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Scaling law and reduced models for epitaxially strained

crystalline films

M. Goldman ∗ B. Zwicknagl †

Abstract

A variational model for the epitaxial deposition of a film on a rigid substrate in the
presence of a crystallographic misfit is studied. The scaling behavior of the minimal
energy in terms of the volume of the film and the amplitude of the misfit is considered, and
reduced models in the various regimes are derived by Γ-convergence methods. Depending
on the relation between the thickness of the film and the amplitude of the misfit, the
surface or the elastic energy contribution dominates, and in the critical case the two
contributions balance. In particular, the formation of islands is proven if the amplitude
of the misfit is large compared to the volume of the film.

1 Introduction

We study a free energy functional introduced in [42] (see also [9, 20, 26]) to model the epitaxial
deposition of a film on a rigid substrate when there is a crystallographic misfit between the
two solids. The energy consists of the stored elastic energy in the film and the interfacial
energy of its free surface. Precisely, we consider

Fd,e0 (u, h) :=

∫
Ωh

W (∇u) dx dy +
∫ 1

0

√
1 + |h′|2 dx, (1)

where the Lipschitz function h : [0, 1] → [0,∞) describes the profile of the deposited film,
Ωh := {(x, y) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ h (x)}, and u ∈ W 1,p

(
Ωh;R2

)
is the planar displace-

ment. Note that we restrict ourselves to two-dimensional morphologies which correspond
to three-dimensional configurations with planar symmetry (see Section 5 for some results
in the higher-dimensional setting). We consider film profiles of fixed volume d > 0, i.e.,∫ 1
0 h (x) dx = d, and impose the boundary conditions h(0) = h(1) = 0 (see Figure 1).
The parameter e0 ∈ R stands for the amplitude of the crystallographic misfit between the
film and the rigid substrate, and is introduced in this model via the boundary condition
u (x, 0) = e0 (x, 0). This condition forces the film to be strained. The free energy density
W is nonnegative and satisfies a p-growth condition (see Section 2.3). We note that the
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functional (1) is normalized by setting a typical surface energy per unit length to one, i.e.,
the material parameters are all collected in W .

It has been observed experimentally and numerically that the qualitative shape of the opti-
mal profile depends on the volume d of the film and on the amplitude of the misfit e0 (see
[9, 27, 31, 43]). If the volume is small then the film typically forms a flat layer. If the volume
of the film is sufficiently large then the flat configuration is no longer stable and atoms often
tend to rearrange in such a way that part of the bulk energy is released. The competition
between elastic and surface energy then gives rise to the formation of islands on the substrate
surface. Such island formation is used for many optical and optoelectronic applications, such
as quantum dot lasers.

In recent years, the mathematical analysis of the model (1) has been devoted to the geometri-
cally linear small strain approximation (see [20, 26, 9]), corresponding to small deformations,

in whichW depends only on the symmetrized gradient E(u) := ∇u+∇Tu
2 . Since we are mainly

interested in the regime of large mismatch e0, the small strain hypothesis is questionable and
instead we focus on the geometrically nonlinear case. We point out that our analysis can
be easily carried over to the geometrically linear setting with only very minor modifications.
However, in the limit of large strains or large volumes, the model becomes physically less
justified since dislocations, fracture, and other plastic effects are more likely to appear. Also,
the hypothesis that the film remains a subgraph seems to be rather restrictive. Our aim is
thus not to give a quantitative prediction of the formation of islands, but to show how the
latter is encoded in this classical model and to highlight the underlying scales. We try in
particular to better understand how the relation between the misfit and the volume of the
deposited film drives the pattern formation.
Our main result is the following scaling law for the energy (see Theorem 3.1): There are
positive constants C1 and C2 such that for all choices of parameters d and e0,

C1max
{
1, d, e

p/3
0 d2/3

}
≤ inf Fd,e0 ≤ C2max

{
1, d, e

p/3
0 d2/3

}
.

Subsequently, we consider the scaling regimes separately and derive reduced limiting func-
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tionals in the spirit of Γ-convergence in the three scaling regimes and for the transition regime
d ' ep0. Our results agree qualitatively with the experimentally observed morphologies. Con-
sider first large volumes d → +∞. If the amplitudes of the misfits e0 → +∞ are such that
ep0
d → 0, i.e., inf Fd,e0 ' d, then the surface energy dominates, and the main energy contribu-
tion comes from the non-horizontal parts of the boundary. Indeed, in this case the limiting
reduced functional does not depend on the elastic strain and charges only the vertical parts
of the boundary of Ωh (see Proposition 4.2). The limit problem is minimized by the flat
configuration (see Lemma 2.6). In the transition regime in which d ' ep0 → +∞, surface and
elastic contributions compete (see Section 4.3). Consequently, the minimizer of the reduced
model is either the flat configuration or an island, depending on the elastic properties of the
material. Finally, if the amplitudes of the misfits are large compared to the volumes, i.e., if

e0 → +∞ and
ep0
d → +∞, then inf Fd,e0 ' e

p/3
0 d2/3, and the main contribution to the energy

comes from the elastic part. Precisely, the limiting functional is now defined on the space of
(at most) countable sums of Dirac masses. Using a compactness argument (see Proposition
4.7), this proves that in this regime, low-energy sequences have to converge to sums of Dirac
masses. This shows that the formation of islands is energetically favorable in this regime. To
the best of our knowledge, this work is the first rigorous mathematical justification of the
formation of islands in relation to the amplitude of the mismatch between crystallographic
lattices in epitaxially strained films.
For small volumes d→ 0 and small amplitudes of the misfits e0 → 0 such that ep0d

2 → 0, we
have inf Fd,e0 ' 1, and the limiting reduced functional is simply a constant (see Proposition
4.1). In particular, for low-energy sequences in this regime neither the elastic energy nor
the non-horizontal parts of the boundary contribute significantly to the energy. If, however,

ep0d
2 → +∞, then inf Fd,e0 ' e

p/3
0 d2/3, and, as discussed above for the case of large volumes,

low-energy sequences converge to sums of Dirac masses, and the formation of islands is ener-
getically favorable. Notice that our proof makes fundamental use of the fact that we are on
a bounded domain. However, building on the techniques developed here, we investigate with
P. Bella the same type of problems on unbounded domains and obtain similar results (see [6]).

In the last part of the paper we adapt our method to prove the scaling law in higher dimen-
sion for the Dirichlet elastic energy (see Proposition 5.1). Even though our method seems to
be quite flexible, the richness of the geometry makes the extension to more general energy
functionals difficult (see also [13] for some results). We finally note that in higher dimension,
the elastic part of the energy can be seen as a repulsive nonlocal term which relates the
problem to the Ohta-Kawasaki model that has recently attracted a great deal of attention
(see [34, 16, 14, 30, 2]).

We note that in the regimes in which the elastic energy is not dominated by the surface
energy, the recession function of W at infinity plays an essential role in the limit. The latter
is defined by

W∞ (A) := lim sup
t→+∞

W (tA)

tp
for A ∈ R2×2,

3



and appears naturally in problems involving functionals with linear growth (see [22, 23]).

Previous work, starting with [12], has been devoted to regularity and other qualitative proper-
ties of islands, once they are formed. In [20] the authors prove that minimizing configurations
are smooth outside of a finite number of cusps and cuts. Subsequently, it is proven in [26] that
for small values of the amplitude of the mismatch, the flat configuration is always minimizing
no matter how thick is the film. Further, they proved that for larger (but fixed) values of e0,
there are increasing thresholds for the volume d such that the flat configuration changes from
being an absolute minimizer to being only a local minimizer, and such that it is no longer
a local minimizer above a certain threshold for d. Finally, they showed that even though
the flat configuration is no longer minimizing, there exists another threshold below which
minimizers are smooth.

Our analysis bears similarities with dimension reduction problems (see [5, 19, 24, 25, 32, 37]).
In contrast to these works, we study the behavior for small and for large volumes. Further-
more, the reference configuration is not given but is one of the unknowns. Another feature of
(1) is the absence of regularizing second order terms which are often used to obtain scaling
laws in elasticity (see [35, 17, 7]). Notice also that our proof of the lower bound for the scaling
law in dimension two does not rely on interpolation inequalities.

Here, we deal only with the stationary setting, but we refer to [21, 40] for recent results on
the time evolution problem. Finally, as pointed out above, it would be also interesting to
investigate the model without the hypothesis that the domain of the film is a subgraph (see
[11]). We expect to observe a qualitatively similar behavior where typical shapes of islands
are not rectangles but balls.

The plan of the paper is as follows: In Section 2 we set the notation and collect some
preliminary results concerning both the surface energy and the elastic energy. In Section 3
we establish the scaling law for Fd,e0 , and in Section 4 we derive and discuss reduced models
in the various scaling regimes. Finally in Section 5, we present a partial extension of our
results to higher dimensions.

2 Notation and preliminary results

Set I := [0, 1], and throughout the text denote by C and c constants that may vary from
expression to expression. For Ω ⊂ R2, we denote by H1 (Ω) its one-dimensional Hausdorff
measure, and by |Ω| its two-dimensional Lebesgue measure. Given two sets A, B ⊂ R2, we
define their Hausdorff distance as dH(A,B) := inf{r > 0 : A ⊂ N(B, r) and B ⊂ N(A, r)},
where N(A, r) := {x ∈ R2 : d(x,A) < r}, and d(x,A) denotes the distance from x to
A. For c ∈ R, let δc be the Dirac measure at the point c. Given a vector (x, y) ∈ R2, we

denote by |(x, y)| :=
(
x2 + y2

)1/2
its Euclidean norm. For a matrix A ∈ R2×2, we consider

the Frobenius norm given by |A|2 := Tr
(
ATA

)
.
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2.1 Γ-convergence

We briefly recall the definition and some of the main properties of Γ-convergence (see [18, 10]).

Definition 2.1. Let X be a topological space. We say that a sequence of functions {Fn},
Fn : X → R, (sequentially) Γ-converges to F : X → R and write Fn

Γ−→ F if the following two
conditions are satisfied.

(i) If {xn} ⊂ X satisfies supFn (xn) < +∞ then there exists a subsequence (not relabeled)
such that xn → x ∈ X and

lim inf
n→+∞

Fn (xn) ≥ F (x) .

(ii) For every x ∈ X there exists a sequence {xn} ⊂ X such that xn → x and

lim sup
n→+∞

Fn(xn) ≤ F (x).

The main property of Γ-convergence is the following:

Theorem 2.2. Suppose that a sequence {Fn} with Fn : X → R Γ-converges to F and that
there is some C > 0 such that infx∈X Fn(x) ≤ C for all n ∈ N. Then

inf
x∈X

Fn(x) → inf
x∈X

F (x).

Moreover, if xn is a minimizer of Fn then there is a subsequence of {xn} that converges to a
minimizer of F .

2.2 The Surface Energy

We review some results from [20, 9] adapted to our setting. If h : I → [0,+∞) is lower
semicontinuous, then we set

Ωh := {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y < h (x)} ,

and denote the pointwise variation of h by

Var h := sup

{
n∑

i=1

|h (xi)− h (xi−1)| : {x1, . . . , xn} is a partition of I

}
.

If Var h is finite then h is said to be of bounded pointwise variation (see [4]). If h is a function
of bounded pointwise variation then we define

h− (x) := min
{
h
(
x+
)
, h
(
x−
)}

= lim inf
z→x

h (z) ,

h+ (x) := max
{
h
(
x+
)
, h
(
x−
)}

= lim sup
z→x

h (z) ,
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where h (x±) := limz→x± h (z). Further, let∫ 1

0

∣∣h′∣∣ := Var h+ h
(
0+
)
+ h

(
1−
)
.

We denote by Γcuts the at most countable collection of vertical cuts,

Γcuts :=
{
(x, y) : x ∈ (0, 1) ∩ S (h) , h (x) ≤ y ≤ h− (x)

}
,

where S (h) := {x ∈ (0, 1) : h (x) < h− (x)}. The following proposition is a slight adaption of
results from [20, Proposition 2.2, Lemma 2.5, and Theorem 2.8].

Proposition 2.3. Let {hn} be a sequence of nonnegative Lipschitz functions such that

sup
n

∫ 1

0

√
1 +

∣∣h′n∣∣2 dx+

∫ 1

0
hn dx < +∞.

Then there exists a subsequence (not relabeled) such that

(i) R2\Ωhn converges in the Hausdorff metric to R2\Ωh where

h(x) := inf

{
lim inf
n→+∞

hn (xn) : xn → x

}
is lower semicontinuous and of bounded pointwise variation;

(ii) hn → h in L1 (I);

(iii) for every sequence {an} ⊂ R+ with an → 0

lim inf
n→+∞

∫ 1

0

√
an +

∣∣h′n∣∣2 dx ≥
∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts) .

Conversely, if h is nonnegative, lower semicontinuous and of bounded pointwise variation,
then there exists a sequence {hn} of Lipschitz functions such that 0 ≤ hn ≤ h, R2\Ωhn

converges in the Hausdorff metric to R2\Ωh, and

lim
n→+∞

∫ 1

0

√
an +

∣∣h′n∣∣2 dx =

∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts)

for every sequence {an} ⊂ R+ with an → 0.

By Proposition 2.3, following the argument of [20, Theorem 2.8], we obtain the following
result.
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Proposition 2.4. For every nonnegative, lower semicontinuous function h of bounded point-
wise variation, and for every u ∈ W 1,p

(
Ωh;R2

)
, there exist a sequence {hn} of nonnegative

Lipschitz functions with hn(0) = hn(1) = 0 and
∫ 1
0 hn dx =

∫ 1
0 h dx such that

lim
n→+∞

∫ 1

0

√
an +

∣∣h′n∣∣2 dx =

∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts)

for every sequence {an} ⊂ R+ with an → 0, and a sequence {un} ⊂ W 1,p
(
Ωhn ;R2

)
which

converges strongly (locally) to u in W 1,p.

Proof. By Proposition 2.3, there exists a sequence {hn} of Lipschitz functions such that
hn ≤ h and

lim
n→+∞

∫ 1

0

√
an +

∣∣h′n∣∣2 dx =

∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts)

for every sequence an → 0. Set

εn :=

∫ 1

0
(h (x)− hn (x)) dx

and h̃n := hn + 2εn. For a > 0 such that {y = h̃n (x)} ∩ {y = ax} 6= ∅, let (xa, axa) =(
xa, h̃n (xa)

)
be the first point of the intersection between

{
y = h̃n (x)

}
and {y = ax} (see

Figure 2), i.e.,

xa := inf
{
x ∈ (0, 1) : ax = h̃n (x)

}
.

Choose a > 0 such that
∣∣∣Ωh̃n

∩ {(x, y) : 0 ≤ x ≤ xa, y ≥ ax}
∣∣∣ = εn

2 . Notice that since
εn
2 ≥ xaεn (the area of the shaded region on the left of Figure 2 is larger than the area of the
triangle of height 2εn and width xa), we have xa ≤ 1

2 . Similarly, define b > 0 and xb ≥ 1
2 ≥ xa

such that
∣∣∣Ωh̃n

∩ {(x, y) : xb ≤ x ≤ 1, y ≥ b (1− x)}
∣∣∣ = εn

2 . Then

h̄n (x) :=


ax if 0 ≤ x ≤ xa,

h̃n (x) if xa ≤ x ≤ xb,

b (1− x) if xb ≤ x ≤ 1,

and

un (x) :=

{
e0 (x, 0) if 0 ≤ y ≤ 2εn,

u (x, y − 2εn) if y ≥ 2εn,

satisfy the required properties.

Remark 2.5. The Dirichlet boundary condition is often relaxed. Precisely, instead of re-
stricting ourselves to Lipschitz functions h with h(0) = h(1) = 0, we can equivalently consider
arbitrary Lipschitz functions h if the surface energy term is replaced by∫ 1

0

√
1 + |h′|2 dx + h (0) + h (1) .
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Figure 2: Construction of hn from h̃n (see proof of Proposition 2.4)

This kind of relaxation is very classical for functionals with linear growth (see [28]).

Finally, we state an isoperimetric inequality which will be used throughout the paper.

Lemma 2.6. Let h : [a, b] → R be a Lipschitz function on the segment [a, b] with h (a) =

h (b) = 0, and let
∫ b
a h (x) dx =: d. Then∫ b

a

√
1 + |h′|2 dx ≥ 2

d

b− a
. (2)

Proof. Let x̄ be a point where h attains its maximum on [a, b] and set h̄ := h (x̄). Then∫ b

a

√
1 + |h′|2 dx ≥

∣∣∣∣∫ x̄

a
h′ dx

∣∣∣∣+ ∣∣∣∣∫ b

x̄
h′ dx

∣∣∣∣ = 2h̄ ≥ 2
d

b− a
.

2.3 The Strain Energy

In this section we collect assumptions and basic properties of the strain energy term.

Definition 2.7. A Borel measurable function W : R2×2 → R is quasiconvex if for every
A ∈ R2×2 and every bounded domain Ω ⊂ R2

W (A) ≤ 1

|Ω|

∫
Ω
W (A+∇φ) dxdy for all φ ∈W 1,∞

0

(
Ω;R2

)
. (3)

Remark 2.8. It is well known that in the definition of quasiconvexity one can equivalently
suppose that (3) holds only for the unit cube (0, 1)2 (see [29]).

We assume that the energy density W : R2×2 → R satisfies the following hypotheses:

(H1) W ≥ 0;

(H2) W is quasiconvex;
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(H3) there exist α > 0 and 1 < p <∞ such that

α (|A|p + 1) ≥W (A) ≥ 1

α
(|A|p − 1) for all A ∈ R2×2.

In case of geometrically linear elasticity, (H3) is replaced by the condition

(H3’) there exist α > 0 and 1 < p <∞ such that

α
(∣∣A+AT

∣∣p + 1
)
≥W (A) ≥ 1

α

(∣∣A+AT
∣∣p − 1

)
for all A ∈ R2×2.

We note that we assume (H2) only to simplify notation. Indeed, the analysis goes through
exactly in the same way provided that in the results the function W is replaced by its qua-
siconvex envelope, i.e., the largest quasiconvex function which is below W . Hypothesis (H3)
does not allow for potentials that blow-up when det y → 0+, which corresponds to the non-
interpenetration condition (see [8] for a discussion of this issue). By (H3) and a classical
result of Marcellini (see [29, Lemma 5.2]), W is locally p-Lipschitz continuous. Moreover, by
(H3) and by density, the class of test functions in (3) can be enlarged to W 1,p

0

(
Ω;R2

)
.

We consider the recession function of W at infinity defined by

W∞ (A) := lim sup
t→+∞

W (tA)

tp
for A ∈ R2×2.

By definition, W∞ is p-homogeneous and satisfies the growth condition α |A|p ≥ W∞ (A) ≥
1
α |A|p, and similarly in the case of linear elasticity. Using the quasiconvexity of W and the
Fatou Lemma, we see that W∞ is quasiconvex, and therefore also locally p-Lipschitz contin-
uous. The recession function arises naturally in relaxation and Γ-convergence problems for
functionals with linear growth (see [22, 23]). We will need the following additional assumption

on the rate of convergence of W (tA)
tp to W∞ (A) (see [23]):

(H4) There exist 0 < m < p, γ > 0 and L > 0 such that for t |A| ≥ L,∣∣∣∣W∞ (A)− W (tA)

tp

∣∣∣∣ ≤ γ
|A|p−m

tm
.

In the case of linear elasticity, this condition becomes:

(H4’) There exist 0 < m < p, γ > 0 and L > 0 such that for t
∣∣A+AT

∣∣ ≥ L,∣∣∣∣W∞ (A)− W (tA)

tp

∣∣∣∣ ≤ γ

∣∣A+AT
∣∣p−m

tm
.

Remark 2.9. For p > 1 the functions W (·) := distp (·, SO2) satisfy (H4).
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The main geometrical objects that will appear in the analysis are rectangles [0, `]× [0, L] for
some `, L > 0. We will use the following rescaling estimate.

Lemma 2.10. If u ∈W 1,p
(
[0, `]× [0, L] ;R2

)
, with u (x, 0) = e0 (x, 0), then∫

[0,`]×[0,L]
W (∇u) dxdy ≥ ep0`

2 min
v(x,0)=(x,0)

∫
[0,1]×[0,L/`]

W (e0∇v)
ep0

dx dy, (4)

where here, and in the sequel, the minimum is taken among all v ∈W 1,p
(
[0, 1]× [0, L/`] ;R2

)
that satisfy the boundary condition v (x, 0) = (x, 0).

Proof. For u ∈W 1,p
(
[0, `]× [0, L] ;R2

)
set ũ (x, y) := 1

`u (`x, `y). Then ũ ∈W 1,p
(
[0, 1]× [0, L/`] ;R2

)
with ∇ũ (x, y) = ∇u (`x, `y), and thus

min
u(x,0)=e0(x,0)

∫
[0,`]×[0,L]

W (∇u) dx dy = `2 min
ũ(x,0)=e0(x,0)

∫
[0,1]×[0,L/`]

W (∇ũ) dx dy

= `2 min
v(x,0)=(x,0)

∫
[0,1]×[0,L/`]

W (e0∇v) dx dy.

Notice that for every e0, the function

φ (t, e0) := min
v(x,0)=(x,0)

∫
[0,1]×[0,t]

W (e0∇v)
ep0

dx dy

is non-decreasing in t, and bounded above by some constant independent of e0 (take any
smooth function with bounded support and use (H3) or (H3’)).

Remark 2.11. We recall that Korn-type inequalities or related rigidity results in the geo-
metrically non-linear setting, degenerate if the Lipschitz constants of the domain blow-up, or
if L→ +∞ in strips of the form [0, `]× [0, L[ (see [36, 24]).

The following lemma describes the behavior of the elastic energy for small thickness of the
film. It can be seen as a special case of a dimension reduction argument (see [37, 5]).

Lemma 2.12. There holds

lim
ε→0+

min
v(x,0)=(x,0)

1

ε

∫
[0,1]×[0,ε]

|∇v|p dx dy = 1, (5)

and similarly

lim
ε→0+

min
v(x,0)=(x,0)

1

ε

∫
[0,1]×[0,ε]

|E(v)|p dx dy = 1, (6)

where E(v) = ∇v+∇T v
2 .
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Proof. We prove only (5) since the proof of (6) is very similar. The inequality

min
v(x,0)=(x,0)

1

ε

∫
[0,1]×[0,ε]

|∇v|p dx dy ≤ 1

being easily obtained by taking v(x, y) = (x, 0), we are left to prove the reverse inequality.

In order to work on an ε-independent domain, we make a classical change of variables
(see [15, Chapter 1, Section 1.3]), i.e., for v = (v1, v2) ∈ W 1,p

(
[0, 1]× [0, ε] ;R2

)
we set

w (x, y) := (v1 (x, εy) , εv2 (x, εy)) ∈ W 1,p
(
[0, 1]2 ;R2

)
. Notice that if v (x, 0) = (x, 0), then

also w (x, 0) = (x, 0). The rescaled functional to be considered then reads

Jε (w) :=

∫
[0,1]2

∣∣∣∣∣
(

∂w1
∂x

1
ε
∂w1
∂y

1
ε
∂w2
∂x

1
ε2

∂w2
∂y

)∣∣∣∣∣
p

dx dy.

If wε is a minimizer of Jε subject to the condition wε (x, 0) = (x, 0) then ‖wε‖W 1,p is bounded
above uniformly in ε. In particular, up to a subsequence, {wε} converges weakly in W 1,p to
a function w with ∂w1

∂y = ∂w2
∂x = ∂w2

∂y = 0. Furthermore, w (x, 0) = (x, 0) since for p > 1

the space W 1,p([0, 1]2 ;R2) is compactly embedded in some Lq
(
[0, 1]2 ;R2

)
(see [1, Theorem

6.3]). Thus

lim inf
ε→0+

Jε(w
ε) ≥

∫
[0,1]2

∣∣∣∣∂w1

∂x

∣∣∣∣p dx dy = 1.

We next examine the scaling of the elastic energy when the thickness of the film tends to
infinity.

Lemma 2.13. Let W satisfy (H2), (H3) and (H4). If f : R+ → R+ is such that f (t) → +∞
for t→ +∞, then

lim
e0→+∞

min
v(x,0)=(x,0)

∫
[0,1]×[0,f(e0)]

W (e0∇v)
ep0

dx dy = min
v(x,0)=(x,0)

∫
[0,1]×[0,+∞)

W∞ (∇v) dx dy.

(7)
Similarly, let W satisfy (H2), (H3’) and (H4’). If f : R+ → R+ is such that f (t) → +∞ for
t→ +∞, then

lim
e0→+∞

min
v(x,0)=(x,0)

∫
[0,1]×[0,f(e0)]

W (e0E(v))

ep0
dx dy = min

v(x,0)=(x,0)

∫
[0,1]×[0,+∞)

W∞ (E(v)) dx dy.

(8)

Proof. As before, we only prove (7) since (8) can be very similarly obtained. Set

Ge0 (v) :=

∫
[0,1]×[0,f(e0)]

W (e0∇v)
ep0

dx dy and G (v) :=

∫
[0,1]×[0,+∞)

W∞ (∇v) dx dy.
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By Theorem 2.2, it suffices to show that Ge0
Γ−→ G with respect to the (sequential) weak topol-

ogy of W 1,p
loc

(
[0, 1]× [0,+∞) ;R2

)
as e0 → +∞. Consider first {ve0} such that ve0 (x, 0) =

(x, 0) and supGe0 (ve0) < +∞. Then by (H3), for every M > 0 the functions ve0 are uni-
formly bounded in W 1,p

(
[0, 1]× [0,M ] ;R2

)
, and thus there exists a subsequence converging

weakly in W 1,p
loc to a function v.

We now show that for M > 0 fixed

lim inf
e0→+∞

∫
[0,1]×[0,M ]

W (e0∇ve0)
ep0

dx dy ≥
∫
[0,1]×[0,M ]

W∞ (∇v) dx dy. (9)

The proof of (9) is an adaptation of the semicontinuity proof for quasiconvex functionals (see
[29, Thm. 5.4]), and we sketch it only for the reader’s convenience. Set R := [0, 1]× [0,M ].
For simplicity of notation, let x := (x, y)T .
Step 1. If v is affine, i.e., v = Ax + b for some A ∈ R2×2 and some b ∈ R2, and ve0 = v on
∂R, then ve0 = v + φe0 for some φe0 ∈ W 1,p

0

(
R;R2

)
, and by (3) and (H4), for e0 |A| ≥ L or

A = 0 we have∫
R

W (e0∇ve0)
ep0

dx dy ≥M
W (e0A)

ep0
≥M

(
W∞ (A)− γ

|A|p−m

em0

)
, (10)

and (9) follows as e0 → +∞ by quasiconvexity of W∞.
Step 2. If v is affine but ve0 6= v on ∂R, then we modify ve0 near ∂R. Precisely, for R0 b R,
K ∈ N and i = 1, . . . ,K, consider the sets

Ri :=

{
x ∈ R : dist (x, R0) <

i

K
ρ

}
where ρ := 1

2dist (R0, ∂R), and introduce cut-off functions ψi ∈ C1
0 (Ri) with

0 ≤ ψi ≤ 1, ψi = 1 in Ri−1, and |∇ψi| ≤
2(K + 1)

ρ
.

Set wi
e0 := v + ψi (ve0 − v). Notice that

|∇wi
e0 |

p ≤ C

(
|∇v|p + |∇ve0 |p +

(K + 1)p

ρp
|ve0 − v|p

)
. (11)

Since wi
e0 = v on ∂R, by (10) we have∫

R

W
(
e0∇wi

e0

)
ep0

dx dy ≥
∫
R
W∞ (∇v) dx dy −Mγ

|A|p−m

em0
.

12



Therefore,∫
R
W∞ (∇v) dx dy −Mγ

|A|p−m

em0
≤
∫
R\Ri

W (e0∇v)
ep0

dx dy +

∫
Ri\Ri−1

W
(
e0∇wi

e0

)
ep0

dx dy

+

∫
Ri−1

W (e0∇ve0)
ep0

dx dy

≤
∫
R\R0

W∞ (∇v) dx dy +Mγ
|A|p−m

em0

+

∫
Ri\Ri−1

W
(
e0∇wi

e0

)
ep0

dx dy +

∫
R

W (e0∇ve0)
ep0

dx dy.

Since ve0 ⇀ v weakly inW 1,p (R), using (H3) and (11) we can bound the penultimate integral
in the above inequality. Summing the inequalities over i, dividing byK and letting e0 → +∞,
we find that for some C > 0∫

R0

W∞ (∇v) dx dy ≤ lim inf
e0→+∞

∫
R

W (e0∇ve0)
ep0

dx dy +
C

K

which for K → +∞ and R0 → R implies (9).

Step 3. Consider then a countable family of squares Qi with pairwise disjoint interiors that
cover R. We apply Step 2 in each square to the functions 〈zi, ·〉, where

zi :=
1

|Qi|

∫
Qi

∇v dx dy,

lim inf
e0→+∞

∫
Qi

W
(
e0∇wi

e0

)
ep0

dx dy ≥
∫
Qi

W∞(zi) dx dy.

Let Z̄ be the function that in every cube Qi is equal to the constant zi. If the diameters of
the squares tend uniformly to zero then Z̄ tends to Dv in Lp(R) from which we get that for
every ε > 0 there is a covering Qi such that∣∣∣∣∣

∫
R

W (e0∇ve0)
ep0

dx dy −
∑
i

∫
Qi

W
(
e0∇wi

e0

)
ep0

dx dy

∣∣∣∣∣ ≤ Cε

and∣∣∣∣∣
∫
R
W∞(∇v) dx dy −

∑
i

∫
Qi

W∞(zi)

∣∣∣∣∣ ≤ Cε,

and (9) follows. In conclusion, for every M > 0,

lim inf
e0→+∞

Ge0 (ve0) ≥ lim inf
e0→+∞

∫
[0,1]×[0,M ]

W (e0∇ve0)
ep0

dx dy ≥
∫
[0,1]×[0,M ]

W∞ (∇v) dx dy.

13



We let M → +∞ to get lim inf Ge0 (ve0) ≥ G (v).

On the other hand, if v ∈W 1,p
(
[0, 1]× [0,+∞) ;R2

)
, then v can be approximated in energy

by functions with compact support and for these functions, using the growth conditions (H3)
and the reverse Fatou Lemma, we conclude that

lim sup
e0→+∞

Ge0 (v) ≤ G (v) .

Define

CW := min
v(x,0)=(x,0)

∫
[0,1]×[0,+∞)

W∞ (∇v) dx dy. (12)

Remark 2.14. If W (·) = |·|2, one obtains by Fourier methods that (see [17, Appendix])

CW =
1

π3

∑
k>0

1

k3
(1 + (−1)k+1)2.

3 Scaling law

In this section we consider the qualitative behavior of the minimal energy in terms of its
scaling regimes.

Theorem 3.1. Suppose that W satisfies (H1) and (H3), or (H1) and (H3’). Then there are
constants C1, C2 > 0 such that, for all d, e0 > 0,

C1max
{
1, d, e

p/3
0 d2/3

}
≤ inf Fd,e0 ≤ C2max

{
1, d, e

p/3
0 d2/3

}
.

Proof. We give the proof only for the nonlinear elasticity since the geometrically linear case
can be treated analogously.
Upper bound.
For ` ≤ 1 and 0 < δ � `

2 set h̃ := 2d
2`−δ , and consider (see Figure 3(a))

h (x) :=


2h̃
δ x if 0 ≤ x ≤ δ

2 ,

h̃ if δ
2 ≤ x ≤ `− δ

2 ,

−2h̃
δ x+ 2h̃

δ ` if `− δ
2 ≤ x ≤ `,

0 if ` ≤ x ≤ 1.

Let u be the restriction to Ωh of ũ : I × [0,∞) → R given by

ũ (x, y) =

{
(e0x

(
1− 1

`y
)
, 0) if 0 ≤ y ≤ `,

0 else.

14



`0 δ/2 `− δ/2

h̃

(a) Upper bound construction

y0
a1 b1 a2 b2

`1 `2

1

(b) Geometry for the lower bound

Figure 3: Constructions in the proof of Theorem 3.1

Then

Fd,e0 (u, h) ≤
∫
Ωh

W (∇u) dx dy + 1 +
4d

2`− δ

≤ Cep0

∫ `

0

∫ `

0

(
(1− 1

`
y)p + (

1

`
x)p
)
dx dy + αd+ 1 +

4d

2`− δ

≤ C

(
ep0`

2 + 1 + d+
d

`

)
If ep0 ≤ d, then we choose ` := 1, and if ep0 ≥ d we choose ` := d1/3e

−p/3
0 ≤ 1. It follows that

ep0`
2 + 1 + d+

d

`
≤ Cmax

{
1, d, e

p/3
0 d2/3

}
,

and this completes the proof the of the upper bound.

Lower bound: By definition of the surface energy, Fd,e0(u, h) ≥ 1, and by Lemma 2.6

Fd,e0(u, h) ≥ 2d. It remains to show that Fd,e0(u, h) ≥ Ce
p/3
0 d2/3 if e

p/3
0 d2/3 ≥ Cmax {1, d}

for some fixed constant C > 0.

Let y0 :=
d√

e
p/3
0 d2/3

, ` := H1(Ωh∩ (I × {y0})) and I` := Ωh∩ (I × {y0}). Denote by [ai, bi] the

countably many (pairwise disjoint) maximal connected components of I` (see Figure 3(b)),
i.e., I` = ∪+∞

i=1 [ai, bi], and for i ∈ N, set `i := bi − ai and di := |Ωh ∩ ([ai, bi]× [y0,+∞))|.
Then

∑+∞
i=1 `i = ` and

∑+∞
i=1 di ≥ d− y0 ≥ Cd.
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If `i ≤
(

d
ep0

)1/3
for all i ∈ N, then by (2) applied to h− y0 we obtain

Fd,e0(u, h) ≥
+∞∑
i=1

∫ bi

ai

√
1 + |h′|2 dx

≥
+∞∑
i=1

di
`i

≥
(
ep0
d

)1/3 +∞∑
i=1

di

≥ Ce
p/3
0 d2/3.

Otherwise, the largest connected component of I`, say I`1 , satisfies `1 ≥
(

d
ep0

)1/3
. By Lemma

2.12 there exists a small constant ε0 < 1 such that for ε ≤ ε0,

min
u(x,0)=(x,0)

1

ε

∫
[0,1]×[0,ε]

|∇u|p dx dy ≥ 1

2
.

Since ε0 > 0 is a universal constant, and since e
p/3
0 d2/3 ≥ Cmax {1, d}, we may, without loss

of generality, by changing C, assume that e
p/2
0 ≥ 4

ε0
. If

(
d
ep0

)1/3
≤ `1 ≤ y0

ε0
, then, by (4) and

(H3),

Fd,e0 (u, h) ≥
∫
[a1,b1]×[0,y0]

W (∇u) dx dy

≥ 1

α

(
d

ep0

)2/3

ep0 min
v(x,0)=(x,0)

∫
[0,1]×[0,ε0]

|∇v|p dx dy − 1

α
`1y0

≥ ε0
2α
e
p/3
0 d2/3 − 1

α
y0

≥ ε0
2α
e
p/3
0 d2/3 − 1

α

d√
e
p/3
0 d2/3

≥ ε0
4α
e
p/3
0 d2/3,

where we used that d√
e
p/3
0 d2/3

≤ ε0
4 e

p/3
0 d2/3, since e

p/2
0 ≥ 4

ε0
.

Otherwise, if `1 ≥ y0/ε0, then, by (4), (H3), (5), and since `1y0 =
d

(e
p/3
0 d2/3)1/2

`1 ≤ e
p/3
0 d2/3,

Fd,e0 (u, h) ≥
1

α
`21e

p
0 min
v(x,0)=(x,0)

∫
[0,1]×[0,y0/`1]

|∇v|p dx dy − 1

α
`1y0

≥ 1

2α
`21e

p
0

y0
`1

− 1

α
e
p/3
0 d2/3

≥ 1

2ε0α
(e

p/3
0 d2/3)2 − 1

α
e
p/3
0 d2/3 ≥ ce

p/3
0 d2/3,

where the last inequality holds since e
p/3
0 d2/3 > C for C large enough.
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4 Reduced models

To study the asymptotic behavior of Fd,e0 in the various regimes determined in Theorem 3.1,

we set h̃ := h/d, Ωh̃ := {(x, y) : (x, d y) ∈ Ωh}, and ũ (x, y) = u (x, d y). Dropping the tildes,
the energy now reads

Fd,e0 (u, h) = d

[∫
Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dx dy +

∫ 1

0

√
1

d2
+ |h′|2 dx

]

for (u, h) such that h(0) = h(1) = 0,
∫ 1
0 h dx = 1, and u ∈W 1,p (Ωh) with u (x, 0) = e0 (x, 0).

In the regime in which Fd,e0 ' 1, the limiting functional is constant (see Proposition 4.1),
while for Fd,e0 ' d, the main contribution to the reduced energy comes from the surface
part (see Proposition 4.2), and the flat configuration is optimal. Notice, however, that as
proven in [26], for large but finite mismatch e0 > 0 and for volume d large enough, the flat
configuration is never a global minimizer of the energy. We believe that this is a higher order
effect that cannot be captured by our first order analysis. In the transition regime, in which
d ' ep0 → +∞, elastic and surface energy compete (see Proposition 4.3), and the minimizer
of the reduced model is either the flat configuration or an island, depending on the elastic
properties of the material, in particular on the constant CW in (12). Finally, in the regime in

which Fd,e0 ' e
p/3
0 d2/3, the elastic energy dominates. By a corresponding compactness result

(see Proposition 4.7), we conclude that in this regime the formation of islands is energetically
favored.

4.1 The trivial regime Fd,e0 ' 1

If d→ 0 and ep0 = o
(

1
d2

)
, then Fd,e0 ' 1, and the limit functional is a constant. In this regime,

the non-horizontal parts of the surface and the elastic part of the energy do not contribute
significantly. Given an absolutely continuous probability measure µ := h dx, let

Gd,e0(µ) := min
u(x,0)=e0(x,0)

Fd,e0(u, h).

Proposition 4.1. Suppose that W satisfies (H1) and (H3), d → 0 and ep0 = o
(

1
d2

)
, then

{Gd,e0} Γ-converges with respect to the weak-∗ convergence of measures to the constant func-
tional equal to 1 on probability measures.

Proof. The compactness follows from the weak-∗ compactness of sequences of probability
measures on compact sets. Since the energy is always bounded from below by 1, the lower
bound is immediate. For the upper bound, by density of finite sums of Dirac masses in the
set of probability measures, it is enough to assume that µ =

∑N
i=1 diδci , and we can further

assume that for every i = 1, .., N , ci /∈ {0; 1}. If d
ep0

→ 0, then we let `i :=
(
ddi
ep0

)1/3
and

17



hi :=
di
`i
. We finally let hd,e0 be a Lipschitz approximation of

∑N
i=1 hiχ[ci−

`i
2
,ci+

`i
2
]
and ud,e0

be the minimizer of the elastic energy in Ωhd,e0
so that

Fd,e0(ud,e0 , hd,e0) ≤ 1 + 2

N∑
i=1

ddi
`i

+ C

N∑
i=1

ep0`
2
i ≤ 1 + Ce

p/3
0 d2/3

from which the upper bound follows. If d ≥ Cep0, we then replace in the previous construction
`i by `i := d1/2 from which we similarly obtain

Fd,e0(ud,e0 , hd,e0) ≤ 1 + 2

N∑
i=1

ddi
`i

+ C

N∑
i=1

ep0`
2
i ≤ 1 + 2d1/2 + Cep0d

2.

4.2 The surface dominant regime Fd,e0 ' d

If d→ +∞ and ep0 = o (d), then Fd,e0 ' d. Hence, we rescale the energy by d, and consider

Fd (u, h) :=

∫
Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dx dy +

∫ 1

0

√
1

d2
+ |h′|2 dx.

In this regime, the surface energy dominates, and the limit functional turns out to be

F̄ (h) :=

∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts) .

Proposition 4.2. Suppose that W satisfies (H1) and (H3), and let {(ud, hd)} be such that
supd Fd (ud, hd) < +∞. Then there is a subsequence (not relabaled) such that the sets R2\Ωhd

converge to R2\Ωh in the Hausdorff metric, where h (x) := inf {lim inf hd (xd) : xd → x} and

lim inf
d→+∞

Fd (ud, hd) ≥ F̄ (h) .

Further, for every nonnegative lower semicontinuous function h with bounded pointwise vari-
ation and

∫ 1
0 h (x) dx = 1, there exists a sequence {(ud, hd)} such that hd : I → R are

non-negative Lipschitz functions with
∫ 1
0 hd (x) dx = 1, hd (0) = hd (1) = 0, and ud ∈

W 1,p
(
Ωhd

;R2
)
, R2\Ωhd

converge to R2\Ωh, and

lim sup
d→+∞

Fd (ud, hd) ≤ F̄ (h) .

Proof. The compactness and the liminf inequality follow from Proposition 2.3. For the lim-
sup inequality, we may assume that h is Lipschitz continuous with h(0) = h(1) = 0 (see
Proposition 2.4). Choose hd := h and

ud (x, y) :=

{
e0 (x (1− d y) , 0) if y ≤ 1

d ,

0 if y ≥ 1
d .
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Then by (H3),∫
Ωh

W

(
∂ud
∂x

,
1

d

∂ud
∂y

)
dx dy ≤

∫ 1

0

∫ 1/d

0
α (ep0 |(1− d y,−x)|p + 1) dy dx

≤ α

(
ep0
d

∫ 1

0

∫ 1

0
|(1− y, x)|p dx dy + 1

d

)
,

and thus lim supd→+∞
∫
Ωh
W
(
∂ud
∂x ,

1
d
∂ud
∂y

)
dx dy = 0.

4.3 The borderline case d ' ep0

We now focus on the limit case d ' ep0 → +∞. In this regime, elastic and surface energy
compete and interplay in the limit. Rescaling the energy by d, we obtain

Fd (u, h) :=

∫
Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dx dy +

∫ 1

0

√
1

d2
+ |h′|2 dx.

We first give a compactness and lower-bound result.

Proposition 4.3. Suppose that W satisfies (H1)–(H4). If supFd (ud, hd) < +∞ then there
is a subsequence with the following properties:

{
R2\Ωhd

}
converges in the Hausdorff topology

to R2\Ωh, where h (x) := inf {lim inf hd (xd) : xd → x}. Denote the boundary layers by

BLh :=
{
(x, y) : (x, y) ∈ [0, 1]× R+ , 0 < h (x)

}
and

BLd
h := {(x, y) : (x, y) ∈ BLh , y ≤ d hd (x)} .

Then
{
BLd

h

}
converges in the local Hausdorff topology to BLh. Moreover, if vd : BLd

h → R2 is
defined by vd (x, y) :=

1
e0
ud
(
x, yd

)
, then there exists v ∈W 1,p

(
BLh;R2

)
with v (x, 0) = (x, 0),

vdχBLd
h
⇀ v locally weakly in W 1,p

loc

(
BLh;R2

)
, and

lim inf
d→+∞

Fd (ud, hd) ≥
∫
BLh

W∞ (∇v) dx dy +
∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts) .

Proof. Since |Ωhd
| = 1 and

{∫ 1

0

√
1

d2
+
∣∣h′d∣∣2 dx

}
is uniformly bounded, the compactness

and lower-semicontinuity for the surface part follow from Proposition 2.3, and the conver-
gence of

{
BLd

h

}
follows from the Hausdorff convergence of R2\Ωhd

.

We now focus on the elastic energy. Changing variables z = d y and dividing by e0, we get∫
BLd

h

W (e0∇vd)
ep0

dx dy ≤ C
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which, by the p-growth condition (H3), implies that ‖∇vd‖Lp(BLd
h∩{y≤M}) is bounded for

every M . Hence, as in Lemma 2.12, ‖vd‖Lp(BLd
h∩{y≤M}) is also bounded, and so there exists

a subsequence that converges locally to v ∈ W 1,p
loc (BLh) with v (x, 0) = (x, 0). The liminf

inequality follows from the weak convergence, as in Lemma 2.13.

We are now in position to prove the limsup inequality:

Proposition 4.4. SupposeW satisfies (H1)–(H4). For every pair (v, h) with v ∈W 1,p
loc

(
BLh;R2

)
,

v (x, 0) = (x, 0), and h : I → R a nonnegative lower semicontinuous function of bounded
pointwise variation with

∫ 1
0 h (x) dx = 1, there exists a sequence {ud} ⊂ W 1,p

loc

(
Ωh;R2

)
with

ud (x, 0) = e0 (x, 0), such that 1
e0
ud
(
x, yd

)
⇀ v locally weakly in W 1,p

loc

(
BLh;R2

)
and

lim
d→+∞

Fd (ud, h) =

∫
BLh

W∞ (∇v) dx dy +
∫ 1

0

∣∣h′∣∣+ 2H1(Γcuts).

Proof. We may assume that h is Lipschitz continuous (see Proposition 2.4), and that v has
bounded support. Define the recovery sequence by ud(x, y) := eov(x, dy). Then

1
e0
ud
(
x, yd

)
⇀

v locally weakly in W 1,p
loc

(
BLh;R2

)
and

lim
d→+∞

Fd (ud, h) =

∫
BLh

W∞ (∇v) dx dy +
∫ 1

0

∣∣h′∣∣ .

We now characterize the minimizers of the limiting functional.

Proposition 4.5. Assume that W satisfies (H1)–(H4), and let CW be as in (12). If CW ≥ 1,
then the minimum of ∫

BLh

W∞ (∇v) dx dy +
∫ 1

0

∣∣h′∣∣+ 2H1 (Γcuts)

is attained for h = 1
`min

χ[0,`min] with `min =
(

1
CW

)1/3
, and v the minimizer of the elastic

energy in the corresponding boundary layer BLh. If CW < 1, then the flat configuration is
minimizing.

Proof. Note first that h is constant on each connected component of {h 6= 0}. Indeed, given
an interval [a, b] and a volume d, the rectangle is the shape with least vertical perimeter (i.e.,

minimal
∫ b
a |h′|) for a given volume d. In the boundary layer, v has to be chosen to be the

minimizer of the elastic energy. If h =
∑
hiχ[ai,bi], then set `i := bi−ai. The minimal energy

is given by

min∑
i hi`i=1

CW

2

∑
i

`2i +
∑
i

hi.
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Assume, for the sake of contradiction, that two of the `i are non-zero, say `1 ≥ `2 > 0. For

η ∈
[
−h1, `2`1h2

]
consider h1 + η and h2 − η `1

`2
. Since (`i, hi) is minimizing and (h1 + η) `1 +(

h2 − η `1
`2

)
`2 = h1`1 + h2`2, we find that

η − η
`1
`2

≥ 0 for all η ∈
[
−h1,

`2
`1
h2

]
,

and hence `1 = `2, from which we deduce that `i = ` for every i. The minimization problem
then reduces to

min
`≤1

CW

2
N`2 +

1

`
,

where N is the number of intervals where h 6= 0. The minimum is attained for N = 1 and

`min = min

{
1,
(

1
CW

)1/3}
.

Remark 4.6. If W∞ (A) = |A|2, then

CW ≤ min
u(x,0)=(x,0)

∫ 1

0

∫ +∞

0
|∇u|2 dy dx ≤

∫ 1

0

∫ 1

0
(1− y)2 + x2 dx dy =

2

3
< 1,

where where the second inequality follows by choosing u (x, y) := (x (1− y)χy≤1, 0). In par-
ticular, `min = 1, and the flat configuration is optimal.

4.4 The elastic dominant regime Fd,e0 ' e
p/3
0 d2/3

We now turn to the case in which e0 → +∞,
ep0
d → +∞ and ep0d

2 → +∞. Note that this
allows also for d → 0. In this regime, the main contribution to the energy comes from the

elastic part. Define η :=
(

d
ep0

)1/3
→ 0, so that Fd,e0 ' d

η . We thus rescale the energy

Fd,e0 (u, h) by
d
η , and consider

Fη (u, h) := η

[∫
Ωh

W

(
∂u

∂x
,
1

d

∂u

∂y

)
dx dy +

∫ 1

0

√
1

d2
+ |h′|2 dx

]
.

We first give a compactness and a liminf inequality result.

Proposition 4.7. Let {(uη, hη)} be such that supFη (uη, hη) ≤ C, and set µη := hη dx. Then
there exists a subsequence (not relabeled) such that {µη} weakly-∗ converges to µ :=

∑+∞
i=1 diδci

where di > 0 satisfy
∑+∞

i=1 di = 1. Moreover, there holds

lim inf
η→0

Fη (uη, hη) ≥ 3C
1/3
W

+∞∑
i=1

d
2/3
i .
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Proof. Since µη is a probability measure for every η, there exists a subsequence (not re-
labeled) and a probability measure µ such that µη weakly-∗ converges to µ. We use the
notation from the proof of Theorem 3.1 (see Figure 3(b)), i.e., y0 := 1√

e
p/3
0 d2/3

, and ` :=

H1
(
Ωhη ∩ (I × {y0})

)
. Let Iη` := Ωhη ∩ (I × {y0}), Iη` =

∪+∞
i=1 [aηi , b

η
i ], be the decomposition

into connected components, `ηi := bηi − aηi , d
η
i :=

∣∣Ωhη ∩ ([aηi , b
η
i ]× [y0,+∞))

∣∣, and assume
that the dηi are in descending order. The latter can be assumed since di → 0 as i → +∞.
Note that 1 −

∑
i d

η
i ≤ y0, and thus limη→0

∑
i d

η
i = 1. Let finally di := limη→0 d

η
i (which

we can assume exists for every i ∈ N up to further extraction of a subsequence). Since

Fd,e0 ' e
p/3
0 d2/3, by Theorem 3.1, we deduce that maxi `

η
i ≤ Cη and thus (bηi − aηi ) → 0 for

all i. Indeed, otherwise, for every n > 0 there would exist ηn → 0 such that `1 ≥ nηn, and

hence inf Fd,e0 ≥ Cne
p/3
0 d2/3 which contradicts the upper bound. Therefore, we may assume

that for some ci ∈ [0, 1], aηi → ci and b
η
i → ci. Let Ω

η
i := Ωhη ∩ ([aηi , b

η
i ]× [0,+∞)) and

Fη (uη, hη,Ω
η
i ) := η

∫ bηi

aηi

√
1

d2
+
∣∣h′η∣∣2 dx+ η

∫
Ωη

i

W

(
∂uη
∂x

,
1

d

∂uη
∂y

)
dx dy.

Then for every i (see (2))

Fη (uη, hη,Ω
η
i ) ≥ η

∫ bηi

aηi

∣∣h′η∣∣ dx+ η

∫
[aηi ,b

η
i ]×[0,y0]

W

(
∂uη
∂x

,
1

d

∂uη
∂y

)
dx dy

≥ 2η
dηi
`ηi

+
η

d
min

u(x,0)=e0(x,0)

∫
[aηi ,b

η
i ]×[0,dy0]

W (∇u) dx dy

≥ 2η
dηi
`ηi

+
η

d
ep0 (`

η
i )

2
min

v(x,0)=(x,0)

∫
[0,1]×

[
0,

dy0
`
η
i

] W (e0∇v)
ep0

dx dy

≥ 2η
dηi
`ηi

+
η

d
ep0 (`

η
i )

2
min

v(x,0)=(x,0)

∫
[0,1]×

[
0,

√
e
p/3
0 d2/3

] W (e0∇v)
ep0

dx dy

= 2η
dηi
`ηi

+
η

d
ep0 (`

η
i )

2
CW (1− ψ (η))

≥ 3C
1/3
W (1− ψ (η))1/3 (dηi )

2/3
,

where ψ (η) → 0 as η → 0. Summing over i and letting η → 0, we obtain the liminf inequality.

Now, for every ε > 0, let V ε := {i ∈ N : dηi < ε}. Then∑
i∈V ε

dηi =
∑
i∈V ε

(dηi )
1/3

(dηi )
2/3 ≤ ε1/3

∑
i∈V ε

(dηi )
2/3

≤ Cε1/3
∑
i∈V ε

Fη (uη, hη,Ω
η
i )

≤ Cε1/3Fη (uη, hη) ≤ Cε1/3.
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The number of islands with dηi > ε is uniformly bounded by some constant Nε ≤ 1
ε . For

fixed ε > 0 let Iε :=

( ∪
i∈V ε

[aηi , b
η
i ]

)c

and µεη := hηχIε dx. Then
{
µεη
}
converges weakly-∗ to

µε :=
∑Nε

i=1 diδci . Finally µε → µ since for every φ ∈ C (I)

|(µε − µ) (φ)| = lim
η→0

∫
Iε
hηφdx ≤ C ‖φ‖∞ ε1/3.

Since µε weakly-∗ converges
∑

i∈N diδci , this ends the proof.

Remark 4.8. In contrast to [14], the structure of the limiting measure seems not to follow
directly from the Second Concentration-Compactness Lemma by P.L. Lions (see [39]), but
rather from the scaling of the energy.

We finally prove the corresponding limsup inequality.

Proposition 4.9. If µ :=
∑+∞

i=1 di δci then there exist a sequence {(uη, hη)} of functions
uη ∈ W 1,p

(
Ωhη ;R2

)
, and nonnegative Lipschitz functions hη such that µη := hη dx are

probability measures that weakly-∗ converge to µ, and

lim sup
η→0

Fη (uη, hη) ≤ 3C
1/3
W

+∞∑
i=1

d
2/3
i .

Proof. Every measure µ =
∑+∞

i=1 diδci can be approximated in energy by the measures µN :=∑N
i=1 di δci , and by slightly moving the points ci, we may assume that ci /∈ {0, 1}. For such

measures, we construct a recovery sequence as follows: Set `i :=
(

di
CW

)1/3
η, hi :=

di
`i
, and

let hη a Lipschitz function close to
∑N

i=1 hiχ(ci−`i/2,ci+`i/2). Finally, choose uη to be the
minimizer of the elastic energy in Ωhη .

Note that the minimizer of the limit functional,

min

{
+∞∑
i=1

d
2/3
i :

+∞∑
i=1

di = 1

}
,

is given by a single Dirac mass, i.e., d1 = 1 and di = 0 for i > 1.

Remark 4.10. (i) The limiting energy charges only Dirac masses. This can be interpreted
as a confirmation of the formation of islands in case that the amplitude of the mismatch
is large compared to the thickness of the film.

(ii) The limit functional is not defined on a function space, but on a space of measures.
The idea to consider limits in such a way has been used, e.g., in the study of the Ohta-
Kawasaki model (see [14, 30]), in the study of vortices in Ginzburg-Landau model (see
[33, 41]), and is also behind the idea of the blow-up method of Fonseca and Müller (see
[23]).
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5 Scaling law in dimension three for the Dirichlet energy

In this section, we show that in higher dimension, a scaling law similar to the one of Theorem
3.1 holds. Let D = D(0, 1) ⊂ R2 be the unit disk (but it could be replaced by any smooth
bounded domain) and consider

Fd,e0(u, h) :=

∫
Ωh

|∇u|2 dx dy +
∫
D

√
1 + |∇h|2 dx,

where Ωh := {(x, y) : x ∈ D, 0 ≤ y ≤ h(x) }, u(x, 0) = e0(x, 0) for all x ∈ D, and
∫
D h dx = d.

Proposition 5.1. Let d ≥ 2π. There exist constants C1, C2 > 0 such that

C1max
{
1, d, e

1/2
0 d3/4

}
≤ inf Fd,e0 ≤ C2max

{
1, d, e

1/2
0 d3/4

}
.

Proof. The upper bound is very similar to the two dimensional case, replacing rectangles by
cylinders.

For the lower bound, we proceed along the lines of the proof of Theorem 3.1. We assume

that e
1/2
0 d3/4 ≥ Cmax{1, d}. Let Ω := {x ∈ D : h(x) > 1}. Then |Ωh ∩ {y ≥ 1}| ≥ d − π

and thus

F (u, h) ≥
∫
Ω×[0,1]

|∇u|2 dx dy +
∫
Ω
|∇h| dx ≥ C

(∫
Ω×[0,1]

|∇u|2 dx dy + d λ1(Ω)

)
, (13)

where λ1(Ω) is the Cheeger constant of Ω defined as (see for instance [3])

λ1(Ω) := min∫
Ω h dx=1

∫
Ω
|∇h| dx+

∫
∂Ω

|h| dx = min
E⊂Ω

P (E)

|E|

=
1

d
min

{∫
Ω
|∇h| :

∫
Ω
h = d and h = 0 on ∂Ω

}
,

where P (E) denotes the perimeter of the set E. For a fixed domain Ω ⊂ D, we want to
estimate from below

min
u(x,0)=(x,0)

∫
Ω×[0,1]

|∇u|2 dx dy.

Let us notice that by reducing Ω we can assume that λ1(Ω) =
P (Ω)
|Ω| i.e., that Ω is calibrable

(see for example [3]) since it would only lower the energy. Notice that Ω is then a connected
set. We then consider the minimizer u of this problem which satisfies,

−∆u = 0 in Ω× (0, 1)

u(x, 0) = (x, 0) in Ω
∂u
∂ν = 0 in ∂Ω× (0, 1) ∪ Ω× {1}.
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Let µ2k be the increasing eigenvalues of the Laplacian in Ω with Neumann boundary conditions
(so that µ1 = 0) and let φk be the associated eigenfunctions (normalized so that

∫
Ω φ

2
k = 1).

We can then decompose u with respect to the basis φk, i.e.,

u(x, y) =
∑
k≥1

uk(y)φk(x)

where uk is a vector valued function. From the equation we get

u′′k − µ2kuk = 0 uk(0) = uk u′k(1) = 0

where uk =
∫
Ω u(x, 0)φk dx and thus uk(y) = α exp(µky) + β exp(−µky) so that we find

uk(y) =
exp(−2µk)

1 + exp(−2µk)
uk exp(µky) +

1

1 + exp(−2µk)
uk exp(−µky)

We then get that (using that
∫
Ω |∇φk|2 dx = µ2k)∫

Ω×[0,1]
|∇u|2 dx dy =

∑
k≥1

∫ 1

0
|u′k(y)|2 + µ2k|uk(y)|2 dy =

∑
k≥2

1− exp(−2µk)

1 + exp(−2µk)
µk|uk|2. (14)

By Cheeger’s inequality (see [38]), for k ≥ 2

µk ≥ µ2 ≥
1

4
λ1(Ω)

and since Ω ⊂ D, we also have λ1(Ω) ≥ λ1(D) and thus∫
Ω×[0,1]

|∇u|2 dx dy ≥
1− exp(−λ1(D)

2 )

1 + exp(−λ1(D)
2 )

λ1(Ω)

4

∑
k≥2

|uk|2.

By Plancherel formula, there holds∑
k≥2

|uk|2 =
∫
Ω
|x|2 dx− 1

|Ω|

n∑
i=1

(∫
Ω
xi dx

)2

.

Since ∫
Ω
|x|2 dx− 1

|Ω|

n∑
i=1

(∫
Ω
xi dx

)2

=
1

2|Ω|

∫
Ω×Ω

|x− z|2 dx dz,

equation (14) transforms into∫
Ω×[0,1]

|∇u|2 dx dy ≥ Cλ1(Ω)
1

|Ω|

∫
Ω×Ω

|x− z|2 dx dz.

It thus suffices to show the lower bound

e20λ1(Ω)
1

|Ω|

∫
Ω×Ω

|x− z|2 dx dz + dλ1(Ω) ≥ Ce
1/2
0 d3/4.
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For that, we employ the interpolation inequality (recall that λ1(Ω) =
P (Ω)
|Ω| )

P (Ω)4/5
(∫

Ω×Ω
|x− z|2 dx dz

)1/5

≥ C|Ω|, (15)

which corresponds to [34, (5.3)] with α = −2, since their proof carries over verbatim to
this choice. Finally, dividing (15) by |Ω|, raising it to the power 5/4, and multiplying it by

e
1/2
0 d3/4, yields the desired lower bound.

Remark 5.2. (i) Notice that

min
u(x,0)=(x,0)

∫
Ω×[0,1]

|∇u|2 dx dy ' |(x, 0)|2
H1/2(Ω)

=
∑
i

∫
Ωi×Ωi

1

|x− z|
dx dz,

where the sets Ωi are the connected components of Ω. Hence (at least formally), the
right handside of (13) looks very similar to the Ohta-Kawasaki functional which has
received a lot of attention in the last few years (see [34, 16, 14, 30, 2]).

(ii) The proof of Theorem 5.1 can be extended similarly to any space dimension.

(iii) In order to remove the condition d ≥ 2π, we would need the reverse of Cheeger’s in-
equality. Unfortunately, it is known that Buser’s inequality does not hold for problems
with Neumann boundary conditions (see [38]).
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