Lifting of S^{1}-valued maps in sums of Sobolev spaces

Petru Mironescu

- To cite this version:

Petru Mironescu. Lifting of S^{1}-valued maps in sums of Sobolev spaces. 2008. hal-00747663

HAL Id: hal-00747663
https://hal.science/hal-00747663
Preprint submitted on 31 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LIFTING OF $\mathbb{S}^{1}-V A L U E D ~ M A P S ~ I N ~ S U M S ~ O F ~ S O B O L E V ~ S P A C E S ~$

PETRU MIRONESCU

Abstract

We describe, in terms of lifting, the closure of smooth \mathbb{S}^{1}-valued maps in the space $W^{s, p}\left((-1,1)^{N} ; \mathbb{S}^{1}\right)$. (Here, $0<s<\infty$ and $1 \leq p<\infty$.) This description follows from an estimate for the phase of smooth maps: let $0<s<1$, let $\varphi \in C^{\infty}\left([-1,1]^{N} ; \mathbb{R}\right)$ and set $u=e^{\imath \varphi}$. Then we may split $\varphi=\varphi_{1}+\varphi_{2}$, where the smooth maps φ_{1} and φ_{2} satisfy

(*) $\quad\left|\varphi_{1}\right|_{W^{s, p}} \leq C|u|_{W^{s, p}} \quad$ and $\quad\left\|\nabla \varphi_{2}\right\|_{L^{s p}}^{s p} \leq C|u|_{W^{s, p}}^{p}$.
(*) was proved for $s=1 / 2, p=2$ and arbitrary space dimension N by Bourgain and Brezis [3] and for $N=1, p>1$ and $s=1 / p$ by Nguyen [14].
Our proof is a sort of continuous version of the Bourgain-Brezis approach (based on paraproducts). Estimate (*) answers (and generalizes) a question of Bourgain, Brezis, and the author [5].

1. Introduction

In [4], the authors addressed the problem of lifting of \mathbb{S}^{1}-valued maps in Sobolev spaces: $\left(L_{s, p}\right)$ Given an arbitrary $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$, is there a $\varphi \in W^{s, p}(Q ; \mathbb{R})$ such that $u=e^{\imath \varphi}$? Here, $0<s<\infty, 1 \leq p<\infty$ and $Q=(-1,1)^{N}$. The complete answer is [4]

SPACE DIMENSION N	SIZE OF s	SIZE OF $s p$	ANSWER TO $\left(L_{s, p}\right)$
$N=1$	ANY	ANY	YES
$N \geq 2$	$0<s<1$	$0<s p<1$	YES
$N \geq 2$	$0<s<1$	$1 \leq s p<N$	NO
$N \geq 2$	$0<s<1$	$s p \geq N$	YES
$N \geq 2$	$s \geq 1$	$1 \leq s p<2$	NO
$N \geq 2$	$s \geq 1$	$s p \geq 2$	YES

The non existence results rely on two kinds of counterexamples: topological and analytical.
Topological counterexamples. One may prove (see Proposition 1) that, if there is lifting in $W^{s, p}$, then $C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ is dense in $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$. Thus the answer to $\left(L_{s, p}\right)$ is no whenever $C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ is not dense in $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$. When $1 \leq s p<2$, the typical "topological counterexample" is the

Date: June 23, 2008.
The author thanks H.-M. Nguyen for sending him the paper [14] and for stimulating discussions. He warmly thanks H . Brezis for his comments on the paper.
map $Q \ni x \mapsto \frac{\left(x_{1}, x_{2}\right)}{\left|\left(x_{1}, x_{2}\right)\right|}$ which belongs to $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ but cannot be approximated by smooth maps in the $W^{s, p}$-norm. (This goes back essentially to [16]; for a proof, see e. g. [9].) Such a counterexample does not exist outside the "topological region" $1 \leq s p<2$. Indeed, when $s p<1$ or $s p \geq 2, C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ is dense in $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)[9]$. Thus, topological counterexamples are confined to the topological region.

In the "E" regions, there is lifting. The "topological" region is a trapezoid, the "analytical" one a rectangle

Analytical counterexamples. In the region $1<s p<N$ and $0<s<1$, one may prove non existence of lifting as follows [4]: pick some $\psi \in W^{1, s p}(Q ; \mathbb{R}) \backslash W^{s, p}(Q ; \mathbb{R})$ (such a ψ exists, by the Sobolev "non embedding" $\left.W^{1, s p}(Q) \not \subset W^{s, p}(Q)\right)$. Let $u:=e^{\imath \psi}$. Then $u \in W^{1, s p} \cap L^{\infty}$, so that $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$, by the Gagliardo-Nirenberg embedding $W^{1, s p} \cap L^{\infty} \subset W^{s, p}$.
This u does not lift as $u=e^{\imath \varphi}$ with $\varphi \in W^{s, p}(Q ; \mathbb{R})$. Argue by contradiction: since $e^{\imath(\varphi-\psi)}=1$, we have $\eta:=\varphi-\psi \in\left(W^{1, s p}+W^{s, p}\right)(Q ; 2 \pi \mathbb{Z})$. Thus η is constant a. e. [4] (this uses $s p \geq 1$), so
that $\psi \in W^{s, p}$, contradiction.
When $s p=1$ and $0<s<1$, we still have non lifting. However, the above argument has to be slightly modified: one has to construct explicitely some $\psi \in W^{1,1}(Q ; \mathbb{R}) \backslash W^{s, p}(Q ; \mathbb{R})$ and $e^{\imath \psi} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)\left(\psi(x)=|x|^{-\alpha}\right.$ for appropriate $\alpha>0$ will do it). Note that, when $s p=1$, the property $\psi \in W^{1,1}$ does not imply $u \in W^{s, p}$; this follows from the Gagliardo-Nirenberg "non embedding" $W^{1,1} \cap L^{\infty} \not \subset W^{s, p}$. (Note the contrast with the embedding $W^{1, s p} \cap L^{\infty} \subset W^{s, p}$, valid when $s p>1$.)
This argument implies non existence of lifting in the "analytical region" $1 \leq s p<N, 0<s<1$.
Unlike the topological counterexamples, the "analytical" ones belong to the subspace

$$
X^{s, p}:={\overline{C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)}}^{W^{s, p}}
$$

(see Proposition 2).
As we have already seen, in the region "analytical \backslash topological" there are no topological counterexamples, since $C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ is dense in $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ when $0<s<1$ and $s p \geq 2$. On the other hand, there are no analytical counterexamples ($=$ maps in $X^{s, p}$ that do not lift) in the "topological \backslash analytical" region. Indeed, if $s \geq 1$ and $u \in X^{s, p}$, then u has a lifting in $W^{s, p}(Q ; \mathbb{R})$ (Proposition 3).

The main purpose of the present paper is to prove that the analytical counterexamples we presented above are the only ones.
Theorem 1. Assume that $0<s<1$, sp ≥ 1 and that $u \in X^{s, p}$. Then $u=e^{\imath \varphi}$ for some $\varphi \in W^{s, p}(Q ; \mathbb{R})+W^{1, s p}(Q ; \mathbb{R})$.

This relies essentially on the following estimate for the lifting of smooth maps.
Theorem 2. Let $0<s<1$ and $1 \leq p<\infty$. Let $\varphi \in C^{\infty}(\bar{Q} ; \mathbb{R})$ and set $u:=e^{\imath \varphi}$. Then we may split $\varphi=\varphi_{1}+\varphi_{2}$, where the maps $\varphi_{j} \in C^{\infty}(Q ; \mathbb{R}), j=1,2$, satisfy

$$
\begin{equation*}
\left|\varphi_{1}\right|_{W^{s, p}} \leq C|u|_{W^{s, p}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\nabla \varphi_{2}\right\|_{L^{s p}}^{s p} \leq C|u|_{W^{s, p}}^{p} . \tag{2}
\end{equation*}
$$

Here, $\left|\left.\right|_{W^{s, p}}\right.$ stands for the Gagliardo sem-norm

$$
\begin{aligned}
|u|_{W^{s, p}} & =\left(\iint_{Q \times Q} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{1 / p} \\
& \sim\left(\sum_{j=1}^{N} \int_{(-1,1)^{N+1}} \frac{\left|u\left(\sum_{k \neq j} x_{k} e_{k}+t e_{j}\right)-u\left(\sum_{k \neq j} x_{k} e_{k}+s e_{j}\right)\right|^{p}}{|t-s|^{1+s p}} \otimes_{k \neq j} d x_{k} d t d s\right)^{1 / p} .
\end{aligned}
$$

Two special cases of Theorem 2 were already known. In [3], Bourgain and Brezis established Theorem 2 when $s=1 / 2, p=2$ and N is arbitrary. Their proof adapts to the case $1<p \leq 2$,

PETRU MIRONESCU
$s=1 / p($ and arbitrary $N)$.
In [14], Nguyen proved Theorem 2 when $N=1, p>1$ and $s=1 / p$ (without the restriction $p \leq 2$). The argument there adapts to the case where N is arbitrary, provided $s p>1$.
Thus the really new cases are a) $s p<1$ and b) $N \geq 2, s p=1, p>2$.
Theorem 1 was conjectured in [5], [12]. The results presented here were announced in [13].
The paper is organized as follows: in Section 2, we explain how lifting and density are related. In Section 3, we explain the proof of Theorem 2 and why this proof is a cousin of the BourgainBrezis argument. In Section 4, we establish the main estimates needed in the proof of Theorem 2. The proofs of Theorems 1 and 2 are presented in Section 5. Finally, in Section 6, we characterize $X^{s, p}$ in terms of lifting.

2. Density vs Lifting

In this section, we discuss the connection between density of $C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ in $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ and existence of lifting.

Proposition 1. Assume that the answer to $\left(L_{s, p}\right)$ is yes. Then $C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ is dense in $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$.
Proof. Let first $s \leq 1$. Write an arbitrary $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ as $u=e^{\imath \varphi}$ with $\varphi \in W^{s, p}(Q ; \mathbb{R})$. Since the map $W^{s, p}(Q ; \mathbb{R}) \ni \varphi \mapsto e^{\imath \varphi} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ is clearly continuous, the conclusion follows by approximating φ with smooth maps.
Let now $s>1$. If $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ and if $\varphi \in W^{s, p}(Q ; \mathbb{R})$ is a lifting of u, then actually φ belongs also to $W^{1, s p}(Q ; \mathbb{R})[4]$. We conclude by using the fact that the map $W^{1, s p}(Q ; \mathbb{R}) \cap W^{s, p}(Q ; \mathbb{R}) \ni$ $\varphi \mapsto e^{\imath \varphi} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ is continuous [7,11].

As a byproduct of the proof, we obtain the following
Corollary 1. Asume that $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ has a lifting in $W^{s, p}(Q ; \mathbb{R})$. Then u is in $X^{s, p}$.
Proposition 2. Assume that $0<s<1$ and $s p \geq 1$. Let $\psi \in W^{1, s p}(Q ; \mathbb{R})$ and set $u=e^{\imath \psi}$. Then a) When $s p>1$, we have $u \in X^{s, p}$.
b) When $s p=1$ and $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$, we have $u \in X^{s, p}$.

Proof. a) The mapping $W^{1, s p}(Q ; \mathbb{R}) \ni \psi \mapsto e^{\imath \psi} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ being continuous (this is an easy consequence of the Gagliardo-Nirenberg inclusion $\left.W^{1, s p} \cap L^{\infty} \subset W^{s, p}\right)$, the conclusion is immediate. b) We may assume that $N \geq 2$, for otherwise $X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$. The main ingredient we use in the proof is the approximation technique for $W^{s, p}$-maps (when $0<s<1$ and $s p \leq N$) in [9], which is recalled below.
We first extend u by reflections accross ∂Q. Since $0<s<1$, this procedure will yield a map in $W^{s, p}\left((-2,2)^{N} ; \mathbb{S}^{1}\right)$. We next extend this map to a map in $W^{s, p}\left(\mathbb{R}^{N} ; \mathbb{R}^{2}\right)$. We finally obtain a map, still denoted u, which is in $W^{s, p}\left(\mathbb{R}^{N}\right)$ and is, in addition, \mathbb{S}^{1}-valued in a neighborhood of \bar{Q}. Moreover, u has, in a neighborhood of \bar{Q}, a $W^{1,1}$-lifting (still denoted ψ).
We next explain how to approximate maps as above (which are $W^{s, p}, \mathbb{S}^{1}$-valued and with a $W^{1,1}$ lifting near \bar{Q}) by maps with a simple structure. To each $\varepsilon>0$ and $T \in \mathbb{R}^{N}$ we may associate
a unique grid $\mathscr{G}=\mathscr{G}_{T, \varepsilon}$ of size 2ε passing through T, namely $\left.\mathscr{G}=\bigcup_{m \in \mathbb{Z}^{N}}\left(T+(0,2 \varepsilon)^{N}\right)\right)$. For $j=0, \ldots, N$, one may define the $j^{\text {th }}$-dimensional skeleton $\mathscr{C}^{j}=\mathscr{C}_{T, \varepsilon}^{j}$ of \mathscr{G} as follows: \mathscr{C}^{N} is \mathbb{R}^{N}, i. e., the union of the cubes in $\mathscr{G} . \mathscr{C}^{N-1}$ is the union of the faces of the cubes in \mathscr{G}. By backward induction, \mathscr{C}^{j} is the union of the (geometrical) boundaries of the $(j+1)$-dimensional faces that form \mathscr{C}^{j+1}.
Let $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$. To each ε, T and j we may associate a map $u_{\varepsilon, T, j}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ as follows: let $g=g_{T, \varepsilon, j}$ be the restriction of u to $\mathscr{C}^{j}=\mathscr{C}_{T, \varepsilon}^{j}$. We extend g to \mathscr{C}^{j+1} "homogenously". More specifically, let C be the center of some face F of \mathscr{C}^{j+1}. Then the homogeneous extension of g from ∂F to F is the map which is constant on segments joining C to points of ∂F. Equivalently, the desired extension is $H_{j+1} g$, where $H_{j+1} g(x)=g\left(\frac{\varepsilon}{\|x-C\|_{\infty}}(x-C)\right)$ if $x \in F$.
So far, we have a map $H_{j+1} g$ defined on \mathscr{C}^{j+1}. We extend it homogeneously first to \mathscr{C}^{j+2}, next to \mathscr{C}^{j+3} and so on. We end up with $u_{\varepsilon, T, j}:=H_{N} \circ H_{N-1} \circ \ldots \circ H_{j+1} g$.
We may know state the main result in [9]:
Assume that $u \in W^{s, p}\left(\mathbb{R}^{N}\right)$, with $0<s<1$ and $s p<N$. Set $j=[s p]$ (the largest integer not exceeding $s p$). Then there is a sequence $\varepsilon_{k} \rightarrow 0$ and, for each k, there is a full measure set $A_{k} \subset \mathbb{R}^{N}$ such that $u_{\varepsilon_{k}, T_{k}, j} \rightarrow u$ in $W^{s, p}$ whenever $T_{k} \in A_{k} .{ }^{1}$
We now return to the proof of b).
The set A_{k} being of full measure, we may assume that the T_{k} 's have been chosen such that:
(i) $u_{\mid \mathcal{C}^{1}} \in W^{s, p}$;
(ii) there is a cube Q_{k} containing \bar{Q} such that $\psi_{\mid \mathcal{C}^{1} \cap Q_{k}} \in W^{1,1}$. In addition, we may assume that Q_{k} is union of some cubes in \mathcal{G}.
Let now B be the boundary of a square $S \in \mathcal{C}^{2} \cap Q_{k}$. Since $u_{\mid B} \in W^{s, p}$, we may lift, locally on $B, u=e^{\imath \varphi}$ with $\varphi \in W^{s, p}$. (Recall that in one dimension, lifting always exists.) Since $2 \pi \mathbb{Z}$-valued maps in $W^{s, p}+W^{1,1}$ are locally constant [4], we find that $\psi_{\mid B} \in W^{s, p}$. Thus, restricted to $\mathcal{C}^{1} \cap Q_{k}$, u has a lifting in $W^{s, p}$.
It is easy to see that, if $f \in W^{\sigma, q}\left(\mathcal{C}^{l}\right)$, where $0<\sigma<1$ and $\sigma q<l+1$, then $H_{l+1} f \in W^{\sigma, q}\left(\mathcal{C}^{l+1}\right)$ [9]. Applying this property with $\sigma=s, q=p$ and $l=2, \ldots, N$, we find that, in Q, we have $u_{\varepsilon_{k}, T_{k}, 1}=e^{\imath \psi_{k}}$, where $\psi_{k} \in W^{s, p}(Q ; \mathbb{R})$. Since clearly $e^{\imath \psi_{k}} \in X^{s, p}$, we find that $u \in X^{s, p}$.
Proposition 3. Let $s \geq 1$. If $u \in X^{s, p}$, then u lifts in $W^{s, p}(Q ; \mathbb{R})$.
Proof. When $s \geq 1$, a map $u=u_{1}+\imath u_{2} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ has a lifting in $W^{s, p}(Q ; \mathbb{R})$ if and only if the vector field $Y:=u_{1} \nabla u_{2}-u_{2} \nabla u_{1}$ is closed in the distribution sense, i. e. if $\left(^{*}\right) \frac{\partial Y_{j}}{\partial x_{k}}=\frac{\partial Y_{k}}{\partial x_{j}}$ in $\mathcal{D}^{\prime}(Q), j, k=1, \ldots, N[4]$.
When $u=e^{\imath \varphi}$ with $\varphi \in C^{2},\left(^{*}\right)$ becomes $\frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{k}}=\frac{\partial^{2} \varphi}{\partial x_{k} \partial x_{j}}$ and is clearly satisfied. Since the

[^0]mapping $W^{s, p}\left(Q ; \mathbb{S}^{1}\right) \ni u \mapsto Y \in L^{1}(Q) \subset \mathcal{D}^{\prime}(Q)$ is clearly continuous, we find that $\left({ }^{*}\right)$ still holds for $u \in X^{s, p}$.

3. Heuristics of the proof of Theorem 2

Recall that, in one dimension, lifting always exists. One may thus hope that, for each s and p and for each $u \in W^{s, p}\left((-1,1) ; \mathbb{S}^{1}\right)$, one may find a lifting $\psi \in W^{s, p}((-1,1) ; \mathbb{R})$ of u satisfying in addition an estimate of the form $\|\varphi\|_{W^{s, p}} \leq F\left(\|u\|_{W^{s, p}}\right)$. This is indeed true except when $s p=1$ [4].
[There is a parallel between this situation and the case of lifting in classes of smooth maps. It is easy to see that, when $u \in C^{k}\left([-1,1] ; \mathbb{S}^{1}\right)$ for some $k \geq 1$, the derivatives of the smooth lifting φ of u are controlled by those of u. However, when $k=0$, the uniform norm of u is always 1 , while the one of φ is arbitrary, so that there is no control of φ in terms of u.
It is thus not a surprise that there is no control in $W^{1 / p, p}$, which is the space that "almost" embeds in C^{0}.]
Indeed, let φ_{ε} be as in the picture below:

Unlike its phase $\varphi_{\varepsilon}, e^{\imath \varphi_{\varepsilon}}$ remains bounded in $W^{1 / p, p}((-1,1))(p>1)$

Since $\varphi_{\varepsilon} \rightarrow \chi_{(0,1]}$ and non constant step functions are not in $W^{1 / p, p}$, it follows that $\left\|\varphi_{\varepsilon}\right\|_{W^{1 / p, p}} \rightarrow$ ∞ as $\varepsilon \rightarrow 0$.
Consider now $u_{\varepsilon}:=e^{\imath \varphi_{\varepsilon}}$. It is easy to see that $u_{1} \in W^{1 / p, p}(\mathbb{R})$ (while φ_{1} belongs only to $W_{l o c}^{1 / p, p}(\mathbb{R})$, but not to $\left.W^{1 / p, p}(\mathbb{R})\right)$. Since $u_{\varepsilon}(\cdot)=u_{1}(\cdot / \varepsilon)$ and the $W^{1 / p, p}$-semi-norm is scale invariant in \mathbb{R}, it follows that u_{ε} remains bounded in $W^{1 / p, p}$ as $\varepsilon \rightarrow 0$.
[This does not contradict Theorem 2, since φ_{ε} is bounded in $W^{1,1}$.]
This is a typical situation where one needs the $W^{1, s p}$-part, φ_{2}, of φ : the case where u is strongly oscillating. In contrast, the $W^{s, p}$-part, φ_{1}, is controlled by u provided u has small oscillations.
In practice, we obtain the decomposition $\varphi=\varphi_{1}+\varphi_{2}$ as follows: we will derive a formula for the lifting φ of maps with small amplitude oscillations. When u is arbitrary, this formula will be used to define φ_{1}. We next simply set $\varphi_{2}:=\varphi-\varphi_{1}$.
In order to derive the formula of φ_{1}, assume that $u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ is close to the constant 1 . Assume for simplicity that u has been extended to \mathbb{R}^{N} as an \mathbb{S}^{1}-valued map that equals 1 at infinity; we still denote by u this extension. Let $v=v(x, \varepsilon)$ be an extension by averages of u to $\mathbb{R}^{N} \times \mathbb{R}_{+}$(thus $v(x, \varepsilon)=u * \rho_{\varepsilon}(x)$, where ρ is a suitable mollifier). Since u is close to $1, v$ is also close to 1 . In particular, v is far away from 0 , so that $w:=v /|v|$ is as smooth as v.
We may write (at least when $\varepsilon>0) w=e^{\imath \psi}$ for some smooth ψ. Since u is 1 at infinity, we have $\lim _{\varepsilon \rightarrow \infty} w(x, \varepsilon)=1$, which suggests that we may pick ψ such that $\lim _{\varepsilon \rightarrow \infty} \psi(x, \varepsilon)=0$. This allows to write formally $u(x)=e^{\imath \varphi(x)}$, where $\varphi(x):=\psi(x, 0)$ and

$$
\varphi(x)=-\left.\psi(x, \varepsilon)\right|_{\varepsilon=0} ^{\varepsilon=\infty}=-\int_{0}^{\infty} \frac{\partial \psi}{\partial \varepsilon}(x, \varepsilon) d \varepsilon=-\int_{0}^{\infty} w(x, \varepsilon) \wedge \frac{\partial w}{\partial \varepsilon}(x, \varepsilon) d \varepsilon
$$

It turns out that this is the right formula φ_{1}, provided we choose a more convenient w.
We may now give the explicit splitting $\varphi=\varphi_{1}+\varphi_{2}$ in the proof of Theorem 2. Let $\varphi \in C^{\infty}(\bar{Q} ; \mathbb{R})$ and set $u=e^{\imath \varphi}$. Then we may extend u to some compactly supported map in $W^{s, p}\left(\mathbb{R}^{N}\right)$, still denoted u, such that $|u| \leq 3$ and $|u|_{W^{s, p}\left(\mathbb{R}^{N}\right)} \leq C|u|_{W^{s, p}\left(\mathbb{R}^{N}\right)}$ (Lemma 8). Let $\rho \in C_{0}^{\infty}$ be a mollifier (whose precise properties will be specified in Section 4). Let $v(x, \varepsilon)=u * \rho_{\varepsilon}(x)$.
Assume first that $W^{s, p} \cap L^{\infty}$ is contained in $W^{1-1 / 2 s p, 2 s p}$, i. e. that $s \geq 1-\frac{1}{2 s p}$ and $s p \leq 1 .{ }^{2}$ Then Theorem 2 works with

$$
\begin{equation*}
\varphi_{1}(x)=-\int_{0}^{\infty} v(x, \varepsilon) \wedge \frac{\partial v}{\partial \varepsilon}(x, \varepsilon) d \varepsilon, \quad \varphi_{2}=\varphi-\varphi_{1} \tag{3}
\end{equation*}
$$

In general (i. e., when we do not assume that $W^{s, p} \cap L^{\infty}$ is contained in $W^{1-1 / 2 s p, 2 s p}$), one has to project v on \mathbb{S}^{1}. More specifically, let $\Pi \in C^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ be such that $\Pi(z)=z /|z|$ near \mathbb{S}^{1} and set $w:=\Pi(v)$. Then we may choose, in the proof of Theorem 2,

$$
\begin{equation*}
\varphi_{1}(x)=-\int_{0}^{\infty} w(x, \varepsilon) \wedge \frac{\partial w}{\partial \varepsilon}(x, \varepsilon) d \varepsilon, \quad \varphi_{2}=\varphi-\varphi_{1} \tag{4}
\end{equation*}
$$

[^1]We end this section by comparing our approach to the Bourgain-Brezis one [3].
The fact that φ_{1} given by (3) belongs to $W^{s, p}$ is reminiscent from standard estimates on paraproducts (for a quick introduction, see, e. g., [10]). Recall that (for a suitable mollifier ρ) the Littlewood-Paley decomposition of a function f is $f=\sum_{j \geq 0} L P_{j}(f)$, where $L P_{0}(f)=f * \rho$ and, for $j \geq 1, L P_{j}(f)=f * \rho_{2^{-j}}-f * \rho_{2^{-j+1}}$. Recall also that $W^{s, p} \cap L^{\infty}$ is an algebra. Thus, if $f, g \in W^{s, p} \cap L^{\infty}$, then $\sum_{j, k} L P_{j}(f) L P_{k}(g) \in W^{s, p}$. The paraproducts technique yields slightly more:

$$
\begin{equation*}
\text { each of the sums } \sum_{j \leq k} L P_{j}(f) L P_{k}(g) \text { and } \sum_{j>k} L P_{j}(f) L P_{k}(g) \text { is in } W^{s, p} \text {. } \tag{5}
\end{equation*}
$$

It is well-known to the experts (though difficult to find in the literature) that each "LittlewoodPaley like" (i. e., via sequences) property of some functions space has continuous analogues. ${ }^{3}$ These analogues are obtained by replacing $L P_{j}(f)$ by an integral, e. g.

$$
f=L P_{0}(f)+\sum_{j=-\infty}^{\infty}\left(f * \rho_{2^{-j}}-f * \rho_{2^{-j+1}}\right)=L P_{0}(f)-\int_{0}^{1} f * \frac{\partial}{\partial \varepsilon}\left(\rho_{\varepsilon}\right) d \varepsilon
$$

another used decomposition is $f=-\int_{0}^{\infty} f * \frac{\partial}{\partial \varepsilon}\left(\rho_{\varepsilon}\right) d \varepsilon$. Equivalently, if $F(x, \varepsilon)=f * \rho_{\varepsilon}(x)$ is the extension of f to $\mathbb{R}^{N} \times \mathbb{R}_{+}$, then $f(x)=-\int_{0}^{\infty} \frac{\partial F}{\partial \varepsilon}(x, \varepsilon) d \varepsilon$.
With F, G the extensions of $f, g \in W^{s, p} \cap L^{\infty}$, an analogue of (5) is

$$
\begin{equation*}
x \mapsto \int_{0}^{\infty} F(x, \varepsilon) \frac{\partial G}{\partial \varepsilon}(x, \varepsilon) d \varepsilon \in W^{s, p}, \quad \forall f, g \in W^{s, p} \cap L^{\infty} . \tag{6}
\end{equation*}
$$

Property (6) is true ${ }^{4}$ and implies that the function φ_{1} given by (3) is in $W^{s, p}$. The same conclusion holds for the φ_{1} given by (4), but the argument is more involved.
We may now compare our construction to the Bourgain-Brezis one: their splitting is $\varphi_{1}=$ $\sum_{j \leq k} L P_{j}(u) \wedge L P_{k}(u), \varphi_{2}=\varphi-\varphi_{1}$. This is nothing else than a discrete analogue of (3). However, it seems difficult to cover the case $s p \neq 1$ using this decomposition.

[^2]
4. Estimates for extensions by averages

Throughout this section, $u \in \operatorname{Lip}\left(\mathbb{R}^{N}\right)$ is such that $|u| \leq 3$ and u is constant outside some compact 5. We set, for $\varepsilon>0, v(x, \varepsilon)=u * \rho_{\varepsilon}(x)$.
We assume that the mollifier ρ satisfies 6 :

$$
\rho \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \quad \rho \geq 0, \quad \operatorname{supp} \rho \subset B(0,2), \quad \rho=0 \text { in } B(0,1) .
$$

C will denote a constant depending on s, p, N, but not on $u($ provided $|u| \leq 3)$.
Lemma 1. Assume that $0<s<1,1 \leq p<\infty$. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \int_{0}^{\infty} \varepsilon^{p-s p-1}|D v(x, \varepsilon)|^{p} d \varepsilon d x \leq C|u|_{W^{s, p}}^{p} \tag{7}
\end{equation*}
$$

Proof. Set $\zeta_{j}:=\partial_{j} \rho, j=1, \ldots, N$, and $\zeta_{0}:=-\sum_{j=1}^{N} \partial_{j}\left(x_{j} \rho\right)$. It is easy to see that

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}} v(x, \varepsilon)=\frac{1}{\varepsilon} u *\left(\zeta_{j}\right)_{\varepsilon}(x) \quad \text { and } \quad \frac{\partial}{\partial \varepsilon} v(x, \varepsilon)=\frac{1}{\varepsilon} u *\left(\zeta_{0}\right)_{\varepsilon}(x) . \tag{8}
\end{equation*}
$$

Noting that each ζ_{j} is supported in $B(0,2)$ and has zero integral, we find that (7) is a consequence of

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \int_{0}^{\infty} \varepsilon^{-s p-1}\left|u * \zeta_{\varepsilon}(x)\right|^{p} d \varepsilon d x \leq C(\zeta)|u|_{W^{s, p}}^{p}, \quad \forall \zeta \in C_{0}^{\infty}(B(0,2)) \text { such that } \int \zeta=0 \tag{9}
\end{equation*}
$$

In order to prove (9), we note that

$$
\left|u * \zeta_{\varepsilon}(x)\right|^{p}=\left|\frac{1}{\varepsilon^{N}} \int_{B(0,2 \varepsilon)}(u(x-y)-u(x)) \zeta\left(\frac{y}{\varepsilon}\right) d y\right|^{p} \leq \frac{C}{\varepsilon^{N}} \int_{B(0,2 \varepsilon)}|u(x-y)-u(x)|^{p} d y
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \int_{0}^{\infty} \varepsilon^{-s p-1}\left|u * \zeta_{\varepsilon}(x)\right|^{p} d \varepsilon d x & \leq C \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \int_{|y| / 2}^{\infty} \frac{1}{\varepsilon^{N+s p+1}} d \varepsilon|u(x-y)-u(x)|^{p} d y d x \\
& =C \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y=C|u|_{W^{s, p}}^{p} .
\end{aligned}
$$

Lemma 2. Assume that $0<s<1,1 \leq p<\infty$. Then

$$
\begin{equation*}
I:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{1}{|x-y|^{N+s p}}\left(\int_{0}^{|x-y|}|D v(x, \varepsilon)| d \varepsilon\right)^{p} d x d y \leq C|u|_{W^{s, p}}^{p} . \tag{10}
\end{equation*}
$$

[^3]Proof. Let α be such that $\frac{1}{p}-1<\alpha<\frac{1}{p}-1+s$. We first note that, for $r>0$ and $p>1$, we have

$$
\begin{align*}
\left(\int_{0}^{r}|D v(x, \varepsilon)| d \varepsilon\right)^{p} & =\left(\int_{0}^{r} \frac{|D v(x, \varepsilon)|}{\varepsilon^{\alpha}} \varepsilon^{\alpha} d \varepsilon\right)^{p} \leq \int_{0}^{r} \frac{|D v(x, \varepsilon)|^{p}}{\varepsilon^{\alpha p}} d \varepsilon\left(\int_{0}^{r} \varepsilon^{\alpha p /(p-1)} d \varepsilon\right)^{p-1} \tag{11}\\
& =C r^{\alpha p+p-1} \int_{0}^{r} \frac{|D v(x, \varepsilon)|^{p}}{\varepsilon^{\alpha p}} d \varepsilon
\end{align*}
$$

(here we use the fact that $\frac{\alpha p}{p-1}>-1$, which is equivalent to $\alpha>\frac{1}{p}-1$). On the other hand, it is immediate that the conclusion of (11) still holds when $p=1$.
If we write $y=x+r \omega$, with $r=|x-y|$ and $\omega \in \mathbb{S}^{N-1}$ and use (11) with $r=|x-y|$, we find that

$$
\begin{aligned}
I & =C \int_{\mathbb{R}^{N}} \int_{\mathbb{S}^{N-1}} \int_{0}^{\infty} \frac{1}{r^{s p+1}}\left(\int_{0}^{r}|D v(x, \varepsilon)| d \varepsilon\right)^{p} d r d \omega d x \\
& \leq C \int_{\mathbb{R}^{N}} \int_{\mathbb{S}^{N-1}} \int_{0}^{\infty} r^{\alpha p+p-s p-2} \int_{0}^{r} \frac{|D v(x, \varepsilon)|^{p}}{\varepsilon^{\alpha p}} d \varepsilon d r d \omega d x \\
& =C \int_{\mathbb{R}^{N}} \int_{0}^{\infty} \frac{|D v(x, \varepsilon)|^{p}}{\varepsilon^{\alpha p}} \int_{\varepsilon}^{\infty} r^{\alpha p+p-s p-2} d r d \varepsilon d x \\
& =C \int_{\mathbb{R}^{N}} \int_{0}^{\infty} \varepsilon^{p-s p-1}|D v(x, \varepsilon)|^{p} d \varepsilon d x \leq C|u|_{W^{s, p}}^{p} .
\end{aligned}
$$

Here, we rely on the inequality $\alpha p+p-s p-2<-1$ (which amounts to $\alpha<\frac{1}{p}-1+s$) and on Lemma 1.

Lemma 3. Assume that $0<s<1,1 \leq p<\infty$. Then

$$
\begin{equation*}
J:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{1}{|x-y|^{N+s p}}\left(\int_{|x-y|}^{\infty}|D v(x, \varepsilon)-D v(y, \varepsilon)| d \varepsilon\right)^{p} d x d y \leq C|u|_{W^{s, p}}^{p} . \tag{12}
\end{equation*}
$$

Proof. In view of (8), it suffices to prove that

$$
\begin{equation*}
\tilde{J}:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{1}{|x-y|^{N+s p}}\left(\int_{|x-y|}^{\infty} \frac{\left|u * \zeta_{\varepsilon}(x)-u * \zeta_{\varepsilon}(y)\right|}{\varepsilon} d \varepsilon\right)^{p} d x d y \leq C|u|_{W^{s, p}}^{p} \tag{13}
\end{equation*}
$$

under the assumptions $\zeta \in C_{0}^{\infty}(B(0,2)), \int \zeta=0$ and $\zeta=0$ in $B(0,1)$.
If we set $\Phi:=D \zeta$, then $D_{x}\left(u * \zeta_{\varepsilon}\right)=\frac{1}{\varepsilon} u * \Phi_{\varepsilon}, \Phi \in C_{0}^{\infty}(B(0,2)), \int \Phi=0$ and $\Phi=0$ in $B(0,1)$. We find that
$\left|D_{x}\left(u * \zeta_{\varepsilon}\right)(x)\right|=\frac{1}{\varepsilon^{N+1}}\left|\int_{B(0,2 \varepsilon) \backslash B(0, \varepsilon)}(u(x+z)-u(x)) \Phi\left(\frac{z}{\varepsilon}\right) d z\right| \leq \frac{C}{\varepsilon^{N+1}} \int_{\varepsilon \leq|z| \leq 2 \varepsilon}|u(x+z)-u(x)| d z$.

Therefore, with $r:=|y-x|$ and $\omega:=\frac{y-x}{r}$, we have

$$
\begin{aligned}
\left|u * \zeta_{\varepsilon}(x)-u * \zeta_{\varepsilon}(y)\right| & =r\left|\int_{0}^{1} D_{x}\left(u * \zeta_{\varepsilon}\right)(x+r t \omega) \cdot \omega d t\right| \\
& \leq \frac{C r}{\varepsilon^{N+1}} \int_{0}^{1} \int_{\varepsilon \leq|z| \leq 2 \varepsilon}|u(x+r t \omega+z)-u(x+r t \omega)| d z d t
\end{aligned}
$$

which implies that

$$
\begin{align*}
\int_{|x-y|}^{\infty} \frac{\left|u * \zeta_{\varepsilon}(x)-u * \zeta_{\varepsilon}(y)\right|}{\varepsilon} d \varepsilon & \leq C r \int_{|z| \geq r} \int_{0}^{1} \int_{|z| / 2}^{|z|} \frac{|u(x+r t \omega+z)-u(x+r t \omega)|}{\varepsilon^{N+2}} d \varepsilon d t d z \tag{14}\\
& =C r \int_{0}^{1} \int_{|z| \geq r} \frac{|u(x+r t \omega+z)-u(x+r t \omega)|}{|z|^{N+1}} d z d t
\end{align*}
$$

Let now α be such that $\frac{N}{p}-N+s-1<\alpha<\frac{N}{p}-N$. We perform the following calculation only for $p>1$, but the reader may easily see that its conclusion still holds for $p=1$. Using (14), we find that

$$
\begin{align*}
K & :=\left(\int_{|x-y|}^{\infty} \frac{\left|u * \zeta_{\varepsilon}(x)-u * \zeta_{\varepsilon}(y)\right|}{\varepsilon} d \varepsilon\right)^{p} \\
& \leq C r^{p}\left(\int_{0}^{1} \int_{|z| \geq r} \frac{|u(x+r t \omega+z)-u(x+r t \omega)|}{|z|^{N+1+\alpha}}|z|^{\alpha} d z d t\right)^{p} \\
& \leq C r^{p} \int_{0}^{1} \int_{|z| \geq r} \frac{|u(x+r t \omega+z)-u(x+r t \omega)|^{p}}{|z|^{N p+p+\alpha p}} d z d t\left(\int_{|z| \geq r}|z|^{\alpha p /(p-1)} d z\right)^{p-1} \tag{15}\\
& =C r^{p+\alpha p+N p-N} \int_{0}^{1} \int_{|z| \geq r} \frac{|u(x+r t \omega+z)-u(x+r t \omega)|^{p}}{|z|^{N p+p+\alpha p}} d z d t
\end{align*}
$$

since $\frac{\alpha p}{p-1}<-N$ (equivalently, since $\alpha<\frac{N}{p}-N$). Inserting (15) into the definition of \tilde{J} and computing the integral in y in spherical coordinates, we obtain

$$
\begin{aligned}
\tilde{J} & \leq C \int_{\mathbb{R}^{N}} \int_{\mathbb{S}^{N-1}} \int_{0}^{\infty} \int_{0}^{1} \int_{|z| \geq r} r^{p+\alpha p+N p-N-s p-1} \frac{|u(x+r t \omega+z)-u(x+r t \omega)|^{p}}{|z|^{N p+p+\alpha p}} d z d t d r d \omega d x \\
& =C \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x+z)-u(x)|^{p}}{|z|^{N p+p+\alpha p}} \int_{0}^{|z|} r^{p+\alpha p+N p-N-s p-1} d r d x d z \\
& =C \iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{|u(x+z)-u(x)|^{p}}{|z|^{N+s p}} d x d z=C|u|_{W^{s, p}}^{p} .
\end{aligned}
$$

Here, we used the inequality $p+\alpha p+N p-N-s p-1>-1$, which amounts to $\alpha>\frac{N}{p}-N+s-1$.

Lemma 4. Assume $0<s<1,1 \leq p<\infty$. Then

$$
\begin{equation*}
L:=\iint_{\mathbb{R}^{N} \times \mathbb{R}^{N}} \frac{1}{|x-y|^{N+s p}}\left(\int_{|x-y|}^{\infty} \frac{|x-y|}{\varepsilon}|D v(x, \varepsilon)| d \varepsilon\right)^{p} d x d y \leq C|u|_{W^{s, p}}^{p} \tag{16}
\end{equation*}
$$

Proof. In spherical coordinates $y=x+r \omega$ we have

$$
\begin{aligned}
L & =C \int_{\mathbb{R}^{N}} \int_{\mathbb{S}^{N-1}} \int_{0}^{\infty} r^{p-s p-1}\left(\int_{r}^{\infty} \frac{|D v(x, \varepsilon)|}{\varepsilon} d \varepsilon\right)^{p} d r d \omega d x \\
& =C \int_{\mathbb{R}^{N}} \int_{0}^{\infty} r^{p-s p-1}\left(\int_{r}^{\infty} \frac{|D v(x, \varepsilon)|}{\varepsilon} d \varepsilon\right)^{p} d r d x
\end{aligned}
$$

so that (16) amounts to

$$
\tilde{L}:=\int_{\mathbb{R}^{N}} \int_{0}^{\infty} r^{p-s p-1}\left(\int_{r}^{\infty} \frac{|D v(x, \varepsilon)|}{\varepsilon} d \varepsilon\right)^{p} d r d x \leq C|u|_{W^{s, p}}^{p} .
$$

Let α be such that $\frac{1}{p}+s-2<\alpha<\frac{1}{p}-1$. We perform the calculation below for $p>1$; clearly, its conclusion still holds for $p=1$. We have

$$
\begin{align*}
\left(\int_{r}^{\infty} \frac{|D v(x, \varepsilon)|}{\varepsilon} d \varepsilon\right)^{p} & =\left(\int_{r}^{\infty} \frac{|D v(x, \varepsilon)|}{\varepsilon^{\alpha+1}} \varepsilon^{\alpha} d \varepsilon\right)^{p} \\
& \leq \int_{r}^{\infty} \frac{|D v(x, \varepsilon)|^{p}}{\varepsilon^{p+\alpha p}} d \varepsilon\left(\int_{r}^{\infty} \varepsilon^{\alpha p /(p-1)} d \varepsilon\right)^{p-1} \tag{17}\\
& \leq C r^{\alpha p+p-1} \int_{r}^{\infty} \frac{|D v(x, \varepsilon)|^{p}}{\varepsilon^{p+\alpha p}} d \varepsilon
\end{align*}
$$

since $\frac{\alpha p}{p-1}<-1$ (i. e., $\alpha<\frac{1}{p}-1$). Combining (17) with the definition of \tilde{L}, we obtain

$$
\begin{aligned}
\tilde{L} & \leq C \int_{\mathbb{R}^{N}} \int_{0}^{\infty} \int_{r}^{\infty}|D v(x, \varepsilon)|^{p} \varepsilon^{-p-\alpha p} r^{2 p-s p+\alpha p-2} d \varepsilon d r d x \\
& =C \int_{\mathbb{R}^{N}} \int_{0}^{\infty} \int_{0}^{\varepsilon}|D v(x, \varepsilon)|^{p} \varepsilon^{-p-\alpha p} r^{2 p-s p+\alpha p-2} d r d \varepsilon d x \\
& =C \int_{\mathbb{R}^{N}} \int_{0}^{\infty} \varepsilon^{p-s p-1}|D v(x, \varepsilon)|^{p} d \varepsilon d x \leq C|u|_{W^{s, p}}^{p} .
\end{aligned}
$$

Here, we used the fact that $2 p-s p+\alpha p-2>-1$ (which is equivalent to $\alpha>\frac{1}{p}+s-2$) and Lemma 1.
Lemma 5. For each $x \in \mathbb{R}^{N}$, the integral $\int_{0}^{\infty}|D v(x, \varepsilon)| d \varepsilon$ is convergent.

Proof. Since v is Lipschitz, it suffices to prove that $\int_{1}^{\infty}|D v(x, \varepsilon)| d \varepsilon$ converges. With a the value of u at infinity, this follows from

$$
|D v(x, \varepsilon)|=\left|D\left[(u-a) * \rho_{\varepsilon}(x)\right]\right|=\left|(u-a) * D\left[\rho_{\varepsilon}(x)\right]\right| \leq\|u-a\|_{L^{1}}\left\|D\left[\rho_{\varepsilon}(x)\right]\right\|_{L^{\infty}} \leq \frac{C}{\varepsilon^{N+1}} .
$$

In the same spirit, we have the following result, whose straightforward proof will be omitted Lemma 6. Assume u complex-valued, Lipschitz in \mathbb{R}^{N} and smooth in Q. Set

$$
\begin{equation*}
w(x)=w_{\Pi}(x):=\int_{0}^{\infty} \Pi \circ v(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ v(x, \varepsilon)) d \varepsilon, \quad \text { where } \Pi \in C^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right) \tag{18}
\end{equation*}
$$

Then w is smooth in Q and $\partial^{\alpha} w(x)=\int_{0}^{\infty} \partial^{\alpha}\left(\Pi \circ v(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi(v(x, \varepsilon))) d \varepsilon\right.$.
We may now prove that the map φ_{1} defined in (4) is in $W^{s, p}$ (plus norm control).
Lemma 7. Assume that $u \in \operatorname{Lip}\left(\mathbb{R}^{N} ; \mathbb{C}\right)$ satisfies $|u| \leq 3$. Let w be defined by (18). Then

$$
\begin{equation*}
|w|_{W^{s, p}} \leq C|u|_{W^{s, p}} \tag{19}
\end{equation*}
$$

Proof. Set $a(x, y):=\int_{0}^{|x-y|} \Pi \circ v(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon) d \varepsilon$ and $b(x, y):=\int_{|x-y|}^{\infty} \Pi \circ v(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ$ $v)(x, \varepsilon) d \varepsilon$, so that $w(x)=a(x, y)+b(x, y)$. On the one hand, we have

$$
\begin{align*}
|w(x)-w(y)| & \leq|a(x, y)|+|a(y, x)|+|b(x, y)-b(y, x)| \\
& \leq|b(x, y)-b(y, x)|+C\left(\int_{0}^{|x-y|}|D v(x, \varepsilon)| d \varepsilon+\int_{0}^{|x-y|}|D v(y, \varepsilon)| d \varepsilon\right) \tag{20}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
b(x, y)-b(y, x)= & \int_{|x-y|}^{\infty}\left(\Pi \circ v(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon)-\Pi \circ v(y, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(y, \varepsilon)\right) d \varepsilon \\
= & \int_{|x-y|}^{\infty}(\Pi \circ v(x, \varepsilon)-\Pi \circ v(y, \varepsilon)) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon) d \varepsilon \tag{21}\\
& +\int_{|x-y|}^{\infty} \Pi \circ v(y, \varepsilon)\left(\frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon)-\frac{\partial}{\partial \varepsilon}(\Pi \circ v)(y, \varepsilon)\right) d \varepsilon
\end{align*}
$$

Since (with ζ_{j} as in (8))

$$
\begin{equation*}
|D(\Pi \circ v)(x, \varepsilon)| \leq \frac{C}{\varepsilon} \sum_{j=0}^{N}\|u\|_{L^{\infty}}\left\|\left(\zeta_{j}\right)_{\varepsilon}\right\|_{L^{1}} \leq \frac{C}{\varepsilon} \tag{22}
\end{equation*}
$$

we find that $|\Pi \circ v(x, \varepsilon)-\Pi \circ v(y, \varepsilon)| \leq \frac{C|x-y|}{\varepsilon}$, which yields

$$
\begin{align*}
|b(x, y)-b(y, x)| \leq & \left.C \int_{|x-y|}^{\infty} \left\lvert\, \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon)-\frac{\partial}{\partial \varepsilon}(\Pi \circ v)(y, \varepsilon)\right.\right) \mid d \varepsilon \\
& +C \int_{|x-y|}^{\infty} \frac{|x-y|}{\varepsilon}\left|\frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon)\right| d \varepsilon \tag{23}\\
\leq & C\left(\int_{|x-y|}^{\infty}|D v(x, \varepsilon)-D v(y, \varepsilon)| d \varepsilon+\int_{|x-y|}^{\infty} \frac{|x-y|}{\varepsilon}|D v(x, \varepsilon)| d \varepsilon\right) .
\end{align*}
$$

By combining (20)-(23) to Lemmas 2-4, we find that

$$
|w|_{W^{s, p}}^{p} \leq C(I+J+L) \leq C|u|_{W^{s, p}}^{p} .
$$

5. Proof of Theorems 1 and 2

Proof of Theorem 2. Let $\varphi \in C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ and set $u:=e^{\imath \varphi}$.
Lemma 8. The map u has a C^{1}-extension to \mathbb{R}^{N}, still denoted u, such that $|u| \leq 3$, u is constant outside $(-2,2)^{N}$ and $|u|_{W^{s, p}\left(\mathbb{R}^{N}\right)} \leq C|u|_{W^{s, p}(Q)}$.

Proof. Let $P: W^{s, p}(Q) \rightarrow W^{s, p}\left(\mathbb{R}^{N}\right)$ be a linear continuous extension operator such that: P extends Lipschitz maps to Lipschitz maps, P does not increase the L^{∞}-norm and supp $P v \subset$ $(-2,2)^{N}, \forall v \in W^{s, p}$. Let a be the average of u on Q. It is easy to see that $\tilde{u}:=a+P(u-a)$ is Lipschitz and satisfies $|\tilde{u}| \leq 3$. In addition, we have

$$
|\tilde{u}|_{W^{s, p}\left(\mathbb{R}^{N}\right)}=|P(u-a)|_{W^{s, p}\left(\mathbb{R}^{N}\right)} \leq C\|u-a\|_{W^{s, p}(Q)} \leq C|u-a|_{W^{s, p}(Q)}=C|u|_{W^{s, p}(Q)} ;
$$

we have used the Poincaré inequality $\|u-a\|_{W^{s, p}(Q)} \leq C|u-a|_{W^{s, p}(Q)}$, valid since $u-a$ has zero average.

Let then $\Pi \in C^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ to be chosen later and set $\varphi_{1}(x):=-\int_{0}^{\infty} \Pi \circ v(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon) d \varepsilon$. By Lemma 19, φ_{1} belongs to $W^{s, p}$ and satisfies $\left|\varphi_{1}\right|_{W^{s, p}} \leq C|u|_{W^{s, p}}$.
We set, for $x \in \bar{Q}, \varphi_{2}(x):=\varphi(x)-\varphi_{1}(x)$.
Lemma 9. Assume that $\Pi(z)=z, \forall z \in \mathbb{S}^{1}$. Then

$$
\begin{equation*}
D \varphi_{2}(x)=-2 \int_{0}^{\infty} \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon) \wedge D_{x}(\Pi \circ v)(x, \varepsilon) d \varepsilon \tag{24}
\end{equation*}
$$

Proof. Using Lemma 6 and the identity $D \varphi=u \wedge D u$ we have, with $w:=\Pi \circ v$,

$$
\begin{aligned}
D \varphi_{2}(x)= & D \varphi(x)+\int_{0}^{\infty} D_{x} w(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon} w(x, \varepsilon) d \varepsilon+\int_{0}^{\infty} w(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon} D_{x} w(x, \varepsilon) d \varepsilon \\
= & w(x, \varepsilon) \wedge D_{x} w(x, \varepsilon)_{\mid \varepsilon=0}+\int_{0}^{\infty} D_{x} w(x, \varepsilon) \wedge \frac{\partial}{\partial \varepsilon} w(x, \varepsilon) d \varepsilon+\left.w(x, \varepsilon) \wedge D_{x} w(x, \varepsilon)\right|_{\varepsilon=0} ^{\varepsilon=\infty} \\
& -\int_{0}^{\infty} \frac{\partial}{\partial \varepsilon} w(x, \varepsilon) \wedge D_{x} w(x, \varepsilon) d \varepsilon=-2 \int_{0}^{\infty} \frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon) \wedge D_{x}(\Pi \circ v)(x, \varepsilon) d \varepsilon
\end{aligned}
$$

The remaining part of the proof of Theorem is essentially a variant of the proof of Theorem 0.1 in [5]. Up to now, the proof requires only $\Pi(u)=u .{ }^{7}$ From now on, we will require that Π is an approximate projection on \mathbb{S}^{1}, e.g. we assume $\Pi(z)=\frac{z}{|z|}$ when $|z| \geq \frac{1}{2}$.

Lemma 10. Let, for $x \in \bar{Q}, d(x):=\inf \{\varepsilon>0 ;|v(x, \varepsilon)|=1 / 2\}$. Then

$$
\begin{equation*}
\int_{Q} \frac{1}{d(x)^{s p}} d x \leq C|u|_{W^{s, p}(Q)}^{p} \tag{25}
\end{equation*}
$$

Proof. Let x be such that $d(x)$ is finite. Since $|u(x)-v(x, d(x))| \geq 1 / 2$, we have

$$
1 / 2 \leq|u(x)-v(x, d(x))| \leq|v(x, \cdot)|_{C^{s}\left(\mathbb{R}_{+}\right)} d(x)^{s} \leq C|v(x, \cdot)|_{W^{s+1 / p, p}\left(\mathbb{R}_{+}\right)} d(x)^{s},
$$

so that

$$
\int_{Q} \frac{1}{d(x)^{s p}} d x \leq C \int_{Q}|v(x, \cdot)|_{W^{s+1 / p, p}\left(\mathbb{R}_{+}\right)}^{p} \leq C|v|_{W^{s+1 / p, p}}^{p} \leq C|u|_{W^{s, p}\left(\mathbb{R}^{N}\right)}^{p} \leq C|u|_{W^{s, p}(Q)}^{p},
$$

by the Besov lemma [2].
Lemma 11. We have

$$
\begin{equation*}
\int_{Q}\left|D \varphi_{2}\right|^{s p} d x \leq C|u|_{W^{s, p}(Q)}^{p} \tag{26}
\end{equation*}
$$

Proof. Set $\Omega:=\{(x, \varepsilon) ; x \in Q, 0<\varepsilon<d(x)\}$. In Ω, we have $|\Pi \circ v| \equiv 1$, so that $\frac{\partial}{\partial \varepsilon}(\Pi \circ v)(x, \varepsilon) \wedge$ $D_{x}(\Pi \circ v)(x, \varepsilon) \equiv 0$ in Ω. In view of Lemma 9 and (22), we find that

$$
\begin{aligned}
\int_{Q}\left|D \varphi_{2}\right|^{s p} d x & \leq \int_{Q}\left(\int_{d(x)}^{\infty}|D(\Pi \circ v)(x, \varepsilon)|^{2} d \varepsilon\right)^{s p} d x \\
& \leq C \int_{Q}\left(\int_{d(x)}^{\infty} \frac{1}{\varepsilon^{2}} d \varepsilon\right)^{s p} d x \leq C \int_{Q} \frac{1}{d(x)^{s p}} d x \leq C|u|_{W^{s, p}(Q)}^{p}
\end{aligned}
$$

[^4]The proof of Theorem 2 is complete.

Proof of Theorem 1. When $p>1$ and $s p>1$, Theorem 1 is an immediate consequence of Theorem 2 (one passes to the weak limits in (1) and (2)). Some care is needed when $p=1$ or $s p=1$.

Lemma 12. Let $u \in X^{s, p}$. Then there is a sequence $\left\{u_{k}\right\}_{k \geq 0} \subset C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ such that $u=\prod_{k=0}^{\infty} u_{k}$ and $\left|u_{k}\right|_{W^{s, p}} \leq 2^{-k+1}|u|_{W^{s, p}}, \forall k$.

Proof. Recall that

$$
\begin{equation*}
\text { if } f_{j} \rightarrow f \text { in } W^{s, p}, g_{j} \rightarrow g \text { in } W^{s, p},\left\|f_{j}\right\|_{L^{\infty}} \leq C,\left\|g_{j}\right\|_{L^{\infty}} \leq C, \text { then } f_{j} g_{l} \xrightarrow{j, l \rightarrow \infty} f g \text { in } W^{s, p} . \tag{27}
\end{equation*}
$$

Consider a sequence $\left\{h_{j}\right\} \subset C^{\infty}\left(\bar{Q} ; \mathbb{S}^{1}\right)$ such that $h_{j} \rightarrow u$. We may assume that $\left|h_{j}\right|_{W^{s, p}} \leq$ $2|u|_{W^{s, p}}, \forall j$. Using (27) with $f_{j}=h_{j}$ and $g_{j}=\overline{h_{j}}$, we find easily a sequence $j_{k} \rightarrow \infty$ such that $\left\|h_{j_{k+1}} \overline{h_{j_{k}}}-1\right\|_{W^{s, p}} \leq 2^{-k}|u|_{W^{s, p}}, k \geq 0$. If we set $u_{0}=h_{j_{0}}$ and $u_{k}=h_{j_{k}} \overline{h_{j_{k-1}}}, k \geq 1$, then the sequence $\left\{u_{k}\right\}$ has the required properties.

In view of Theorem 2, we may write each u_{k} as $e^{\imath\left(\varphi_{1}^{k}+\varphi_{2}^{k}\right)}$, where $\left|\varphi_{1}^{k}\right|_{W^{s, p}} \leq C 2^{-k}|u|_{W^{s, p}}$ and $\left\|D \varphi_{2}^{k}\right\|_{L^{s p}} \leq C 2^{-k / s}|u|_{W^{s, p}}^{1 / s}$.
Let $\varphi_{1}:=\sum_{k} \varphi_{1}^{k}$. Clearly, $\varphi_{1} \in W^{s, p}$ and $\left|\varphi_{1}\right|_{W^{s, p}} \leq C|u|_{W^{s, p}}$. On the other hand, set $\psi:=$ $\sum_{k}\left(\varphi_{2}^{k}-f_{Q} \varphi_{2}^{k}\right)$, which satisfies $\psi \in W^{1, s p}$ and $\|D \psi\|_{L^{s p}}^{s p} \leq C|u|_{W^{s, p}}^{p}$. In addition, the map $u e^{-\imath\left(\varphi_{1}+\psi\right)}$ is constant. It follows that, for an appropriate $\alpha \in \mathbb{R}, \varphi_{1}$ and $\varphi_{2}:=\alpha+\psi$ satisfy $u=e^{\imath\left(\varphi_{1}+\varphi_{2}\right)}$ and the estimates (1)-(2).

6. Characterization of $X^{s, p}$ in terms of Lifting

The results in [4], [8] and [9] give the following information about $X^{s, p}$

SPACE DIMENSION N	SIZE OF s	SIZE OF $s p$	DESCRIPTION OF $X^{s, p}$
ANY	$0<s<1$	$0<s p<1$	$X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right)=\left\{e^{\imath \varphi} ; \varphi \in W^{s, p}(Q ; \mathbb{R})\right\}$
$N \geq 2$	$0<s<1$	$1 \leq s p<2$	$X^{s, p} \neq W^{s, p}\left(Q ; \mathbb{S}^{1}\right), X^{s, p} \neq\left\{e^{\imath \varphi} ; \varphi \in W^{s, p}(Q ; \mathbb{R})\right\}$
$N \geq 3$	$0<s<1$	$2 \leq s p<N$	$X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right), X^{s, p} \neq\left\{e^{\imath \varphi} ; \varphi \in W^{s, p}(Q ; \mathbb{R})\right\}$
ANY	$0<s<1$	$s p \geq N$	$X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right)=\left\{e^{\imath \varphi} ; \varphi \in W^{s, p}(Q ; \mathbb{R})\right\}$
$N=1$	$s \geq 1$	ANY	$X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right)=\left\{e^{\imath \varphi} ; \varphi \in W^{s, p} \cap W^{1, s p}\right\}$
$N \geq 2$	$s \geq 1$	$1 \leq s p<2$	$X^{s, p} \neq W^{s, p}\left(Q ; \mathbb{S}^{1}\right), X^{s, p}=\left\{e^{\imath \varphi} ; \varphi \in W^{s, p} \cap W^{1, s p}\right\}$
$N \geq 2$	$s \geq 1$	$s p \geq 2$	$X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right)=\left\{e^{\imath \varphi} ; \varphi \in W^{s, p} \cap W^{1, s p}\right\}$

The following result completes the description of $X^{s, p}$ in terms of lifting ${ }^{8}$
Theorem 3. Assume that $0<s<1$ and $1 \leq s p<N$.
a) If $s p>1$, then $X^{s, p}=\left\{e^{\imath \varphi} ; \varphi \in W^{s, p}+W^{1, s p}\right\}$.
b) If $s p=1$, then $X^{s, p}=W^{s, p}\left(Q ; \mathbb{S}^{1}\right) \cap\left\{e^{\imath \varphi} ; \varphi \in W^{s, p}+W^{1,1}\right\}$.

Proof. " \subset " follows from Theorem 1 .
$" \supset "$ Let $u=e^{\imath\left(\varphi_{1}+\varphi_{2}\right)} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$, with $\varphi_{1} \in W^{s, p}$ and $\varphi_{2} \in W^{1, s p}$. Set $u_{j}:=e^{\imath \varphi_{j}}$. By Corollary $1, u_{1} \in X^{s, p}$. On the other hand, $W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$ is a group, so that $u_{2} \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right)$. By Proposition $2, u_{2} \in X^{s, p}$. By (27), $X^{s, p}$ is a group, so that $u=u_{1} u_{2} \in X^{s, p}$.

References

[1] G. Alberti, S. Baldo, G. Orlandi, Functions with prescribed singularities, J. Eur. Math. Soc. 5 (2003), 275-311.
[2] R.A. Adams, Sobolev spaces, Academic Press, Pure and Applied Mathematics, 1978.
[3] J. Bourgain, H. Brezis, On the equation div $Y=f$ and application to control of phases, J. Amer. Math. Soc. 16 (2003), 393-426.
[4] J. Bourgain, H. Brezis, P. Mironescu, Lifting in Sobolev spaces, J. Anal. Math. 80 (2000), 37-86.
[5] J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 (2005), 529-551.
[6] P. Bousquet, Topological singularities in $W^{s, p}\left(\mathbb{S}^{N}, \mathbb{S}^{1}\right)$, Journal d'Analyse Mathématique 102 (2007), 311346.
[7] H. Brezis, P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, Journal of Evolution Equations 1 (2001), 387-404.
[8] H. Brezis, P. Mironescu, On some questions of topology for S^{1}-valued fractional Sobolev spaces, Rev. R. Acad. Cien., Serie A Mat. 95 (2001), 121-143.
[9] H. Brezis, P. Mironescu, Density in $W^{s, p}$, in preparation.
[10] J.-Y. Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995).
[11] V. Maz'ya, T. Shaposhnikova, An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, Journal of Evolution Equations 2 (2002), 113-125 .
[12] P. Mironescu, Sobolev maps on manifolds: degree, approximation, lifting, in Perspectives in Nonlinear Partial Differential Equations, In honor of Haïm Brezis (H. Berestycki, M. Bertsch, F. Browder, L. Nirenberg, L. A. Peletier, L. Véron eds.), Contemporary Mathematics, Amer. Math. Society 446 (2007), 413-436.
[13] P. Mironescu, Lifting default for \mathbb{S}^{1}-valued maps, to appear in C. R. Acad. Sci. Paris 346 (2008).
[14] H.-M. Nguyen, Inequalities related to lifting and applications, to appear in C. R. Acad. Sci. Paris 346 (2008).
[15] A. Ponce, personal communication.
[16] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335.
[17] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 1993.
[18] H. Triebel, Theory of function spaces, Birkhäuser Verlag, 1983.
Université de Lyon, Université Lyon 1, CNRS, UMR 5208 Institut Camille Jordan, Bâtiment du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F - 69200 Villeurbanne Cedex, France

E-mail address: mironescu@math.univ-lyon1.fr

[^5]
[^0]: ${ }^{1}$ In the proof of Proposition 2, we will apply this approximation result to the \mathbb{R}^{2}-valued map u when $s=1 / p$ (and thus $j=1$).

[^1]: ${ }^{2}$ This covers the case $s=1 / 2, p=2$ treated in [3].

[^2]: ${ }^{3}$ Example $\# 1$: one may define a square function of an L^{p}-function f defined in \mathbb{R}^{N} either through the formula $S_{1} f(x):=\left(\sum\left|L P_{j} f(x)\right|^{2}\right)^{1 / 2}$, or through $S_{2} f(x):=\left(\int_{0}^{\infty}\left(f * \rho_{\varepsilon}(x)\right)^{2} \frac{d \varepsilon}{\varepsilon}\right)^{1 / 2}$, for appropriate ρ. In both cases, we have the "square function theorem" of Littlewood and Paley $S_{j}(f) \sim\|f\|_{L^{p}}, 1<p<\infty$ [17] II. 6 .
 Example \#2: functions f in Triebel-Lizorkin spaces can be characterized both in terms of the Littlewood-Paley decomposition of f and in terms of the behavior of the solution of the heat equation with initial condition f [18] 2.12 .
 ${ }^{4}$ This is presumably well-known. For another $\rho,(6)$ is nothing else but the conclusion of Lemma 19.

[^3]: ${ }^{5}$ The second assumption is used only in Lemmas 5-7.
 ${ }^{6}$ Assumptions on ρ are not crucial. The results in this section are true for any reasonable mollifier. However, our assumptions make the proofs simpler.

[^4]: ${ }^{7}$ When $W^{s, p} \cap L^{\infty}$ is contained in $W^{1-1 / 2 s p, 2 s p}$, Lemma 11 below is valid without any other restriction.

[^5]: ${ }^{8}$ There is another description available, in terms of distributional jacobian $T(u)$ (for its definition, see [1], [5], [6]). For $1 \leq s p<2$, we have $X^{s, p}=\left\{u \in W^{s, p}\left(Q ; \mathbb{S}^{1}\right) ; T(u)=0\right\}$, result due to Bousquet [6] when $s \geq 1$ and Ponce [15] when $s<1$.

