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LIFTING OF S1-VALUED MAPS IN SUMS OF SOBOLEV SPACES

PETRU MIRONESCU

Abstract. We describe, in terms of lifting, the closure of smooth S1-valued maps in the space
W s,p((−1, 1)N ;S1). (Here, 0 < s <∞ and 1 ≤ p <∞.) This description follows from an estimate
for the phase of smooth maps: let 0 < s < 1, let ϕ ∈ C∞([−1, 1]N ;R) and set u = eıϕ. Then we
may split ϕ = ϕ1 + ϕ2, where the smooth maps ϕ1 and ϕ2 satisfy

(∗) |ϕ1|W s,p ≤ C|u|W s,p and ‖∇ϕ2‖spLsp ≤ C|u|pW s,p .

(∗) was proved for s = 1/2, p = 2 and arbitrary space dimension N by Bourgain and Brezis [3]
and for N = 1, p > 1 and s = 1/p by Nguyen [14].
Our proof is a sort of continuous version of the Bourgain-Brezis approach (based on paraproducts).
Estimate (∗) answers (and generalizes) a question of Bourgain, Brezis, and the author [5].

1. Introduction

In [4], the authors addressed the problem of lifting of S1-valued maps in Sobolev spaces:

(Ls,p) Given an arbitrary u ∈ W s,p(Q;S1), is there a ϕ ∈ W s,p(Q;R) such that u = eıϕ?

Here, 0 < s <∞, 1 ≤ p <∞ and Q = (−1, 1)N . The complete answer is [4]

space dimension N size of s size of sp answer to (Ls,p)
N = 1 any any yes
N ≥ 2 0 < s < 1 0 < sp < 1 yes
N ≥ 2 0 < s < 1 1 ≤ sp < N no
N ≥ 2 0 < s < 1 sp ≥ N yes
N ≥ 2 s ≥ 1 1 ≤ sp < 2 no
N ≥ 2 s ≥ 1 sp ≥ 2 yes

The non existence results rely on two kinds of counterexamples: topological and analytical.

Topological counterexamples. One may prove (see Proposition 1) that, if there is lifting in
W s,p, then C∞(Q;S1) is dense in W s,p(Q; S1). Thus the answer to (Ls,p) is no whenever C∞(Q;S1)
is not dense in W s,p(Q; S1). When 1 ≤ sp < 2, the typical ”topological counterexample” is the
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map Q 3 x 7→ (x1, x2)

|(x1, x2)|
which belongs to W s,p(Q;S1) but cannot be approximated by smooth

maps in the W s,p-norm. (This goes back essentially to [16]; for a proof, see e. g. [9].)
Such a counterexample does not exist outside the ”topological region” 1 ≤ sp < 2. Indeed, when
sp < 1 or sp ≥ 2, C∞(Q;S1) is dense in W s,p(Q;S1) [9]. Thus, topological counterexamples are
confined to the topological region.

s=1
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sp=N

p=1

E

E

E

Topological

Analytical

s

In the ”E” regions, there is lifting. The ”topological” region is a trapezoid, the ”analytical” one a rectangle

-

Analytical counterexamples. In the region 1 < sp < N and 0 < s < 1, one may prove non
existence of lifting as follows [4]: pick some ψ ∈ W 1,sp(Q;R) \W s,p(Q;R) (such a ψ exists, by the
Sobolev ”non embedding” W 1,sp(Q) 6⊂ W s,p(Q)). Let u := eıψ. Then u ∈ W 1,sp ∩ L∞, so that
u ∈ W s,p(Q;S1), by the Gagliardo-Nirenberg embedding W 1,sp ∩ L∞ ⊂ W s,p.
This u does not lift as u = eıϕ with ϕ ∈ W s,p(Q;R). Argue by contradiction: since eı(ϕ−ψ) = 1,
we have η := ϕ− ψ ∈ (W 1,sp + W s,p)(Q; 2πZ). Thus η is constant a. e. [4] (this uses sp ≥ 1), so
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that ψ ∈ W s,p, contradiction.
When sp = 1 and 0 < s < 1, we still have non lifting. However, the above argument has to
be slightly modified: one has to construct explicitely some ψ ∈ W 1,1(Q;R) \ W s,p(Q;R) and
eıψ ∈ W s,p(Q; S1) (ψ(x) = |x|−α for appropriate α > 0 will do it). Note that, when sp = 1,
the property ψ ∈ W 1,1 does not imply u ∈ W s,p; this follows from the Gagliardo-Nirenberg ”non
embedding” W 1,1 ∩L∞ 6⊂ W s,p. (Note the contrast with the embedding W 1,sp ∩L∞ ⊂ W s,p, valid
when sp > 1.)
This argument implies non existence of lifting in the ”analytical region” 1 ≤ sp < N , 0 < s < 1.

Unlike the topological counterexamples, the ”analytical” ones belong to the subspace

Xs,p := C∞(Q;S1)
W s,p

(see Proposition 2).
As we have already seen, in the region ”analytical\topological” there are no topological coun-
terexamples, since C∞(Q;S1) is dense in W s,p(Q;S1) when 0 < s < 1 and sp ≥ 2. On the
other hand, there are no analytical counterexamples (=maps in Xs,p that do not lift) in the
”topological\analytical” region. Indeed, if s ≥ 1 and u ∈ Xs,p, then u has a lifting in W s,p(Q;R)
(Proposition 3).

The main purpose of the present paper is to prove that the analytical counterexamples we
presented above are the only ones.

Theorem 1. Assume that 0 < s < 1, sp ≥ 1 and that u ∈ Xs,p. Then u = eıϕ for some
ϕ ∈ W s,p(Q;R) +W 1,sp(Q;R).

This relies essentially on the following estimate for the lifting of smooth maps.

Theorem 2. Let 0 < s < 1 and 1 ≤ p < ∞. Let ϕ ∈ C∞(Q;R) and set u := eıϕ. Then we may
split ϕ = ϕ1 + ϕ2, where the maps ϕj ∈ C∞(Q;R), j = 1, 2, satisfy

(1) |ϕ1|W s,p ≤ C|u|W s,p

and

(2) ‖∇ϕ2‖spLsp ≤ C|u|pW s,p .

Here, | |W s,p stands for the Gagliardo sem-norm

|u|W s,p =

(∫∫
Q×Q

|u(x)− u(y)|p

|x− y|N+sp
dx dy

)1/p

∼
( N∑

j=1

∫
(−1,1)N+1

∣∣∣∣u(∑
k 6=j

xkek + tej

)
− u
(∑

k 6=j

xkek + sej

)∣∣∣∣p
|t− s|1+sp

⊗k 6=j dxk dt ds
)1/p

.

Two special cases of Theorem 2 were already known. In [3], Bourgain and Brezis established
Theorem 2 when s = 1/2, p = 2 and N is arbitrary. Their proof adapts to the case 1 < p ≤ 2,
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s = 1/p (and arbitrary N).
In [14], Nguyen proved Theorem 2 when N = 1, p > 1 and s = 1/p (without the restriction p ≤ 2).
The argument there adapts to the case where N is arbitrary, provided sp > 1.
Thus the really new cases are a) sp < 1 and b) N ≥ 2, sp = 1, p > 2.

Theorem 1 was conjectured in [5], [12]. The results presented here were announced in [13].

The paper is organized as follows: in Section 2, we explain how lifting and density are related.
In Section 3, we explain the proof of Theorem 2 and why this proof is a cousin of the Bourgain-
Brezis argument. In Section 4, we establish the main estimates needed in the proof of Theorem 2.
The proofs of Theorems 1 and 2 are presented in Section 5. Finally, in Section 6, we characterize
Xs,p in terms of lifting.

2. Density vs lifting

In this section, we discuss the connection between density of C∞(Q;S1) in W s,p(Q;S1) and
existence of lifting.

Proposition 1. Assume that the answer to (Ls,p) is yes. Then C∞(Q;S1) is dense in W s,p(Q;S1).

Proof. Let first s ≤ 1. Write an arbitrary u ∈ W s,p(Q; S1) as u = eıϕ with ϕ ∈ W s,p(Q;R). Since
the map W s,p(Q;R) 3 ϕ 7→ eıϕ ∈ W s,p(Q;S1) is clearly continuous, the conclusion follows by
approximating ϕ with smooth maps.
Let now s > 1. If u ∈ W s,p(Q;S1) and if ϕ ∈ W s,p(Q;R) is a lifting of u, then actually ϕ belongs
also to W 1,sp(Q;R) [4]. We conclude by using the fact that the map W 1,sp(Q;R) ∩W s,p(Q;R) 3
ϕ 7→ eıϕ ∈ W s,p(Q;S1) is continuous [7, 11]. �

As a byproduct of the proof, we obtain the following

Corollary 1. Asume that u ∈ W s,p(Q;S1) has a lifting in W s,p(Q;R). Then u is in Xs,p.

Proposition 2. Assume that 0 < s < 1 and sp ≥ 1. Let ψ ∈ W 1,sp(Q;R) and set u = eıψ. Then
a) When sp > 1, we have u ∈ Xs,p.
b) When sp = 1 and u ∈ W s,p(Q;S1), we have u ∈ Xs,p.

Proof. a) The mapping W 1,sp(Q;R) 3 ψ 7→ eıψ ∈ W s,p(Q; S1) being continuous (this is an easy
consequence of the Gagliardo-Nirenberg inclusion W 1,sp∩L∞ ⊂ W s,p), the conclusion is immediate.
b) We may assume that N ≥ 2, for otherwise Xs,p = W s,p(Q;S1). The main ingredient we use
in the proof is the approximation technique for W s,p-maps (when 0 < s < 1 and sp ≤ N) in [9],
which is recalled below.
We first extend u by reflections accross ∂Q. Since 0 < s < 1, this procedure will yield a map
in W s,p((−2, 2)N ;S1). We next extend this map to a map in W s,p(RN ;R2). We finally obtain a
map, still denoted u, which is in W s,p(RN) and is, in addition, S1-valued in a neighborhood of Q.
Moreover, u has, in a neighborhood of Q, a W 1,1-lifting (still denoted ψ).
We next explain how to approximate maps as above (which are W s,p, S1-valued and with a W 1,1-
lifting near Q) by maps with a simple structure. To each ε > 0 and T ∈ RN we may associate
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a unique grid G = GT,ε of size 2ε passing through T , namely G =
⋃

m∈ZN

(T + (0, 2ε)N)). For

j = 0, . . . , N , one may define the jth-dimensional skeleton C j = C j
T,ε of G as follows: C N is RN ,

i. e., the union of the cubes in G . C N−1 is the union of the faces of the cubes in G . By backward
induction, C j is the union of the (geometrical) boundaries of the (j + 1)-dimensional faces that
form C j+1.
Let u : RN → R. To each ε, T and j we may associate a map uε,T,j : RN → RM as follows:

let g = gT,ε,j be the restriction of u to C j = C j
T,ε. We extend g to C j+1 ”homogenously”. More

specifically, let C be the center of some face F of C j+1. Then the homogeneous extension of g
from ∂F to F is the map which is constant on segments joining C to points of ∂F . Equivalently,

the desired extension is Hj+1g, where Hj+1g(x) = g

(
ε

‖x− C‖∞
(x− C)

)
if x ∈ F .

So far, we have a map Hj+1g defined on C j+1. We extend it homogeneously first to C j+2, next to
C j+3 and so on. We end up with uε,T,j := HN ◦HN−1 ◦ . . . ◦Hj+1g.
We may know state the main result in [9]:
Assume that u ∈ W s,p(RN), with 0 < s < 1 and sp < N . Set j = [sp] (the largest integer
not exceeding sp). Then there is a sequence εk → 0 and, for each k, there is a full measure set
Ak ⊂ RN such that uεk,Tk,j → u in W s,p whenever Tk ∈ Ak. 1

We now return to the proof of b).
The set Ak being of full measure, we may assume that the Tk’s have been chosen such that:
(i) u|C1 ∈ W s,p;

(ii) there is a cube Qk containing Q such that ψ|C1∩Qk
∈ W 1,1. In addition, we may assume that

Qk is union of some cubes in G.
Let now B be the boundary of a square S ∈ C2 ∩ Qk. Since u|B ∈ W s,p, we may lift, locally on
B, u = eıϕ with ϕ ∈ W s,p. (Recall that in one dimension, lifting always exists.) Since 2πZ-valued
maps in W s,p +W 1,1 are locally constant [4], we find that ψ|B ∈ W s,p. Thus, restricted to C1∩Qk,
u has a lifting in W s,p.
It is easy to see that, if f ∈ W σ,q(Cl), where 0 < σ < 1 and σq < l + 1, then Hl+1f ∈ W σ,q(Cl+1)
[9]. Applying this property with σ = s, q = p and l = 2, . . . , N , we find that, in Q, we have
uεk,Tk,1 = eıψk , where ψk ∈ W s,p(Q;R). Since clearly eıψk ∈ Xs,p, we find that u ∈ Xs,p. �

Proposition 3. Let s ≥ 1. If u ∈ Xs,p, then u lifts in W s,p(Q;R).

Proof. When s ≥ 1, a map u = u1 + ıu2 ∈ W s,p(Q;S1) has a lifting in W s,p(Q;R) if and only if

the vector field Y := u1∇u2 − u2∇u1 is closed in the distribution sense, i. e. if (*)
∂Yj
∂xk

=
∂Yk
∂xj

in

D′(Q), j, k = 1, . . . , N [4].

When u = eıϕ with ϕ ∈ C2, (*) becomes
∂2ϕ

∂xj∂xk
=

∂2ϕ

∂xk∂xj
and is clearly satisfied. Since the

1In the proof of Proposition 2, we will apply this approximation result to the R2-valued map u when s = 1/p
(and thus j = 1).
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mapping W s,p(Q;S1) 3 u 7→ Y ∈ L1(Q) ⊂ D′(Q) is clearly continuous, we find that (*) still holds
for u ∈ Xs,p. �

3. Heuristics of the proof of Theorem 2

Recall that, in one dimension, lifting always exists. One may thus hope that, for each s and p
and for each u ∈ W s,p((−1, 1);S1), one may find a lifting ψ ∈ W s,p((−1, 1);R) of u satisfying in
addition an estimate of the form ‖ϕ‖W s,p ≤ F (‖u‖W s,p). This is indeed true except when sp = 1
[4].
[There is a parallel between this situation and the case of lifting in classes of smooth maps. It is
easy to see that, when u ∈ Ck([−1, 1];S1) for some k ≥ 1, the derivatives of the smooth lifting ϕ
of u are controlled by those of u. However, when k = 0, the uniform norm of u is always 1, while
the one of ϕ is arbitrary, so that there is no control of ϕ in terms of u.
It is thus not a surprise that there is no control in W 1/p,p, which is the space that ”almost” embeds
in C0.]
Indeed, let ϕε be as in the picture below:

-1

−
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ıϕε remains bounded in W 1/p,p((−1, 1)) (p > 1)
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1
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Since ϕε → χ(0,1] and non constant step functions are not in W 1/p,p, it follows that ‖ϕε‖W 1/p,p →
∞ as ε→ 0.
Consider now uε := eıϕε . It is easy to see that u1 ∈ W 1/p,p(R) (while ϕ1 belongs only to W

1/p,p
loc (R),

but not to W 1/p,p(R)). Since uε(·) = u1(·/ε) and the W 1/p,p-semi-norm is scale invariant in R, it
follows that uε remains bounded in W 1/p,p as ε→ 0.
[This does not contradict Theorem 2, since ϕε is bounded in W 1,1.]
This is a typical situation where one needs the W 1,sp-part, ϕ2, of ϕ: the case where u is strongly
oscillating. In contrast, the W s,p-part, ϕ1, is controlled by u provided u has small oscillations.
In practice, we obtain the decomposition ϕ = ϕ1 + ϕ2 as follows: we will derive a formula for the
lifting ϕ of maps with small amplitude oscillations. When u is arbitrary, this formula will be used
to define ϕ1. We next simply set ϕ2 := ϕ− ϕ1.
In order to derive the formula of ϕ1, assume that u ∈ W s,p(Q; S1) is close to the constant 1.
Assume for simplicity that u has been extended to RN as an S1-valued map that equals 1 at
infinity; we still denote by u this extension. Let v = v(x, ε) be an extension by averages of u to
RN × R+ (thus v(x, ε) = u ∗ ρε(x), where ρ is a suitable mollifier). Since u is close to 1, v is also
close to 1. In particular, v is far away from 0, so that w := v/|v| is as smooth as v.
We may write (at least when ε > 0) w = eıψ for some smooth ψ. Since u is 1 at infinity, we have
lim
ε→∞

w(x, ε) = 1, which suggests that we may pick ψ such that lim
ε→∞

ψ(x, ε) = 0. This allows to

write formally u(x) = eıϕ(x), where ϕ(x) := ψ(x, 0) and

ϕ(x) = −ψ(x, ε)

∣∣∣∣ε=∞
ε=0

= −
∫ ∞

0

∂ψ

∂ε
(x, ε) dε = −

∫ ∞
0

w(x, ε) ∧ ∂w
∂ε

(x, ε) dε.

It turns out that this is the right formula ϕ1, provided we choose a more convenient w.

We may now give the explicit splitting ϕ = ϕ1 +ϕ2 in the proof of Theorem 2. Let ϕ ∈ C∞(Q;R)
and set u = eıϕ. Then we may extend u to some compactly supported map in W s,p(RN), still
denoted u, such that |u| ≤ 3 and |u|W s,p(RN ) ≤ C|u|W s,p(RN ) (Lemma 8). Let ρ ∈ C∞0 be a mollifier
(whose precise properties will be specified in Section 4). Let v(x, ε) = u ∗ ρε(x).

Assume first that W s,p∩L∞ is contained in W 1−1/2sp,2sp, i. e. that s ≥ 1− 1

2sp
and sp ≤ 1.2 Then

Theorem 2 works with

(3) ϕ1(x) = −
∫ ∞

0

v(x, ε) ∧ ∂v
∂ε

(x, ε) dε, ϕ2 = ϕ− ϕ1.

In general (i. e., when we do not assume that W s,p ∩ L∞ is contained in W 1−1/2sp,2sp), one has to
project v on S1. More specifically, let Π ∈ C∞(R2;R2) be such that Π(z) = z/|z| near S1 and set
w := Π(v). Then we may choose, in the proof of Theorem 2,

(4) ϕ1(x) = −
∫ ∞

0

w(x, ε) ∧ ∂w
∂ε

(x, ε) dε, ϕ2 = ϕ− ϕ1.

2This covers the case s = 1/2, p = 2 treated in [3].
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We end this section by comparing our approach to the Bourgain-Brezis one [3].
The fact that ϕ1 given by (3) belongs to W s,p is reminiscent from standard estimates on para-
products (for a quick introduction, see, e. g., [10]). Recall that (for a suitable mollifier ρ) the

Littlewood-Paley decomposition of a function f is f =
∑
j≥0

LPj(f), where LP0(f) = f ∗ ρ and,

for j ≥ 1, LPj(f) = f ∗ ρ2−j − f ∗ ρ2−j+1 . Recall also that W s,p ∩ L∞ is an algebra. Thus, if

f, g ∈ W s,p ∩ L∞, then
∑
j,k

LPj(f)LPk(g) ∈ W s,p. The paraproducts technique yields slightly

more:

(5) each of the sums
∑
j≤k

LPj(f)LPk(g) and
∑
j>k

LPj(f)LPk(g) is in W s,p.

It is well-known to the experts (though difficult to find in the literature) that each ”Littlewood-
Paley like” (i. e., via sequences) property of some functions space has continuous analogues.3

These analogues are obtained by replacing LPj(f) by an integral, e. g.

f = LP0(f) +
∞∑

j=−∞

(f ∗ ρ2−j − f ∗ ρ2−j+1) = LP0(f)−
∫ 1

0

f ∗ ∂

∂ε
(ρε) dε;

another used decomposition is f = −
∫ ∞

0

f ∗ ∂
∂ε

(ρε) dε. Equivalently, if F (x, ε) = f ∗ ρε(x) is the

extension of f to RN × R+, then f(x) = −
∫ ∞

0

∂F

∂ε
(x, ε) dε.

With F,G the extensions of f, g ∈ W s,p ∩ L∞, an analogue of (5) is

(6) x 7→
∫ ∞

0

F (x, ε)
∂G

∂ε
(x, ε) dε ∈ W s,p, ∀ f, g ∈ W s,p ∩ L∞.

Property (6) is true4 and implies that the function ϕ1 given by (3) is in W s,p. The same conclusion
holds for the ϕ1 given by (4), but the argument is more involved.
We may now compare our construction to the Bourgain-Brezis one: their splitting is ϕ1 =∑
j≤k

LPj(u) ∧ LPk(u), ϕ2 = ϕ− ϕ1. This is nothing else than a discrete analogue of (3). However,

it seems difficult to cover the case sp 6= 1 using this decomposition.

3Example #1: one may define a square function of an Lp-function f defined in RN either through the formula

S1f(x) :=

(∑
|LPjf(x)|2

)1/2

, or through S2f(x) :=

(∫ ∞
0

(f ∗ ρε(x))2
d ε

ε

)1/2

, for appropriate ρ. In both cases,

we have the ”square function theorem” of Littlewood and Paley Sj(f) ∼ ‖f ||Lp , 1 < p <∞ [17] II. 6.
Example #2: functions f in Triebel-Lizorkin spaces can be characterized both in terms of the Littlewood-Paley
decomposition of f and in terms of the behavior of the solution of the heat equation with initial condition f [18]
2.12.

4This is presumably well-known. For another ρ, (6) is nothing else but the conclusion of Lemma 19.
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4. Estimates for extensions by averages

Throughout this section, u ∈ Lip(RN) is such that |u| ≤ 3 and u is constant outside some
compact5. We set, for ε > 0, v(x, ε) = u ∗ ρε(x).
We assume that the mollifier ρ satisfies6:

ρ ∈ C∞0 (RN), ρ ≥ 0, supp ρ ⊂ B(0, 2), ρ = 0 in B(0, 1).

C will denote a constant depending on s, p, N , but not on u (provided |u| ≤ 3).

Lemma 1. Assume that 0 < s < 1, 1 ≤ p <∞. Then

(7)

∫
RN

∫ ∞
0

εp−sp−1|Dv(x, ε)|p dε dx ≤ C|u|pW s,p .

Proof. Set ζj := ∂jρ, j = 1, . . . , N , and ζ0 := −
N∑
j=1

∂j(xjρ). It is easy to see that

(8)
∂

∂xj
v(x, ε) =

1

ε
u ∗ (ζj)ε(x) and

∂

∂ε
v(x, ε) =

1

ε
u ∗ (ζ0)ε(x).

Noting that each ζj is supported in B(0, 2) and has zero integral, we find that (7) is a consequence
of

(9)

∫
RN

∫ ∞
0

ε−sp−1|u ∗ ζε(x)|p dε dx ≤ C(ζ)|u|pW s,p , ∀ ζ ∈ C∞0 (B(0, 2)) such that

∫
ζ = 0.

In order to prove (9), we note that

|u ∗ ζε(x)|p =

∣∣∣∣ 1

εN

∫
B(0,2ε)

(u(x− y)− u(x))ζ

(
y

ε

)
dy

∣∣∣∣p ≤ C

εN

∫
B(0,2ε)

|u(x− y)− u(x)|p dy.

Thus ∫
RN

∫ ∞
0

ε−sp−1|u ∗ ζε(x)|p dε dx ≤C
∫
RN

∫
RN

∫ ∞
|y|/2

1

εN+sp+1
dε |u(x− y)− u(x)|p dy dx

=C

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy = C|u|pW s,p .

�

Lemma 2. Assume that 0 < s < 1, 1 ≤ p <∞. Then

(10) I :=

∫∫
RN×RN

1

|x− y|N+sp

(∫ |x−y|
0

|Dv(x, ε)| dε
)p

dx dy ≤ C|u|pW s,p .

5The second assumption is used only in Lemmas 5-7.
6Assumptions on ρ are not crucial. The results in this section are true for any reasonable mollifier. However,

our assumptions make the proofs simpler.
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Proof. Let α be such that
1

p
− 1 < α <

1

p
− 1 + s. We first note that, for r > 0 and p > 1, we have

(11)

(∫ r

0

|Dv(x, ε)| dε
)p

=

(∫ r

0

|Dv(x, ε)|
εα

εα dε

)p
≤
∫ r

0

|Dv(x, ε)|p

εαp
dε

(∫ r

0

εαp/(p−1) dε

)p−1

=Crαp+p−1

∫ r

0

|Dv(x, ε)|p

εαp
dε

(here we use the fact that
αp

p− 1
> −1, which is equivalent to α >

1

p
− 1). On the other hand, it

is immediate that the conclusion of (11) still holds when p = 1.
If we write y = x+ rω, with r = |x− y| and ω ∈ SN−1 and use (11) with r = |x− y|, we find that

I =C

∫
RN

∫
SN−1

∫ ∞
0

1

rsp+1

(∫ r

0

|Dv(x, ε)| dε
)p

dr dω dx

≤C
∫
RN

∫
SN−1

∫ ∞
0

rαp+p−sp−2

∫ r

0

|Dv(x, ε)|p

εαp
dε dr dω dx

=C

∫
RN

∫ ∞
0

|Dv(x, ε)|p

εαp

∫ ∞
ε

rαp+p−sp−2 dr dε dx

=C

∫
RN

∫ ∞
0

εp−sp−1|Dv(x, ε)|p dε dx ≤ C|u|pW s,p .

Here, we rely on the inequality αp + p− sp− 2 < −1 (which amounts to α <
1

p
− 1 + s) and on

Lemma 1. �

Lemma 3. Assume that 0 < s < 1, 1 ≤ p <∞. Then

(12) J :=

∫∫
RN×RN

1

|x− y|N+sp

(∫ ∞
|x−y|
|Dv(x, ε)−Dv(y, ε)| dε

)p
dx dy ≤ C|u|pW s,p .

Proof. In view of (8), it suffices to prove that

(13) J̃ :=

∫∫
RN×RN

1

|x− y|N+sp

(∫ ∞
|x−y|

|u ∗ ζε(x)− u ∗ ζε(y)|
ε

dε

)p
dx dy ≤ C|u|pW s,p

under the assumptions ζ ∈ C∞0 (B(0, 2)),

∫
ζ = 0 and ζ = 0 in B(0, 1).

If we set Φ := Dζ, then Dx(u ∗ ζε) =
1

ε
u ∗ Φε, Φ ∈ C∞0 (B(0, 2)),

∫
Φ = 0 and Φ = 0 in B(0, 1).

We find that

|Dx(u∗ζε)(x)| = 1

εN+1

∣∣∣∣ ∫
B(0,2ε)\B(0,ε)

(u(x+z)−u(x))Φ

(
z

ε

)
dz

∣∣∣∣ ≤ C

εN+1

∫
ε≤|z|≤2ε

|u(x+z)−u(x)| dz.
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Therefore, with r := |y − x| and ω :=
y − x
r

, we have

|u ∗ ζε(x)− u ∗ ζε(y)| =r
∣∣∣∣ ∫ 1

0

Dx(u ∗ ζε)(x+ rtω) · ω dt
∣∣∣∣

≤ Cr

εN+1

∫ 1

0

∫
ε≤|z|≤2ε

|u(x+ rtω + z)− u(x+ rtω)| dz dt,

which implies that

(14)

∫ ∞
|x−y|

|u ∗ ζε(x)− u ∗ ζε(y)|
ε

dε ≤Cr
∫
|z|≥r

∫ 1

0

∫ |z|
|z|/2

|u(x+ rtω + z)− u(x+ rtω)|
εN+2

dε dt dz

=Cr

∫ 1

0

∫
|z|≥r

|u(x+ rtω + z)− u(x+ rtω)|
|z|N+1

dz dt.

Let now α be such that
N

p
−N + s− 1 < α <

N

p
−N . We perform the following calculation only

for p > 1, but the reader may easily see that its conclusion still holds for p = 1. Using (14), we
find that

(15)

K :=

(∫ ∞
|x−y|

|u ∗ ζε(x)− u ∗ ζε(y)|
ε

dε

)p
≤Crp

(∫ 1

0

∫
|z|≥r

|u(x+ rtω + z)− u(x+ rtω)|
|z|N+1+α

|z|α dz dt
)p

≤Crp
∫ 1

0

∫
|z|≥r

|u(x+ rtω + z)− u(x+ rtω)|p

|z|Np+p+αp
dz dt

(∫
|z|≥r
|z|αp/(p−1) dz

)p−1

=Crp+αp+Np−N
∫ 1

0

∫
|z|≥r

|u(x+ rtω + z)− u(x+ rtω)|p

|z|Np+p+αp
dz dt

since
αp

p− 1
< −N (equivalently, since α <

N

p
− N). Inserting (15) into the definition of J̃ and

computing the integral in y in spherical coordinates, we obtain

J̃ ≤C
∫
RN

∫
SN−1

∫ ∞
0

∫ 1

0

∫
|z|≥r

rp+αp+Np−N−sp−1 |u(x+ rtω + z)− u(x+ rtω)|p

|z|Np+p+αp
dz dt dr dω dx

=C

∫∫
RN×RN

|u(x+ z)− u(x)|p

|z|Np+p+αp

∫ |z|
0

rp+αp+Np−N−sp−1 dr dx dz

=C

∫∫
RN×RN

|u(x+ z)− u(x)|p

|z|N+sp
dx dz = C|u|pW s,p .

Here, we used the inequality p+αp+Np−N−sp−1 > −1, which amounts to α >
N

p
−N+s−1. �
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Lemma 4. Assume 0 < s < 1, 1 ≤ p <∞. Then

(16) L :=

∫∫
RN×RN

1

|x− y|N+sp

(∫ ∞
|x−y|

|x− y|
ε
|Dv(x, ε)| dε

)p
dx dy ≤ C|u|pW s,p .

Proof. In spherical coordinates y = x+ rω we have

L =C

∫
RN

∫
SN−1

∫ ∞
0

rp−sp−1

(∫ ∞
r

|Dv(x, ε)|
ε

dε

)p
dr dω dx

=C

∫
RN

∫ ∞
0

rp−sp−1

(∫ ∞
r

|Dv(x, ε)|
ε

dε

)p
dr dx,

so that (16) amounts to

L̃ :=

∫
RN

∫ ∞
0

rp−sp−1

(∫ ∞
r

|Dv(x, ε)|
ε

dε

)p
dr dx ≤ C|u|pW s,p .

Let α be such that
1

p
+ s − 2 < α <

1

p
− 1. We perform the calculation below for p > 1; clearly,

its conclusion still holds for p = 1. We have

(17)

(∫ ∞
r

|Dv(x, ε)|
ε

dε

)p
=

(∫ ∞
r

|Dv(x, ε)|
εα+1

εα dε

)p
≤
∫ ∞
r

|Dv(x, ε)|p

εp+αp
dε

(∫ ∞
r

εαp/(p−1) dε

)p−1

≤Crαp+p−1

∫ ∞
r

|Dv(x, ε)|p

εp+αp
dε,

since
αp

p− 1
< −1 (i. e., α <

1

p
− 1). Combining (17) with the definition of L̃, we obtain

L̃ ≤C
∫
RN

∫ ∞
0

∫ ∞
r

|Dv(x, ε)|pε−p−αpr2p−sp+αp−2 dε dr dx

=C

∫
RN

∫ ∞
0

∫ ε

0

|Dv(x, ε)|pε−p−αpr2p−sp+αp−2 dr dε dx

=C

∫
RN

∫ ∞
0

εp−sp−1|Dv(x, ε)|p dε dx ≤ C|u|pW s,p .

Here, we used the fact that 2p − sp + αp − 2 > −1 (which is equivalent to α >
1

p
+ s − 2) and

Lemma 1. �

Lemma 5. For each x ∈ RN , the integral

∫ ∞
0

|Dv(x, ε)| dε is convergent.
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Proof. Since v is Lipschitz, it suffices to prove that

∫ ∞
1

|Dv(x, ε)| dε converges. With a the value

of u at infinity, this follows from

|Dv(x, ε)| = |D[(u− a) ∗ ρε(x)]| = |(u− a) ∗D[ρε(x)]| ≤ ‖u− a‖L1‖D[ρε(x)]‖L∞ ≤
C

εN+1
.

�

In the same spirit, we have the following result, whose straightforward proof will be omitted

Lemma 6. Assume u complex-valued, Lipschitz in RN and smooth in Q. Set

(18) w(x) = wΠ(x) :=

∫ ∞
0

Π ◦ v(x, ε) ∧ ∂

∂ε
(Π ◦ v(x, ε)) dε, where Π ∈ C∞(R2;R2).

Then w is smooth in Q and ∂αw(x) =

∫ ∞
0

∂α
(

Π ◦ v(x, ε) ∧ ∂

∂ε
(Π(v(x, ε))

)
dε.

We may now prove that the map ϕ1 defined in (4) is in W s,p (plus norm control).

Lemma 7. Assume that u ∈ Lip(RN ;C) satisfies |u| ≤ 3. Let w be defined by (18). Then

(19) |w|W s,p ≤ C|u|W s,p .

Proof. Set a(x, y) :=

∫ |x−y|
0

Π◦v(x, ε)∧ ∂

∂ε
(Π◦v)(x, ε) dε and b(x, y) :=

∫ ∞
|x−y|

Π◦v(x, ε)∧ ∂

∂ε
(Π◦

v)(x, ε) dε, so that w(x) = a(x, y) + b(x, y). On the one hand, we have

(20)

|w(x)− w(y)| ≤|a(x, y)|+ |a(y, x)|+ |b(x, y)− b(y, x)|

≤|b(x, y)− b(y, x)|+ C

(∫ |x−y|
0

|Dv(x, ε)| dε+

∫ |x−y|
0

|Dv(y, ε)| dε
)
.

On the other hand, we have

(21)

b(x, y)− b(y, x) =

∫ ∞
|x−y|

(
Π ◦ v(x, ε) ∧ ∂

∂ε
(Π ◦ v)(x, ε)− Π ◦ v(y, ε) ∧ ∂

∂ε
(Π ◦ v)(y, ε)

)
dε

=

∫ ∞
|x−y|

(Π ◦ v(x, ε)− Π ◦ v(y, ε)) ∧ ∂

∂ε
(Π ◦ v)(x, ε) dε

+

∫ ∞
|x−y|

Π ◦ v(y, ε)

(
∂

∂ε
(Π ◦ v)(x, ε)− ∂

∂ε
(Π ◦ v)(y, ε)

)
dε.

Since (with ζj as in (8))

(22) |D(Π ◦ v)(x, ε)| ≤ C

ε

N∑
j=0

‖u‖L∞‖(ζj)ε‖L1 ≤ C

ε
,
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we find that |Π ◦ v(x, ε)− Π ◦ v(y, ε)| ≤ C|x− y|
ε

, which yields

(23)

|b(x, y)− b(y, x)| ≤C
∫ ∞
|x−y|

∣∣∣∣ ∂∂ε(Π ◦ v)(x, ε)− ∂

∂ε
(Π ◦ v)(y, ε))

∣∣∣∣ dε
+ C

∫ ∞
|x−y|

|x− y|
ε

∣∣∣∣ ∂∂ε(Π ◦ v)(x, ε)

∣∣∣∣ dε
≤C
(∫ ∞

|x−y|
|Dv(x, ε)−Dv(y, ε)| dε+

∫ ∞
|x−y|

|x− y|
ε
|Dv(x, ε)| dε

)
.

By combining (20)-(23) to Lemmas 2-4, we find that

|w|pW s,p ≤ C(I + J + L) ≤ C|u|pW s,p .

�

5. Proof of Theorems 1 and 2

Proof of Theorem 2. Let ϕ ∈ C∞(Q; S1) and set u := eıϕ.

Lemma 8. The map u has a C1-extension to RN , still denoted u, such that |u| ≤ 3, u is constant
outside (−2, 2)N and |u|W s,p(RN ) ≤ C|u|W s,p(Q).

Proof. Let P : W s,p(Q) → W s,p(RN) be a linear continuous extension operator such that: P
extends Lipschitz maps to Lipschitz maps, P does not increase the L∞-norm and supp Pv ⊂
(−2, 2)N , ∀ v ∈ W s,p. Let a be the average of u on Q. It is easy to see that ũ := a + P (u− a) is
Lipschitz and satisfies |ũ| ≤ 3. In addition, we have

|ũ|W s,p(RN ) = |P (u− a)|W s,p(RN ) ≤ C‖u− a‖W s,p(Q) ≤ C|u− a|W s,p(Q) = C|u|W s,p(Q);

we have used the Poincaré inequality ‖u− a‖W s,p(Q) ≤ C|u− a|W s,p(Q), valid since u− a has zero
average. �

Let then Π ∈ C∞(R2;R2) to be chosen later and set ϕ1(x) := −
∫ ∞

0

Π◦v(x, ε)∧ ∂
∂ε

(Π◦v)(x, ε) dε.

By Lemma 19, ϕ1 belongs to W s,p and satisfies |ϕ1|W s,p ≤ C|u|W s,p .
We set, for x ∈ Q, ϕ2(x) := ϕ(x)− ϕ1(x).

Lemma 9. Assume that Π(z) = z, ∀ z ∈ S1. Then

(24) Dϕ2(x) = −2

∫ ∞
0

∂

∂ε
(Π ◦ v)(x, ε) ∧Dx(Π ◦ v)(x, ε) dε.
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Proof. Using Lemma 6 and the identity Dϕ = u ∧Du we have, with w := Π ◦ v,

Dϕ2(x) =Dϕ(x) +

∫ ∞
0

Dxw(x, ε) ∧ ∂

∂ε
w(x, ε) dε+

∫ ∞
0

w(x, ε) ∧ ∂

∂ε
Dxw(x, ε) dε

=w(x, ε) ∧Dxw(x, ε)|ε=0 +

∫ ∞
0

Dxw(x, ε) ∧ ∂

∂ε
w(x, ε) dε+ w(x, ε) ∧Dxw(x, ε)

∣∣∣∣ε=∞
ε=0

−
∫ ∞

0

∂

∂ε
w(x, ε) ∧Dxw(x, ε) dε = −2

∫ ∞
0

∂

∂ε
(Π ◦ v)(x, ε) ∧Dx(Π ◦ v)(x, ε) dε.

�

The remaining part of the proof of Theorem is essentially a variant of the proof of Theorem 0.1
in [5]. Up to now, the proof requires only Π(u) = u. 7 From now on, we will require that Π is an

approximate projection on S1, e.g. we assume Π(z) =
z

|z|
when |z| ≥ 1

2
.

Lemma 10. Let, for x ∈ Q, d(x) := inf{ε > 0 ; |v(x, ε)| = 1/2}. Then

(25)

∫
Q

1

d(x)sp
dx ≤ C|u|pW s,p(Q).

Proof. Let x be such that d(x) is finite. Since |u(x)− v(x, d(x))| ≥ 1/2, we have

1/2 ≤ |u(x)− v(x, d(x))| ≤ |v(x, ·)|Cs(R+)d(x)s ≤ C|v(x, ·)|W s+1/p,p(R+)d(x)s,

so that∫
Q

1

d(x)sp
dx ≤ C

∫
Q

|v(x, ·)|p
W s+1/p,p(R+)

≤ C|v|p
W s+1/p,p ≤ C|u|p

W s,p(RN )
≤ C|u|pW s,p(Q),

by the Besov lemma [2]. �

Lemma 11. We have

(26)

∫
Q

|Dϕ2|sp dx ≤ C|u|pW s,p(Q).

Proof. Set Ω := {(x, ε) ; x ∈ Q, 0 < ε < d(x)}. In Ω, we have |Π◦v| ≡ 1, so that
∂

∂ε
(Π◦v)(x, ε)∧

Dx(Π ◦ v)(x, ε) ≡ 0 in Ω. In view of Lemma 9 and (22), we find that∫
Q

|Dϕ2|sp dx ≤
∫
Q

(∫ ∞
d(x)

|D(Π ◦ v)(x, ε)|2 dε
)sp

dx

≤C
∫
Q

(∫ ∞
d(x)

1

ε2
dε

)sp
dx ≤ C

∫
Q

1

d(x)sp
dx ≤ C|u|pW s,p(Q).

�

7When W s,p ∩ L∞ is contained in W 1−1/2sp,2sp, Lemma 11 below is valid without any other restriction.
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The proof of Theorem 2 is complete. �

Proof of Theorem 1. When p > 1 and sp > 1, Theorem 1 is an immediate consequence of Theorem
2 (one passes to the weak limits in (1) and (2)). Some care is needed when p = 1 or sp = 1.

Lemma 12. Let u ∈ Xs,p. Then there is a sequence {uk}k≥0 ⊂ C∞(Q; S1) such that u =
∞∏
k=0

uk

and |uk|W s,p ≤ 2−k+1|u|W s,p, ∀ k.

Proof. Recall that

(27) if fj → f in W s,p, gj → g in W s,p, ‖fj‖L∞ ≤ C, ‖gj‖L∞ ≤ C, then fjgl
j,l→∞−→ fg in W s,p.

Consider a sequence {hj} ⊂ C∞(Q;S1) such that hj → u. We may assume that |hj|W s,p ≤
2|u|W s,p , ∀ j. Using (27) with fj = hj and gj = hj, we find easily a sequence jk → ∞ such that

‖hjk+1
hjk − 1‖W s,p ≤ 2−k|u|W s,p , k ≥ 0. If we set u0 = hj0 and uk = hjkhjk−1

, k ≥ 1, then the
sequence {uk} has the required properties. �

In view of Theorem 2, we may write each uk as eı(ϕ
k
1+ϕk

2), where |ϕk1|W s,p ≤ C2−k|u|W s,p and

‖Dϕk2‖Lsp ≤ C2−k/s|u|1/sW s,p .

Let ϕ1 :=
∑
k

ϕk1. Clearly, ϕ1 ∈ W s,p and |ϕ1|W s,p ≤ C|u|W s,p . On the other hand, set ψ :=∑
k

(ϕk2 −
∫

Q

ϕk2), which satisfies ψ ∈ W 1,sp and ‖Dψ‖spLsp ≤ C|u|pW s,p . In addition, the map

ue−ı(ϕ1+ψ) is constant. It follows that, for an appropriate α ∈ R, ϕ1 and ϕ2 := α + ψ satisfy
u = eı(ϕ1+ϕ2) and the estimates (1)-(2).

6. Characterization of Xs,p in terms of lifting

The results in [4], [8] and [9] give the following information about Xs,p

space dimension N size of s size of sp description of Xs,p

any 0 < s < 1 0 < sp < 1 Xs,p = W s,p(Q;S1) = {eıϕ ; ϕ ∈ W s,p(Q;R)}
N ≥ 2 0 < s < 1 1 ≤ sp < 2 Xs,p 6= W s,p(Q; S1), Xs,p 6= {eıϕ ; ϕ ∈ W s,p(Q;R)}
N ≥ 3 0 < s < 1 2 ≤ sp < N Xs,p = W s,p(Q; S1), Xs,p 6= {eıϕ ; ϕ ∈ W s,p(Q;R)}
any 0 < s < 1 sp ≥ N Xs,p = W s,p(Q;S1) = {eıϕ ; ϕ ∈ W s,p(Q;R)}
N = 1 s ≥ 1 any Xs,p = W s,p(Q;S1) = {eıϕ ; ϕ ∈ W s,p ∩W 1,sp}
N ≥ 2 s ≥ 1 1 ≤ sp < 2 Xs,p 6= W s,p(Q;S1), Xs,p = {eıϕ ; ϕ ∈ W s,p ∩W 1,sp}
N ≥ 2 s ≥ 1 sp ≥ 2 Xs,p = W s,p(Q;S1) = {eıϕ ; ϕ ∈ W s,p ∩W 1,sp}
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The following result completes the description of Xs,p in terms of lifting8

Theorem 3. Assume that 0 < s < 1 and 1 ≤ sp < N .
a) If sp > 1, then Xs,p = {eıϕ ; ϕ ∈ W s,p +W 1,sp}.
b) If sp = 1, then Xs,p = W s,p(Q; S1) ∩ {eıϕ ; ϕ ∈ W s,p +W 1,1}.

Proof. ”⊂” follows from Theorem 1.
”⊃” Let u = eı(ϕ1+ϕ2) ∈ W s,p(Q;S1), with ϕ1 ∈ W s,p and ϕ2 ∈ W 1,sp. Set uj := eıϕj . By Corollary
1, u1 ∈ Xs,p. On the other hand, W s,p(Q;S1) is a group, so that u2 ∈ W s,p(Q;S1). By Proposition
2, u2 ∈ Xs,p. By (27), Xs,p is a group, so that u = u1u2 ∈ Xs,p. �
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Université de Lyon, Université Lyon 1, CNRS, UMR 5208 Institut Camille Jordan, Bâtiment
du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F - 69200 Villeurbanne Cedex, France

E-mail address: mironescu@math.univ-lyon1.fr

8There is another description available, in terms of distributional jacobian T (u) (for its definition, see [1],[5],
[6]). For 1 ≤ sp < 2, we have Xs,p = {u ∈ W s,p(Q;S1) ; T (u) = 0}, result due to Bousquet [6] when s ≥ 1 and
Ponce [15] when s < 1.


