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Introduction

In [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], the authors addressed the problem of lifting of S 1 -valued maps in Sobolev spaces:

(L s,p ) Given an arbitrary u ∈ W s,p (Q; S 1 ), is there a ϕ ∈ W s,p (Q; R) such that u = e ıϕ ? Here, 0 < s < ∞, 1 ≤ p < ∞ and Q = (-1, 1) N . The complete answer is [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] space dimension N size of s size of sp answer to (L s,p ) N = 1 any any yes

N ≥ 2 0 < s < 1 0 < sp < 1 yes N ≥ 2 0 < s < 1 1 ≤ sp < N no N ≥ 2 0 < s < 1 sp ≥ N yes N ≥ 2 s ≥ 1 1 ≤ sp < 2 no N ≥ 2 s ≥ 1 sp ≥ 2 yes
The non existence results rely on two kinds of counterexamples: topological and analytical.

Topological counterexamples. One may prove (see Proposition 1) that, if there is lifting in W s,p , then C ∞ (Q; S 1 ) is dense in W s,p (Q; S 1 ). Thus the answer to (L s,p ) is no whenever C ∞ (Q; S 1 ) is not dense in W s,p (Q; S 1 ). When 1 ≤ sp < 2, the typical "topological counterexample" is the Date: June 23, 2008.

The author thanks H.-M. Nguyen for sending him the paper [START_REF] Nguyen | Inequalities related to lifting and applications, to appear in[END_REF] and for stimulating discussions. He warmly thanks H. Brezis for his comments on the paper. map Q x → (x 1 , x 2 ) |(x 1 , x 2 )| which belongs to W s,p (Q; S 1 ) but cannot be approximated by smooth maps in the W s,p -norm. (This goes back essentially to [START_REF] Schoen | A regularity theory for harmonic maps[END_REF]; for a proof, see e. g. [START_REF] Brezis | Density in W s[END_REF].) Such a counterexample does not exist outside the "topological region" 1 ≤ sp < 2. Indeed, when sp < 1 or sp ≥ 2, C ∞ (Q; S 1 ) is dense in W s,p (Q; S 1 ) [START_REF] Brezis | Density in W s[END_REF]. Thus, topological counterexamples are confined to the topological region. In the "E" regions, there is lifting. The "topological" region is a trapezoid, the "analytical" one a rectangle E Analytical counterexamples. In the region 1 < sp < N and 0 < s < 1, one may prove non existence of lifting as follows [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]: pick some ψ ∈ W 1,sp (Q; R) \ W s,p (Q; R) (such a ψ exists, by the Sobolev "non embedding" W 1,sp (Q) ⊂ W s,p (Q)). Let u := e ıψ . Then u ∈ W 1,sp ∩ L ∞ , so that u ∈ W s,p (Q; S 1 ), by the Gagliardo-Nirenberg embedding W 1,sp ∩ L ∞ ⊂ W s,p . This u does not lift as u = e ıϕ with ϕ ∈ W s,p (Q; R). Argue by contradiction: since e ı(ϕ-ψ) = 1, we have η := ϕ -ψ ∈ (W 1,sp + W s,p )(Q; 2πZ). Thus η is constant a. e. [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] (this uses sp ≥ 1), so that ψ ∈ W s,p , contradiction. When sp = 1 and 0 < s < 1, we still have non lifting. However, the above argument has to be slightly modified: one has to construct explicitely some ψ ∈ W 1,1 (Q; R) \ W s,p (Q; R) and e ıψ ∈ W s,p (Q; S 1 ) (ψ(x) = |x| -α for appropriate α > 0 will do it). Note that, when sp = 1, the property ψ ∈ W 1,1 does not imply u ∈ W s,p ; this follows from the Gagliardo-Nirenberg "non embedding" W 1,1 ∩ L ∞ ⊂ W s,p . (Note the contrast with the embedding W 1,sp ∩ L ∞ ⊂ W s,p , valid when sp > 1.) This argument implies non existence of lifting in the "analytical region" 1 ≤ sp < N , 0 < s < 1.

Unlike the topological counterexamples, the "analytical" ones belong to the subspace

X s,p := C ∞ (Q; S 1 ) W s,p
(see Proposition 2).

As we have already seen, in the region "analytical\topological" there are no topological counterexamples, since C ∞ (Q; S 1 ) is dense in W s,p (Q; S 1 ) when 0 < s < 1 and sp ≥ 2. On the other hand, there are no analytical counterexamples (=maps in X s,p that do not lift) in the "topological\analytical" region. Indeed, if s ≥ 1 and u ∈ X s,p , then u has a lifting in W s,p (Q; R) (Proposition 3).

The main purpose of the present paper is to prove that the analytical counterexamples we presented above are the only ones.

Theorem 1. Assume that 0 < s < 1, sp ≥ 1 and that u ∈ X s,p . Then u = e ıϕ for some

ϕ ∈ W s,p (Q; R) + W 1,sp (Q; R).
This relies essentially on the following estimate for the lifting of smooth maps.

Theorem 2. Let 0 < s < 1 and 1 ≤ p < ∞. Let ϕ ∈ C ∞ (Q; R) and set u := e ıϕ . Then we may split ϕ = ϕ 1 + ϕ 2 , where the maps

ϕ j ∈ C ∞ (Q; R), j = 1, 2, satisfy (1) |ϕ 1 | W s,p ≤ C|u| W s,p

and

(2)

∇ϕ 2 sp L sp ≤ C|u| p W s,p . Here, | | W s,p stands for the Gagliardo sem-norm |u| W s,p = Q×Q |u(x) -u(y)| p |x -y| N +sp dx dy 1/p ∼ N j=1 (-1,1) N +1 u k =j x k e k + te j -u k =j x k e k + se j p |t -s| 1+sp ⊗ k =j dx k dt ds 1/p .
Two special cases of Theorem 2 were already known. In [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], Bourgain and Brezis established Theorem 2 when s = 1/2, p = 2 and N is arbitrary. Their proof adapts to the case 1 < p ≤ 2, s = 1/p (and arbitrary N ).

In [START_REF] Nguyen | Inequalities related to lifting and applications, to appear in[END_REF], Nguyen proved Theorem 2 when N = 1, p > 1 and s = 1/p (without the restriction p ≤ 2). The argument there adapts to the case where N is arbitrary, provided sp > 1.

Thus the really new cases are a) sp < 1 and b) N ≥ 2, sp = 1, p > 2.

Theorem 1 was conjectured in [START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF], [START_REF] Mironescu | Sobolev maps on manifolds: degree, approximation, lifting[END_REF]. The results presented here were announced in [START_REF] Mironescu | Lifting default for S 1 -valued maps, to appear in[END_REF].

The paper is organized as follows: in Section 2, we explain how lifting and density are related. In Section 3, we explain the proof of Theorem 2 and why this proof is a cousin of the Bourgain-Brezis argument. In Section 4, we establish the main estimates needed in the proof of Theorem 2. The proofs of Theorems 1 and 2 are presented in Section 5. Finally, in Section 6, we characterize X s,p in terms of lifting.

Density vs lifting

In this section, we discuss the connection between density of C ∞ (Q; S 1 ) in W s,p (Q; S 1 ) and existence of lifting.

Proposition 1.

Assume that the answer to (L s,p ) is yes. Then C ∞ (Q; S 1 ) is dense in W s,p (Q; S 1 ).

Proof. Let first s ≤ 1. Write an arbitrary u ∈ W s,p (Q; S 1 ) as u = e ıϕ with ϕ ∈ W s,p (Q; R). Since the map W s,p (Q; R)

ϕ → e ıϕ ∈ W s,p (Q; S 1 ) is clearly continuous, the conclusion follows by approximating ϕ with smooth maps. Let now s > 1. If u ∈ W s,p (Q; S 1 ) and if ϕ ∈ W s,p (Q; R) is a lifting of u, then actually ϕ belongs also to W 1,sp (Q; R) [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF]. We conclude by using the fact that the map W 1,sp (Q; R) ∩ W s,p (Q; R) ϕ → e ıϕ ∈ W s,p (Q; S 1 ) is continuous [START_REF] Brezis | Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces[END_REF][START_REF] Maz'ya | An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces[END_REF].

As a byproduct of the proof, we obtain the following Corollary 1. Asume that u ∈ W s,p (Q; S 1 ) has a lifting in W s,p (Q; R). Then u is in X s,p . Proposition 2. Assume that 0 < s < 1 and sp ≥ 1. Let ψ ∈ W 1,sp (Q; R) and set u = e ıψ . Then a) When sp > 1, we have u ∈ X s,p . b) When sp = 1 and u ∈ W s,p (Q; S 1 ), we have u ∈ X s,p .

Proof. a) The mapping W 1,sp (Q; R) ψ → e ıψ ∈ W s,p (Q; S 1 ) being continuous (this is an easy consequence of the Gagliardo-Nirenberg inclusion W 1,sp ∩L ∞ ⊂ W s,p ), the conclusion is immediate. b) We may assume that N ≥ 2, for otherwise X s,p = W s,p (Q; S 1 ). The main ingredient we use in the proof is the approximation technique for W s,p -maps (when 0 < s < 1 and sp ≤ N ) in [START_REF] Brezis | Density in W s[END_REF], which is recalled below. We first extend u by reflections accross ∂Q. Since 0 < s < 1, this procedure will yield a map in W s,p ((-2, 2) N ; S1 ). We next extend this map to a map in W s,p (R N ; R 2 ). We finally obtain a map, still denoted u, which is in W s,p (R N ) and is, in addition, S 1 -valued in a neighborhood of Q. Moreover, u has, in a neighborhood of Q, a W 1,1 -lifting (still denoted ψ). We next explain how to approximate maps as above (which are W s,p , S 1 -valued and with a W 1,1lifting near Q) by maps with a simple structure. To each ε > 0 and T ∈ R N we may associate a unique grid G = G T,ε of size 2ε passing through T , namely G = m∈Z N (T + (0, 2ε) N )). For j = 0, . . . , N , one may define the j th -dimensional skeleton C j = C j T,ε of G as follows: C N is R N , i. e., the union of the cubes in G . C N -1 is the union of the faces of the cubes in G . By backward induction, C j is the union of the (geometrical) boundaries of the (j + 1)-dimensional faces that form C j+1 . Let u : R N → R. To each ε, T and j we may associate a map u ε,T,j : R N → R M as follows: let g = g T,ε,j be the restriction of u to C j = C j T,ε . We extend g to C j+1 "homogenously". More specifically, let C be the center of some face F of C j+1 . Then the homogeneous extension of g from ∂F to F is the map which is constant on segments joining C to points of ∂F . Equivalently, the desired extension is H j+1 g, where

H j+1 g(x) = g ε x -C ∞ (x -C) if x ∈ F .
So far, we have a map H j+1 g defined on C j+1 . We extend it homogeneously first to C j+2 , next to C j+3 and so on. We end up with u ε,T,j :=

H N • H N -1 • . . . • H j+1 g.
We may know state the main result in [START_REF] Brezis | Density in W s[END_REF]: Assume that u ∈ W s,p (R N ), with 0 < s < 1 and sp < N . Set j = [sp] (the largest integer not exceeding sp). Then there is a sequence ε k → 0 and, for each k, there is a full measure set

A k ⊂ R N such that u ε k ,T k ,j → u in W s,p whenever T k ∈ A k . 1
We now return to the proof of b).

The set A k being of full measure, we may assume that the T k 's have been chosen such that:

(i) u |C 1 ∈ W s,p ; (ii) there is a cube Q k containing Q such that ψ |C 1 ∩Q k ∈ W 1,1 .
In addition, we may assume that Q k is union of some cubes in G.

Let now B be the boundary of a square S ∈ C 2 ∩ Q k . Since u |B ∈ W s,p , we may lift, locally on B, u = e ıϕ with ϕ ∈ W s,p . (Recall that in one dimension, lifting always exists.) Since 2πZ-valued maps in W s,p + W 1,1 are locally constant [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], we find that ψ |B ∈ W s,p . Thus, restricted to

C 1 ∩ Q k , u has a lifting in W s,p .
It is easy to see that, if f ∈ W σ,q (C l ), where 0 < σ < 1 and σq < l + 1, then H l+1 f ∈ W σ,q (C l+1 ) [START_REF] Brezis | Density in W s[END_REF]. Applying this property with σ = s, q = p and l = 2, . . . , N , we find that, in Q, we have

u ε k ,T k ,1 = e ıψ k , where ψ k ∈ W s,p (Q; R). Since clearly e ıψ k ∈ X s,p , we find that u ∈ X s,p . Proposition 3. Let s ≥ 1. If u ∈ X s,p , then u lifts in W s,p (Q; R). Proof. When s ≥ 1, a map u = u 1 + ıu 2 ∈ W s,p (Q; S 1 ) has a lifting in W s,p (Q; R) if and only if the vector field Y := u 1 ∇u 2 -u 2 ∇u 1 is closed in the distribution sense, i. e. if (*) ∂Y j ∂x k = ∂Y k ∂x j in D (Q), j, k = 1, . . . , N [4]. When u = e ıϕ with ϕ ∈ C 2 , (*) becomes ∂ 2 ϕ ∂x j ∂x k = ∂ 2 ϕ ∂x k ∂x j
and is clearly satisfied. Since the

mapping W s,p (Q; S 1 ) u → Y ∈ L 1 (Q) ⊂ D (Q)
is clearly continuous, we find that (*) still holds for u ∈ X s,p .

Heuristics of the proof of Theorem 2

Recall that, in one dimension, lifting always exists. One may thus hope that, for each s and p and for each u ∈ W s,p ((-1, 1); S 1 ), one may find a lifting ψ ∈ W s,p ((-1, 1); R) of u satisfying in addition an estimate of the form ϕ W s,p ≤ F ( u W s,p ). This is indeed true except when sp = 1 [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF].

[There is a parallel between this situation and the case of lifting in classes of smooth maps. It is easy to see that, when u ∈ C k ([-1, 1]; S 1 ) for some k ≥ 1, the derivatives of the smooth lifting ϕ of u are controlled by those of u. However, when k = 0, the uniform norm of u is always 1, while the one of ϕ is arbitrary, so that there is no control of ϕ in terms of u. It is thus not a surprise that there is no control in W 1/p,p , which is the space that "almost" embeds in C 0 .] Indeed, let ϕ ε be as in the picture below:

-1 - T E ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ Unlike its phase ϕε, e ıϕε remains bounded in W 1/p,p ((-1, 1)) (p > 1) ε 2π 1 | ϕε
Since ϕ ε → χ (0,1] and non constant step functions are not in W 1/p,p , it follows that ϕ ε W 1/p,p → ∞ as ε → 0. Consider now u ε := e ıϕε . It is easy to see that u 1 ∈ W 1/p,p (R) (while ϕ 1 belongs only to W 1/p,p loc (R), but not to W 1/p,p (R)). Since u ε (•) = u 1 (•/ε) and the W 1/p,p -semi-norm is scale invariant in R, it follows that u ε remains bounded in W 1/p,p as ε → 0. [This does not contradict Theorem 2, since ϕ ε is bounded in W 1,1 .] This is a typical situation where one needs the W 1,sp -part, ϕ 2 , of ϕ: the case where u is strongly oscillating. In contrast, the W s,p -part, ϕ 1 , is controlled by u provided u has small oscillations. In practice, we obtain the decomposition ϕ = ϕ 1 + ϕ 2 as follows: we will derive a formula for the lifting ϕ of maps with small amplitude oscillations. When u is arbitrary, this formula will be used to define ϕ 1 . We next simply set ϕ 2 := ϕ -ϕ 1 . In order to derive the formula of ϕ 1 , assume that u ∈ W s,p (Q; S 1 ) is close to the constant 1. Assume for simplicity that u has been extended to R N as an S 1 -valued map that equals 1 at infinity; we still denote by u this extension. Let v = v(x, ε) be an extension by averages of u to

R N × R + (thus v(x, ε) = u * ρ ε (x)
, where ρ is a suitable mollifier). Since u is close to 1, v is also close to 1. In particular, v is far away from 0, so that w := v/|v| is as smooth as v. We may write (at least when ε > 0) w = e ıψ for some smooth ψ. Since u is 1 at infinity, we have lim ε→∞ w(x, ε) = 1, which suggests that we may pick ψ such that lim ε→∞ ψ(x, ε) = 0. This allows to write formally u(x) = e ıϕ(x) , where ϕ(x) := ψ(x, 0) and

ϕ(x) = -ψ(x, ε) ε=∞ ε=0 = - ∞ 0 ∂ψ ∂ε (x, ε) dε = - ∞ 0 w(x, ε) ∧ ∂w ∂ε (x, ε) dε.
It turns out that this is the right formula ϕ 1 , provided we choose a more convenient w.

We may now give the explicit splitting ϕ = ϕ 1 + ϕ 2 in the proof of Theorem 2. Let ϕ ∈ C ∞ (Q; R) and set u = e ıϕ . Then we may extend u to some compactly supported map in W s,p (R N ), still denoted u, such that |u| ≤ 3 and |u| W s,p (R N ) ≤ C|u| W s,p (R N ) (Lemma 8). Let ρ ∈ C ∞ 0 be a mollifier (whose precise properties will be specified in Section 4)

. Let v(x, ε) = u * ρ ε (x). Assume first that W s,p ∩ L ∞ is contained in W 1-1/2sp,2sp , i. e. that s ≥ 1 - 1 2sp and sp ≤ 1. 2 Then
Theorem 2 works with

(3) ϕ 1 (x) = - ∞ 0 v(x, ε) ∧ ∂v ∂ε (x, ε) dε, ϕ 2 = ϕ -ϕ 1 .
In general (i. e., when we do not assume that

W s,p ∩ L ∞ is contained in W 1-1/2sp,2sp
), one has to project v on S 1 . More specifically, let Π ∈ C ∞ (R2 ; R 2 ) be such that Π(z) = z/|z| near S 1 and set w := Π(v). Then we may choose, in the proof of Theorem 2, (4)

ϕ 1 (x) = - ∞ 0 w(x, ε) ∧ ∂w ∂ε (x, ε) dε, ϕ 2 = ϕ -ϕ 1 .
We end this section by comparing our approach to the Bourgain-Brezis one [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF]. The fact that ϕ 1 given by (3) belongs to W s,p is reminiscent from standard estimates on paraproducts (for a quick introduction, see, e. g., [START_REF] Chemin | Fluides parfaits incompressibles[END_REF]). Recall that (for a suitable mollifier ρ) the Littlewood-Paley decomposition of a function f is f = j≥0 LP j (f ), where LP 0 (f ) = f * ρ and,

for j ≥ 1, LP j (f ) = f * ρ 2 -j -f * ρ 2 -j+1 . Recall also that W s,p ∩ L ∞ is an algebra. Thus, if f, g ∈ W s,p ∩ L ∞ , then j,k LP j (f )LP k (g) ∈ W s,p .
The paraproducts technique yields slightly more: [START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF] each of the sums j≤k LP j (f )LP k (g) and

j>k LP j (f )LP k (g) is in W s,p .
It is well-known to the experts (though difficult to find in the literature) that each "Littlewood-Paley like" (i. e., via sequences) property of some functions space has continuous analogues. 3 These analogues are obtained by replacing LP j (f ) by an integral, e. g.

f = LP 0 (f ) + ∞ j=-∞ (f * ρ 2 -j -f * ρ 2 -j+1 ) = LP 0 (f ) - 1 0 f * ∂ ∂ε (ρ ε ) dε; another used decomposition is f = - ∞ 0 f * ∂ ∂ε (ρ ε ) dε. Equivalently, if F (x, ε) = f * ρ ε (x) is the extension of f to R N × R + , then f (x) = - ∞ 0 ∂F ∂ε (x, ε) dε.
With F, G the extensions of f, g ∈ W s,p ∩ L ∞ , an analogue of ( 5) is

(6) x → ∞ 0 F (x, ε) ∂G ∂ε (x, ε) dε ∈ W s,p , ∀ f, g ∈ W s,p ∩ L ∞ .
Property ( 6) is true 4 and implies that the function ϕ 1 given by ( 3) is in W s,p . The same conclusion holds for the ϕ 1 given by ( 4), but the argument is more involved.

We may now compare our construction to the Bourgain-Brezis one: their splitting is

ϕ 1 = j≤k LP j (u) ∧ LP k (u), ϕ 2 = ϕ -ϕ 1 .
This is nothing else than a discrete analogue of (3). However, it seems difficult to cover the case sp = 1 using this decomposition. 3 Example #1: one may define a square function of an L p -function f defined in R N either through the formula

S 1 f (x) := |LP j f (x)| 2 1/2 , or through S 2 f (x) := ∞ 0 (f * ρ ε (x)) 2 d ε ε 1/2
, for appropriate ρ. In both cases, we have the "square function theorem" of Littlewood and Paley S j (f )

∼ f || L p , 1 < p < ∞ [17] II. 6.
Example #2: functions f in Triebel-Lizorkin spaces can be characterized both in terms of the Littlewood-Paley decomposition of f and in terms of the behavior of the solution of the heat equation with initial condition f [18] 2.12. 4 This is presumably well-known. For another ρ, (6) is nothing else but the conclusion of Lemma 19.

Estimates for extensions by averages

Throughout this section, u ∈ Lip(R N ) is such that |u| ≤ 3 and u is constant outside some compact 5 . We set, for ε > 0, v(x, ε) = u * ρ ε (x). We assume that the mollifier ρ satisfies6 :

ρ ∈ C ∞ 0 (R N ), ρ ≥ 0, supp ρ ⊂ B(0, 2 
), ρ = 0 in B(0, 1). C will denote a constant depending on s, p, N , but not on u (provided |u| ≤ 3).

Lemma 1. Assume that 0 < s < 1, 1 ≤ p < ∞. Then (7) R N ∞ 0 ε p-sp-1 |Dv(x, ε)| p dε dx ≤ C|u| p W s,p .
Proof. Set ζ j := ∂ j ρ, j = 1, . . . , N , and

ζ 0 := - N j=1 ∂ j (x j ρ). It is easy to see that (8) ∂ ∂x j v(x, ε) = 1 ε u * (ζ j ) ε (x) and ∂ ∂ε v(x, ε) = 1 ε u * (ζ 0 ) ε (x).
Noting that each ζ j is supported in B(0, 2) and has zero integral, we find that ( 7) is a consequence of ( 9)

R N ∞ 0 ε -sp-1 |u * ζ ε (x)| p dε dx ≤ C(ζ)|u| p W s,p , ∀ ζ ∈ C ∞ 0 (B(0, 2)) such that ζ = 0.
In order to prove (9), we note that

|u * ζ ε (x)| p = 1 ε N B(0,2ε) (u(x -y) -u(x))ζ y ε dy p ≤ C ε N B(0,2ε) |u(x -y) -u(x)| p dy. Thus R N ∞ 0 ε -sp-1 |u * ζ ε (x)| p dε dx ≤C R N R N ∞ |y|/2 1 ε N +sp+1 dε |u(x -y) -u(x)| p dy dx =C R N ×R N |u(x) -u(y)| p |x -y| N +sp dx dy = C|u| p W s,p . Lemma 2. Assume that 0 < s < 1, 1 ≤ p < ∞. Then (10) I := R N ×R N 1 |x -y| N +sp |x-y| 0 |Dv(x, ε)| dε p dx dy ≤ C|u| p W s,p .
Proof. Let α be such that 1 p -1 < α < 1 p -1 + s. We first note that, for r > 0 and p > 1, we have

(11) r 0 |Dv(x, ε)| dε p = r 0 |Dv(x, ε)| ε α ε α dε p ≤ r 0 |Dv(x, ε)| p ε αp dε r 0 ε αp/(p-1) dε p-1 =Cr αp+p-1 r 0 |Dv(x, ε)| p ε αp dε
(here we use the fact that αp p -1 > -1, which is equivalent to α > 1 p -1). On the other hand, it is immediate that the conclusion of ( 11) still holds when p = 1.

If we write y = x + rω, with r = |x -y| and ω ∈ S N -1 and use [START_REF] Maz'ya | An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces[END_REF] with r = |x -y|, we find that

I =C R N S N -1 ∞ 0 1 r sp+1 r 0 |Dv(x, ε)| dε p dr dω dx ≤C R N S N -1 ∞ 0 r αp+p-sp-2 r 0 |Dv(x, ε)| p ε αp dε dr dω dx =C R N ∞ 0 |Dv(x, ε)| p ε αp ∞ ε r αp+p-sp-2 dr dε dx =C R N ∞ 0 ε p-sp-1 |Dv(x, ε)| p dε dx ≤ C|u| p W s,p .
Here, we rely on the inequality αp + p -sp -2 < -1 (which amounts to α < 1 p -1 + s) and on Lemma 1.

Lemma 3. Assume that 0 < s < 1, 1 ≤ p < ∞. Then (12) J := R N ×R N 1 |x -y| N +sp ∞ |x-y| |Dv(x, ε) -Dv(y, ε)| dε p dx dy ≤ C|u| p W s,p .
Proof. In view of ( 8), it suffices to prove that (13) J :=

R N ×R N 1 |x -y| N +sp ∞ |x-y| |u * ζ ε (x) -u * ζ ε (y)| ε dε p dx dy ≤ C|u| p W s,p under the assumptions ζ ∈ C ∞ 0 (B(0, 2)), ζ = 0 and ζ = 0 in B(0, 1). If we set Φ := Dζ, then D x (u * ζ ε ) = 1 ε u * Φ ε , Φ ∈ C ∞ 0 (B(0, 2)
), Φ = 0 and Φ = 0 in B(0, 1).

We find that

|D x (u * ζ ε )(x)| = 1 ε N +1 B(0,2ε)\B(0,ε) (u(x+z)-u(x))Φ z ε dz ≤ C ε N +1 ε≤|z|≤2ε |u(x+z)-u(x)| dz.
Therefore, with r := |y -x| and ω := y -x r , we have

|u * ζ ε (x) -u * ζ ε (y)| =r 1 0 D x (u * ζ ε )(x + rtω) • ω dt ≤ Cr ε N +1 1 0 ε≤|z|≤2ε |u(x + rtω + z) -u(x + rtω)| dz dt, which implies that (14) ∞ |x-y| |u * ζ ε (x) -u * ζ ε (y)| ε dε ≤Cr |z|≥r 1 0 |z| |z|/2 |u(x + rtω + z) -u(x + rtω)| ε N +2 dε dt dz =Cr 1 0 |z|≥r |u(x + rtω + z) -u(x + rtω)| |z| N +1 dz dt. Let now α be such that N p -N + s -1 < α < N p -N .
We perform the following calculation only for p > 1, but the reader may easily see that its conclusion still holds for p = 1. Using ( 14), we find that (15)

K := ∞ |x-y| |u * ζ ε (x) -u * ζ ε (y)| ε dε p ≤Cr p 1 0 |z|≥r |u(x + rtω + z) -u(x + rtω)| |z| N +1+α |z| α dz dt p ≤Cr p 1 0 |z|≥r |u(x + rtω + z) -u(x + rtω)| p |z| N p+p+αp dz dt |z|≥r |z| αp/(p-1) dz p-1 =Cr p+αp+N p-N 1 0 |z|≥r |u(x + rtω + z) -u(x + rtω)| p |z| N p+p+αp dz dt since αp p -1 < -N (equivalently, since α < N p -N ).
Inserting (15) into the definition of J and computing the integral in y in spherical coordinates, we obtain

J ≤C R N S N -1 ∞ 0 1 0 |z|≥r r p+αp+N p-N -sp-1 |u(x + rtω + z) -u(x + rtω)| p |z| N p+p+αp dz dt dr dω dx =C R N ×R N |u(x + z) -u(x)| p |z| N p+p+αp |z| 0 r p+αp+N p-N -sp-1 dr dx dz =C R N ×R N |u(x + z) -u(x)| p |z| N +sp dx dz = C|u| p W s,p .
Here, we used the inequality p+αp+N p-N -sp-1 > -1, which amounts to α > N p -N +s-1.

Lemma 4. Assume 0 < s < 1, 1 ≤ p < ∞. Then (16) L := R N ×R N 1 |x -y| N +sp ∞ |x-y| |x -y| ε |Dv(x, ε)| dε p dx dy ≤ C|u| p W s,p .
Proof. In spherical coordinates y = x + rω we have

L =C R N S N -1 ∞ 0 r p-sp-1 ∞ r |Dv(x, ε)| ε dε p dr dω dx =C R N ∞ 0 r p-sp-1 ∞ r |Dv(x, ε)| ε dε p dr dx,
so that ( 16) amounts to

L := R N ∞ 0 r p-sp-1 ∞ r |Dv(x, ε)| ε dε p dr dx ≤ C|u| p W s,p .
Let α be such that

1 p + s -2 < α < 1 p -1.
We perform the calculation below for p > 1; clearly, its conclusion still holds for p = 1. We have

(17) ∞ r |Dv(x, ε)| ε dε p = ∞ r |Dv(x, ε)| ε α+1 ε α dε p ≤ ∞ r |Dv(x, ε)| p ε p+αp dε ∞ r ε αp/(p-1) dε p-1 ≤Cr αp+p-1 ∞ r |Dv(x, ε)| p ε p+αp dε, since αp p -1 < -1 (i. e., α < 1 p -1)
. Combining [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF] with the definition of L, we obtain

L ≤C R N ∞ 0 ∞ r |Dv(x, ε)| p ε -p-αp r 2p-sp+αp-2 dε dr dx =C R N ∞ 0 ε 0 |Dv(x, ε)| p ε -p-αp r 2p-sp+αp-2 dr dε dx =C R N ∞ 0 ε p-sp-1 |Dv(x, ε)| p dε dx ≤ C|u| p W s,p .
Here, we used the fact that 2p -sp + αp -2 > -1 (which is equivalent to α > 1 p + s -2) and Lemma 1.

Lemma 5. For each x ∈ R N , the integral

∞ 0 |Dv(x, ε)| dε is convergent.
Proof. Since v is Lipschitz, it suffices to prove that 

|Dv(x, ε)| = |D[(u -a) * ρ ε (x)]| = |(u -a) * D[ρ ε (x)]| ≤ u -a L 1 D[ρ ε (x)] L ∞ ≤ C ε N +1 .
In the same spirit, we have the following result, whose straightforward proof will be omitted Lemma 6. Assume u complex-valued, Lipschitz in R N and smooth in Q. Set [START_REF] Triebel | Theory of function spaces[END_REF] w

(x) = w Π (x) := ∞ 0 Π • v(x, ε) ∧ ∂ ∂ε (Π • v(x, ε)) dε, where Π ∈ C ∞ (R 2 ; R 2 ).
Then w is smooth in Q and

∂ α w(x) = ∞ 0 ∂ α Π • v(x, ε) ∧ ∂ ∂ε (Π(v(x, ε)) dε.
We may now prove that the map ϕ 1 defined in ( 4) is in W s,p (plus norm control).

Lemma 7. Assume that u ∈ Lip(R N ; C) satisfies |u| ≤ 3. Let w be defined by [START_REF] Triebel | Theory of function spaces[END_REF]. Then On the other hand, we have

(21) b(x, y) -b(y, x) = ∞ |x-y| Π • v(x, ε) ∧ ∂ ∂ε (Π • v)(x, ε) -Π • v(y, ε) ∧ ∂ ∂ε (Π • v)(y, ε) dε = ∞ |x-y| (Π • v(x, ε) -Π • v(y, ε)) ∧ ∂ ∂ε (Π • v)(x, ε) dε + ∞ |x-y| Π • v(y, ε) ∂ ∂ε (Π • v)(x, ε) - ∂ ∂ε (Π • v)(y, ε) dε.
Since (with ζ j as in ( 8))

(22) |D(Π • v)(x, ε)| ≤ C ε N j=0 u L ∞ (ζ j ) ε L 1 ≤ C ε , we find that |Π • v(x, ε) -Π • v(y, ε)| ≤ C|x -y| ε , which yields (23) |b(x, y) -b(y, x)| ≤C ∞ |x-y| ∂ ∂ε (Π • v)(x, ε) - ∂ ∂ε (Π • v)(y, ε)) dε + C ∞ |x-y| |x -y| ε ∂ ∂ε (Π • v)(x, ε) dε ≤C ∞ |x-y| |Dv(x, ε) -Dv(y, ε)| dε + ∞ |x-y| |x -y| ε |Dv(x, ε)| dε .
By combining (20)-( 23) to Lemmas 2-4, we find that

|w| p W s,p ≤ C(I + J + L) ≤ C|u| p W s,p .

Proof of Theorems 1 and 2

Proof of Theorem 2. Let ϕ ∈ C ∞ (Q; S 1 ) and set u := e ıϕ .

Lemma 8. The map u has a C 1 -extension to R N , still denoted u, such that |u| ≤ 3, u is constant outside (-2, 2) N and |u| W s,p (R N ) ≤ C|u| W s,p (Q) .

Proof. Let P : W s,p (Q) → W s,p (R N ) be a linear continuous extension operator such that: P extends Lipschitz maps to Lipschitz maps, P does not increase the L ∞ -norm and supp P v ⊂ (-2, 2) N , ∀ v ∈ W s,p . Let a be the average of u on Q. It is easy to see that ũ := a + P (u -a) is Lipschitz and satisfies |ũ| ≤ 3. In addition, we have

|ũ| W s,p (R N ) = |P (u -a)| W s,p (R N ) ≤ C u -a W s,p (Q) ≤ C|u -a| W s,p (Q) = C|u| W s,p (Q) ;
we have used the Poincaré inequality u -a W s,p (Q) ≤ C|u -a| W s,p (Q) , valid since u -a has zero average.

Let then Π ∈ C ∞ (R 2 ; R 2 ) to be chosen later and set ϕ

1 (x) := - ∞ 0 Π•v(x, ε)∧ ∂ ∂ε (Π•v)(x, ε) dε.
By Lemma 19, ϕ 1 belongs to W s,p and satisfies

|ϕ 1 | W s,p ≤ C|u| W s,p . We set, for x ∈ Q, ϕ 2 (x) := ϕ(x) -ϕ 1 (x). Lemma 9. Assume that Π(z) = z, ∀ z ∈ S 1 . Then (24) Dϕ 2 (x) = -2 ∞ 0 ∂ ∂ε (Π • v)(x, ε) ∧ D x (Π • v)(x, ε) dε.
Proof. Using Lemma 6 and the identity Dϕ = u ∧ Du we have, with w :

= Π • v, Dϕ 2 (x) =Dϕ(x) + ∞ 0 D x w(x, ε) ∧ ∂ ∂ε w(x, ε) dε + ∞ 0 w(x, ε) ∧ ∂ ∂ε D x w(x, ε) dε =w(x, ε) ∧ D x w(x, ε) |ε=0 + ∞ 0 D x w(x, ε) ∧ ∂ ∂ε w(x, ε) dε + w(x, ε) ∧ D x w(x, ε) ε=∞ ε=0 - ∞ 0 ∂ ∂ε w(x, ε) ∧ D x w(x, ε) dε = -2 ∞ 0 ∂ ∂ε (Π • v)(x, ε) ∧ D x (Π • v)(x, ε) dε.
The remaining part of the proof of Theorem is essentially a variant of the proof of Theorem 0.1 in [START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF]. Up to now, the proof requires only Π(u) = u. 7 From now on, we will require that Π is an approximate projection on S 1 , e.g. we assume Π

(z) = z |z| when |z| ≥ 1 2 . Lemma 10. Let, for x ∈ Q, d(x) := inf{ε > 0 ; |v(x, ε)| = 1/2}. Then (25) 
Q 1 d(x) sp dx ≤ C|u| p W s,p (Q) . Proof. Let x be such that d(x) is finite. Since |u(x) -v(x, d(x))| ≥ 1/2, we have 1/2 ≤ |u(x) -v(x, d(x))| ≤ |v(x, •)| C s (R + ) d(x) s ≤ C|v(x, •)| W s+1/p,p (R + ) d(x) s , so that Q 1 d(x) sp dx ≤ C Q |v(x, •)| p W s+1/p,p (R + ) ≤ C|v| p W s+1/p,p ≤ C|u| p W s,p (R N ) ≤ C|u| p W s,p (Q) ,
by the Besov lemma [START_REF] Adams | Sobolev spaces[END_REF].

Lemma 11. We have

(26) Q |Dϕ 2 | sp dx ≤ C|u| p W s,p (Q) . Proof. Set Ω := {(x, ε) ; x ∈ Q, 0 < ε < d(x)}.
In Ω, we have |Π • v| ≡ 1, so that ∂ ∂ε

(Π • v)(x, ε) ∧ D x (Π • v)(x, ε) ≡ 0 in Ω.
In view of Lemma 9 and (22), we find that

Q |Dϕ 2 | sp dx ≤ Q ∞ d(x) |D(Π • v)(x, ε)| 2 dε sp dx ≤C Q ∞ d(x) 1 ε 2 dε sp dx ≤ C Q 1 d(x) sp dx ≤ C|u| p W s,p (Q) .
The proof of Theorem 2 is complete.

Proof of Theorem 1. When p > 1 and sp > 1, Theorem 1 is an immediate consequence of Theorem 2 (one passes to the weak limits in (1) and ( 2)). Some care is needed when p = 1 or sp = 1.

Lemma 12. Let u ∈ X s,p . Then there is a sequence {u k } k≥0 ⊂ C ∞ (Q; S 1 ) such that u = Proof. Recall that (27) if f j → f in W s,p , g j → g in W s,p , f j L ∞ ≤ C, g j L ∞ ≤ C, then f j g l j,l→∞ -→ f g in W s,p .

Consider a sequence {h j } ⊂ C ∞ (Q; S 1 ) such that h j → u. We may assume that |h j | W s,p ≤ 2|u| W s,p , ∀ j. Using (27) with f j = h j and g j = h j , we find easily a sequence j k → ∞ such that h j k+1 h j k -1 W s,p ≤ 2 -k |u| W s,p , k ≥ 0. If we set u 0 = h j 0 and u k = h j k h j k-1 , k ≥ 1, then the sequence {u k } has the required properties.

In view of Theorem 2, we may write each u k as e ı(ϕ k 2 ), which satisfies ψ ∈ W 1,sp and Dψ sp L sp ≤ C|u| p W s,p . In addition, the map ue -ı(ϕ 1 +ψ) is constant. It follows that, for an appropriate α ∈ R, ϕ 1 and ϕ 2 := α + ψ satisfy u = e ı(ϕ 1 +ϕ 2 ) and the estimates (1)-(2).

6. Characterization of X s,p in terms of lifting

The results in [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF], [START_REF] Brezis | On some questions of topology for S 1 -valued fractional Sobolev spaces[END_REF] and [START_REF] Brezis | Density in W s[END_REF] give the following information about X s,p space dimension N size of s size of sp description of X s,p any 0 < s < 1 0 < sp < 1 X s,p = W s,p (Q; S 1 ) = {e ıϕ ; ϕ ∈ W s,p (Q; R)} N ≥ 2 0 < s < 1 1 ≤ sp < 2 X s,p = W s,p (Q; S 1 ), X s,p = {e ıϕ ; ϕ ∈ W s,p (Q; R)} N ≥ 3 0 < s < 1 2 ≤ sp < N X s,p = W s,p (Q; S 1 ), X s,p = {e ıϕ ; ϕ ∈ W s,p (Q; R)} any 0 < s < 1 sp ≥ N X s,p = W s,p (Q; S 1 ) = {e ıϕ ; ϕ ∈ W s,p (Q; R)} N = 1 s ≥ 1 any X s,p = W s,p (Q; S 1 ) = {e ıϕ ; ϕ ∈ W s,p ∩ W 1,sp } N ≥ 2 s ≥ 1 1 ≤ sp < 2 X s,p = W s,p (Q; S 1 ), X s,p = {e ıϕ ; ϕ ∈ W s,p ∩ W 1,sp } N ≥ 2 s ≥ 1 sp ≥ 2 X s,p = W s,p (Q; S 1 ) = {e ıϕ ; ϕ ∈ W s,p ∩ W 1,sp }

∞ 1 |Dv

 1 (x, ε)| dε converges. With a the value of u at infinity, this follows from

Π

  |w| W s,p ≤ C|u| W s,p . Proof. Set a(x, y) := |x-y| 0 • v(x, ε) ∧ ∂ ∂ε (Π • v)(x, ε) dε and b(x, y) := ∞ |x-y| Π • v(x, ε) ∧ ∂ ∂ε (Π • v)(x,ε) dε, so that w(x) = a(x, y) + b(x, y). On the one hand, we have (20) |w(x) -w(y)| ≤|a(x, y)| + |a(y, x)| + |b(x, y) -b(y, x)| ≤|b(x, y) -b(y, x)| + C |x-y| 0 |Dv(x, ε)| dε + |x-y| 0 |Dv(y, ε)| dε .

  |u k | W s,p ≤ 2 -k+1 |u| W s,p , ∀ k.

1 +ϕ k 2 )k 1 .

 121 , where|ϕ k 1 | W s,p ≤ C2 -k |u| W s,p and Dϕ k 2 L sp ≤ C2 -k/s |u| 1/s W s,p . Let ϕ 1 := k ϕ Clearly, ϕ 1 ∈ W s,p and |ϕ 1 | W s,p ≤ C|u| W s,p . On the other hand, set ψ := k

In the proof of Proposition

2, we will apply this approximation result to the R 2 -valued map u when s = 1/p (and thus j = 1).

This covers the case s = 1/2, p = 2 treated in[START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF].

The second assumption is used only in Lemmas 5-7.

Assumptions on ρ are not crucial. The results in this section are true for any reasonable mollifier. However, our assumptions make the proofs simpler.

When W s,p ∩ L ∞ is contained in W 1-1/2sp,2sp, Lemma 11 below is valid without any other restriction.

There is another description available, in terms of distributional jacobian T (u) (for its definition, see[START_REF] Alberti | Functions with prescribed singularities[END_REF],[START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF],[START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF]). For 1 ≤ sp < 2, we have X s,p = {u ∈ W s,p (Q; S 1 ) ; T (u) = 0}, result due to Bousquet[START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF] when s ≥ 1 and Ponce[15] when s < 1.

The following result completes the description of X s,p in terms of lifting 8 Theorem 3. Assume that 0 < s < 1 and

Proof. "⊂" follows from Theorem 1. "⊃" Let u = e ı(ϕ 1 +ϕ 2 ) ∈ W s,p (Q; S 1 ), with ϕ 1 ∈ W s,p and ϕ 2 ∈ W 1,sp . Set u j := e ıϕ j . By Corollary 1, u 1 ∈ X s,p . On the other hand, W s,p (Q; S 1 ) is a group, so that u 2 ∈ W s,p (Q; S 1 ). By Proposition 2, u 2 ∈ X s,p . By (27), X s,p is a group, so that u = u 1 u 2 ∈ X s,p .