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SIZE OF PLANAR DOMAINS AND EXISTENCE OF MINIMIZERS OF THE
GINZBURG-LANDAU ENERGY WITH SEMI-STIFF BOUNDARY CONDITIONS

PETRU MIRONESCU

ABSTRACT. The Ginzburg-Landau energy with semi-stiff boundary conditions is an intermediate
model between the full Ginzburg-Landau equations, which make appear both a condensate wave
function and a magnetic potential, and the simplified Ginzburg-Landau model, coupling the conden-
sate wave function to a Dirichlet boundary condition. In the semi-stiff model, there is no magnetic
potential. The boundary data is not fixed, but circulation is prescribed on the boundary. Mathemat-
ically, this leads to prescribing the degrees on the components of the boundary. The corresponding
problem is variational, but non compact: in general, energy minimizers do not exist. Existence of
minimizers is governed by the topology and the size of the underlying domain. We propose here vari-
ous notions of domain size related to existence of minimizers , and discuss existence of minimizers or
critical points, as well as their uniqueness and asymptotic behavior. We also present the state of the
art in the study of this model, accounting results obtained during the last decade by L.V. Berlyand,
M. Dos Santos, A. Farina, D. Golovaty, X. Lamy, V. Rybalko, E. Sandier, and the author.
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1. INTRODUCTION

Two-dimensional' superconductivity is described by the Ginzburg-Landau (GL, in short) energy

1 1 1
—/ |Vu—zAu|2+—/(1—|u|2)2+—/ |d A — el

Here, Q c R? is smooth bounded simply connected, u : Q — C is the condensate wave function,
A : Q — R? is the magnetic potential, and %.,; is the external magnetic field. |u|? is a density
(density of Cooper pairs of electrons) and a measure of superconductivity: |u|? close to 1 indicates

a superconductor state, |u| close to 0 corresponds to the normal state. x = — is the GL parameter.
€

According to the values of € and %y, the density |u|? of an energy minimizer (u,A) tends to be
(locally) close to either 1 or 0. Typically, either |z|? is uniformly close to 1 (Meissner states) or |u|?
is close to 1 most of time, but there are small regions where lu|? is close to 0. These small regions

1991 Mathematics Subject Classification. 517.9.
Key words: Ginzburg-Landau, capacity, non compact, degree, mountain pass
Subject classification: 35J20, 42B37
TAs usual in material science, the two-dimensional domain Q is a cross section of a three-dimensional cylinder, and
the unknown functions are supposed to be independent of the z-variable.
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are "vortices", and though there is no universally accepted definition of vortices, they are under-
stood as points or regions where |u|? is, in an appropriate sense, close to 0. See the monograph
[32] of Sandier and Serfaty for a mathematical theory of GL vortices in superconductivity.

The analysis in [32] relies partly on tools previously developed by Bethuel, Brezis and Hélein

[14] for the simpler model consisting in minimizing the simplified GL energy % / IVu|?+ é / (1-

Q Q
|u|2 )2. Clearly, if no restriction is imposed on (2, then the absolute minimizers are constant of mod-
ulus 1. However, if we impose the Dirichlet condition u = g on 02 and if g forces u to vanish, then
the Dirichlet condition provides a vortex creation mechanism. This is the case if, for example,
g :0Q — S! has a non zero winding number (degree), and [14] is devoted to the minimization of
the simplified GL functional subject to non zero winding number Dirichlet boundary condition g.
Though this model is not physically realistic, it captures some of the most important features of
the full model, namely vortex formation and the fact that vortices do mutually repel and are re-
pelled far away from the boundary. The same features were proved for the full model when there
are only few vortices [32].

In other models, vortices can be attracted by the boundary. For example, if we consider the
simplified GL energy with the constraint |u| = 1 on the boundary, then the only stable critical
points in simply connected domains are constants [33]; in a certain sense, all possible vortices are
expelled at the boundary.

A mathematically interesting intermediate model, simpler than the full GL model and allowing
near boundary vortices, was proposed by Berlyand and Voss [12]. Let Q c R? be a smooth bounded
domain and let I'y,...I', denote the components of 0Q2, with I'y enclosing 2. Consider a collection
of integers d = (dy,...,d) € Z¥*! and the simplified energy

_1 2, 1 11202
(1.1) Eg(u)—z/QIVul * 12 /Q(l lul)

in the class

(1.2)  &a={ue H(Q;O);|trul = 1 on 3Q, deg(u,T;) = d;, ¥ j € [0,£]}.

do To

FIGURE 1. An example with & = 2: Q is a triply connected domain. The balancing
condition (2.6) reads dg = d1 +das.
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As in [14], the degrees on the boundary may force vortex creation.? In contrast with the models
considered in [14] or [32], the boundary condition is sufficiently flexible to let vortices approach
the boundary, and we will see that, indeed, vortices sometimes do approach the boundary.

In what follows, we discuss the analysis of critical points of E in &4. To start with, we will see,
in Section 2, that the class &4 is meaningful; this requires some explanation, since tru need not
be a continuous map, and existence of the boundary degree is not obvious. We next explain, in
Section 3, the non compact character of our problem; this is a major difference with [14] and [32].3
Non compactness has consequences on existence of minimizers: in simply connected domains Q,
there is no minimizer of E, when d # 0 (Proposition 3.3). It turns out that minimizers may exist
in multiply connected domains. The first result on the existence of minimizers is due to Golovaty
and Berlyand [24] and concerns thin circular annuli. In Section 4, we discuss and generalize
this example, and propose a classification of domains in thin, critical and thick domains. This
classification is not intrinsic (it depends on the collection d) and very likely it governs existence
of minimizers; a special case was introduced in [7]. We prove asymptotic existence of minimizers
in thin domains (Theorem 4.12) and discuss existence in critical domains. We conjecture that, in
thick domains, minimizers of E. do not exist for small €. This has been established in a special
case by Berlyand, Golovaty and Rybalko [5]. We discuss in Section 4 a generalization of this result.
In Section 5, we account existence of critical points of E, in multiply connected domains: the main
result in this direction is due to Berlyand and Rybalko [11]; Dos Santos generalized their result
in [22]. The case of a simply connected domain is qualitatively different. In Section 6, we present
a very recent result of Berlyand, Rybalko, Sandier and the author concerning existence of critical
points for large € [10], while in Section 8 we briefly describe a work in progress with Lamy on
existence of critical points for small € [28]. In Section 7, we discuss two types of uniqueness results.
The first one is asymptotic (Theorem 7.1), and establishes uniqueness of vortexless solutions; this
generalizes previous results in [8]. The second one is non asymptotic: uniqueness is proved for
each € (Theorem 7.6). This deep generalization of a previous result of Golovaty and Berlyand [24]
is a very recent result of Farina and the author [23]. A final section discusses perspectives and
open problems.

2. WINDING NUMBER OF CIRCLE-VALUED MAPS

To start with, we consider the case of a simply connected domain, say Q is the unit disc D. If
u € HY(D;C) is such that |tru| = 1, then the trace g of u is in the class H2(S!;S1). Such maps need
not be continuous and existence of the degree (winding number) of g has to be justified. Existence
of the degree was proved by Boutet de Monvel and Gabber [16, Appendix]. This degree is defined
as follows. On the one hand, C®(51;S') is dense in HY2(S1;S1) [16, Appendix].4 On the other

hand, if we write in Fourier series g = Za neme a smooth circle-valued map g, then
(2.1) degg =deg(g,Sh =) nla,l*;

this beautiful formula was discovered by Brezis and Nirenberg [20]. Since the H2 semi-norm
1/2 2 1 2 . . .
H">5g—|gl}e = o IVul®, where u is the harmonic extension of g,
D

is given by
2.2) gl =Y Inllanl?,

we find, by combining (2.1) and (2.2), that the degree of smooth maps is continuous with respect
to the HY2 convergence. This implies that the right-hand side of (2.1) is an integer for each map
g € HV2(S1;S1), and this integer is naturally called the degree of g.

2This will be indeed the case when do # Z dj.
J=1
3Minimization of the full GL energy is also non compact, but this is only due to the gauge invariance of the GL
energy, and non compactness can be removed by fixing an appropriate gauge, e.g. the Coulomb one [35]; see also [26,
Chapter VI.

4The point here is not density of smooth maps, but density of smooth circle-valued maps.
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The above implies at once existence of the degree for maps in HY2(I'; S1), where I is a simple
closed rectifiable curve. Indeed, consider a fixed bi-Lipschitz orientation preserving homeomor-
phism ¥ between I' and S!. Then we set

(2.3) deg(g,I)=deg(go¥1,Sh).

It is easy to see that this degree coincides with the usual one in the case of continuous maps and
does not depend on the choice of V.

This degree is a special case of the degree of VMO (vanishing mean oscillation) maps from $"
into $”, thoroughly studied by Brezis and Nirenberg [20]. It preserves most of the properties of
the degree of continuous maps; see [18] or [10, Section 2] for a detailed discussion. We quote here
few properties which are relevant for us.

2.1. Proposition. Let I" be a smooth simple closed rectifiable curve. Then

1. The degree of HV2(I';S') maps is continuous with respect to strong HY?-convergence.

2. The degree of HY2(I'; S') maps is not continuous with respect to weak HY2-convergence.
3. deg(gh) =degg +degh, VY g,h € H2(T;Sh).

4. Amap g€ HY2(I';S') can be written as g = e'¥ with w € HY2(T';R) if and only if degg = 0.

From the above, the class &g defined in the introduction is meaningful, provided we precise the
orientation on each component I'; of 0Q2. The convention we use here is that each I'; is endowed

d
z
with the natural (counterclockwise) orientation. Thus, if Q = D\ Dy/5,® then z — (ﬁ) belongs to
z

the class &4 q).
Once critical points of E. in &4 are obtained, we may forget the generalized degree. Indeed, we
have the following result [8, Lemma 4.4].

2.2. Proposition. Assume that Q is smooth. Let u be a critical point of E, in &;. Then u € C®(Q),
and criticality is equivalent to either the strong form

1
—-Au = —2u(1—|u|2) in Q
€

(2.4) ltraLLLLI =1 on 002
unh— = 0 on 02
ov
deg(u,l“j) = dj Vje IIO,kH

or the weak form

1
-Au = —2u(1—|u|2) in Q
€
[trul = 1 on 0Q
2.5) <« .
/(u/\Vu)~V( =0 V{eHYQ)
Q
deg(u,I';) = d Vje[0,k]

Here, A stands for the vector product of complex numbers: (a1 +1a2) A(b1+1bg) =a1bs —ashi.
Similarly, the notation u A Vv, with © and v complex-valued functions, denotes the vector-field
u1Vv2 - uzvvl.

We end this section by discussing a first vortex creation mechanism. If g € C(D;S!), then g has a
non vanishing (or, equivalently, circle-valued) continuous extension u on D if and only if degg = 0.
In a multiply connected domain 2, the necessary and sufficient condition for the existence of a
non vanishing continuous extension is the balancing condition

(2.6) deg(g,I'g)=do= Z dj= Z deg(g,I')).
j=1 j=1

This extends to H' maps [17].

5We denote by D, the disc of radius r centered at the origin, and by C, the circle of radius r then the map centered
at the origin.
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2.3. Proposition. Let Q c R? be a smooth bounded domain. For g € HV2(0Q;S1), the following are
equivalent.

1. g has an extension u € H(Q;S?).

2. g has an extension u € HY(Q;C) such that |u| = C > 0.

3. The balancing condition (2.6) holds.

2.4. Definition. d € Z**1 is balanced if dg = Z dj, and unbalanced otherwise. By extension,
j=1

a domain Q (with prescribed degrees d = (do,...,d)) is balanced if d is balanced, unbalanced

otherwise.

3. NON COMPACTNESS

The fact that the class &y is not weakly closed is essentially equivalent to Proposition 2.1 2, and
relies on the following fundamental example.

3.1. Lemma. Let d € Z**1. Then there exists a sequence (u,) € &4 such that
8.1) lunl<1, u,—1land / IVu,|? — 27|d|.
Q

In particular, we have

(3.2) mgq,:=infE.(u)<n|d|.
ba
Here and in what follows, the length |d| is defined by

k
(3.3) ldl=)_ldjl.
Jj=0

Proof. For j € [1,k], let w; denote the exterior of I'j, and let wo denote the interior of Ty, so that

Q= [ w,. Fix a conformal representation ®; : w; — D of w; into the unit disc D. Let
7j=0

z—a
Mg .(2):= al—_, Vae Sl, a,zeD, My:=Mi,
—az

be the Moebius transforms. Let vjq, = Mgo®;, a € D, j € [0,k]. Then |vjql =1 on I'; and
deg(v;q,I';) = 1. In addition, we have

(3.4) / IVu;q? =21 and vj, — 1in C2(Q\{@ (-1} asa — -1.
Q

Using (3.4), it is easy to modify v;, near 0Q\T; and construct a map u;, with the following
properties:

1, ifl=j

1
(8.5) uj o, € H(Q0), lujel<1, Itrujql=1, deg(uj,a,Fz):{O, iF1£7

(3.6) / IVujqol®—2rand uj, — 1in CF (Q\{@ (-} asa — -1.
Q

If we now let

k
d .
Uy = H ua]j, where a =a(n) — -1 as n — oo,
j=0
it is easy to see that u, has all the required properties.® [

3.2. Corollary. The class &y is not weakly closed. More specifically, the weak sequential closure of
Sais |J &e={ue HYQ;O);Itrul =1}

eczk+1

6Here, we use the convention u ! = (ﬂ)l ifl eN.
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Proof. Clearly, the weak closure is contained in U &e. Conversely, let u € &. Let (u,) € &g_e be

eczk+1l
as in Lemma 3.1. Then (vu,) < é&q and uu, — u. Ol

Corollary 3.2 implies that existence of a minimizer of E, in &g cannot be obtained by a straight-
forward application of the direct method in the calculus of variations, since a bounded sequence
in &4 need not converge to a a map in &3. However, by itself, Corollary 3.2 does not imply that the
minimum of E, is not attained in &3.” Here is an example of non existence of minimizer [8].

3.3. Proposition. Assume that all the d;’s but one are zero. Then

3.7 inf E.(u)=mnldl|,
uEéad

and the infimum is not attained in (3.7).

Proof. We consider, e.g., the case where d =(d,0,...,0), with d > 0; the other cases are similar. By
Lemma 3.1, we have < in (3.7). On the other hand, we have the pointwise inequality

(3.8) IVuI2 >2dJacu.
This implies that

1 1
(3.9) Eg(u)E/Jacu+—/(1—|u|2)2=nd+—/(1—|u|2)2,
Q 482 Q 482 Q

the last equality following from the identity

(3.10) /Jacu :n(do— Z dj),
Q

j=1
classically valid for smooth maps and still valid when u € &y [18].
In particular, (3.9) implies = (and thus =) in (3.7).
Now argue by contradiction and assume that the infimum is attained in (3.7). If u is a mini-
mizer, then, by (3.9), |u| =1 a.e. By Proposition Proposition 2.3, this implies d = 0, a contradic-
tion. ]

It turns out that the above example is the only known one where the problem of existence of a
minimizer can be settled via a simple argument.

4. SIZE OF DOMAINS

In this section, we introduce appropriate definitions of thin/thick domains, relevant for existence
of minimizers of E, in &g; special cases of this classification were considered in the work [7]
devoted to doubly connected domains. These definitions involve the value of the infimum of E; in
some classes of circle-valued maps.

To start with, let us denote by % the collection of balanced degrees:

%:{dezk+1;d0: Zdj}.
j=1

When d € &4, there are circle-valued competitors in the class &g (Proposition 2.3), and thus we
may consider the nonempty subclass

Fa={ueéy; lul=11in Q}.

We clearly have the a priori bound

1
(4.1) mgq.:= inf E(u)< inf E.(u)= inf 5/ Vul® :=mq.
Q

uedy uesq ueFq

It turns out that, in the definition of mq, the infimum is actually a minimum. The following is a
rephrasing of [14, Chapter 1].

7Ac‘cually, the minimum is attained in some cases, as we will see later.
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k(z—aj\%
4.1. Proposition. Fix k points a € wj, j € [1,k] and consider the reference map uq(z) = H ( / ) .

j=1 |Z_aj|

Then

1. Za={uge"; v e H(Q;R).

2. The minimum of the Dirichlet integral in %4 is attained by uge'V, where vy is the (unique modulo
constants) solution of

Ay =0 in Q

(4.2) 0 0 .
dd =—ugh Jud on 002
ov ov

Using (4.2), it is possible to compute numerically the value mq. In a very special case, it is
possible to compute explicitly mqg [8]. This classification involves only the con_formal ratio of Q,
that is the unique R > 1 such that Q can be represented conformally onto Dg \ D.

4.2. Proposition. Let Q) be doubly connected. Let R be the conformal ratio of Q). Then mgq =
nd2InR.
0

Proof. In this case, we have d_: (dg,—dp). Since the value of mgq is clearly a conformal invariant,
we may assume that O =Dg \D. In this case, we pick a; =0 and find that ¥ = 0 is solution of (4.2).

Thus uq attains the value mgq, and clearly IVudI2 = 2nd(2) InR. O
Q

We next give some simple but fundamental upper bounds for mgq .
4.3. Proposition. We have
(4.3) mg,<me,+nld—e|, Vee 7k
and
(44) mg,<me+nld-e|, VeeZA.
Proof. Let v € &3. Assume that the following holds:

4.5) Jv|=<1 and lilglg lv(z)| = 1 uniformly.
z—>

Consider a sequence u, € Se_q as in Lemma 3.1. Then (vu,) c & and (by (3.5), (3.6) and (4.5))
E.(vu,)=E.(v)+7n|d—-e|+0(1). We find that

(4.6) inf{E.(v);v € &y, v satisfies (4.5)} <me, +nld—e|.

We next argue as follows: given u € &g, let v minimize E, in the class {w € H 1(Q); trw = tru}.
Then we have v € &g and E.(u) < E.(v). On the other hand, this v satisfies (4.5). Indeed, the first
property in (4.5) follows from the maximum principle, while the second one is essentially due to
Boutet de Monvel and Gabber [16, Appendix]; see also [21, Theorem A.3.2] and [10, Section 2].
Therefore, the left-hand side of (4.6) equals mq ¢, and this implies (4.3).

Estimate (4.4) follows by combining (4.3) with (4.1) (applied with e € #). [

Bound (4.3) suggests the following result, very much in the spirit of the famous conditions of
Trudinger [34] or Aubin [3] for the existence of solutions of the Yamabe problem .

4.4. Proposition. Assume that

(4.7 mg.<me.+7ld—e|, Veez*1\{d}.

Then minimizing sequences for E in & are compact in H™.
Proof. We rely on the following "converse" to Lemma 3.1 [7].

4.5. Lemma (Price lemma). Let (u,) < &g be such that u, — u € &. Then

1 1
(4.8) liminf—/IVunIZZ—/IVuI2+n|d—eI.
2 Ja 2 Ja
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Proof of the Price lemma. We present the proof under the additional assumption that u, and u
are smooth. This is not crucial for the analysis, but simplifies the proof.? The starting point is
provided by the identities’

F) _ _
4.9) /fJacv:/(axfayv/\v—ayfdxv/\v)+/ fv/\—v, VvECl(Q;C),erCl(Q;[R)
Q Q 00 ot
and
0g

1
(4.10) deg(g,rj):—/ gn—=, Vgeckr;sh,
2n Jr, ot

and by the fact that, by standard properties of weakly convergent sequences and by (3.8), we have

/|Vun|2=/|Vu|2+/|v<un—u>|2+o(1)z/|Vu|2+/|f||wn|2+o<1>
Q Q Q ‘T—‘ Q Q

2/|Vu|2+2/fJacvn+o(1), v feCHQ;[-1,1D).
Q Q

(4.11)

By combining (4.11) with (4.9) (applied with v =v,) we find that

0 _
(4.12) liminf/ IVun|22/|Vu|2+2hminf/ Fo, AR Y e ClQiI-1,1D).
Q Q 0Q ot

We now take f € C1(Q;[-1,1]) such that f = sgn(d;—e;) on I';. For such f, trace theory for H?
maps combined with weak convergence of (z,) to © and with formula (4.10) yields

. ov _ ou ou
(4.13) hm/anvn/\a—Tn:hm/an(un/\a—Tn—u/\E):Zn%"ldj—ejlzwrld—el.

OJ

Proof of Proposition 4.4 completed. Let (u,) be a minimizing sequence for E, in &4. Let u be such,
possibly up to a subsequence, u, — u € 8. If we prove that e = d, then u, — u, since the sequence
(u,) is minimizing. The conclusion e = d is obtained by contradiction: otherwise, we have, by the
Price lemma,

mg,=limE (u,)=2E.(v)+nld—e|=z2me,+7n|d—e],

and this contradicts (4.7). |

In order to be able to apply Proposition 4.4, we need tractable conditions implying (4.7). This is
where our classification of domaines comes into the picture.

4.6. Definition. Let (2 be a domain with associated degrees d. If d is unbalanced, then Q is thick.
If d is balanced, then:

1. Qs thin provided

(4.14) mg<me+nld—e|, VeeZ\{d}.

2. Qs critical when

(4.15) mg=min{me +7nld—e|, ec A\ {d}}.

3. Q is thick in the remaining cases, i.e. when

(4.16) mg >me +7|d—e| for some e Z\{d}.

8The identities we derive in the proof of the Price lemma can be extended to arbitrary u, and u; see [7].
9Here, d7 stands for the tangential derivative.
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At first look, the classification involves an infinite numbers of inequalities. However, it is easy
to see that, for a fixed 2, we have

(4.17) lim me = o0,
|e|—oo

and thus, when d is balanced, Q is thin/critical/thick provided
(4.18) mg< or = or >min{me +7|d—e|, ec Z\{d}}.

First proof of (4.17). Argue by contradiction and assume that, along a sequence (e') such that
le!| — oo, we have mg < C. Assume, e.g., that (again possibly up to a subsequence), Ieél — 00.10

Let u! € &, be such that / vu!)? < C. By a standard procedure, we may extend u’ to a map
Q
v! € HY(wy;C) such that | |Vv!|?<C’ and |v!| < 1. Thus v’ € é"eé and E1(v') < C". This contradicts,
Q
for large [, (3.7). ]

4.7. Remark. The same analysis implies the following: if u’ € &y and ¢! > 0 are such that E Ez(ul) <
C, then (€') is bounded.

ifk=0orj
otherwise

. . 1 .
Second proof of (4.17). Let, for j € [1,k], the collection d’ given by dfe = {0’ . Let u/

k -\ €
minimize my;. Using Proposition 4.1, it is easy yo see that u = H (uJ ) ' minimizes me. Thus
j=1

1 .

me = E(Ae) -e, where A is the definite positive Gramm matrix A = ( / vu’ -Vul) . We find
Q Jle[1E]

that me — oo as |e| — oo.

Before going further, let us discuss some examples.

The first two ones are trivial and do not lead to any interesting consequence. First, every domain
is thin with respect to the trivial collection d = 0. Next, a simply connected domain is thick with
respect to any non trivial collection (since it is unbalanced).

We next classify doubly connected domains. Let d = (d,—d) be a non trivial balanced collec-
tion. With no loss of generality, we may assume that d > 0. The next result is a straightforward
consequence of Proposition 4.2.

4.8. Proposition. Let Q be doubly connected of conformal ratio R. Let d = (d,—-d), with d > 0.
Then:

1. Qs thin when R < %=1,
2. Qs critical when R = %3471,
3. Qis thick when R > ¢¥24-1)

4.9. Remark. This shows clearly that the size of a domain is not intrinsic: it depends both on the
domain and on the collection d.

Proposition 4.8 implies that our classification of domains coincides, in the special case where
is doubly connected and d = (1,—1), with the one considered in [7].

We next give an example involving triply connected domains. Consider a domain ; as in Fig.
2 and let d € £\ {0} be any non trivial balanced collection.
Then we have the following

4.10. Proposition. There exist two values 0 < tg=to(d) <t1 =t1(d) < 1 such that:

1. For t <tg, ; is thick.
2. For some t € [tg,t1], 2 is critical.
3. For t > t1, Q; is thin.

10The case where Ieél — oo for some j =1 is reduced to the case j = 0 via the an inversion, using the invariance of

the Dirichlet integral with respect to conformal changes of variables.



10 PETRU MIRONESCU

Proof Let z! =(-1/2,0) and z2 = (1/2,0) be the centers of the two squares. By considering the test
function

z—z1 d1 z—22 a2
ulz) = (Iz—zll) (Iz—zzl) < éa,
it is easy to see that mq — 0 as t — 1. Since me + 7|d — e| = 27 for e # d, this implies 3.
In order to obtain 1, it suffices to prove that

(4.19) mg—o0 ast—0,
and thus
mg <mg+7r|d-0|=rm|d|

for small ¢.
Now (4.19) is obtained as follows: let A; = D\ D; and B; = (-1/2,1/2)2 \ (-t/2,t/2)?, t € (0,1). Let
@ :S! — 0[(-1/2,1/2)?] be a bi-Lispchitz map. By considering the bi-Lispchitz map

z
z =(z1,22) — IZl‘P(—),
||
which maps A; into B, we see that, with obvious notations, we have
(4.20) mgq(A;) ~mg(By).
We obtain (4.19) by combining (4.20) with Proposition 4.2 and with the obvious inequality
mq(y) 2mg, _q,)(Bs) +mg, _q,)(B}).
Finally, let
to =sup{s €(0,1); Q; is thin for every ¢ € (0,s)} € [£g, #1].

Using again a bi-Lipschitz change of variables argument, it is clear that the maps ¢ — me(£2;) are
continuous (and non increasing) for every e € %4. Using this fact combined with (4.17), it is easy to
see that €y, is critical. O]

4.11. Remark. More can be said in the special case where Q = Q; and d =(2d,d,d) with d #0. It
is easy to see that &24,4,4) = w%ue &(2,1,1)} and therefore mg 4.q) = dzm(z’l’l).

On the other hand, the map ¢ — mgq(£2;) is better than non increasing: it is decreasing. Using
the above, we easily find that there exists a unique threshold value ¢y = {1 which makes Q; switch
from thin for ¢ > ¢¢ to thick when ¢ < (. More precisely, the value ¢ is the solution of mg 1 1)(Q;) =

4

2|ld|-1

)

Iy Iy 1

2

FIGURE 2. Q; is the rectangle (—1,1) x (-1/2,1/2) perforated by two squares of size
t €(0,1) centered at (+£1/2,0).
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We may now state a first tractable condition for the existence of minimizers of mgq .
4.12. Theorem. Assume that Q) is thin. Then, for small €, the infimum mgq . of E. in &g is attained.

Proof. Let (u, ) be a minimizing sequence for E. in &g and let u, be such that, possibly up to a
subsequence, u,, —u. Let e € 7*+1 be such that u, € &,. Using the upper bound

(4.21) mgq, <n|d|

(which follows from Lemma 3.1) and Remark 4.7, we may assume that, possibly up to a subse-

quence, e is independent of small €. Using (4.21), we find that, up to a subsequence, u, — u to

some u € H1(Q). In addition, we have E(l— Iuglz)2 < n|d|, and this implies that u is circle-valued.
€

Let fe Z**! be such that u € &. Since u is circle-valued, we find that f is balanced. We now apply
twice the Price lemma. Using the a priori bound (4.1), we find that

1
mg =limmg . =1i limEg(ung)zlimsup(—/ IVuel? +7|d - e
-0 7 e—=0 n ’ e—0 \2 /g

(4.22) ;
> 5/ Vul? +n(/d—e|+|e—f]) > me+ 7(|d—e| + |e — f]).
Q

Using the fact that Q is thin, we find that d = e = f. In particular, we proved that, for small ¢,
minimizing sequences are compact. [

In some special situations, it is possible to obtain non asymptotic results.
4.13. Proposition. Assume that d is balanced and mq < 2n. Then mgq is attained for every e.

4.14. Remark. When mgq < 27, Q is thin. On the other hand, if mgq = 27, then Q is either thin
or critical. An example of critical couple (£2,d) (cf Proposition 4.2): a doubly connected domain Q
of conformal ratio e2, and d = (1,1). For this special case, Proposition 4.13 has been proved in [7,
Theorem 1]. More generally, we could consider a balanced couple (2,d) such that mq = 27 and, for
some j=1,do=d;=+1landd; =0if [ # ;.

Proof. We start by noting that

(4.23) mg,<mq, Ve>0,VdeZA\{0}.

Indeed, let v € &4 attain the minimum of mq. Consider the minimization problem
(4.24) min{E.(w);trw =trv}.

1
If u is a minimizer in (4.24), then u € &g and u satisfies the equation —Au = —2u(1 - |u|2) in Q. If

u =v, then |u| =1, and this implies u constant (since |tru| = 1). Thus d = 0. Consequently, when
d # 0, v is not a minimizer in (4.24), and thus mq ; <mgq.

In particular, if mgq < 27 then mgq ;. < 27. Consider a minimizing sequence (u,) for E. in &q, and
assume that u, — u € &. By the Price lemma, we find that

1
(4.25) 2n>md,52§/|Vu|2+nld—el.
Q

We prove by contradiction that e = d. Otherwise, (4.25) implies that |e —d| = 1; in particular e is
unbalanced. Therefore,

(4.26) / Vul|® > 2 / Jacu|=27|do— Y. d;|=2n.
Q Q =1
We obtain a contradiction by combining (4.25) with (4.26). [

We next turn to existence of minimizers in thick domains. We conjecture that minimizers do
not exist for small e. We present below a partial result supporting this conjecture.



12 PETRU MIRONESCU

4.15. Definition. Let 2 be a domain with associated degrees d # 0. Consider the minimization
problem

(4.27) min{me +7|d —e|; e € A}.

Q is fat provided e = 0 is the unique solution of (4.27).
Equivalently, Q is fat provided d # 0 and

(4.28) me+7nld—e|>nld|, Vee A\{0}.

Note that a fat domain is automatically thick.

Let us first give some examples. A simply connected domain is always fat.

Consider next a doubly connected domain Q2 with balanced degrees d =(d,d) # 0. Using Propo-
sition 4.2, it is easy to see that Q is fat if and only if its conformal ratio is > e2. By Proposition 4.8,
when |d| =1 fat is the same as thick. However, when |d| = 2, there is a gap between fat and thick
domains.

We consider next some examples of unbalanced degrees in doubly connected domains. If d =
(d1,d2) and d1dg <0, then Q is always fat. If d1dg > 0, then Q fat amounts to R > e2/min(ld1lldal)

A final example in triply connected domains. Consider Q; as in Fig. 2. As in the proof of
Proposition 4.10, we have me — oo as ¢ \, 0, for each balanced collection e # 0. We find that, for
each d # 0, Q; is fat for small .

The main nonexistence result for semi-stiff Ginzburg-Landau minimizers was obtained by Berlyand,
Golovaty and Rybalko [5]. Our next result is a slight generalization of the main result in[5], and
the proof follows very closely the one in [5].

4.16. Theorem. Assume that Q) is fat. Then, for small €, the infimum mgq , is not attained.

Proof. We argue by contradiction and assume that, for a sequence ¢, — 0, there exists u,, mini-
mizer of E., in &4. In order to keep notation simple, we omit the subscript .

Step 1. Identification of the limit of «,.

Using the upper bound (4.21), we find that, possibly up to a subsequence, u, — u to some circle-
valued limit u € &. By Proposition 2.3, e is balanced. By applying the Price lemma and using
Proposition 4.3, we find that

1
me+n|d—e|+0(1)s—/ |Vu|2+7t|d—e|+o(1)sliminng(u£)
(4.29) 2Ja e—0
Slimiglfmf,g+n|d—f|Smf+7:|d—f|, Vfe 2.
E—)

This implies that e = 0 and thus u is a constant of modulus 1. With no loss of generality, we
assume that u = 1.

Step 2. Exponential localization of u. near 0Q).
The idea is to combine the upper bound mgq < 7|d| (provided by (4.4)) with an opposite inequality
obtained by integrating the inequality |Vu|? = 2|Jacu].

Let, for t > 0, Q; = {x € Q; dist(x,0Q) > t}, and I'; ; = {x € Q; dist(x,I';) = t}. The starting point

1
is the fact that |u.| = 3 in Q; provided ¢ = Ce. This follows from the upper bound E.(u,) < n|d|

combined with the Ginzburg-Landau equation satisfied by u.; see [29]. The same ingredients
imply that u, — u in Cj7 (Q) as € — 0 [29]. This convergence combined with the homotopical
invariance of the degree imply that, for small € and sufficiently small §, we have

(4.30) deg(u¢,I';1)=0 Ce=<t=<bé.

In particular, in Q¢, we may write u, = p.e'?¢, where p, = lu.| €[1/2,1].
Consider now the function

1 2 1 2\2
431 f)==[ VulP+— [ - :
(4.31) fe(?) 2 Qtl Uel 12 Qt( luel®)
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By integrating over Q\ Q, the inequality |Vu,|? = 2|Jacu.|, we find that

1 1 0 0 1 0
_/ |Vu5|22—z / Ueg N\ ug_/ Ueg N\ Ue 27de—/ Ueg N\ te
2 O\Q, 2 J r]. ot T ot T ot

Jst 2 Jst
0p
20@¢

o
/FN £ or

1 Oou,
. =nld| - = A
(4.32) mld| 2Z/Hua =

J
j VL,

_ 1 2 0pe
= ld| 2Z/r (b2-1T~|.

J

sCe/
r
5C£/

r

On the other hand, the coarea formula implies that (for ¢ < § sufficiently small) we have

ooy 1 2 1 22)
(4.34) f.()= g/l“j,t(leud +4£2(1 luel®)|.

On the one hand, we have

0
2 / (P2 -1
j rj,t 0‘[

1
(|V<p5|2+£—2(1—p§)2)

Jit

(4.33) . .
(§|Vug|2+ 22" |ug|2>2).

Jit

If we combine (4.32)-(4.34) with the upper bound mg < 7|d|, we find that

1
(4.35) Clefg’(t) + fe(B)+ —2/ (1- |u5|2)2 <=0 VCe=st<h.

&% Jo\q,
By integrating this inequality, we find that

1
(4.36) | [Vuel*<Cpe 19 vCe<t<s, and = / (1—Juel?)? < Ce™ 0¥,
Q £ Ja

that is the potential part is exponentially small and energy is exponentially small outside a thin
layer around 0Q).

For further use, let us note that by combining (4.32) with (4.36) and with a mean value argu-
ment, we obtain the following

(4.37) E.(u;) = nld| - Cqe 5",
Step 3. Pointwise decay of Vu, far away from 0.

The starting point is the following quantitative result [9, Lemma 22].

4.17. Lemma. Let u be a critical point of E. in Dg satisfying:

1. R=¢c e
2. }]fg(u)zlr{2 SE.
3. Esluglsl.
Then
K K2 2
(4.38) IVu(0)|=C and 1- w02 =<C Rg .

Using Lemma 4.17, we easily obtain the existence of a = a. € R such that, with z, := e'?, we
have, for fixed m € N* and § > 0 and sufficiently small ¢,

(4.39) |Vuel<e™, |pe—ael<e™, lue—z|<e™ in Q.

Step 4. Idea of [5]: reduction to a linear problem.
To start with, assume that one of the components of dQ is a circle, say I'g = C(0,R).'! If we multiply

As we will see later, this is not relevant for the analysis.
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by In %l the equation satisfied by u. and integrate over Dr \ Dg_s, we find that
1 1 R-6 0 1
(4.40) —/ ” ue +1n / Ye 02— ).
C(O,R) R Jc

R R -6 Joo,r-5) ORr-5) OV € Jpppp, R

By combining (4.40) with (4.36) and (4.39), we find that, possibly after multiplying u. with a
suitable constant of modulus 1, the following hold:
(4.41) ues Ry,

/ ug - ].
C(O,R) C(O,R)

Using the last estimate in (4.41) for m =5 together with the straightforward inequality
(1-12/%? = ([Re z-1)*(Re z + 1)* ~4(1 -Re 2)*(Im 2)?, V2| <1,

we find, for fixed small § > 0 and small € > 0:

<™ and |lu—1/<e™ in Qs.

1
E (ug,Dr\Dgr_25) = 5/

1
(|Vug|2 + o5 (1~ |u8|2)2) > Fe5(u;)
Dr\Dg_25 2¢

(4.42) 1

1
;:_/ |vu£|2+—/ [e2(Reue — 1)% - e2(Imw)?].
2 Dr\Dg_ss 2 Dr-5\Dgr-2s

To summarize: assuming [’y a round circle, we found that

(4.43) Ec(ue,Dr \Dr_25) =M, 5 R d,(80),

where g9 = g0, = u¢|c(0,) satisfies deg(go,C(0,R)) = dp and / g0=0and
C(0,R)

(4.44) M, r(go) =min {Fg,a(v);trv = go}-

We next claim that, without any assumption on the geometry of I'j, we can find appropriate con-
stants C;,R; >0 and g; such that

(4.45) E (ug,{x € Q;dist(x,I'j) <6 =M, c;5r,;(8,);

here, gj = g . satisfies deg(g;,C(0,R;)) = d; and / g; = 0. This is achieved via a conformal
C(O,R )

transform mapping I'; onto a circle C(0,R;) and Q2 into f’:l subset of D. Such a transform affects E,

only by a bounded weight in front of (1 — |u.|?)? and, it is clear that the computation leading to

(4.41)-(4.43) is still valid. Conclusion of this step: we may find positive numbers C;,R;, j € [0,],

and a small 6 > 0 such that

k
(4.46) E.(u.)= ;)Mg,cja,Rj(gj) for small €.
J:

Step 5. Conclusion.

We assume e.g. that each R is 1, but this is not relevant for the analysis. The minimization of F; 5
with given boundary datum g =vs: : S! — S! is a linear problem, and it is possible to compute
the minimal energy in function of the Fourier coefficients of g; this computation was performed by
Berlyand, Golovaty and Rybalko [6]. More precisely, if g = Z a,cos(nf)+ Z b, sin(n0) , then the

n=0 n=1
last condition in (4.44) implies that ag € R;, and the minimal energy is

(4.47) Po+ g Y [nPnIRe anl® +nPy|Re b, 1> +nQ,/Im a,l® + nQ,Im b,|?],
n=1
where the coefficients P, = P,(¢,0) and @, = @,(&,0) are non negative and explicit. Now comes
the key argument [5]: for fixed 6 and sufficiently small ¢, we have
(4.48) P,Q,>1 whenn=1.

The proof of this inequality is sketched in [6] and explained in detail in [9, Section 4, Step 2].
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We continue as follows: using (4.47), (4.48) and the degree formula [20]
(4.49) deg(g,S") =Y n(Re a,Im b, —Re b,Im a,)

n=1

(which is nothing else than a rewriting of (2.1)), we find that
(4.50) Mec;5,r;(8)=7 ) nV/PnQu(Re anlllm b,|+Re b, |lIm a,|) = 7ld;l,

n=1
the last equality being strict when d; # 0. By combining this with (4.46), we find that
mq,.=FE.(u;)>n|dl forsmalle,
which contradicts the upper bound mgq < 7|d| (cf (4.4)). ]
Concerning the attainability of mq . in critical domains, we already know from Proposition 4.13

that mgq . is attained if mgq = 27. In Section 8, we will speculate about what happens in the
remaining cases.

5. CRITICAL POINTS IN MULTIPLY CONNECTED DOMAINS

Let us start with a simple result. Let d be a balanced configuration. Since d is balanced, the
class

5.1) F={uedéy;1/2<|ul<2}
is non empty. We may thus consider the minimization problem
(5.2) my,=min{E.(u);u e F}.

The next result is reminiscent from the existence of permanent currents in 3D tori [31]; it has
been established in [8] in a special case.

5.1. Proposition. For small €, my , is attained by some u. which is a stable critical point of E. in
éa.

Sketch of proof- Using the upper bound E.(u.) < mg, it is easy to see that, possibly after multi-
plying u, by a suitable complex number of modulus 1, we have u, — u in H'(Q), where u is a
minimizer of mq in %4. Let g = uj5q and g, = u,j3q. Then

(5.3) g.—g in H0Q).
We next rely on the following [8, Lemma 12.1].

5.2. Lemma. If (5.3) holds and if v, minimizes E. under the constraint trv, = g., then |ve| — 1
uniformly in Q as € — 0.

Using the above lemma, we find that, for small ¢, u, is necessarily one of the minimizers of E,

1

under the constraint tru, = g. In particular, u, satisfies —Au, = —u f(1—-|u £|2 ). The validity of the
€

third condition in (2.5) is obtained via the fact that

E (ue) <E (uce'), YyeHY(Q).

Thus u, is a critical point of E, in &g.

There are several ways to obtain the stability of u.. A possibility is to note that, since |u.| — 1,
U, is a minimizer of E, is a small C'-neighborhood of u, (cf the definition of the class %). Then we
invoke the "H'! versus C! minimizers" result of Brezis and Nirenberg [19]. However, this requires
adapting the arguments in [19], since the result there is about scalar problems.

Alternatively, arguing by contradiction, we may find (possibly along some sequence) some w,
such that |we—uellg1q) — 0 and E.(we) < E.(u). Arguing as above, we have trw. — g in HY2(6Q),
and thus for small ¢, the minimizer y, of E. with the constraint try, = trw, lies in &. This yields
the contradiction E.(u.) < E.(y.) < E.(w.) < E (u,). |



16 PETRU MIRONESCU

The case of unbalanced degrees is much more involved. In a beautiful paper [11], Berlyand
and Rybalko obtained existence of critical points of E, in &4 provided ¢ is small and Q is doubly
connected. This second condition is crucial in their approach, and can be seen as an avatar of the
work of Bahri and Coron [4] on the influence of the topology of the domains on the existence of
non trivial solutions of the critical equation —Au = u**2/»=2_ Later, Dos Santos [22] extended
the result in [11] to general multiply connected domains, and simplified the proofs in [11]. Their
combined results give the following

5.3. Theorem. Let Q be multiply connected and let M € N*. Let d be arbitrary. Then, for small &,
E. has at least M stable critical points in &yg.

Though we are not going to detail their arguments here, we will explain part of their approach
on an example.

Main idea of the proof (cf [11, Section 5]). Assume that Q is doubly connected, say Q = D\ Dg,
and that d = (1,0). Note that, in this case, we know that mq, is not attained (Proposition 3.3).
Let, for small €, u, be the minimizer of m(*i’ . constructed in Proposition 5.1. By a very involved
construction of test functions, Berlyand and Rybalko obtained the following

5.4. Lemma. Fix an arbitrary neighborhood w of To = S'. Then there is some v, € & such that
lvel <1, ve = u, outside w, and

(5.4) E.(ve)<E (ug)+m.

Let us emphasize the fact that it is easy to construct v, € &g such that E.(v.) = E.(u.)+ 1 +0(1):
for this purpose, it suffices to consider a product of the form u .M, (with M, a Moebius transform),
then modify it on dQ in order to obtain a map in &4 and then let @ — S'. The key fact in the
above is the strict inequality in (5.4). Though the main idea consists in considering a test function
mimicking the product u.M,, the heart of the proof consists in finding the sign of the difference
E.(v.)—E.(ug)—m; the fact that this sign is minus relies on the fact that the boundary degrees of
u. are above the ones of v.. For example, a similar result allows to go from degrees 2 and 2 for u,
to degrees 2 and 1 (or 2 and 0) for v,, but it seems that it is not possible to increase the degrees by
such a construction.

A second ingredient is the "approximate degree", reminiscent of a similar notion introduced by
Almeida [1]. If u is circle-valued in , then we have in polar coordinates

1 1 ou
——— [ “un—.
2n(R-1) Jqgr 00
Let now u be arbitrary and let F(u) be the the right-hand side of (5.5). Then F' is clearly weakly

continuous. The following result is not too difficult; for related results, see [11, Lemma 19, Propo-
sition 11].

(5.5) d:=deg(u,C(0,R)) =deg(u,S") =

5.5. Lemma. Let w, € &4 satisfy E.(w.) <C. Then
1. We have

(5.6) liII(l) dist(F(w,),Z) = 0.

In particular, for fixed C and small € the classes
Ya4q={ueéqg; E.(u)<C|, |F(u)-dI<1/2}, deZ,

are the (relatively) open connected components of the set {u € £g; E(u) < C}.
2. (Generalization of the Price lemma) If w, € &e, E(w;) <C and F(w,) — d € Z, then

1
(5.7 liminf—/IVwEIZZm(dd)+nId—e|.
e—~0 2 Q ’

3. (Generalization of the Proposition 5.1) Let d € Z and set £ = (d,d). Then, for small €, the mini-
mizers of E in 9 q are precisely the minimizers of mg .
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Finally, existence of a stable critical point of E¢ in &4 is obtained as follows: consider the mini-
mization problem

(5.8) mgq,:=inflE.(u);u €&y, |F(u)-1]<1/2}.

Assume for the moment that, in the above, inf is actually min. By Lemma 5.5, for small ¢ the
minimum is attained by some w, such that |F(w.)— 1| < 1/3. By continuity of F', w, is a local
minimizer of K., and thus w, satisfies (2.4).

It remains to prove that inf is attained in (5.8). Consider a minimizing sequence (y;) for mq .
such that y; — y for some y = y.. Possibly after passing to a sequence ¢, — 0, we may assume that
y € ¢ for a fixed e. Invoking the fact that clearly the map v, in Lemma 5.4 belongs to %4 4 for
small €, together with the Price lemma, Lemma 5.4 and (5.7), we find that:

5.9) mg+a(d-el+le—(1,DD+o(1)<E (y)+nld—el<mg,<E.(uc)+n

= m(*l’l),e +7T<mgq 1)+ 7.
This leaves the options e = (1,0) (which is what we want) and e = (1,1). Argue by contradiction and
assume that e =(1,1). Then Lemma 5.5 3 implies that E.(y) = m(*l’l)’g. We obtain a contradiction
via (5.9).
The above yields existence of a stable critical point when d =(1,0).
An adaptation of the above argument implies that, given e = (e,e) balanced such that e > d,
J=0,1, it is possible to construct, for small €, critical points y of E, in &4 such that |[F(y)—e| < 1/2.
The case of a multiply connected domain follows similar lines. O

6. CRITICAL POINTS IN SIMPLY CONNECTED DOMAINS

In a simply connected domain, we identify d with the integer do, and write &4, instead of &3.
The main result in this section is the following

6.1. Theorem ([10]). Let Q be simply connected. Then, for large €, E. has critical points in &1.

Note that it is not possible to reproduce the approach in the previous section: there are no
balanced collections to start with. Instead, we rely on a minimax approach that we describe
below.

To start with, after a conformal change of variables, we may assume that 2 =D and

1 2 w 2,2,
Ee(u)zg/DWlH +/[D>4_52(1_|u| )%

here w € C®(D;(0,00) is the Jacobian of the conformal transform. For large ¢, the energy E, is
strictly convex, and thus we may associate to each g € H2(S!;C) the minimizer u = T(g) of E,
subject to tru = g. We introduce the following notations:

X ={g e H2(S';S'); deg(g,S!) = 1},

Noo=trMyq, Ny =trM, (recall that M, , are the Moebius transforms).
We let 0 <r <1 and consider, for large €, the following minimax problem:

6.1) m,,= inf{ maxE (T(F(a))); F € C(D,;X), F(a) = N, for every a € C(O,r)} ;
Dr

the heart of the proof of Theorem 6.1 consists in proving that, for large ¢ and r close to 1, the
infimum is attained in (6.1), and that this leads to the existence of a minimax critical point of E,
iné& 1.

We start by presenting the technical ingredients needed in the proof.

A first tool is the description of the maps in X which are "close" to restrictions of Moebius maps.
By combining the degree formula (2.1) with the identity IVu|? = 2Jacu +4|05u|?, we find that for
each u € &1, g =tru satisfies

1 1 1 2
(6.2) 1=_—deg(g,S"H== / Jacu = — / Vul®-= / 10:ul” < 1g171s,
21 T Jp 21 Jp T Jp
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with equality if and only if u is holomorphic. On the other hand, it is standard that holomorphic
maps u satisfying [tru| = 1 are precisely the Blaschke products. In conclusion, if g € X, then
|glg12 = 1 (or < 1) is equivalent to g = N 4 for some a € S! and a € D. Equivalently,

(6.3) min{E.(u); u € &1} equals m and is attained precisely by the Moebius transforms.

Therefore, the next result describes indeed maps g € X close (in HY2) to restrictions to S! of
Moebius transforms.

6.2. Theorem. There exists some &g > 0 and a function f :(0,6¢) — (0,00) such that %in(l)f(é) =0

2
2

1. The harmonic extension u = u(g) of g has exactly one zero, a = a(u) = a(g).

with the following property: if g € X satisfies |g| <1+6 for some § < b, then:

2. If we write g = Nye™V with v e HY2(Q;R), then |y|12 < f(6).

3. The map g — a is continuous.

4. In addition, given r € (0,1) and u > 0, we may pick 6¢ such that the above hold and |lauoM_, —
Idl c2p,) < u for some appropriate a € st

5. In addition to item 4, there exists some €y > 0 such that, for € > €, the minimizer v=T(g) of E,

subject to trv = g satisfies |lavo M _, —Id”02(|Dr) < u for some appropriate a € SL and |v|>1- U
in D\D,.

6. For 6 <dpand r <1, the class {g € X |g|2

e <1406, |a(g)l = r}is weakly sequentially compact.

The proof of Theorem 6.2 is delicate and will be omitted here.
We next translate problem (6.1) into a more tractable one. For this purpose, let Y = HY2(S1;R)

and consider the map G, Ide', which clearly maps Y onto X (c¢f Proposition 2.1). It is not
difficult to prove the existence of a (unique) continuous map D 3 a — v, € Y such that vy =0 and
N, =G(y,) =1de'V for each a € D. Then (6.1) is equivalent to

(6.4) m,.= inf{ maxE,oToG(F(a))); F € C(D,;Y), F(a) =y, for every a € C(0,r) } .
[ ——

D, Y

The next result is the following

6.3. Lemma. The map J =E,oToG:Y — Ris C1, and we have

0
65 JW)n) = / (uA—”
§1

n, Vy,ney,
ov
where u = T(G(y)).

Using these ingredients, we may now proceed to the

Proof of Theorem 6.1. Step 1. Mountain pass geometry.
More specifically, we establish the following fact. Let € be large and fixed. Then, for r sufficiently
close to 1, we have

(6.6) mpe>cre= Icr(lgic) J(q).

Indeed, note first that ¢, — n as r — 1. This is easily obtained by combining the lower bound
cre = 7 (cf Proposition 3.3) with the upper bound

cre<maxkE.M,)—n asr—1
C(,r)

Assume that m, . <7(1+69), with §¢ as in Theorem 6.2 (if this inequality does not hold, then we

are done). Let H be the map g — a(g), defined in Theorem 6.2 1, and let F € C(D,;Y) be such

that F(a) =y, on C(0,r) and maxJ oF < n(1+dp). Consider the map HoF :D, — D. This map is
D

continuous and equals the identrity on C(0,r). By the Brouwer fixed point theorem, there is some
a € D, such that G(a) = 0. For this a, Theorem 6.2 5 implies that

1 C
S / w1 - |T(F@)*)? = =,
& Jp &
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C
and thus m,, = 7+ —. We obtain the desired conclusion by letting r — 1 and noting that C is
independent of r.

Step 2. Construction of Palais-Smale sequences.

This is straightforward. By Step 1, we are in presence of mountain pass geometry, while, by
Lemma 6.3, J € C!. By the Mountain Pass Theorem of Ambrosetti and Rabinowitz [2], we obtain
the existence of a sequence (y;) Y such that J(y;) — m,. and J'(y;) — 0. Let g; = G(y;) and
u; =T(g;). Let u be such that (up to a subsequence) u; — u. Clearly, the above, Proposition 2.2
and Lemma 6.3 imply that u is a critical point of E., so the remaining issue is to prove that u € &;.

Step 3. Analysis of the Palais-Smale sequences.

This is the heart of the proof. It is easy to see that m,  — m as € — co. Therefore, for large ¢ we
have E.(u;) <n(1+6p), with §¢ as in Theorem 6.2. By Theorem 6.2 6, we have u € &1 provided that
that (up to a subsequence) |H(g;)| <r < 1. We prove by contradiction that this holds.'? Indeed,
assume that a; := H(g;) satisfies |aj| — 1. We then rescale u; by setting v;j =ujoM_,,. Let

1
wj=—woM_g;JacM_g,, so that v; € &1 satisfies

=5
—Avj:wjvj(l—lvjlz) in D

(6.7) /(vj/\ijc‘ <o(WIV¢lz2, Y{eHY(D)
Uju(}O)_’O

and

1 1
(6.8) —/ IVo|? + —/ wi(1—1v;1%)? - m,.
2Jp 4 Jp
Since |a;| — 1, we have
(6.9) wj; — 0 uniformly on compacts of D.
Using (6.7) together with (6.9), we find that v; — v, where v(0) = 0 and v is a critical point of E,
in &y for some d. For large €, we have m, . <27, and thus, by the Price lemma, we have

1
(6.10) —/|V0|2+ﬂ|d—1|<2n.
2 Jp

This leaves us with the possibilities d =0 or d = 1. We next rely on the following

6.4. Lemma ([10]). Let d e N and let v :D — C be a critical point of E, in &,.

1. If d =0, then v is a constant of modulus 1.
2. If d = 1, then v is a Blaschke product,; more specifically, v is a product of d Moebius transforms.

The proof relies on the properties of the Hopf differential; see e.g. [25].
Using the above lemma combined with the fact that d € {0, 1} and v(0) = 0, we find that (possibly
up to a subsequence)

(6.11) vj—v=ald for some a € S'.

This, combined with the fact that m, . > 7, contradicts the next result. This contradiction com-
pletes the proof of Theorem 6.1. O

6.5. Lemma. We have

(6.12) /|vUj|2a/|vU|2:2n
D D
and

(6.13) /wju ~v;1*? — 0.
D

12With more work, this approach gives also the stronger conclusion that Palais-Smale sequences are strongly
compact.
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Proof. 1t suffices to establish (6.12)-(6.13) along a subsequence. We may assume that a = 1.
By Theorem 6.2 5, there exists some A > 0 such that

(6.14) |vj(2)I=A VzeD suchthat|z]=1-A.
By standard elliptic estimates,
(6.15) v;—v in W2P(D), Vp <co.

By (6.9) and (6.15), we find that (6.12) and (6.13) hold if we replace D by D, for each r < 1. There-
fore, it suffices to prove that

(6.16) limlimsup/ (Vo2 +w,;(1—v;1%?) =0.
r—=1 j.co JD\D,

By (6.15), v; — v uniformly on compacts of D. Combining this fact with (6.14), we find that for
large j we have

v

deg(—J,C(O,r)) = deg(i,C(o,r)) =1, Vre[l-2a,1]
|Uj| [v]

Therefore, we may write, in w =D \Dj_y, vj=p J-e‘(9+‘/’f), with A < p; < 1. Possibly after extracting

suitable multiples of 27, we have ¢ ; —0 and p; — p:=|v] in H'(w). On the other hand, by (6.15),

we have ¢; —0and p; — p in Cl (w).

loc
We next translate the properties of v; in terms of p; and ¢;. We have

div(pr(e +¢;)=0 inw
~Apj=w;p;(1-p)?=p;IVO+¢)P inw
(6.17) <vj/\ij:,O?V(0+cpj) inw
/(vj/\ij)-V( <o(DIVClLz, V(e H (D)
D

Let 0 <6 < A. Since ¢; — 0 in C1(Ci_s), we find that that the function ¢j, defined in D \D;_s, has
an extension (; € HY(D) such that 1V lz2m, 5 — O- Using the fact that

p?V@ — p2V6 and p?V(pJ- —0 inL%w),

we find that
0:1im (vj/\ij)-V(j:hm (vj/\ij)-V(j
J—0Jp J—0 JD\Dq_4
=lim [ [pVO+9)]-Ve;=lim | plVe,l?
J—o0 D\Dq_s J—0o0 D\D1_s

which implies easily that

(6.18) lim lim P2V +¢))I” = 0.

5—'0]—’00 D\D1_5

We next multiply by n; =1 - p; the equation satisfied by p; and find that

1+p; o0p;
6.19) [ (|ij|2+ p’wj<1—|vj|2>2):/_ pmjlvw+<pj>|2+/ nj=,
D\D,_s Pj D\D;_s c,s OV

v being the normal exterior to D;_s.
We next note that

0p; 0
620 limlim | 7,2 =1lim [ a-pZ-=o.
§—0j—c0 Jc, s OV 6-0Jc, , ov
By combining (6.19) with (6.18), (6.20) and with (6.14), we find that
(6.21) limlimsup/ (IVo,1? +w;(1-1v,1*?) =0.
6~ D\D;_s

0 j-oo
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Noting that Iijl2 = IVpJ-I2 +p;1V(0 + (pj)l2 in w, we obtain Lemma 6.5 by combining (6.18) with
(6.21). O

So far, this concerns the case where ¢ is large. In Section 8, we discuss the case where € is small.

7. ASYMPTOTICS AND UNIQUENESS

We start with an asymptotic result when € — 0 in thin domains. This is a generalization of [8,
Sections 8, 9, 10].
7.1. Theorem. Assume that Q) is thin.

1. Then (possibly up to subsequences) u, — u in C1(Q), where u € H(Q;S%) is a minimizer of mq.
2. For small €, u, is unique modulo S': if v, is another minimizer of E,, then v, = au, for some
a €S'. And conversely.

The same holds in critical domains such that mq = 27.
Sketch of proof Step 1. Identification of the limit in H(Q).
Assume first that Q is thin. The proof of Theorem 4.12, and more specifically (4.22), implies

that (possibly up to subsequences) u, — u, where u € HX(Q;S') N &e and the balanced collection e
satisfies

1 1
(7.1) me+nld—e|l< 5/ IVuI <liminf— / IVugl2 <mygq.
Q Q

E—0Q

Since Q is thin, we find that e = d, and thus u, — u in H1.
More delicate is the case where Q) is critical and mgq = 2. The starting point is the following

7.2. Lemma. Let d be balanced and let u be a minimizer of mq. Let mj , be as in (5.2). Then

2
€
(7.2) mfu:md—z/IVu|4+o(£2) as € — 0.
’ Q

Proof of Lemma 7.2. By the proof of Proposition 5.1 and by Lemma 5.2, we may write, for small ¢,
ue = peue'® and then we have

1 1
(7.3) Eg(ug):/(§|Vpg|2+§p§|u/\Vu+V(pg| +—(1 02)?|.
Q

We will estimate each term in (7.3).
By Proposition 2.2, the smooth maps p. and ¢, solve

div(p%(u A Vu + V) =0 in Q
1
~Ape = Spe(l—pe)’ —pelu AVu+Veg[* inQ
(7.4) A ) € .
= =0 on 0Q)
ov
pe=1 on 0()

The analysis of the system (7.4) developed in [8, Section 8] yields the convergences p, — 1, ¢, — 0
in CHA(Q), 0< B < 1.
We claim that

(7.5) /IVpgl +—/(1 p2)?% = 0(e?).

Indeed, this is obtained by multiplying by p. — 1 the equation of p.. Using the fact that, by the
maximum principle, we have p, <1, we find that

1
/(IVpgl + = 21 ( —pg>2) /ps(l—pg)lu/\Vu+V(pgl2
Q

1 2 2
_2—82/9(1_95) +Ce”,

and this leads easily to the desired conclusion.

(7.6)



22 PETRU MIRONESCU

We next rely on the interior estimates of Bethuel, Brezis and Hélein [13, Theorem 2].

7.3. Theorem ([13]). Assume that u. minimizes E. with respect to its own Dirichlet boundary
condition, that E.(u;) < C and that u, — u in H(Q). Then

2
1-lugl
£2

Let 6 > 0 be small and fixed. By (7.7), we find that

(7.7) — |Vul?=|uAVul®? in C®Q).

(7.8) / (1|Vp |2+i(1—|u |2>2):f IVul* +o(e?)
) Qé 2 & 46’2 ¢ 4 Qa )

On the other hand, if we repeat in Q\ Qs the argument leading to (7.5) and use (7.7), we find that

1 0
/(vagl ST 95)2) /pg(l—pg)lu/\Vu+V<pgl2—/ 1-po)2e
Qs 1 Qs Qs

(1-pe)?+C(5e%+ e,

(7.9)
2 2e2 Qs

and thus
1
(7.10) IVp£|2+—2/ (1-p%)? < C8e% + o(€2).
Q\Q5 €7 Ja\Q;

By combining (7.8) with (7.10), we find that

(7.11) /
Q

In view of (7.3), it remains to prove that

1 2 2 & 4 9, 1 2 & 4 2
= [ pilunVu+Ve " =mqg—— [ [Vul"+o0o(e®)== [ |Vul"—— [ [Vul®+o(e”).
2 Ja 2 Ja 2 Ja 2 Ja

By the argument leading to (7.11), we have

1 1 2
—/PEIVulzz—/ IVulz—g—/ IVul* +o(e?),
2 Ja 2 Ja 2 Ja

and also

(7.12) /(1—p§)|Vu|2:o(£2) and /(1—p§)lu/\Vu+V(pg|2:o(sz).
Q Q

1
~|Vp.l? t o3 (1 p2)2) / IVul* +o(e2).
2 Q

Therefore, it suffices to prove that
(7.13) / (lu AVu+ Ve |2 = Vul?) = o(e?).
Q

Estimate (7.13) is obtained by combining (7.12) with the fact that

zmd=/ |Vu|2s/ |V(ue“"f)|2=/ lu AVu+ Vo,
Q Q Q

and with the inequality

/p§|u/\Vu+V<pg|2s/p§|Vu|2,
Q Q

which is a consequence of (7.4). ]

Step 1 continued. Assume that ( is critical and that mg = 2. By (7.1), we find that either e =d
(and then we continue as in the thin case), or e = 0. In the latter case, |d| = 2 and u« is a constant
of modulus 1. Therefore, we may invoke (4.37) and find that

(7.14) mq,=2n- Cue 5%,

Since mq , < m;“l o> (7.14) contradicts Lemma 7.2.
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Step 2. Stronger convergence.

By Lemma 5.2, we have |u.| — 1 uniformly in  as € — 0. As in the proof of Lemma 7.2, we may
transform the H! convergences into the stronger convergences ¢0e—0,p,—1inC LB(Q), 0 < p<1
[8, Section 8], and thus u, — u in C1A(Q).

Step 3. Uniqueness.
This follows essentially from the method developed in [28]. Write, for small €, v, = u.n.e'¥c. The
starting point is the identity [28, Substitution lemmal]

1 1
E. (o) =E (uc)+= / luel2|Vne2 + = / PARAR
2/a 2 Ja

7.15 1
e +/("3—1>(ueAVue)-ng+—2/ Juel*(1-n2?.
Q 4e Q

I.

By Cauchy-Schwarz and the fact that u.,v, — u in C 1(Q), we have

1
1] < —2/ luel*(1-n2)? +Ce2/ eIVl
8¢ Q Q
and thus, for small ¢, E.(v;) > E.(u.) unless . = 1 and v, is a constant, which amounts to v, = au,
with a € SL. O
In a different but related direction, we mention without proof the following result, stated for

1 1
convenience in Q =D for the energy E.(u) = 5/ IVuI2 + 12 w(l- |u|2)2.
D € JD

7.4. Theorem ([10]). Let u. be a minimax critical point as in the proof of Theorem 6.1. Then, as
€ — 00, U, converges (possibly up to a subsequence) strongly in HY(D) to a solution of

(7.16) max{/w(l—lMa,alz)z;a€§1,a€ID}.
D

We next present a non asymptotic result from [23], which is a considerable improvement of a
result of Golovaty and Berlyand [24] concerning uniqueness in circular annuli.
For s > 0, we denote by </; the area of {z € D; Re z > s}. It is easy to see that there is exactly one

o €(0,1) such that <, = g—2. For this o, we set § = 27,1

7.5. Definition. A balanced collection d is slim if mq < 6.

Returning to the examples considered in Section 4, we see that a doubly connected domain with
d =(d,d) is slim provided R < R(d) with R(d) sufficiently close to 1, and that ; in Fig. 2 is slim
provided ¢ > t(d). On the other hand, it is easy to see that slim implies thin.

By (4.23), if Q is slim then

(7.17) mg.<6 Ve>O0.

This inequality will be crucial in what follows. Before going further, let us mention that (7.17)
implies that d is balanced. Indeed, this follows from the fact that, if d is unbalanced and u € &3,

then
1 2
mg,=>— [ |Vul"= Jacu
2 /o Q

7.6. Theorem ([23]). Let Q be slim. Then (modulo SY) E, has exactly a minimizer in &y.

dO_Zdj >n>0.

j=1

=7

Note that, since mq < 27, existence of a minimizer follows from Proposition 4.13, so that the
issue is to prove uniqueness. The proof of the uniqueness relies on the following special case of
[23, Theorem 3.6].

13The approximate value of & is 6 = 0.04518303544....
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1
7.7. Theorem. Let u, minimize E. in &g and let p € (0,1). If§/ IVu|? < 294y, then |u| = p in Q.
Q

The proof of Theorem 7.7 is delicate and will not be presented here. However, in order to give a
flavor of the proof, we present a much simpler related result.

7.8. Theorem ([23]). Let Q) be simply connected and let p € (0,1). Let u minimize E. subject to
1
tru = g€ CL(0Q;SY). If§/ \Vu|? < 244, then |u| = p in Q.
Q

Note the following interesting

7.9. Corollary. Let Q be simply connected. Let u minimize E, subject to tru = g € C1(0Q;SY). If
/ IVuI2 <7, then u does not vanish in Q.
Q

Proof of Theorem 7.8. Step 1. The level sets of |u| are "long".
Let m = m&nlul. Let zg be such that |u(z¢)| = m. For a generic ¢ € (m,1), the level set [|u| =] is

smooth, and contains a closed curve y; enclosing z¢. Consider the circle arc 6; = u(y;) < C(0,t).
Let ¢; ; be the length of C(0,t) n{Re z > s}. We claim that the length of 6} is at least ¢; ,. Indeed,
argue by contradiction. Up to a rotation, we may assume that %6; is contained in C(0,r)n{Re z > s}
for some s > m. As we will see, this implies

(7.18) |ul=s at the interior of yy;

this conclusion contradicts the fact that z( is at the interior of y; and |u(zg)| =m <s.

It remains to prove (7.18). Consider the set S = {z € D; Re z = s}. Let w denote the interior of Ye
and set A = u)5,, whose image lies inside S. Our aim is to prove that u(w)c S.

The map v = |Re u|+:Im u equals 2 on dw and has the same energy as u. Thus v minimizes E,
in w with boundary datum A. Since w is connected, if we prove that v(w) < S, then we also have
u(w) < S. We thus reduced the problem to the case where Re u = 0.

Let IT be the orthogonal projection on S. The following is straightforward.

(7.19) |z|<|I(z)| <1 for ze DN {Re z = 0}.

Set w = I1ou, which equals A on dw. Since II is a contraction, we have |Vw| < |Vu|. This fact
combined with (7.19), and with the fact that ¥ minimizes E. in w with boundary datum A implies
that w is a minimizer of E, in w with boundary datum A. Actually, a bit more can be said.
Indeed, by combining the minimality of u with the fact that |Vw| < |Vu| and with the inequality
(1-w|?)? < (1 -|ul?)?, we come up with the equalities |Vw| = |Vu| and |w| = |ul.

Consider now the open set

V={xew;ulx)¢S}={xe€w;Re u<s}.

Our aim is to prove that V is empty. Let [1=11I; +:I13 and set
F={zeD\S;Rez=0}.

If z € F, then I11(z) = s and [12(z) depends only on Im z. On the other hand, we have
TIo(z2) —TIa(&)| < |Imz—-Im |, Vz, eF.

By the above, we have V(Re w) =0 and |V(Im w)| < |V(Im u)| in V. Since we also have |Vw| = |Vu|,
we find that V(Re u) =0 in V. Consequently, Re u is locally constant in V.

Assuming, by contradiction, that V is not empty, we claim that Re u = s on V. Indeed, let Vj
be a connected component of V. If x € 0Vy, then either u(x) € S, or x € dw. In the first case, the
definition of V implies Re u(x) = s; in the latter, we obtain the same conclusion via the fact that
h € C%0w;C). Since Re u is locally constant in V, we find that Re u = s in V. This contradiction
completes the proof of (7.18).

Step 2. The Dirichlet energy of u is "large".
Consider again a generic ¢ € (m,1). Write, locally in the set U = {x € Q;u(x) # 0}, © in the form
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u = pe'?, with p = |u| and ¢ real-valued and C!. On the one hand, we have
(7.20) |Vul?=|Vp2+p%|Ve|? = 2p|Ve|IVp| inU.
By (7.20) and the coarea formula, we find that

1 1 1
(7.21) §/|Vu|22/ (/ pIV(pI) dt:/ t(/ Vol | dt
U m \JIp=t] m [p=t1

On the other hand, we claim that for a generic ¢ we have

u u u 0 (u
(7.22) |V(p|:/ (_),\v(_)‘Z/ (_)A_(_) =9
[p=t] [p=¢1 I\ U] |ul lo=a I\lul) 0T \|ul

Only the last inequality in (7.22) requires an explanation. Assume first that u(y;) is strictly
contained in C(0,%). Let A,B € y; be such that the endpoints of u(y;) are u(A) and u(B). Let ;,
J =1,2, be the two arcs of y; with endpoints A and B. Write, on each 9}, u = te'¥/; this time, ¢;
is not only locally, but globally defined. Since the quantity ¢|p;(A) — ¢;(B)| equals the length of
(u(yy), we find, via Step 1, that

falliaelial-5 1,

i.e., (7.22) holds.
Assume next that u(y;) = C(0,¢). Then the variation of % on v; is at least 27, and thus
u

ol =y )

so that again (7.22) holds.
By combining (7.21) with (7.22) and applying the coarea formula, we find that

1 1
5/ |Vu|222/ Osmdt =2,
Q m

1
Since by assumption 2 / IVul? < 244, we find that «, < «/,, and thus m = p. Consequently,
Q

gt,m

t

a‘l’J lim
= [p1(A) — p1(B)| + |p2(A) - (pz(B)|>2—

=27,

|lu| = p in Q. O

Proof of Theorem 7.6. Let u,, v, be two minimizers of E, in £g. By Theorem 7.6, we have |u.| = o
and |ve| = 0. We write v, = u.n.e'¥c. By (2.4), the smooth vector field u. A Vu, satisfies

div(us AVug)=0 inQ

(7.23) .
(ug AVug)-v=0 on o2

Therefore, we may find a global function H, such that 0,H, = us AO0yu, and 0,H; = —u, A Oyl,.
Inserting H, into the identity (7.15), we find that

1 1
E.(v))=E (u;)+= / el ?IVnel® + = / ve 2|V, 2

/(1 n2)Jac(Hg,1//£)+4 2/|ug|4(1 772)2

Using the fact that o < |u,|,|v:| < 1, we obtain

2
(7.24) Eg(vg)zEg<ug>+% / (1Vnel? + |V l?) -
Q

1
/ (1-n2)Jac(He,y,)| + —5 / uel*(1-n2).
Q 4¢e
We next invoke the celebrated Wente estimates in the quantitative form of Bethuel and Ghidaglia.

7.10. Theorem ([15]). Let f € H)(Q) and g,h € H(Q). Then

)| < V2IVFll2 Vgl VA .
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By combining (7.25) with (7.24) and with the fact that
IVHell2 = llue AVuelrz < IVu,llgz < V26,

we find that
2
o 4V 1
E.(vo)zEe(ue) + — / Vel + IVyel®) = ——IVnell 2 I Vel 2 + — / luel*(1—n?)>.
2 Q o 4¢ Q

Our choice of o implies that E.(v.) = E.(u.), with equality if and only if v, = au, for some a €
st O

8. PERSPECTIVES AND OPEN PROBLEMS
As already mentioned in Section 4, we propose the following
Conjecture 1. Assume that 2 is thick. Then, for small ¢, the infimum mg, is not attained.

We note that, for large €, mq . may be attained. For example, if (2 is doubly connected and d = (1,1),
then mg  is attained for large ¢, though € is thick for large R [8, Corollary 5.5].

Conjecture 1 is known to be true only for fat domains. An inspection of the proof of Theorem
4.16 reveals that an important step is concentration of energy near boundary. This suggests the
following.

Conjecture 2. Let u, minimize E, in &q. If u, — u as ¢ — 0, with u € &, and e #d, then
(8.1) mg,=E (u;)=me,+mld-e|+o(e?).

A stronger conjecture, implying the two first ones, is the following.
Conjecture 3. Let u, minimize E, in &q. If u, — u as € — 0, then u € &3.

We continue by presenting a consequence of Conjecture 2 on existence of minimizers.
Consider a critical domain. Let ™ be the non empty collection

B ={ec A\{d};mqg =me +n|d—el}.

8.1. Proposition. Assume that Conjecture 2 holds. Let Q) be a doubly connected critical domain.

Then, for small €, mq . is attained by some u., and (possibly after a rotation) we have u, — ud,

Proof. Consider, for fixed small €, a minimizing sequence (u,.) weakly converging to some u,.
As in the proof of Theorem 4.12, we may assume that u, € &, with f independent of ¢, and that
us — u, where |u| =1 and u € &¢. As in the proof of Theorem 4.12, u, minimizes E, in & and we
have

(8.2) mg=mgqg,=m¢, +7nld—f]>2me +7n(ld—f]+[f-e|) +o(1).

If e=d, then e =f=d, and we are done. Otherwise, noting that e is balanced, we find that e € #*
and

(8.3) |[d—fl+|f-el=|d—e].

We now take advantage of the fact that () is doubly connected. Let d = (d,d) with, say, d > 0.
Then e = (d — 1,d — 1).1* Since d is critical, Proposition 4.8 implies that e is thin. By Theorem 7.1
combined with the proof of Proposition 5.1 and with Lemma 7.2 we find that, for small £, we have

2

€
4 2
me’E:mZ,gzme—Z/QIVuel +o(e?).

d d- (1,1).

It is clear that (up to multiplication with an a € S') we have u9 = v¢ and u® = v?¢™1, where v =u

Thus

d—1 4.2
(8.4) me,gzme—% / Vol* + o(e?).
Q

14This is an easy consequence of Proposition 4.2.
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On the other hand, we have

d4e?
(8.5) mg,<mj,=mgq-— —/ IVul* + o(e2).
’ Q

4
If we combine (8.2) and (8.3) with (8.4) and (8.5) and with Conjecture 2, we obtain the contradiction
d4 2 d—1 4.2
md——g |Vv|42md—i/ |Vv|4+0(£2). O
4 Jo 4 Q

8.2. Remark. Proposition 8.1 still holds in multiply connected domains when d is of the form
d=(d,d,0,...,0).

Proposition 8.1 suggests that, for critical domains, a secondary criticality occurs, and that exis-
tence of minimizers is governed by the sign of the quantity

min{/ IVud|4—/|Vue|4;e€@*}.
Q Q

Note that, unlike the size, this quantity is not conformally invariant. This suggests that existence
of minimizers for small € may not be a conformally invariant property of the domains.

We next turn to existence of critical points in simply connected domains. Our main result in
Section 6, Theorem 6.1, asserts existence of critical points of degree 1 provided ¢ is large. Even
for large ¢, we do not know what happens in degree = 2. In an opposite direction, in a work in
progress [27] we investigate with Lamy existence of critical points for small €. Our starting point
is the observation that, when Q =D, we may explicitly construct radial critical points of E. in &5.
This is done by the minimization of E, in the class of the maps of the form f(r)e??. Using inverse
function theorem methods in the spirit of Pacard and Riviere [30], we obtain persistence of critical
points when d =1 and Q is close to the unit disc. More precisely, we establish the following

8.3. Theorem. There exist some 6 > 0 and € > 0 such that the following hold. If there exists a
conformal representation f : D — Q such that f € C5% and ||f —Id| g1« < 8, then, for € < e, there
exist critical points of E . with prescribed degree 1 in Q.

More generally, we derive necessary conditions in order to have existence of critical points for
arbitrary d and in an arbitrary simply connected domain Q. Without giving details here, these
conditions!® are presumably “generically” satisfied, that is, we establish existence of critical points
in “most” of domains.

The above critical points are qualitatively different form the ones obtained by Berlyand and
Rybalko [11] and described in Section 5. Indeed, the radial critical points vanish at the origin
and have modulus close to 1 outside a small neighborhood of the origin. On the other hand, the
critical points constructed in [11] have uniformly bounded energy and thus have modulus close to
1 outside a thin boundary layer. The former critical points have inner vortices; the latter, boundary
vortices. In contrast with the case of the disc, it is not known whether critical points with inner
vortices exist in multiply connected domains. However, it is quite likely that the analysis in [28]
extends to multiply connected domains, and that such critical points do indeed “generically” exist.
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