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COMPLEMENTS TO THE PAPER
“WL1.MAPS WITH VALUES INTO §'?
07,/05/04

Haim Brezis():(®) ) PETrRU MIrRONEScU(®) aND AucusTto C. PoNce(M):(?)

The purpose of these notes is to complement some of our results in [BMP]. We
also establish some of the claims we stated there without proof.

A. Extending Theorem 10 to other seminorms in WH(Q; S1).
In view of Theorem 10, it is natural to introduce the following quantity

p(P.N) = o= Inf { gl : g € WHHQ: ), T(g) = 2n(5p — o) ).

2

Here, [ Jy1.1 is a general given semi-norm on W1 1(Q;R?) equivalent to | |y1.1. We
require from [ Jy1.1 some structural properties :

(P1) [aglwir = [glwrr, ¥V g € WHH(QR?), YV a e ST

(P2) [glwra = [glwra, Vg € WHH (4 R?) ;

(P3) [ghlwrr < llgllze<[Alwrs + Al L= [glnra, ¥ g, h € WHHQR?) 0 L.
It follows from (P3) that p is a distance.

[We refer the reader to [Mi] for the solution of the exercise given at the end of
Section 3.]

Alternatively, we may define p starting from maps in R :

Lemma Al. We have

g€ C®(Q\{P,N}; S )ynwh!, }

1
P,N) = — Inf |
AR =5 0 {[Q]W“ deg (g, P) = +1, deg (g, N) = -1

Proof. Tt suffices to prove that, for g € W11(Q; S1) such that T(g) = 2w (dp — dn),
we may find a sequence (g,) C R such that T(g,) = 27n(dp — on) and g, — g

Typeset by ApS-TEX
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in W1, Note that the desired conclusion is invariant with respect to orientation-
preserving diffeomorphisms of ). Therefore, we may assume that € = S? and that

P, N are respectively the North and the South pole of S2. Let h(z,y,z) = |Ex’ y§| .
) T,y
Then h € R, T(h) = 2n(0p — dn). It follows that k = gh € Y. Thus, we may

find a sequence (k,) C C*°(£; S1) such that k, — k in Wh1. Set g, = hk,. Then
gn €R, T(gn) = 27(0p — 6n) and g, — g in WhH1

Another simple property of p is

for some C1,C5 > 0 independent of P, N. This follows from the equivalence of

| lwl,l and []Wl,l.
Part of Theorem 10 holds in this more general setting :

Theorem A1l. Let P;, N; € Q) be such that

Zp(PhNi) < oo (or, equivalently, Zd(PZ-, N;) < ).

L=t {3 p(P;, N;): 3065, — 65) = S (0m — ow) ).

Set

Then

%Inf{[ Jwis s g€ WhH(QSY), T(g) =2n > (6p, — On,) } L.

Proof. Let € > 0 and let ﬁj, Kfj be such that

Y (0p —05) = (6p —06n,) and Y p(P;,N;) < L+e.

By definition, for each j we may find some g; € W11(Q; S') such that

T(g;) = 2n(dp, — ox,)

J J

and

~ €
[gj]Wl,l < 27Tp(Pj,Nj) + 2—]

We claim that there is a sequence k,, — oo such that H?;l 9; 2 g in W1 for some
g € WH1(Q;S1). By Lemma 1, this implies that

T(g) = QWZ(aﬁj —0y) = QWZ(api —N,).
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Using (P3), we will also have [g]y1.1 < 2L + e. Therefore, the conclusion of
Theorem A1 follows if we prove the existence of the sequence (k, ). We adapt below
an argument used in [BBM2]. Set H =}, [Vg;| € L' (this uses the equivalence

of | |wi1 and [ |r1). Since |V (H;‘?:lgj)| < H, Vk, we may find a sequence

k, — oo and a map g € BV (;S!) such that h, = H?;lgj — ¢ a.e. Then, for
m > n, we have

o — holwis = B (Bonfin — 1)l

< VB w4 |1 = Bonhin) V|| 11
k7n

< Y Vgl + 11 = hoh) Hll o = A + Bu.

Let 0 < 0 < 1. Then, clearly, A,,, < 6 provided m, n are sufficiently large. On the
other hand,

B < 0H|us +2 L
{m5|1_hm(x)hn(m)|25}

Note that

(0511 hon(@)ha(@)] > 5} € {:19(2) — ()] > 3 YU i) — haf)] = 2.

Since h,, — g a.e., we find that B, , < §(||H||1 +1), provided m, n are sufficiently
large. Therefore, (h,,) is a Cauchy sequence in Wt and converges to the above g
in Wht,

It is not clear whether the reverse inequality in Theorem Al is valid in general :

Open Problem 8. Let P;, N; € Q be such that T'(g) = 27 ) _.(0p, — 0n,). Is it
true that _
[glwir >27L 7

Note that, by definition, the answer is yes if T(g) = 27 (dp — In ).
B. Proof of Theorems 1’, 3’, and 5’.

Proof of Theorem 3'. Let us first assume that g € C°(Q\{ay,... ,ar}; SH)NWLL,
It is then easy to see that

k
T@).0) =23 dic(a) + [ (9ng)6 VC € Li(R),

o2
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where d; denotes the topological degree of g with respect to any small circle centered
at a;. In particular,

k

(B1) (T(9),¢) =2m Y d;C(a;), V¢ € Wy™(Q).

j=1

Note that, in general, > j d; # 0. This means that we do not have necessarily the
same number of positive and negative points as before. In order to compensate this,
we insert points from 92 into (B1). Since ¢ = 0 on 02, equality in (B1) remains
true. We can then relabel the points a; as Pi,..., P, Ny,..., Ny, according to
their multiplicity d;, so that (B1) becomes

0
T(g) =2m Y (0p, —dn,) in Wy ™(Q).
j=1

For a general g € W11(Q;S1), we argue by density using Lemma 2 to conclude
that

T(g) =27  (6p, —6n,) in Wy (Q)]".

Note that dq induces a metric on the space Q/9Q, where 05 is identified with
a single point. Moreover, Lipschitz functions ¢ on Q/99 with [(|ri;, < 1 and
¢(89Q) = 0 correspond to elements in W, () such that |V(|z~ < 1. Applying
Lemma 12’ in [BBM2] to Q/09, we obtain

L(g) =Inf Y do(P;, N;).

Remark B1. The main new feature when  is a bounded domain in R? is that
a minimal connection is made of segments from a positive singularity P; to some
negative IV;, but we can also have line segments joining the singularities P;, IV; to
the boundary 0f2. This is the analog of Example 3 in [BCL)].

Proof of Theorem 1. The proof of E(g) = E,e1(g) is exactly the same as in Propo-
sition 2 and we shall omit it.
We are left to show that

(B2) E(g) = /Q Vgl + 27 L(g).

Let ¢ € BV (;R) be such that g = e?*. Using Vol’pert’s chain rule as in the
proof of Lemma 5, we have

(B3) Dol pm) = 19lwin + g A Vg — Dol pa).-



COMPLEMENTS TO THE PAPER “W1L1.MAPS WITH VALUES INTO S1”» 07/05/04 5
We claim that
(B4) lg AV g — Dol pm) = 27L(g).

In fact, for every ¢ € C§°(£2) such that [|V(||L~ <1,

19A Vg — Dol z/ﬂ(ww)-v%—/gw-v%:<T<g>,<>-

Taking the supremum with respect to ¢, we conclude that (B4) holds.

Inequality > in (B2) follows immediately from (B3) and (B4).

We now establish < in (B2). Let us assume for the moment that g is smooth
outside finitely many points ai,...,ax, and that g has topological degree +1 at
each one of those points. Let C be a minimal connection between those points with
respect to the distance dg.

Note that on any closed curve contained in Q\C, g has zero topological degree.
We conclude that g has a smooth lifting ¢ on Q\C. Moreover, as we cross any one
of the line segments of C, ¢ jumps by 27. Thus, ¢ € BV (;R) and

[ 1Del = [ Vgl +2xici = [ Vgl + 2nL(g).
Q Q Q

We can now argue by density, using Lemma 2, to conclude that for any g €
W1(Q; S1) there exists ¢ € BV (2;R) such that g = ¢ a.e. in Q and

(85) [ 1Dl < [ 9]+ 21L(g).
Q Q
This concludes the proof of the theorem.

Proof of Theorem 5’. Using exactly the same argument as in the proof of Proposi-
tion 3, we have

(B6) [(Det (Vg), Q)] < TV (9)lCllze=, V¢ € C5o(9).

Thus, if TV (g) < oo, then Det (Vg) € M(£2). We now apply Proposition 3.2 in [S]
(see also [P]) to the quotient space €/9€). We conclude that there exist distinct
points aq, ... ,ar € € and nonzero integers dy, ... ,d; such that

k
(BT7) Det (Vg) =7  d;ba,.

j=1
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We now define

h(z) ;:(“7_‘“ )dl---(x_“’“ >dkg(x) for a.e. z € Q.

|z — aq] |z — ag|

Clearly, Det (Vh) = 0 in D'(Q2). It follows from the analog of Theorem 7 for
domains in R? (see also [D]) that h has a lifting in W1, In other words, we can
find ¢ € WH1(Q;R) such that h = ¢’ a.e. in . We then conclude that

z—ap \“ z—ap \"
g(x):<—1> ( k) @) for ae. x € Q.

| — aq| |x — ag|

Arguing as in the proof of Theorem 5, this implies that
k
(BS) TV(g) <7y ldsl.
j=1

The reverse inequality already follows from (B6). We then conclude that (6.8)
holds.

Conversely, if Det(Vg) € M(), then (B7) holds. The above argument then
shows that TV (g) < oo and

k
TV (g) = | Det (Vg)|lm = WZ |di-

=1

C. Proof of Theorem 3",
Theorem 3" follows immediately from Theorem 3 and the next

Lemma C1. Given g € WH(S%,T), we define

g—aj 1,1/ 02. ol
g; = e WHH(S5%:5%).
7 g —

Then,

(1) Det (V) = % 3" 14,1 Det (Vg,) in D'(5%).

The proof of Lemma C1 relies on the following
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Lemma C2. For any u € WH(S1:T), we have

1 U — a;
9 - ;=) |Aj|deg —L.
(C2) 2/Slu/\u ;| 5 eg|u_aj|

Proof of Lemma C2.

Step 1. T" is a simple curve.
It is well-known that (C2) holds if u € C1(S*;T) (see, e.g., [N]). By approximation,
we conclude that (C2) is also true for any u € WH1(S1:T).

Step 2. Assume I has finitely many self-intersections, say q1, ... , qk.
Since wu is continuous, the set

S"Nu {ar,- -, ak})

is open and can be written as a countable union of open arcs in S'. Let a; be
such an arc. It is easy to see that we can select disjoint arcs as, ... ,o; (oriented
anticlockwise) such that u at the positive endpoint of «; coincides with the value
of u at the negative endpoint of a; 4 for ¢ = 1,...,7, with the convention that
aj+1 = ap. By removing arcs from this list if necessary, we can assume that each
point g; appears only twice in the list

{u(@),... ,u(da;)}.

This construction induces a function @ € W1(S1;T') such that
(@) t=uwona;U---Uaqy;
(b) @ is locally constant on S\ U--- U .

By construction, #(S') is a subset of a Jordan curve I' contained in I'. Let

Ay, ..., Ay, be the components of R?\I" enclosed by . By our first step, we have
(C3) 1/ Ay = |Ay U-- U Ay, | deg 2 °
5 o T = t1 te gm_a"

for some point a inside I'. Note, however, that

degu:deg If_ats , Vs=1,...,¢;
|t — al |t — ay, |
moreover, .
deg 7:~L ! :Oa 1fj¢{t17 ;tf}
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We can thus rewrite (C3) as

L

1 -
(04) §/SIU/\UTZZ|AtS

s=1

u—aj

aj|

&—at
deg —= =Y "|4;]d
eg’ﬂ/—at ‘ J’ eg

s

|

We can proceed with the construction of 4 and “decompose” u € WH(SYT') as
U1, Us, ... SO that

(a) @; € WH1(SYT) and @;(S?) is contained in some Jordan curve for every i ;

(b) uy = tiy, + gy + -+ in St ;

(¢) u; coincides with w on finitely many arcs in SY\u™'({q1,... ,qx}) and @; is
locally constant outside those arcs.

By (C4), we have

1 U — A
3 Ui N\ Uir = Al deg ——
g [, o ior = 2 4] dog =

j i a]

. Vi

Note that, by (b) and (c),

UNU = U; N\ Ujr-

For the same reason,

deg

U — a; Ui — a; )
|u_aj.| = deg |a%_aj.|’ V3
J p i~ 4y

We conclude that (C2) holds.

Proof of Lemma C1. Let g € WH1(S%,T). By the coarea formula (see [BBM2]), we
have

(Cs) (Det (V). = [ ( / K AgT) ax,

where ¢ € C*°(S5?%), and X = {x €8?; ((x) = )\} is equipped with the appropriate
orientation, whenever A is a regular value of (.

Recall that, for a.e. A € R, g|s;, belongs to W1, Applying Lemma C2 to g|s,
for such As we get

1
/\7222 A;ld ‘:—E A A Gir.
/ZAQ g ’J’ €g g; - ‘|J’/E)\gj 9j
J J
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Integrate both sides of the identity above with respect to A. Using (C5), we conclude
that

(Det (V9).¢) = — " |4;1(Det (Vg,). ). ¥ € C(52).

This establishes (C1).

We also call the attention of the reader to the following analog of Lemma 12’ in
[BBM2] :

Proposition C1l. Let X be a metric space. Given two sequences (F;), (N;) in X
and nonnegative numbers o; such that . a;d(P;, N;) < oo, let

(C6) T =Y ai(dp, —dy,) in [Lip(X)]".
Define
L= Suwp (T0).
¢€Lip(X)
‘ClLipSl
Then,
(C7) L=Inf) o;d(P;,Ny),

where the infimum is taken over all sequences (P;), (N;) in X and numbers a; > 0
such that (C6) holds.

Proof. Let us denote by L the infimum in (C7). Clearly, L < L. We now establish
the reverse inequality.
Let ¢ > 0. We take k£ > 1 sufficiently large so that

Z aid(PZ-, Nz) < E.
>k

Without loss of generality, we can assume that each «; is rational for i =1,... | k.
We then choose an integer J > 1 sufficiently large so that J«; is an integer for every
t=1,...,k. Write the points P;, N; as p1,po,... and ny,ns, ..., with multiplicity
Jaj. It follows from Lemma 4.2 in [BCL] that we can find (, € Lip(X), with
|Co|rip < 1, such that, after relabeling the points n; if necessary, we have :

k
> Jaslo(P) = Go(N))] =3 [Golpg) = Colny)] = D dlpy, ;).

J
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Thus,
L= ai[C(P) = Go(Ni)]
i=1
k
> Zoéi [Co(Py) — Co(N:)] — €
i=1
j j i>k

Note that

T=y %(5%. 6+ S ulop, — ow,).
J

i>k
We conclude that L > L —2¢. Since £ > 0 was arbitrary, this implies L > L. Thus,
L = L as claimed.
D. Proof of Theorems 1” and 2”.
We begin with a few preliminary results
Lemma D1. Given e > 0, let &, : BN — BN be defined as

0 if |x| <e,
Q. (z) =1 |z|—¢ =z
|

— ife<|z| < 1.
l—¢ |z

Then, for every f € C(BN;RM), we have

fod. — f inWHY(BN).

Proof. Given x € BN |z| > ¢, let r = |z| and 9. (r) = (17"__5 Using this notation,

e)r”
we have

() = e (r) 1 +( =20l (r))
Since YL(r) = ==

T (e
LT Ce
—Ye(r)] < —

Moreover,

@ (z) — 2| < Ce and |oo(r) — 1| < %
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We then have

V() = VI (@)| = | '@L(x) VF(@ea) — V()]
< |V F(®e(2)) ~ VF ()] + |V F( ()] | 1010 ()
< Cl0.() — 2l + Clu(r) — 1]+ &5 < &

T T

for |x| > €. Therefore,

/ IVf. — VN <ceV / %-I— /|Vf|—>0 as € — 0.
BN

e<|z|<L1 |z|<e

Next, we establish the following

Lemma D2. Given f € C*®°(BN x [0,1];RM), let

fe(z,t) = f(Pc(2),0).
Then
fe— f inWHN(BYN x [0,1)).

Proof. Note that

of of

—(0,t) — = (z,1) if |z] <e,
88{;6 (:Eat) - %(xat) = gfc ot af
= - = 1 > e
6t (q)g(l'),t> at (x7t) lf ‘x’ Z €
Thus, since | (z) — z| < Ce, we have
fe of
— 2l < Ce.
o~ ot <€

The result now immediately follows from Lemma D1.

As a consequence of Lemma D2 above, any map f € C>®°(BY x [0,1]; S¥) can be
approximated in W1~ by maps f. such that

Je=1F1 on SN x 0,1] and  fe(z,t) = g-(t) if |z] <e.
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Lemma D3. Given g € C°([0,1]; RM), et
fz,t) =g(t) V(z,t) € BN x[0,1].
Then, there exists a sequence (f-) in WY such that
fe(x,t) = const if |z| <e, fo(x,t)=g(t) ifl|z]=1,

and
fe— f in WHY(BY x [0,1)).

Proof. Let (. : BN — R be given by

log &, <] <1
if e <|x :
Cc(z) =4 logl -
0 if |z| < e.

It is easy to see that

/ V¢ — 0 and / 1. — 1|V —o0.
BN BN

Since N > 2, there exists Q € S™ such that Q ¢ ¢([0,1]). Let ¥ : SM\{Q} — RY
denote the stereographic projection. Set F' = Wo f. Clearly, in order to establish the
lemma, it suffices to approximate F in WV by a sequence F. such that |F.| < C,

F.(xz,t) =const if || <e and F.(z,t)=F(z,t) ifl|z|=1.

Set G(t) = ¥ o g(t) and F.(x,t) = (. (x)G(t). We then have

//\VmFg—VF|Ndxdt:/|VC€|N/|G|N — 0
//@FE—atF\Nda:dt:/H—CE\N/\G’\N — 0.

The proof of Lemma D3 is complete.

We conclude from Lemma D3 that, given any v € WHN 1N, gN=1) N > 3
there exists a sequence (u,,) such that u, — w in WLN  where each u,, satisfies the
following properties :

and

(i) uy has a finite number of point singularities P;, N; ;
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(ii) uy, is homogeneous of degree 0 in a neighborhood of each singularity ;
(iii) u, = @ in some conic neighborhood of a geodesic joining P; and N;.

In fact, (ii) holds since every topological singularity may be approximated by
homogeneous singularities (see Lemma E.5 below). We then apply Lemmas D.2
and D.3 to obtain property (iii).

We shall say that a map is good if it satisfies properties (i)—(iii).

Proof of Theorem 2'". Our goal is to show that, for every u € WHN=1(GN; gN-1)

D1 Inf D -D _ ().
oY UEC“(SI}V;SN—l)XgNl (u) = D(v)| = onL(u)

Proof of “>”. For every ¢ € Lip (S™) such that ||V(|p~ < 1, we have

[ 1p@ D)1= [ [P = Dw)-¢= [ D¢ = T,

SN SN

Taking the supremum with respect to {, we get
/ |D(u) — D(v)| > onL(u) Yve C™®(SN;8VN71).
SN

Proof of “<”. Assume u is a good map. We shall assume for simplicity that u has
a single dipole P, N. Given € > 0, let U, : S¥~1 — SN~1 be such that

2@ il p35 [ a v e
SN-—-1

CTRL)

The existence of such map is established in [BCL, Section VIII].

Let W denote the e-conic neighborhood of the geodesic segment joining P and
N. We decompose W as W = W7 U W5, where W7 is the cylindric part of W, and
W5 is the union of the two conic caps. We then define u. as

us(x) =u(z) ifzgW, ulzr)=U(x) ifzeW
and u. is extended by homogeneity of degree 0 in W5. We then have
[, 1@ = D)l = [ @)+ o(1),

In [BCL, Section VIII], it is proved that

1
DU = VrUe| £ ———5=|VrU[" .
(N—-1)"=z
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We conclude that

(D2) lim |D(u) — D(u)| < onL(u).

e—0 SN

On the other hand, since u. has only singularities of degree 0, Hopf’s theorem
1,N—-1

implies that u. € C>°(SN; SN —1)W . It then follows from (D2) that inequality
“<” in (D1) holds, at least when u is a good map.

We now establish < in (D1) for any map v € WHN=1(SN; SN=1) Let (u,) be
a sequence of good maps such that u,, — w in WLV =1 For each n > 1, we have
just shown that there exists v, : ¥ — S¥~1 smooth such that

1
/ D(un) — D(vn)| < o L) + ~
SN n
Thus
1
/ D(w) — D(vy)] < / D(w) — D(uwn)| + onLiun) + ~ = o L(u) + o(1),
SN SN n
which gives the desired result.

Proof of Theorem 1”. We want to show that

N

(D3) Ere(u) = /SN [VulN "+ (N = 1) on L(w).

Proof of “<”. It suffices to establish the result for good maps. In fact, if u,, — u
in WHN=1 then
Erel(u) <liminf Epe(uy,),
n—oo

while the right-hand side of (D3) is continuous with respect to the strong topology
in WHN=1_ Thus, we may assume that u is good and we can proceed exactly as in
the proof of Theorem 2”. We shall leave the details to the reader.

Proof of “>”. As in [BCL, Section VIII], we have

N—-1

wl (52 los1?)

D4 w-va A ANUN,W -V AV3A - AUN,... )| <
(D4) |(w - v 1A\ v3 )| N5

for every w,vi,...,vn € RY.
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On the other hand, given a sequence (u,) C C*°(S™;SN~1) such that (u,) is
bounded in W1~ and w,, — u a.e., we have

(D5) / VN1 :/ wa—1+/ Vi — V|V 4 o(1).
SN SN SN

Let ¢ € Lip(S?) be such that [|[V(||z~ < 1. Applying (D4) to w = u, and
v = Vu, — Vu, we get

/ |Vu, — Vu|V !
SN

(N - 1)N2—1 > 2(;:80 /SN Un * (Unzyy = Uzyy) N A (Unzyy = Uzyy) Crors

where the sum is taken with respect to all permutations o of N elements, and
€, = £1 denotes the sign of o. Thus,

N—-1

(D6) / |V, — VulV 71> (N -1)"=
SN

| D)V Ra(€),

Assume for the moment that R,,(¢) — 0. It follows from (D5) and (D6) that

liminf/ |V, |V 1 z/ IVulN "+ (N — 1) (T(u), ().
SN SN

n—oo

Taking the supremum over ¢, we obtain “<” in (D3).
Thus, in order to conclude the proof of Theorem 1”, we need to show that
R, ({) — 0. Since each u,, is smooth,

D(u,)-V(¢=0.
SN

It then follows that

where S,,(¢) is a sum of integrals of the form

I, :j:/ Up * Vng;) Nt AUng, A Ugy, /\"‘/\Umleacta
SN

where K +1 = N — 1 and v,, = u,, — u. It is important to notice that k£ > 1 and
[ > 1. Since
N-—1
(up, — u) Ug; Ao+ ANug;, — 0 strongly in L™7,
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we may replace I,, by
j:/ U Upg,, /\---/\vmik N Ug;, /\~--/\ulegmt.
SN

We can now formally integrate by parts to write S,,(¢) as a sum of integrals of the
form

j:/swum“ “Un N Ungg, Nt AUng, A Ugy /\“‘/\umlecct-

Such integration by parts can be easily justified by approximation ; note that all
the second derivatives are cancelled by symmetry.
Since
Up Ugy, A Aug, — 0 strongly in L%,

we conclude that

The proof of Theorem 1’ is completed.

E. Proof of Theorem 5”.

Throughout this section, we assume that Q = G, where G is a domain in R ;
more generally, () could be any smooth domain (with boundary) in dG. We start
with

Lemma E1. Let0 <o < o0, 1< qg<oo. Then

o,q 7,49

C=(Q; SN-T) AWea ' = ¢, SN-1)

In other words, for each map u € C=(; SN~ NW4, there is a sequence (u,) C
C°>°(Q; SN1) such that u,, — u in W,

Proof. Let, for t > 0 sufficiently small, Q; = {x €Q; d(x,00) > t}. Consider, for
any such ¢, a diffeomorphism ®; : 2 — ; such that

|D*® — D*1d||p~ < Cit, k=0,1,2...
and set, for u € C(; SV, ut = wo ®;. Then

ut € C°(Q; SN and ut —u  in W
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Lemma E2. Let u € WHN(Q; SN=1). Then

whN

Lu)=0 <= welC®(QSN-H)nWwhN

Here,

(T(u),¢) = - /Q D(u) - V¢,

where ¢ € W°(Q) and ( is constant on each connected component of 9 ; L(u)
is computed accordingly. When N = 3, this result is due to Bethuel [B1] ; the same
proof yields Lemma E2.

Lemma E3. Let 1 <p < N. For g e WHP(SN=1, GN=1) set g(z) = g (|£|> for
x

x € BN. Then g € WY and the map
g€ Wl’p(SN_l;SN_l) N g c Wl’p(BN;SN_l)

is continuous and verifies |glwrr» < Clglwi.p.
Proof. Trivial computation.
Lemma E4. In the definition of TV, we may replace C™(;RY)-maps by maps
in Lip (Q; RY).
Proof. Clear, by approximation.
Lemma E5. Let N > 2, N -1 < p < N, and let u € WHP(Q; SN-1). Fig
ai, ..., ax € and define, for p > 0 sufficiently small,
U(ZC), Zfd(.’lf, {ala"' 7a'k}) > p
u(y), if, for some j, d(z,a;) < p and
x lies on the geodesic segment from
a; toy, where d(aj,y) = p
(here, d denotes the geodesic distance in SN .)

Then u,, — u for some sequence p, — 0.

Proof. For simplicity, we may assume (2 is flat near each a;. Then the definition of
u, becomes

u(z) if d(z,{a1,...,ar}) > p,

uy(z) = —aj;
(@) u(p|x aj,) if |z —aj| <p.
T — aj




18 HAIM BREZIS(1):(2) PETRU MIRONESCU®) AND AUGUSTO C. PONCE®):(2)

Alternatively, denoting by u?(y) =u(a; + py), y € SV7L, then

T —a, _
up(x):u§'<|x_aj.|) if |z — a;| < p.
j

Assume, for simplicity, that there is only one singularity, say a; = 0.

1
Let, for n > 1, p, be such that — < p,, < — and
2n n

1 o

— |Vul|P < |VulP )dp = |VulP.
2

nJs,. = lz|=p <z <

2 2n

IA

Then

|V <Cuppn [ varzc | Vul "= 0.

Bpn SPn 2n§‘x|§%

Thus

[V, v = [ 9, - Vap
Q B

Pn

< C(/ \Vupn|p—i—/ |Vu|p> 0.
B B,,

Pn P

Proof of Theorem 5". The equivalence
TV(u) <oo <= Det(Vu) isa measure

is established as in the proof of Theorem 5. As already noted, TV (u) < oo implies

Det (Vu) = %N 3" (9p, — n,)-

finite

Let aq,... ,ax be the collection of points P;, N;. Given n > 1, let

1
Q" = {:I;EQ; d(z,{ay,...,ax}) > E}

and

A”:{:UEQ; <d(z,{a1,...,ax}) <

SEES
S

b
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Consider a sequence (u”) C C>°(Q7; SN~1) such that u™ — u in WHV-1 as

1 2
m — oo (clearly, L(u|q,) = 0). There is some p,, € (—, —) such that, up to a
n'n

subsequence in m,

() urly, —uls,, in WEN-1(E,, ) as m — oo,

(ii) / Vu|N 1 < Cn/ |VuN 1
Epn An
Here, ¥, = {:c ;d(x,{ay,...,ax}) = p}.
Extend u]" to Q as in Lemma 5 (by homogeneity of degree 0) ; let (u]")

—am
pn — Un
be this extension. By (i) and Lemma E5, we have @' — u,, in WHV"1(Q) as
m — oo. By (ii) and Lemma E3, we have u,, — u in WH»¥~1(Q). Thus we may

find a sequence (v,,) C Lipy,. (2 \ {a1,... ,ar}; SV~1) such that
(a) vy, is homogeneous of degree 0 near each a; ;
(b) vy, — u in WHN=L(Q)
(c) near each aj, the degree of v, is d;.

Assertion (c) follows from (i), the continuity of degree of maps from S¥~! into
SN=1 for WHN=1 convergence and the following clear fact

T(v,) =0on Zdeg (Vn,a;j)0a; = T(u) =0on Zdjtsaj.
j J

J

For the remaining part of the proof, assume for simplicity that there is only one
singularity @ = 0 of degree d > 0 and that (2 is flat near a. Let p, be such that v,
is homogenous of degree 0 in B, (0). Here, B,(0) is a ball in §2 centered at a = 0.
Fix d distinct points p1,... ,pq in By.

Let ¢ > 0 be sufficiently small. For w € Lip (0B1; S™V~1) (B is the unit ball
in RY), with degw = d, let w : By \U; Be(pj) — SN=1 be such that w|pp, = w,
~ T pj
) |z — pj
map exists, since degw = d.) We then extend @ to By by setting w(x) = =2, if
|z — pj| <e. Thus @ is still Lipschitz.

Define, for 0 < p < pn,

if |z —p;|=¢,j=1,...,d and W is a Lipschitz function. (Such a

vn (), if d(z,0) > p

Unpl®) =4 o (%) it d(z,0) < p’
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here, wy, () = v, (ppz), if |z| = 1. Lemma E5 yields
Up,p — Up 1D WHN=1 4 p— 0.

Clearly, by the definition of v, ,, we have

/ | Jacvy, ,| = wnd.
Q

Considering now the case of several singularities, we obtain by a diagonal procedure
a sequence (wy,) C Lip (Q;RY) such that

w, —u in WHY"1 and /]Jacwn]:wNZ|dj|.
(9] .

F. Proof of Theorems 5.
We start with the following well-known

Lemma F1. Let 1/p<s <1 and 1< p < co. Given u € WyP(RY), let

i) = { u(z) if ey >0,
B 0 ifI‘N <0.

Then, u — U is a continuous mapping from Wol’p(Rf) into WHP(RY).

Proof. By density, it suffices to deal with u € C§° (Rf ). Using the Besov seminorm,
we have

. a(z’, t+ 1) —a(x’,t)[P
F1) (il filfy + il + [ [ D ZHEOR 0t

Denote by I the last term in the right-hand side of (F1). Clearly, it suffices to
estimate I:

o0 t o o0 ! t P
Iw/ // |“‘r u(z’, o)lP dadtdx’+/ / @ D 4 g,
RN-1 — o|ttsp RN-1.J¢ t°P

It then suffices to estimate the last term in (F2). By Fubini, it suffices to consider
the 1-dimensional integral

/00 ut)|” dt, wu e C5(0,00).
0

tsp

This is a trivial consequence of the following
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Lemma F2. Let1/p<s<1landl<p<oo. Given u e C§°(0,00), we have

= |u = Ju(z) — u(y)?
(F3) / dt<0// |x— |1+Sp dx dy.

Proof. We first point out that both integrals are finite. Given 0 < @ < 3 < 1, we
have

[u(®)] < Ju(@)] +u(t) —u(z)| Vo€ lot, Bt] =

Thus,
lu(®)P < 2lu(z)P + Clu(t) —u(z)|P Vz e I.

Integrating over x € I, we get
: /OO . /
< — w(x)Pde + ——— w(t) — uw(x)|? dx.
Goagi ), @t G [ ute) —ute)

Since o, 8 < 1, we have |t — x| ~ t for every x € I;. Integrating (F4) with respect
to t we then have

< @l //!u )" //‘”!u )"
/O o dt_ﬁ_a gt \t—x|1+sp dz dt

(F4) Ju(t)[?

2(8° — aP) /°°| u(z)[P //OOIU z)|P
F5 = dx dx dt.
(%) pB—a) Jo o “TE-a = xw
Note that fpiﬁ_a § = 4P~ 1 for some v € [, 3]. Thus, by taking 3 < 1/2 sufficiently
small, we have
2(B°P — a®P) < 1
sp(B—a) T2

With such choice, (F3) trivially follows from (F5).

Lemma F3. Let wy,Q be two smooth domains, wy CC . Set wy = Q\w;. Assume
that u, — w in W*P(wy1) and v, — v in W*P(ws), with tru, = trv, on dw;. Let

Uy 1N W1 U N w
Wy = , and w = .

Uy 1N Wo VN wo

Then
wy, —w in WHP(Q).

Proof. 1t suffices to show that

lwllwer@) < C(lullwsrw) + [vllwsrws))-
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Let n = tru = trv. By the standard trace theory,
) nllws-rro0 < Cllullwerws) ;

(1) [nllws=1ro0 < Cllvllwes ) ;

(iii) there exists an extension g € W*P(Q) of n to w; and ws such that

||gHWS’P(Q) < CHUHWS—UP,Z%

Let

. u—yg inw,
w = .
v—g 1n ws.

By Lemma F1, w € W*P(Q) and

l@llwer@) < Clullwss ) + [Vllwsnws))-

Since w = w + g a.e. in ), Lemma F.3 follows.
In the sequel, we shall denote by C the cube (—1,1). Let ||z|/o = Max; {|z;|}.

Lemma F4 (Brezis-Mironescu [BM1]). Let 0 < s < 1 and 1 < p < oo, with
sp < N. Given f € W*P(0C), set f(z) = f(x/||zllsc), x € C. Then, f € W=F(C)
and the mapping

f=f
is continuous from W*P(0C) into WP (C).

We refer the reader to [BM1, Lemma D.1] for a proof of Lemma F4.
We denote by C. = (—¢,¢)". The following lemma is a variant of the approxi-
mation procedure in [BM2]:

Lemma F5. Let 0 < s < 1 and 1 < p < oo, with sp < N. Let f € WSP(RY).
Given e > 0 and @ € C, set

f(x) if v & Ce(Q),

feqlz) = { flreo(x)) ifz e C(Q),

where T, g(z) = Q + é‘ﬁ is the projection of x to 0C:(Q), with respect to Q.
Then, there exist €, — 0 and Q, € C, /o such that

fer 0, — f in WHP(RY),
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Proof. Set g..q = fe.o — f. We have

|fe.o(x) — f(x)P
9.0 yer = 2/ dy/ ’ dr+
e RN\C.(Q)  Jo) T —y[NTep

p
C. (Q) C.(Q) |~’E - \

N |fe@(@) — f(=)
/C(Q) d(z,0C, (Q))Sp d "

p
L(@Jc.@ ’x—y| P

= 1.+ Jeq +o(1).

It suffices to show that

Ld
/_e{f (IE,Q+J€,Q)dQ}<oo
o € C.
La
/if JegdQ < o0
o € Jc.

may be found in [BM2, Appendix A]. Next,

/dgf EQdQ</ dg/ok fc(:c) ’{;550 Qg)ﬂde'

We now make the change of variables Q = x — vy, y € C.. We get

e A T

Let z = —y + sﬁ, whose Jacobian is O((HZ”%)) (see [BM2]). We then have

de de (x+2)P N1
/ / eQdQ<c/ /C f |Z|N+Sp1 N1
flx +2)P de
< C’/ d:L‘/ dz/ —
Cs c Z|N+8p ! 2] €7

|f(z) = flz+2)]P
/ |N+sp drdz < 00.

The proof of
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This concludes the proof of Lemma F5.

Given N —1 < p < N, any map u € WW=1D/pp(§N. §N=1) has a harmonic
extension U € WN/P»(BN+1L, RN) LN, We then define T'(u) as

N
<T(u)7C> = _Z/BN+1 det (UJH?"’ 7Ul‘j7u7U$j+17"' 7U$N+1)§$j7
Jj=1

where ¢ € Lip (SV) and ¢ is any extension of ¢ to BN*!. One can see that this
definition is independent of the extension £. Let

1
L(u) = a”v%\ﬁ?jjg@(w&%

We have the following
Lemma F6. Assume N > 2. Let1 <p < oo and u € W(N—l)/p’p(SN;SN—l)‘ If
(N—=1)/p,p
T(u) =0, then u € C>(SN; SNfl)W

Proof.
Case 1. Proof of the lemma if N > 3.

Note that good maps are dense in W ~=1(SN: §N=1) and, by interpolation, in
W(N_l)/p’p(SN;SN_l). Thus, it suffices to show that if u is a good map, then
there exists v € C*°(SV; SV 1) such that

||u — U||W1,N71 S CL(U),

which can be done by a dipole construction. By interpolation, we obtain Lemma F6.

Case 2. Proof of the lemma if N = 2.
The interpolation argument does not work in this case. However, for any map
u € R, the dipole construction in [BBM2] gives a sequence (v,,) such that

T(vn) =T(u), |vnlyp, < CL(u), and v, —1 ae.

— wl/pp
Clearly, uv,, € C'*® and

(x) —u(y)P
|z —y|?

= Bl < 2=l + K [ 1= P dz dy

<2CL(u) + o(1).
Using the density of R in W/P?(S2; S1), we obtain the desired result.

We also point out the following extension of Lemma F6 whose proof is left to
the reader :
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Lemma F7. Assume N —1 < p < N. Let Q be a smooth subdomain of SN.
For any u € WWN=D/pp(SN. GN=1) "T(y|q) is well-defined when computed against

Lipschitz functions which are constant on each connected component of 02. If
wN-1)/p,p

T(ulg) =0, then ulg € C>°(Q; SN-1)
A key ingredient in the proof of Theorem 5" is the following

Proposition F1. Assume N —1 < p < N. Let u € WN-D/pp(gN. GN=1) pe
such that

T(u) = 0N Z dz5Ml

finite
Then, there exist (up,) C WWN=1D/Pp(GN. GN=1) "o 0, and M — M; such that
(1) un € C2(SMU; Ce,, (M]); SV

(ii) uy, is homogeneous of degree 0 on each cube C. (M) ;

(iii) T(un) = on Y didn ;

finite
(iv) up — u in WN-D/pp,

Proof. We first observe that the set of good pairs (g, @), in the sense of Lemma F5,
is “fat”. More precisely, there exists a sequence ¢,, — 0 such that

{Q e Corii lfera = Flwov—sms <1/m}| 4
> —.
‘an/4’ 2

In particular, {Q € Coias | feno— flwav-v/me < l/n} intersects the complement
of any null set of C, 4. For n > 1 fixed, consider

Un = Ulgn\ Y, C., ja(M)-

Then, T(v,) = 0, so that there exists a sequence (vF)y,

vy € C®(SM\JCe, ja(M); SN7Y) VR > 1,

such that

vF — v, in W(N_l)/p’p(SN\UCsn/zl(Mi)) as k — oo.



26 HAIM BREZIS(1):(2) PETRU MIRONESCU®) AND AUGUSTO C. PONCE1):(2)
By Fubini, for a.e. Q € C¢, /4, we have

k
Up

U, 8C.,, (Q+M;) — Uly, aC., (Q+M;) 1N WWN=D/pP a5 k — 0.

By Lemmas F3 and F4, for any such ) we have

— G, in WWD/PP a5k oo,

where 9 (resp., @,,) is v¥ (resp., u) extended by homogeneity of degree 0 on each

cube C¢, (Q + M;). By Lemma F5, we can choose Q = @,, such that @, — u in
WW=1/p.»  Applying a diagonalization argument, u, may be taken among (ak).
We only need to show that (iii) holds.

Note that 9F is locally Lipschitz on SN\ U; M]*, where M* = Q,, + M;. Thus,

T(i}ﬁ) = ON Z &zéMf

finite

Since T'(u,) — T'(u), for n large enough we have (iii). This concludes the proof of
Proposition F1.

We may now present the

Proof of Theorem 5.
Step 1. If TV (u) < oo, then Det (Vu) is a measure and

(F6) | Det (V)| < TV (w).

Clearly, we may replace u,, in the definition of TV (u) by

) {un if |u,| <1,

Up = .
n |z:| if |un| > 1.

We may thus assume that |u,| < 1. Since u,, — u in WWN=1/p.p and lun| < 1, we
have

(T(un),C) = (T'(u),¢)
for every ¢ € Lip (S™; S¥~1). In addition,

(T'(un), Q) = N Jacun ¢ < TV (u)|[C]ze + o(1).

SN—l

Thus, T'(u) is a measure and (F6) holds.
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Step 2. If Det (Vu) is a measure, then TV (u) < oo and

1
(F7) — TV (u) = number of topological singularities of u.
Wn

By Proposition F1, it suffices to compute TV (u), where u is smooth outside
finitely many (disjoint) cubes and w is homogeneous of degree 0 inside each one of
these cubes. By (F6), we have “>” in (F7). It then suffices to show the reverse
inequality.

Note that u € Wh4(SN; SN=1) for every ¢ < N. As in the proof of the case
WELN=1(GN. GN=1) "we can find (u,) C C*°, u,, — u in Wh9 with

1
— | Jac u,,| = number of topological singularities of w.

WN JgN-1

For N -1 < ¢ < N, we have Wt 0 L>* ¢ WW-1/pP 5o that u, — u in
WW=1/pr_We conclude that (F7) holds.

G. Proofs of Theorems 14-17.
We start by establishing the precise value of E(g) :

Lemma G1. Let g € BV (I;S') and let A be the set of jump points of g. Then

(G1) E(g) = |gal + ) ds(g(a+), g(a—)).

acA

Proof. Let ¢ € BV (I;R) be any lifting of g. We claim that

(G2) [l am(ry = |9alm)-
Indeed, recall that, by the chain rule, we have
$d = —i99d-
Set v = g4 and p = |v|. Then there is some k € L>((I,du); S') such that v = kp.

Since v is diffuse and —ig € BV, we have —ig € L>°((I,du); S1), and thus ¢4 = fu,
where £ = —igk € L>°((I,du); S*). It follows that

|Palmy = Sup (@a,¢) = Sup  (u, €¢) = (w, [£]) = |plamary = |dalamny-
CeCy(I;C) CeCy(I;C)
[¢]<1 I¢1<1
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Let now B denote the set of the jump points of ¢; clearly, B D A. For each

a € A, we have '

glat) = ew(cwr)7

gla—) = e¥@7),
so that

[p(at) — p(a—)| = dsi(g(at), g(a—)).
If a € B\ A, then e¥(¢t) = ¢¥¢(2=); thus
[p(at) — p(a—)| = 2m.

Consequently,

[@laery = lalmen + D lplat) —pla)l+ Y lplat) — pla—))

a€A a€B\A
(G3) > |gal + > dsi(g(a+),g(a—)) + 27 card (B \ A)
acA
> |gal + ) dsi(g(at), g(a—)).
acA

Equality holds if and only if
[p(at) — p(a—)| = dsi(g(at),9(a—)) Va€A and B=A.

This proves “>” in (G1).
In order to prove “<”, we split A as A = A; U Ay, where

Ay ={a € 4;|g(a+) —g(a—)| =2} and A ={a € 4;|g(a+) — g(a—)| < 2}.

If a € Ay we may define a signed distance

gla+
b1 afa+).g(a-) = ang (4251 ).
Here, arg stands for the argument in (—m, 7). Set

(G4) p=—igga+m > ba+ Y dsi(glat),gla—))da.

a€A; acAs

We claim that p is a measure. Indeed, A; is finite, since ¢ € BV. On the other
hand,

Sup|g(a+) —gla—)| =d < 2
a€Asg
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(again since g € BV'). Thus there is some C' > 0 such that

651 (9(a+), g(a—))| < Clgla+) — g(a—)|.

It follows that

> [bsi(gla+), gla=))| < C D lgla+) — g(a—)| < oo.

a€As a€As

Assume that I = (0, «) for some a > 0 and set ¢o(z) = u((0,2)), z € I. We claim
that, up to a constant, o is a lifting of g and that [po| 1) = E(g)-
Indeed, using the chain rule for a product we have

(G5)  ge—ivo = e 04, —ige " (¢o)a+ Y (ge7"?(at) — ge " (a—)) da.
acA

Here, we have used the fact that ¢ is continuous outside A. For a € A, we have

vo(a+) = pola—) + p({a}),

so that

glat)’
by our definition of g. Thus the sum in (G5) vanishes. On the other hand,

o—ipo(at) — g-ivo(a—) 9(27)

(¥0)d = —1G9a,
so that _ _ '
e "0gq —ige " (Yo)a = e “?°(gq — ga) = 0.

Thus, there is some C' € C such that ¢ = o + C is a lifting of g.
On the other hand,

2l = [olmeny = | — i8galmery + weard (A1) + Y [d51(g(a+), ga—))]
G/EAQ

= [ga|pm(n) + Z dsi(g(a+), g(a—)).
a€A

The proof of Lemma G1 is complete.

Proof of Theorem 14. We shall prove a slightly stronger assertion, which implies
all the properties stated in the theorem. Namely, a lifting ¢ € BV (I;R) of g is a
canonical lifting if and only if
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(i) ¢ and g have the same jump sets ;
(ii) for a € Ay, we have p(a+) — p(a—) = 7 ;
(iii) for a € Ag, we have p(a+) — p(a—) = dg1(g(a+), g(a—)).

Property (i) was seen to be necessary for optimality in the proof of Lemma G1.
Recall that, in addition to (i), equality in (G3) amounts to

(G6) [p(at) — pla—)| = ds:(g(a+),g(a—)) Va € A
If a € Ay, then
[plat) —p(a—)| =,

so that (ii) holds. Assume a € As. Since (@) = g(a+) and (@) = g(a—),
then by (G6) we have

la+) - pla-) = arg (257,

which gives (iii). Conversely, it is easy to see that, if (i)—(iii) are fullfilled, then
equality holds in (G3).

Proof of Theorem 15. We identify S! \ {z} with an interval I. Let A, A1, Ay be
defined as in the proof of Lemma G1. We claim that, for each choice of integers
eq € {—1,1}, a € Ay, there is a canonical lifting ¢ of g on I such that

olat) —pla—) =eqm Va € A;.

This ¢ is obtained as in the proof of Lemma G1, as ¢ = u((0,2)) + C, x € I. One
simply has to modify the definition of u by taking

= —1iggq + Z €aT0q + Z dsi(g(a+),g(a—)) dq.

a€Aq acAs

Moreover, the proof of Theorem 14 shows that, by this procedure, we obtain all
canonical liftings. We claim that if ¢ is the canonical lifting corresponding to the
choice ¢,, a € Ay, and ¢ the one corresponding to &,, a € Ay, then

@(z—);ﬂ@(zﬂ so(z—>2—ﬁs0(2+> I e

acAq

If we identify S\ {z} with I = (0, «), @ > 0, this amounts to proving that

@(&—)2;<ﬁ(0+) so(a—)Z;so(Oﬂ 41 3" (0 ea)-

acAq
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We have ¢(a—) — ¢(0+) = fi(I) (where fi is the corresponding measure); a similar
assertion holds for ¢. Thus

27 2T 27

Pa=) = 3(0)  plom)—p(0+) _ =@ _ 15~
g( )

Let ¢ be the canonical lifting corresponding to the choice ¢, = —1, a € A;. Then

it is clear that, with d = %ﬂﬂzﬂ and k = card A, we have

Deg,g={d,d+d,...,d+ k}.

We next prove that d is an integer. This follows easily from the fact that e??(*=) =
e¥(=1) 5o that o(2—) — p(2+) € 27Z.

It remains to establish that Deg; g does not depend on the choice of z. Let w
be any other continuity point of g. Let ¢ be a canonical lifting of g on S*\ {w}.
Since g is continuous at w, there is some k € Z such that ¢ (w—) = ¢ (w+) + 2k7.

We set _
o { $(©) it € € (w+,5-),
(&) — 2km if € € (24, w—).
Clearly, ¢ € BV and ¢ is continuous at w. It is obvious that

2l ames (o) = [Pty fzw)) = [P aes1\ fw))-

It follows that ¢ is a canonical lifting of g on S'\ {z}. Indeed, by Lemma G1 we
have

E(glsi\{z1) = E(gls1\{w}) = lglBvs:

if z,w are continuity points of g. Since

p(z—) — p(z+) = p(z—) — p(w+) + p(w+) — p(w—) + (w—) — p(z+)
= p(w—) = P(w+),
we find that the degrees obtained by cutting at z are among the ones obtained by

cutting at w. By reversing the roles, we obtained that Deg; g is independent of z.

Proof of Theorem 16. Let z be a continuity point of g and let ¢ be a canonical
lifting of g in S*\ {z}. Assume, e.g., that z = 1; we identify S*\ {1} with (0, 27).
Consider a sequence (p,) C C*([0,27]) such that

27
/ ’@n‘—>|¢’/\/l((o,2n)) and @, — ¢ a.e.
0
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We may assume, in addition, that
¢n(0) = ©(0+) and  @n(27m) — @(27—).
(This is the case, e.g., if the functions ¢,, are obtained from ¢ by mollification).
By replacing ¢,, with ¢,, + a,,x + 3,,, for some appropriate «,, — 0 and 3,, — 0,
we may further assume that

¢n(0) = p(0+) and ¢, (27) = p(27—) Vn > 1.

Set g, = €*¥~. Then, clearly,

g € C¥(S\ {2}) N CO(SY) and  deg g, — <,0(1—)2—7T<p(1—1—).

By further mollifying g,, we find a sequence (h, ) C C°°(S*; S') such that

degh, — £0) = (1)

Vn >1
o =15

h, — g a.e.,

and
[ bl = [ el = Bl
s1 S1\{=}

It follows that
Deg, g D Deg; g.

Conversely, let d € Deg, g and let (g,) C C*°(S!; S!) be such that

m—g aes [ o= lolavs and degg,—d Va1
Sl

Let z € S! be a continuity point of g. Write, in S* \ {2}, g, = e??». Then

/ |Sf7n| - |9|Bv51~
Sl

Up to some subsequence and after subtracting a suitable multiple of 27, we may
assume that ¢, — ¢ a.e., where ¢ € BV is a lifting of g. Since |¢|pq(s1\(2}) <
lg|Bvst, we find that ¢ has to be a canonical lifting of g. Let ¢ > 0. There is
some 0 > 0 such that, if I is the interval of size ¢ centered at z, then we have

l9|Bvsi(r) < . We may further assume that g is continuous at the endpoints of I.
Then

l9lBvsi(sty = l9lBvsir) + 19|lBvsisio-
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Arguing as above, we find that
/ |on| = |glBVsi(si\y and / [Onl — 9lBVS1(1)-
SINI I\{z}

In particular, for every n > 1 sufficiently large,

[(on(z = 1) = pu(z +1)) = (pnlz—) = pu(2+))| <2e Yt (0,0).
We pick such ¢ so that, in addition,
on(z—t) = oz —1t) and @,(z+1t) — p(z +1).
We then find
lo(z —t) — p(z +t) — 2md| < 2e.

Letting e — 0 and 0 — 0, we obtain
p(z2—) — p(z+) = 2md,

i.e., d € Deg, g.

We complete the proof of Theorem 16 by proving that g — Deg g is continuous
in the multivalued sense. Since Deg is Z-valued, this amounts to proving that, for
each d € 7Z, the set

{g eBV(S:SY; de Degg}

is open.
To this purpose, we start with the following

Lemma G2. Let g € BV (I;S'). Let o € BV(I;R) be a lifting of g. If  is not a
canonical lifting of g, then
[@lmy = Eg) + .

Proof. Let A, B be the set of jump points of g, ¢, respectively. Recall that

[l = 1galmay + Z lp(at) — p(a—)| + Z [p(at) — p(a—)]
acA a€B\A

> E(9)+ Y lplat) —p(a—)].

a€B\A

If B# A, then
lp(at) —pla—)| > 21 Va € B\ A,
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and the conclusion is clear. If B = A, then there is some a € A such that

lp(at) — pla—)| > dsi(g(a+t), g(a—)),

for otherwise ¢ would be a canonical lifting. For any such a, we have

lp(at) — pla—)| = dsi(g(a+),g(a—)) mod 27.

Since dg1(g(a+),g(a—)) <, we find that

[p(at) — pla—)| = ds: (g(a+), g(a—)) + 7.

Since, for any b € A\ {a}, we have

lp(b+) — p(b—)| = ds1(g9(b+),9(b—)),
and the conclusion follows.

Proof of Theorem 16 completed. If g,h € BV (S'; S'), then

(G7)  |ghlpv = |gh—1|pv = |g(h—9)|sv < lglavIIh — gllL= + |h — g|BV.

Let g € BV(S;S1) and let d € Degg. In view of (G7), there is some ¢ > 0 such
that if
he BV(SYSY) and |g—hlsy <e,

then

- 1
h —.
lgh|py < 10

We claim that d € Degh for any such h. Indeed, let z be a continuity point for
both g and h, and let ¢ be a canonical lifting of g in ST\ {z}. Set k = gh and let
¥ be a canonical lifting of k. Since |k|gy < %, each jump point a of k is such that
k(a+) — k(a—)| < {5. Thus

[(a+) —p(a—)| < 2|k(a+) — k(a—)]

for any such a. It follows that

. 1
[Wlpv =kl + Y [wlat) —dla—)| < 2/k|py < 5

jump points
of k

Set ¢ = ¢ + 1. Then ¢ is a lifting of h and

ot N

|(6(2=) = ¢(24)) = (p(2=) — ()| <
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so that
P(z—) — ¢(z+) = p(2—) — p(2+)

(since both quantities are multiple of 27). In order to complete the proof of Theo-
rem 16, it suffices to prove that ¢ is a canonical lifting of h.
Indeed, on the one hand we have

1

E(h) <ol misrvi=y) < [0lamesiigzy) + 5

so that E(h) < E(g) + % By reversing the roles, we obtain on the other hand that
E(g) < E(h) + £; thus

. 2
E(h) <[9|mis\(z}) < E(h) + =

Lemma G2 implies that ¢ is a canonical lifting of h.

Proof of Theorem 17. With the notation we already used, we have
{g; Degg is single-valued} = {g ; A1(g9) = ¢} =: Us.

Thus, we have to prove that U is dense in BV (S*; S1).

Let g € BV (SY; S1); then A;(g) is finite. If A1(g) = ¢, then g € U;. Otherwise,
we may assume, for simplicity, that A; consists of a single point, say A; = {1}; the
general case can be treated along the same lines. We have |g(1—) — g(1+4)| = 2.
Without loss of generality, we may assume that g(1—) = —1 and g(1+) = 1.

Given € > 0, let h. : S' — S! be given by

et? ifl<o<2r—1,

he(ew) — ei(s—|—(1—5)9) ifo<o< 1,
ei(@r—1)(@2r+e)—(2r—1+e)0) if 97 1 < 9 < 2.

It is immediate that h.(14) = €, h.(1-) = e,
lhelpy — 0 and h. — 1 uniformly.
Thus,

ghe — g in BV ase— 0.

On the other hand, since h. € C(S'\ {1}), we have A;(gh.)\{1} = A1(g9)\{1}. In
particular, A;(gh.) C {1}. Since, by construction, 1 ¢ A;(gh.), we have gh. € Uj.
The proof of Theorem 17 is complete.
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