}}$. Then, clearly,

$$
g_{n} \in C^{\infty}\left(S^{1} \backslash\{z\}\right) \cap C^{0}\left(S^{1}\right) \quad \text { and } \quad \operatorname{deg} g_{n}=\frac{\varphi(1-)-\varphi(1+)}{2 \pi}
$$

By further mollifying g_{n}, we find a sequence $\left(h_{n}\right) \subset C^{\infty}\left(S^{1} ; S^{1}\right)$ such that

$$
h_{n} \rightarrow g \quad \text { a.e., } \quad \operatorname{deg} h_{n}=\frac{\varphi(1-)-\varphi(1+)}{2 \pi} \quad \forall n \geq 1
$$

and

$$
\int_{S^{1}}\left|\dot{h}_{n}\right| \rightarrow \int_{S^{1} \backslash\{z\}}|\dot{\varphi}|=E\left(\left.g\right|_{S^{1} \backslash\{z\}}\right) .
$$

It follows that

$$
\operatorname{Deg}_{2} g \supset \operatorname{Deg}_{1} g .
$$

Conversely, let $d \in \operatorname{Deg}_{2} g$ and let $\left(g_{n}\right) \subset C^{\infty}\left(S^{1} ; S^{1}\right)$ be such that

$$
g_{n} \rightarrow g \quad \text { a.e., } \quad \int_{S^{1}}\left|\dot{g}_{n}\right| \rightarrow|g|_{B V S^{1}} \quad \text { and } \quad \operatorname{deg} g_{n}=d \quad \forall n \geq 1
$$

Let $z \in S^{1}$ be a continuity point of g. Write, in $S^{1} \backslash\{z\}, g_{n}=\mathrm{e}^{i \varphi_{n}}$. Then

$$
\int_{S^{1}}\left|\dot{\varphi}_{n}\right| \rightarrow|g|_{B V S^{1}}
$$

Up to some subsequence and after subtracting a suitable multiple of 2π, we may assume that $\varphi_{n} \rightarrow \varphi$ a.e., where $\varphi \in B V$ is a lifting of g. Since $|\dot{\varphi}|_{\mathcal{M}\left(S^{1} \backslash\{z\}\right)} \leq$ $|g|_{B V S^{1}}$, we find that φ has to be a canonical lifting of g. Let $\varepsilon>0$. There is some $\delta>0$ such that, if I is the interval of size δ centered at z, then we have $|g|_{B V S^{1}(I)}<\varepsilon$. We may further assume that g is continuous at the endpoints of I. Then

$$
|g|_{B V S^{1}\left(S^{1}\right)}=|g|_{B V S^{1}(I)}+|g|_{B V S^{1}\left(S^{1} \backslash I\right)}
$$

Arguing as above, we find that

$$
\int_{S^{1} \backslash I}\left|\dot{\varphi}_{n}\right| \rightarrow|g|_{B V S^{1}\left(S^{1} \backslash I\right)} \quad \text { and } \quad \int_{I \backslash\{z\}}\left|\dot{\varphi}_{n}\right| \rightarrow|g|_{B V S^{1}(I)}
$$

In particular, for every $n \geq 1$ sufficiently large,

$$
\left|\left(\varphi_{n}(z-t)-\varphi_{n}(z+t)\right)-\left(\varphi_{n}(z-)-\varphi_{n}(z+)\right)\right|<2 \varepsilon \quad \forall t \in(0, \delta)
$$

We pick such t so that, in addition,

$$
\varphi_{n}(z-t) \rightarrow \varphi(z-t) \quad \text { and } \quad \varphi_{n}(z+t) \rightarrow \varphi(z+t)
$$

We then find

$$
|\varphi(z-t)-\varphi(z+t)-2 \pi d| \leq 2 \varepsilon .
$$

Letting $\varepsilon \rightarrow 0$ and $\delta \rightarrow 0$, we obtain

$$
\varphi(z-)-\varphi(z+)=2 \pi d
$$

i.e., $d \in \operatorname{Deg}_{1} g$.

We complete the proof of Theorem 16 by proving that $g \mapsto \operatorname{Deg} g$ is continuous in the multivalued sense. Since Deg is \mathbb{Z}-valued, this amounts to proving that, for each $d \in \mathbb{Z}$, the set

$$
\left\{g \in B V\left(S^{1} ; S^{1}\right) ; d \in \operatorname{Deg} g\right\}
$$

is open.
To this purpose, we start with the following
Lemma G2. Let $g \in B V\left(I ; S^{1}\right)$. Let $\varphi \in B V(I ; \mathbb{R})$ be a lifting of g. If φ is not a canonical lifting of g, then

$$
|\dot{\varphi}|_{\mathcal{M}(I)} \geq E(g)+\pi .
$$

Proof. Let A, B be the set of jump points of g, φ, respectively. Recall that

$$
\begin{aligned}
|\dot{\varphi}|_{\mathcal{M}(I)} & \geq\left|\dot{g}_{d}\right|_{\mathcal{M}(I)}+\sum_{a \in A}|\varphi(a+)-\varphi(a-)|+\sum_{a \in B \backslash A}[\varphi(a+)-\varphi(a-) \mid \\
& \geq E(g)+\sum_{a \in B \backslash A}|\varphi(a+)-\varphi(a-)| .
\end{aligned}
$$

If $B \neq A$, then

$$
|\varphi(a+)-\varphi(a-)| \geq 2 \pi \quad \forall a \in B \backslash A,
$$

and the conclusion is clear. If $B=A$, then there is some $a \in A$ such that

$$
|\varphi(a+)-\varphi(a-)|>d_{S^{1}}(g(a+), g(a-)),
$$

for otherwise φ would be a canonical lifting. For any such a, we have

$$
|\varphi(a+)-\varphi(a-)| \equiv d_{S^{1}}(g(a+), g(a-)) \quad \bmod 2 \pi .
$$

Since $d_{S^{1}}(g(a+), g(a-)) \leq \pi$, we find that

$$
|\varphi(a+)-\varphi(a-)| \geq d_{S^{1}}(g(a+), g(a-))+\pi .
$$

Since, for any $b \in A \backslash\{a\}$, we have

$$
|\varphi(b+)-\varphi(b-)| \geq d_{S^{1}}(g(b+), g(b-)),
$$

and the conclusion follows.
Proof of Theorem 16 completed. If $g, h \in B V\left(S^{1} ; S^{1}\right)$, then

$$
\begin{equation*}
|g \bar{h}|_{B V}=|g \bar{h}-1|_{B V}=|g(\bar{h}-\bar{g})|_{B V} \leq|g|_{B V}\|h-g\|_{L^{\infty}}+|h-g|_{B V} . \tag{G7}
\end{equation*}
$$

Let $g \in B V\left(S^{1} ; S^{1}\right)$ and let $d \in \operatorname{Deg} g$. In view of (G7), there is some $\varepsilon>0$ such that if

$$
h \in B V\left(S^{1} ; S^{1}\right) \quad \text { and } \quad\|g-h\|_{B V}<\varepsilon,
$$

then

$$
|g \bar{h}|_{B V}<\frac{1}{10} .
$$

We claim that $d \in \operatorname{Deg} h$ for any such h. Indeed, let z be a continuity point for both g and h, and let φ be a canonical lifting of g in $S^{1} \backslash\{z\}$. Set $k=\bar{g} h$ and let ψ be a canonical lifting of k. Since $|k|_{B V}<\frac{1}{10}$, each jump point a of k is such that $|k(a+)-k(a-)|<\frac{1}{10}$. Thus

$$
|\psi(a+)-\psi(a-)| \leq 2|k(a+)-k(a-)|
$$

for any such a. It follows that

$$
|\psi|_{B V}=\left|\dot{k}_{d}\right|_{\mathcal{M}(I)}+\sum_{\substack{\text { jump points } \\ \text { of } k}}|\psi(a+)-\psi(a-)| \leq 2|k|_{B V}<\frac{1}{5} .
$$

Set $\phi=\varphi+\psi$. Then ϕ is a lifting of h and

$$
|(\phi(z-)-\phi(z+))-(\varphi(z-)-\varphi(z+))|<\frac{2}{5}
$$

so that

$$
\phi(z-)-\phi(z+)=\varphi(z-)-\varphi(z+)
$$

(since both quantities are multiple of 2π). In order to complete the proof of Theorem 16 , it suffices to prove that ϕ is a canonical lifting of h.

Indeed, on the one hand we have

$$
E(h) \leq|\dot{\phi}|_{\mathcal{M}\left(S^{1} \backslash\{z\}\right)} \leq|\dot{\varphi}|_{\mathcal{M}\left(S^{1} \backslash\{z\}\right)}+\frac{1}{5},
$$

so that $E(h) \leq E(g)+\frac{1}{5}$. By reversing the roles, we obtain on the other hand that $E(g) \leq E(h)+\frac{1}{5}$; thus

$$
E(h) \leq|\dot{\phi}|_{\mathcal{M}\left(S^{1} \backslash\{z\}\right)} \leq E(h)+\frac{2}{5}
$$

Lemma G2 implies that ϕ is a canonical lifting of h.
Proof of Theorem 17. With the notation we already used, we have

$$
\{g ; \operatorname{Deg} g \text { is single-valued }\}=\left\{g ; A_{1}(g)=\phi\right\}=: \mathcal{U}_{1} .
$$

Thus, we have to prove that \mathcal{U}_{1} is dense in $B V\left(S^{1} ; S^{1}\right)$.
Let $g \in B V\left(S^{1} ; S^{1}\right)$; then $A_{1}(g)$ is finite. If $A_{1}(g)=\phi$, then $g \in \mathcal{U}_{1}$. Otherwise, we may assume, for simplicity, that A_{1} consists of a single point, say $A_{1}=\{1\}$; the general case can be treated along the same lines. We have $|g(1-)-g(1+)|=2$. Without loss of generality, we may assume that $g(1-)=-1$ and $g(1+)=1$.

Given $\varepsilon>0$, let $h_{\varepsilon}: S^{1} \rightarrow S^{1}$ be given by

$$
h_{\varepsilon}\left(\mathrm{e}^{i \theta}\right)= \begin{cases}\mathrm{e}^{i \theta} & \text { if } 1 \leq \theta \leq 2 \pi-1 \\ \mathrm{e}^{i(\varepsilon+(1-\varepsilon) \theta)} & \text { if } 0 \leq \theta \leq 1 \\ \mathrm{e}^{i((2 \pi-1)(2 \pi+\varepsilon)-(2 \pi-1+\varepsilon) \theta)} & \text { if } 2 \pi-1 \leq \theta<2 \pi\end{cases}
$$

It is immediate that $h_{\varepsilon}(1+)=\mathrm{e}^{i \varepsilon}, h_{\varepsilon}(1-)=\mathrm{e}^{-i \varepsilon}$,

$$
\left|h_{\varepsilon}\right|_{B V} \rightarrow 0 \quad \text { and } \quad h_{\varepsilon} \rightarrow 1 \quad \text { uniformly. }
$$

Thus,

$$
g h_{\varepsilon} \rightarrow g \quad \text { in } B V \quad \text { as } \varepsilon \rightarrow 0 .
$$

On the other hand, since $h_{\varepsilon} \in C^{0}\left(S^{1} \backslash\{1\}\right)$, we have $A_{1}\left(g h_{\varepsilon}\right) \backslash\{1\}=A_{1}(g) \backslash\{1\}$. In particular, $A_{1}\left(g h_{\varepsilon}\right) \subset\{1\}$. Since, by construction, $1 \notin A_{1}\left(g h_{\varepsilon}\right)$, we have $g h_{\varepsilon} \in \mathcal{U}_{1}$. The proof of Theorem 17 is complete.
(1) LABORATOIRE J. -L. LIONS

UNIVERSITÉ P. ET M. CURIE, B.C. 187
4 PL. JUSSIEU
75252 PARIS CEDEX 05
E-mail address: brezis@ccr.jussieu.fr, ponce@ann.jussieu.fr
(2) RUTGERS UNIVERSITY

DEPT. OF MATH., HILL CENTER, BUSCH CAMPUS
110 FRELINGHUYSEN RD, PISCATAWAY, NJ 08854
E-mail address: brezis@math.rutgers.edu, augponce@math.rutgers.edu
(3) DÉPARTEMENT DE MATHÉMATIQUES

UNIVERSITÉ PARIS-SUD
91405 ORSAY
E-mail address: Petru.Mironescu@math.u-psud.fr

