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Minimax Critical Points in Ginzburg-Landau Problems with Semi-stiff Boundary Conditions: Existence and Bubbling

Let Ω ⊂ R 2 be a smooth bounded simply connected domain. We consider the simplified Ginzburg-

, where u : Ω → C. We prescribe |u| = 1 and deg (u, ∂Ω) = 1. In this setting, there are no minimizers of E ε . Using a mountain pass approach, we obtain existence of critical points of E ε for large ε. Our analysis relies on Wente estimates and on the study of bubbling phenomena for Palais-Smale sequences.

Introduction

We consider a smooth bounded simply connected domain Ω ⊂ R 2 and set Γ = ∂Ω. Let E = u ∈ H 1 (Ω; C); | tr u| = 1 .

Here, tr u denotes the trace of u on Γ. If u ∈ E and we let g = tr u, then g ∈ H 1/2 (Γ; S 1 ), and therefore we may define the winding number (degree) of g [15, Appendix], denoted by deg (u, Γ) or deg (g, Γ). [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] In particular, for d ∈ N * we may define the class

E d = u ∈ H 1 (Ω; C); | tr u| = 1 on Γ, deg (u, Γ) = d .
For ε ∈ (0, ∞], we consider the simplified Ginzburg-Landau energy

E ε (u) = 1 2 
ˆΩ |∇u| 2 + 1 4ε 2 ˆΩ(1 -|u| 2 ) 2 .
Our paper is devoted to the existence of critical points of E ε in E d , with special focus on the case d = 1. Boundary condition |tr u| = 1 can be regarded as a relaxation of the S 1 -valued Dirichlet boundary condition. This latter condition was considered in detail in the classical work [11], where the asymptotic behavior of critical points of E ε was studied in the limit ε → 0. It was shown, in particular, that zeroes (vortices) of critical points are distant from the boundary, i.e., boundary "repels" vortices. The Ginzburg-Landau equation with the Neumann boundary condition presents another extremal effect -"vortices flow through the boundary outside the domain", more precisely, there are no stable (global) minimizers with vortices [40]. The semi-stiff boundary conditions were introduced and studied in [10], [6], [9]. These conditions are intermediate between the Dirichlet and Neumann conditions in the following sense: the Dirichlet condition |u| = 1 is assumed for the modulus and the Neumann one for the phase of u on the boundary.

In order to obtain nontrivial (nonconstant) critical points one can prescribe nonzero degree on the boundary. Note that the topological degree is continuous with respect to the strong convergence in H 1 (Ω; C) and one can show that the sets E d are the connected components of E (in the topology inherited from H 1 (Ω; C)). Thus minimizers of E ε in E d (if they exist) are local minimizers in E .

A first natural issue is existence of minimizers of E ε in E d . When ε = ∞, it is easy to see that the minimizers of E ∞ in E 1 are precisely the conformal representations of Ω into the unit disc D; it is also possible to characterize the minimizers E ∞ in E d for d ≥ 2 (Corollary 3.2). When ε < ∞, E ε does not attain its minimum in E d unless d = 0 (Lemma 3.4). This contrasts with the case of thin doubly connected domains, in which minimizers of E ε with prescribed degrees one and one do exist [28], [6]. [START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF] Next natural question is existence of critical points. Our main result is the following.

Theorem.

There exists some ε 0 > 0 such that, for ε > ε 0 , E ε has critical points in E 1 .

The interesting features of existence/nonexistence of critical points were observed in [10]. Next a nontrivial result on the existence of critical points for the Ginzburg-Landau functional with semi-stiff boundary conditions was obtained in [28] for annuli by minimization of E ε with prescribed degrees d on both connected component of the boundary. This result (in the case d = 1) was improved and extended in [6] to general doubly connected domains. The existence/nonexistence study for doubly connected domains was completed in [4]. Works [6] and [4] show that the existence of minimizers crucially depends on the upper energy bound obtained by minimizing the Dirichlet energy among S 1 -valued maps. [START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[END_REF] Namely, if this bound does not exceed a certain threshold then minimizers exist for all ε, otherwise they exist for large ε and do not exist for small ε. It can be conjectured on the basis of aforementioned works that global minimizers with prescribed degrees either do not exist or, if they exist, have no zeroes (vortices). However, in [9] it was shown that critical points with zeroes (vortices) do exist (for small ε) for all prescribed degrees on components of a doubly connected domain. The method in [9] makes use of nontrivial topological structure of energy sublevel sets in the case of doubly connected domain, and critical points found in [9] are local minimizers. This approach extends to general multiply connected domains [23], but cannot be applied to find critical points in simply connected domains. An important tool in the construction of [9] is the approximate bulk degree functional, introduced in that work for doubly connected domains. The latter notion can be generalized to multiply connected domains [23]; however, it does not have an analogue for simply connected domains.

The techniques developed in the works cited above for semi-stiff boundary conditions do not lead to (locally or globally) minimizing solutions in simply connected domains. Thus a natural question arises: can one find minimax (saddle) critical points for semi-stiff boundary conditions? This question motivated the present work.

By contrast with the above references and especially [9], our approach is not based on the direct method: in Theorem 1.1, critical points are minimax type ones; their existence is obtained via the Mountain Pass Theorem of Ambrosetti and Rabinowitz [1] combined with an asymptotic analysis of the Palais-Smale sequences. This analysis is rather delicate, since our problem is non compact. Non compact problems have been broadly considered in the PDE literature for more then three decades. They include nonlinear problems with critical growth (in particular, the celebrated Yamabe problem), three body problem, Yang-Mills equations, harmonic map problem etc. (see e.g. the references in [16]). In non compact problems, analysis of Palais-Smale sequences and the validity of the (PS) c (Palais-Smale condition at the energy level c) condition of Brezis, Coron and Nirenberg [18] play a crucial role. This analysis is also at the heart of the proof of Theorem 1.1.

After our work was completed, our analysis for large ε was complemented in [32] by several existence results for small ε. The main results in [32] assert that, for small ε, E ε has critical points with prescribed degree one provided:

1. Either Ω is close (in a suitable sense) to a disc.

2.

Or Ω is a generic (in a suitable sense) simply connected domain.

Unlike the methods we develop here, the approach in [32] relies on inverse function techniques, in the spirit of the construction of critical points of E ε with Dirichlet boundary condition performed by Pacard and Rivière [36]. However, the two approaches have something in common: they are restricted to the prescribed degree one. The proof in the present paper is based on a contradiction argument which works only for relatively small energies (less than 2π); this is why we consider here only the case of degree one. More specifically, the argument goes as follows. We first establish existence of a mountain pass geometry for the energy functional E ε for an appropriate choice of the function space. Using the Mountain Pass Theorem [1], this leads to the existence of sequences of almost critical points of E ε . The key point is then to prove the following compactness result: any possible weak limit u of such a sequence still has degree one. [START_REF] Berlyand | Nonexistence of Ginzburg-Landau minimizers with prescribed degree on the boundary of a doubly connected domain[END_REF] The above compactness is obtained by contradiction. To be more precise, we prove that, up to a subsequence, a non compact sequence (u n ) has exactly one vortex approaching the boundary and that the energy E ε (u n ) asymptotically splits into the sum of two terms: the first one equals π and corresponds to the energy concentrated near the vortex, while the second term is E ε (u) (the energy of the weak limit u of the sequence). When the energies of the u n 's are asymptotically below the critical value 2π, the weak limit u turns out to be a critical point of E ε whose energy lies in the interval (0, π). We complete the proof by proving that there is no such a critical point minimizing the functional with respect to its own boundary conditions.

This approach however cannot be directly applied for finding critical points with degrees greater than one; this remains an interesting open problem.

Our paper is organized as follows. In Section 2, we recall the existence and the basic properties of the boundary degree for maps in E , as well as some applications of the Wente estimates, which are crucial in the analysis of the Palais-Smale sequences. In Section 3, we prove the (non)existence of minimizers of E ε . The basic objects involved in this analysis are the Blaschke products, that play a crucial role in what follows. Section 4 gives the structure of maps close (in a suitable sense) to Moebius transforms, and more generally to Blaschke products. The results in Section 4 are used in Section 5 for establishing a mountain pass geometry (in a suitable functional setting). In Section 5, we rely on the Mountain Pass Theorem in order to obtain sequences of almost critical points of E ε and an almost critical level c > π. In Section 6 we prove Theorem 1.1. The rather simple proof requires both ε large and c < 2π. Once the existence of critical points is established, we determine in Section 7 their behavior as ε → ∞. We next turn to the task of generalizing Theorem 1.1 to a larger range of ε's. This relies on a careful analysis of the Palais-Smale sequences. Although Theorem 1.1 is about degree 1 and simply connected domains, we found interesting to present in Sections 8 and 9 the analysis of the Palais-Smale sequences when the boundary degree is arbitrary and the domain is allowed to be multiply connected. [START_REF] Berlyand | Ginzburg-Landau minimizers in perforated domains with prescribed degrees[END_REF] We next rely on this analysis in order to obtain a slight generalization of Theorem 1.1; see Theorem 8.14. In Section 9, we present an application of the bubbling analysis in multiply connected domains. More specifically we obtain, in thick circular annuli and for large ε, existence of critical points with prescribed degrees one and zero (Theorem 9.6). denote {z ∈ C; |z| < r}, respectively {z ∈ C; |z| = r}, by D r , respectively C r .

2. ω and Ω will usually denote smooth open subsets of R 2 . 

When

) ∈ W 1,1 (ω) satisfies ∆u(g) = 0 in ω tr u(g) = 0 on ∂ω . If in addition g ∈ H 1/2 (∂ω; C),
then we define a semi-norm in H 1/2 via the formula

|g| 2 H 1/2 = 1 2 ˆω |∇u(g)| 2 .
(2.1)

As well-known, this semi-norm is equivalent to the standard (Gagliardo) semi-norm

g → ˆ∂ω ˆ∂ω |g(x) -g(y)| 2 |x -y| 2 ds x ds y 1/2
, g ∈ H 1/2 (∂ω; C). [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF] 5. ∧ stands for the vector product of complex numbers:

(a 1 +ıa 2 )∧(b 1 +ıb 2 ) = a 1 b 2 -a 2 b 1 .
Similarly, the notation u ∧ ∇v, with u and v complex-valued functions, stands for the vector-field u 1 ∇v 2u 2 ∇v 1 .

If u

∈ C 1 (ω; C), u = u 1 + ıu 2 , then Jac u = ∇u 1 ∧ ∇u 2 = ∂ x u ∧ ∂ y u is the Jacobian determinant of u.
When ω is smooth bounded and u ∈ C 1 (ω), we note the integration by parts formula

ˆω Jac u = 1 2 ˆ∂ω u ∧ ∂u ∂τ . (2.2) 
Formula (2.2) extends to H 1 maps; see Lemma 2.3.

7. If (a, b) ∈ R 2 , then (a, b) ⊥ = (-b, a). With complex notation, z ⊥ = ız. In the same vein, for functions f = f (x, y), we let

∇ ⊥ f = (-∂ y f , ∂ x f ).
8. With the above notation, we have Jac ( f , g) = -∇ f • ∇ ⊥ g.

9.

• stands for the real scalar product. E.g., we have (a 1 + ıa 2 )

• (b 1 + ıb 2 ) = a 1 b 1 + a 2 b 2 , and if u = u 1 + ıu 2 and v = v 1 + ıv 2 are complex vectors, then u • v = u 1 • v 1 + u 2 • v 2 .
10. Several function spaces will appear frequently:

a) E = {u ∈ H 1 (Ω; C); | tr u| = 1}. If, in addition, Ω is simply connected and d ∈ Z, then E d = {u ∈ E ; deg (u, ∂Ω) = d}. b) When Ω = D, the two above spaces are denoted G , respectively G d . c) We let H = H 1/2 (S 1 ; S 1 ) and H d = {g ∈ H ; deg g = d}.
We next turn to the description of a functional setting adapted to the study of critical points.

If g ∈ H 1/2 (S 1 ; C), then the semi-norm |g| H 1/2 is easily expressed in terms of Fourier coefficients: if we write g = a n e ınθ , then

|g| 2 H 1/2 = π |n||a n | 2 . (2.3)
As noticed first by Boutet de Monvel and Gabber [15, Appendix], a map g ∈ H 1/2 (S 1 ; S 1 ) has a well-defined winding number (degree), denoted deg (g, S 1 ), or simply deg g. This degree is defined as follows. On the one hand, C ∞ (S 1 ; S 1 ) is dense in H 1/2 (S 1 ; S 1 ) [15, Appendix]. [START_REF] Berlyand | Near boundary vortices in a magnetic Ginzburg-Landau model: their locations via tight energy bounds[END_REF] On the other hand, if we write in Fourier series a smooth circle-valued map g as g = a n e ınθ , then

deg g = n|a n | 2 .
(2.4)

Via (2.
3), we easily obtain that the degree of smooth maps is continuous with respect to the H 1/2 convergence. This implies that the right side of (2.4) is an integer for each map g ∈ H 1/2 (S 1 ; S 1 ); this integer is the degree of g. When S 1 is replaced by a smooth simple closed planar curve Γ, the degree of a map g ∈ H 1/2 (Γ; S 1 ) can be defined using the above procedure: we first establish density of C ∞ (Γ; S 1 ) into H 1/2 (Γ; S 1 ), next prove continuity of the degree of smooth maps for H 1/2 convergence. An alternative equivalent approach is the following. Let Ω be the domain enclosed by the curve Γ. We fix some conformal representation

Φ ∈ C ∞ (Ω; D). Let Ψ = Φ |Γ : Γ → S 1 . If g ∈ H 1/2 (Γ; S 1 ), then we have g • Ψ -1 ∈ H 1/2 (S 1 ; S 1
) and thus we may set

deg (g, Γ) = deg (g • Ψ -1 , S 1 ).
(2.5) Formula (2.5) reduces the study of degree to the case where Γ = S 1 and Ω = D. Existence of the degree suffices to describe the functional setting we need. However, in subsequent sections we will use further properties of the degree. For the convenience of the reader, these properties are recalled below. The results we present are well-known to the experts but difficult to find in the literature. We follow mainly unpublished lecture notes of a graduate course of H. Brezis at Paris 6. Some of the results in this section are also presented in [15, 20, 21, 14, 19]. Proofs of Lemmas 2.1-2.3 and 2.5-2.8 are part of Ginzburg-Landau folklore, but most of them unavailable; see however [37, p. 37-41] for some proofs.

2.1 Lemma. 1. C ∞ (Γ; S 1 ) is dense in H 1/2 (Γ; S 1 ).

2. The degree of H 1/2 (Γ; S 1 ) maps is continuous with respect to the strong H 1/2 -convergence.

3. The degree of H 1/2 (Γ; S 1 ) maps is not continuous with respect to the weak H 1/2 -convergence.

Proof. The first two items rephrase the beginning of this section. For the third one, we let Γ = S 1 and proceed as follows: let g a (z) = za 1 -az , z ∈ S 1 , a ∈ (0, 1). Then g a -1 as a → 1 and deg

g a = 1, but deg (-1) = 0.
The lack of continuity of the degree with respect to weak convergence makes the minimization of

E ε in E d non trivial.
We continue with a result relating the degree of H 1/2 maps to the more familiar degree of continuous maps. (2.6)

Lemma. Let u

∈ H 1 (D; C) ∩ C(D; C). Assume that 0 < c ≤ |u| ≤ C < ∞ in a neighborhood of
In the remaining part of this section, unless otherwise stated, Ω is a smooth bounded simply connected domain and Γ = ∂Ω.

We continue with two useful formulas giving the degree. The first one is merely an interpretation of (2.4).

Lemma.

Let g ∈ H 1/2 (Γ; S 1 ) and let u ∈ H 1 (Ω; C) be such that tr u = g. Then

deg g = 1 2ıπ ∂g ∂τ , g H -1/2 ,H 1/2 = 1 2π ˆΓ g ∧ ∂g ∂τ (2.7)
and

deg g = 1 π
ˆΩ Jac u.

(2.8)

The second equality in (2.7) is valid only when g is sufficiently smooth, say g ∈ C 1 . In this paper, we often use this equality, but the integral has to be understood in the sense of the H 1/2 -H -1/2 duality.

Corollary. Let u

∈ H 1 (Ω; C). 1. If |u| = 1 on ∂Ω, then ˆΩ |∇u| 2 ≥ 2π| deg (tr u, ∂Ω)|.
(2.9)

2. If |u| ≥ ρ > 0 on ∂Ω, then ˆΩ |∇u| 2 ≥ 2πρ 2 | deg (tr u, ∂Ω)|.
(2.10) Proof. The first conclusion above is obtained by combining (2.8) with the pointwise inequality 2| Jac u| ≤ |∇u| 2 . The second one is obtained by applying (2.9) to Φ(u), where

Φ(z) = z/ρ, if |z| ≤ ρ z/|z|, if |z| > ρ .
As one may expect, the degree of H 1/2 maps inherits some well-known properties of the degree of continuous maps.

2.5 Lemma. deg is locally constant in H 1/2 (Γ; S 1 ).

2.6

Lemma. Let g, h ∈ H 1/2 (Γ; S 1 ). Then the following hold.

1. If g is continuous, then the degree of g in the sense H 1/2 maps is the same as the degree of g in the sense of continuous maps.

deg (gh)

= deg g + deg h. 3. deg (g/h) = deg g -deg h. 4. deg g = 0 ⇐⇒ g = e ıψ for some ψ ∈ H 1/2 (Γ; R).
More generally, deg g = d ⇐⇒ g = g 0 e ıψ for some ψ ∈ H 1/2 (Γ; R) and a fixed smooth reference map g 0 ∈ C ∞ (Γ; S 1 ) of degree d.

Item 4. above gives a first characterization of maps with zero degree. Further characterization are related to the existence of circle-valued extensions.

2.7 Lemma. 1. Let u ∈ H 1 (Ω; C) be such that essinf |u| > 0. Then we may write u = ρ e ıϕ , where ρ = |u| ∈ H 1 (Ω; R) and ϕ ∈ H 1 (Ω; R).

2. Let g ∈ H 1/2 (Γ; S 1 ). Then deg g = 0 ⇐⇒ g = tr u for some u ∈ H 1 (Ω; S 1 ) ⇐⇒ g = tr u for some u ∈ H 1 (Ω; C) such that essinf |u| > 0.

3. Let g ∈ H 1/2 (Γ; S 1 ) be such that deg g = 0. Write g = e ıψ , with ψ ∈ H 1/2 (Γ; R) and define H 1 g (Ω; S 1 ) := {u ∈ H 1 (Ω; C); |u| = 1 and tr u = g}. Then we have

H 1 g (Ω; S 1 ) = {e ıϕ ; ϕ ∈ H 1 (Ω; R) and tr ϕ = ψ}.
Similarly, for C > 0 we have the equality

{u ∈ H 1 (Ω; C); essinf |u| ≥ C, tr u = g} = {ρe ıϕ ; ρ, ϕ ∈ H 1 (Ω; R), tr ϕ = ψ, essinf ρ ≥ C}.
Let us also note that, if we may write u = ρ e ıϕ for some ϕ ∈ H 1 and for some ρ ∈ H 1 ∩ L ∞ such that essinf ρ > 0, then we have the identities

|∇u| 2 = |∇ρ| 2 + ρ 2 |∇ϕ| 2 and ∇ϕ = u ρ ∧ ∇ u ρ = 1 ρ 2 u ∧ ∇u. (2.11) 
Like for continuous maps, in a multiply connected domain ω a circle-valued H 1 map u need not have a global phase ϕ as in Lemma 2.7. However, as a consequence of Lemma 2.7 1, if essinf |u| > 0 then we may locally write u = ρ e ıϕ , with ρ = |u| and such that (2.11) holds.

(2.12)

In particular, ∇ϕ is globally defined. Global existence of ϕ itself is governed by the next result, which is the H 1 -counterpart of a well-known property of continuous circle-valued maps.

Lemma.

Let ω ⊂ R 2 be a smooth bounded domain. Let u ∈ H 1 (ω; C) be such that essinf |u| > 0. Then

u = |u|e ıϕ , with ϕ ∈ H 1 (ω; R) ⇐⇒ deg u |u| , γ = 0, ∀ γ component of ∂ω. 2.9 Corollary. Let ω ⊂ R 2 be a smooth bounded domain. Let u j ∈ H 1 (ω; C), j ∈ 1, 2 , be such that 0 < essinf |u j | ≤ esssup |u j | < ∞, j ∈ 1, 2 . Assume that deg u 1 |u 1 | , γ = deg u 2 |u 2 | , γ , for each component γ of ∂ω.
Then we may write u 2 = u 1 ηe ıϕ , where η = u 2 u 1 ∈ H 1 (ω; R) and ϕ ∈ H 1 (ω; R).

By Lemma 2.1, the class E d (and in particular G d ) is closed with respect to strong H 1 convergence, but is not closed with respect to the weak H 1 convergence. However, we do have weak closedness in absence of vortices, as explained in the next couple of results.

Let ω ⊂ R 2 be smooth and bounded. Let Γ j , j ∈ 1, k , be the components of ∂ω. Consider, for λ > 0, the class

H (λ) := {u ∈ H 1 (ω; C); |u| ≥ λ}. For u ∈ H (λ) , let d(u) ∈ Z k , d j (u) := deg (u/|u|, Γ j ).
2.10 Lemma. Let (u n ) ⊂ H (λ) be such that u n u weakly in H 1 . Then, for large n, we have d(u n ) = d(u).

In particular, for every d ∈ Z k , the class

H (λ) d := {u ∈ H (λ) ; d(u) = d}
is weakly closed.

Proof. The above lemma follows essentially from the results of White on the existence of homotopical invariants [43], but we present below a simple direct proof.

It is straightforward that, if u n u, then

u n |u n | u |u|
. Therefore, we may assume that all the maps are circle-valued. Let f ∈ C ∞ (ω). Then we have the identity [6, (2.2)]

2 ˆω f Jac u n = ˆ∂ω f u n ∧ ∂u n ∂τ + ˆω ∂ f ∂y u n ∧ ∂u n ∂x - ∂ f ∂x u n ∧ ∂u n ∂y . (2.13)
Since u n is circle-valued, we have Jac u n ≡ 0 [19]. Combining this fact with (2.7) we find that, if f is such that f = 1 on Γ j and f = 0 on ∂ω \ Γ j , then (2.13) becomes

deg (u n , Γ j ) = ± 1 2π ˆω ∂ f ∂ y u n ∧ ∂u n ∂x - ∂ f ∂x u n ∧ ∂u n ∂ y , (2.14) 
where, according to the orientation of Γ j , the minus sign corresponds to the outer component of ∂ω, and the plus sign corresponds to all other components of ∂ω. We conclude via the fact that the righthand side of (2.14) is continuous with respect to the weak H 1 convergence of uniformly bounded maps.

By combining Lemma 2.10 with Corollary 2.9 and with (2.11), we obtain the following straightforward consequence, whose proof is left to the reader.

Lemma.

Let ω be as above. Let (u n ) ⊂ H (λ) satisfy u n u and |u n | ≤ Λ.

Then, for large n, we may write u n = uη n e ıψ n , with λ/Λ ≤ η n ≤ Λ/λ and η n 1, ψ n 0 in H 1 (ω; R). In the general case, we write u = v + w, with v harmonic and tr w = 0. Then w ∈ C 0 (Ω) and thus lim z→∂Ω w(z) = 0. We conclude via the fact that lim z→∂Ω |v(z)| = 1.

We will also need the following version of Lemma 2.12.

2.13

Lemma. Let u j , u ∈ H 1 (Ω; C) be such that | tr u j | = 1, u j → u in H 1 and |∆u j | ≤ C. Then

|u j | → |u| uniformly in Ω.
(2.16)

Proof. By standard interior estimates [27, Theorem 9.11, p. 235], we have u j → u uniformly on compact subsets of Ω.

In order to describe the boundary behavior of u j , write, as in the previous lemma, u j = v j + w j and u = v + w. The proof of [21, Theorem A3.2] gives the following uniform convergence:

lim z→∂Ω inf j |v j (z)| = 1.
(2.17)

On the other hand, w j → w in W 2,p (Ω), ∀p ∈ (1, ∞), by standard elliptic estimates [27, Theorem 9.15, p. 241], and thus w j → w uniformly in Ω.

We conclude by combining this uniform convergence with (2.17).

We next return to our initial problem of finding critical points of E ε in E d and transfer it from Ω to D. To this end we consider a fixed conformal representation Φ :

Ω → D. Let w = Jac Φ -1 ∈ C ∞ (D; (0, +∞)) and set β = 1 ε 2 w.
We associate to Φ and ε the energy We continue with a brief discussion concerning the critical points of F β (with respect to the prescribed degree boundary condition, but this is implicitly assumed and will not be specified).

F β (u) = 1 2 
ˆD |∇u| 2 + 1 4 ˆD β(x)(1 -|u| 2 )
2.14 Definition. By a critical point of F β we mean a solution of

           -∆u = β u(1 -|u| 2 ) in D | tr u| = 1 on S 1 ˆD(u ∧ ∇u) • ∇ζ = 0 ∀ ζ ∈ H 1 (D) deg (u, S 1 ) = d . (2.21)
The above definition is motivated by the fact that (2.21) consists of the Euler-Lagrange equations obtained by variations of u with compact support in D and by variations of the type ue ıt f , where

f ∈ C ∞ (D; R).
We warn the reader that there is another natural notion of critical point of F β , when g = tr u is prescribed. In this case, u satisfies 

-∆u = β u(1 -|u| 2 ) in D u = g on S 1 . ( 2 
           -∆u = β u(1 -|u| 2 ) in D | tr u| = 1 on S 1 u ∧ ∂u ∂ν = 0 on S 1 deg (u, S 1 ) = d . (2.23)
In addition, if β is smooth, then so is u.

Proof. Follow the argument in [5, Lemma 4.4].

Remark.

Let us comment the condition u ∧ ∂u/∂ν = 0 on S 1 . Since u belongs to W 2,p , p < ∞, we have u ∈ C 1 (D). Given some point z ∈ S 1 , we may write, locally near z, u in the form u = ρ e ıϕ , and then the conditions |u| = 1 and u ∧ ∂u/∂ν = 0 read, locally near z:

ρ = 1 and ∂ϕ ∂ν = 0. (2.24)
We also note the that (2.24) holds for critical points of the original energy, E ε , in Ω.

For further use, let us mention the maximum principle, essentially established in [11].

2.17 Lemma. Let u ∈ G be a critical point of F β with respect to its own boundary condition g ∈ H 1/2 (S 1 ; S 1 ). Then |u| ≤ 1 in D.

In our analysis we also rely on the following Price Lemma [6, Lemma 1].

Lemma.

Let ω ⊂ R 2 be smooth and bounded. Let Γ j , j ∈ 1, k , be the components of ∂Ω. Let

(u n ) ⊂ H 1 (ω; C) satisfy: u n u in H 1 (ω), | tr u n | = 1, deg (u n , Γ j ) ≡ d j . Let β ∈ L ∞ (ω). Then lim inf F β (u n ) ≥ F β (u) + π k j=1 |d j -deg (u, Γ j )|. (2.25)
We complete this section by recalling one of the important tools in our proofs, the Wente estimates [42] in the sharp form of Bethuel and Ghidaglia [12], and some of their applications.

In the remaining part of this section, ω ⊂ R 2 is assumed to be smooth and bounded.

Lemma. Let f

∈ H 1 0 (ω; R) and g, h ∈ H 1 (ω; R). Let u ∈ W 1,1
0 (ω) be the solution of ∆u = Jac (g, h). Then:

1. We have u ∈ C(ω) ∩ H 1 (ω) and u L ∞ ≤ 2 ∇g L 2 ∇h L 2 ,
(2.26)

∇u L 2 ≤ 2 ∇g L 2 ∇h L 2 .
(2.27)

In particular, the map

[H 1 (D; R)] 2 (g, h) → u ∈ C(ω) ∩ H 1 (ω)
is continuous.

2. We have

ˆω f Jac (g, h) ≤ 2 ∇ f L 2 ∇g L 2 ∇h L 2 .
(2.28)

Lemma.

Let

H := {h ∈ H 1 (ω; R); ∆h = 0}. (2.29) Let f ∈ H 1 0 (ω; R), g ∈ H 1 (ω; R) and h ∈ H. Then ˆω f ∇g • ∇h ≤ C(ω) ∇ f L 2 ∇g L 2 ∇h L 2 .
(2.30)

Proof. We start with the simpler case where ω is simply connected. We next turn to a multiply connected domain. Let ω j , j ∈ 1, k , be the bounded components of R 2 \ ω. Fix a j ∈ ω j and let X j (x) := 1 2π ∇ ln(xa j ) ⊥ . Note that each X j is closed. Let X := (∇h) ⊥ . By a standard mean value argument, we may find curves Γ j ⊂ ω, j ∈ 1, k , such that the following hold:

1. Γ j is homotopic in ω to ∂ω j . [START_REF] Berlyand | Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF] 2. ˆΓj

X • τ ≤ C ∇h L 2 .
Let c j := ˆΓj X • τ and set Y := Xj c j X j . By construction, the vector field Y is closed, and satisfies [START_REF] Berlyand | Symmetry Breaking in Annular Domains for a Ginzburg-Landau Superconductivity Model[END_REF] Since the Γ j 's span the homotopy group π 1 (ω), this implies that ˆΓ Y • τ = 0 for each smooth closed curve Γ ⊂ ω. Thus we may write Y = ∇u for some u, and it is easy to see that ∇u L 2 ≤ C ∇h L 2 . Using (2.28), we find that

Y L 2 ≤ C ∇h L 2 and ˆΓj Y • τ = 0, ∀ j.
ˆω f ∇g • ∇h = ˆω f Jac (g, u) + j c j ˆω f ∇g • X ⊥ j ≤ C(ω) ∇ f L 2 ∇g L 2 ∇h L 2 .
Recall that, given a function f on ∂ω, we let u( f ) denote the harmonic extension of f . [START_REF] Berlyand | Minimizers of the magnetic Ginzburg-Landau functional in simply connected domain with prescribed degree on the boundary[END_REF] Recall that (a, b) ⊥ = (-b, a). [START_REF] Berlyand | Solutions with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF] In particular, these curves span the homotopy group π 1 (ω). [START_REF] Berlyand | Symmetry Breaking in Annular Domains for a Ginzburg-Landau Superconductivity Model[END_REF] The latter property follows from the identity ˆΓj

X l = 1, if j = l 0, if j = l . 2.21 Lemma. If f , g ∈ H 1/2 (∂ω), then u := u( f g) -u( f )u(g) belongs to C(ω) ∩ H 1 0 (ω) and we have u L ∞ ≤ C(ω)| f | H 1/2 |g| H 1/2 (2.32) and u H 1 ≤ C(ω)| f | H 1/2 |g| H 1/2 .
(2.33)

Proof. It suffices to establish the above estimates when f and g are smooth. In this case, u is smooth and we have 11

-∆u = 2∇u( f ) • ∇u(g) in ω u = 0 on ∂ω . (2.34)
If we multiply (2.34) by u and use (2.30), we find that

ˆω |∇u| 2 ≤ C(ω) ∇u L 2 ∇u( f ) L 2 ∇u(g) L 2 ≤ C(ω) ∇u L 2 | f | H 1/2 |g| H 1/2 ,
whence (2.33).

On the other hand, by the proof of Lemma 2.20, we may write ∇u

(g) = -∇v -c j X ⊥ j , with ∇v L 2 ≤ C|g| H 1/2 and |c j | ≤ C|g| H 1/2 . We find that ∆u = 2 Jac (u( f ), v) -2 c j (∇u( f )) ∧ X j . (2.35) 
Then using Lemma 2.19, we obtain that

u L ∞ ≤ C(ω) ∇u( f ) L 2 ∇v L 2 + |c j | ∇u( f ) L 2 X j L ∞ ≤ C(ω)| f | H 1/2 |g| H 1/2 .
From the above, if f n f and g n g in H 1/2 , then for the corresponding u's we have u n u in H 1 (ω). This conclusion can be strengthened as follows.

Lemma

. Let f , g n , g ∈ H 1/2 (∂ω) be such that g n g in H 1/2 . Then u( f g n ) -u( f )u(g n ) → u( f g) - u( f )u(g) strongly in H 1 (ω). As a consequence, if f n → f and g n g in H 1/2 then u( f n g n ) -u( f n )u(g n ) → u( f g) -u( f )u(g) strongly in H 1 (ω). Proof. Let u n := u( f g n ) -u( f )u(g n ) -u( f g) + u( f )u(g). By Lemma 2.21, we have |u n | ≤ C and u n 0 in H 1 (ω). Thus u n ∇u( f ) → 0 in L 2 (ω). Since -∆u n = 2∇u( f ) • ∇u(g n ) -∇u(g) , we find that ˆω |∇u n | 2 = 2 ˆω u n ∇u( f ) • ∇u(g n ) -∇u(g) → 0 as n → ∞.
2.23 Remark. Lemma 2.22 can be restated as follows: if g n g weakly in H 1/2 , then ∇u( f )•∇u(g n ) → ∇u( f )•∇u(g) strongly in H -1 (ω). The above proof leads to the following more general fact: if u ∈ H 1 (ω) and v n v in H 1 (ω), with v n harmonic, then ∇u • ∇v n → ∇u • ∇v strongly in H -1 (ω). 12 11 For further use, let us note that a byproduct of the proof is that (2.34) still holds for arbitrary f and g. [START_REF] Bethuel | Improved regularity of solutions to elliptic equations involving Jacobians and applications[END_REF] For a cousin assertion when ω is simply connected, see [24, Lemma 4.2].

2.24 Lemma. Let f , g n ∈ H 1/2 (∂ω; S 1 ). Assume that g n 1 in H 1/2 . Then

ˆω |∇u( f g n )| 2 = ˆω |∇u( f )| 2 + ˆω |∇u(g n )| 2 + o(1) as n → ∞.
(2.36)

Equivalently, | f g n | 2 H 1/2 = | f | 2 H 1/2 + |g n | 2 H 1/2 + o(1).
Proof. Let u := u( f ) and v n := u(g n ). In view of Lemma 2.22, (2.36) is equivalent to

ˆω |u∇v n + v n ∇u| 2 = ˆω |∇u| 2 + ˆω |∇v n | 2 + o(1).
(2.37)

Using the maximum principle Lemma 2.17 combined with the fact that v n → 1 a.e. in ω and ∇v n 0 in L 2 (ω), we find that

ˆω(u∇v n ) • (v n ∇u) = ˆω ∇v n • (v n u∇u) → 0.
Then (2.37) amounts to

ˆω |u| 2 |∇v n | 2 + ˆω |v n | 2 |∇u| 2 = ˆω |∇v n | 2 + ˆω |∇u| 2 + o(1).
(2.38)

In turn, (2.38) is easily obtained by combining the following ingredients:

1. |u(z)| → 1 uniformly as dist (z, ∂ω) → 0 (cf Lemma 2.12).

ˆK |∇v

n | 2 → 0 on each compact subset K ⊂ ω.
3. |v n | ≤ 1 (cf Lemma 2.17).

4. v n → 1 uniformly on compact subsets of ω.

2.25 Remark. The proof of (2.36) is much simpler when ω is simply connected. Indeed, by conformal invariance of the quantities we consider, we may assume that ω = D. In this case, if f = a n e ınθ , then Parseval's identity combined with (2.3) yields

ˆS1 ˆS1 | f (x) -f (y)| 2 |x -y| 2 dxd y = 4π 2 |n||a n | 2 = 4π| f | 2 H 1/2 . (2.39)
Thus (2.36) amounts to

ˆS1 ˆS1 | f (x)g n (x) -f (y)g n (y)| 2 |x -y| 2 dxd y = ˆS1 ˆS1 | f (x) -f (y)| 2 |x -y| 2 dxd y + ˆS1 ˆS1 |g n (x) -g n (y)| 2 |x -y| 2 dxd y + o(1).
(2.40)

Using the fact that | f | = |g n | = 1, we obtain | f (x)g n (x) -f (y)g n (y)| 2 |x -y| 2 = | f (x)(g n (x) -g n (y)) + ( f (x) -f (y))g n (y)| 2 |x -y| 2 = |g n (x) -g n (y)| 2 |x -y| 2 + | f (x) -f (y)| 2 |x -y| 2 + 2F n • G n ,
where

F n (x, y) = f (x)g n (y) f (x) -f (y) |x -y| and G n (x, y) = g n (x) -g n (y) |x -y| . Thus (2.40) is equivalent to ˆS1 ˆS1 F n • G n → 0. (2.41)
We obtain (2.41) using the fact that

F n → F(x, y) = f (x) f (x) -f (y) |x -y| strongly in L 2 (S 1 × S 1
) and G n 0 weakly in L 2 (S 1 × S 1 ). 13

The basic example

We discuss here the minimization of [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] Recall that a Blaschke product is a map of the form

F β in G d with d ∈ N * .
B α,a 1 ,...,a d (z) = α d j=1 z -a j 1 -a j z , z ∈ D, d ∈ N * , α ∈ S 1 , a j ∈ D, ∀ j ∈ 1, d .
More specifically, we will call such a product a d-Blaschke product. In the special case d = 1, a Blaschke products reduces to a Moebius transform

M α,a (z) = α z -a 1 -az , z ∈ D, α ∈ S 1 , a ∈ D.
For further use, let us also define M a = M 1,a and the restriction of M a to S 1 :

N a : S 1 → S 1 , N a (z) = M a (z), z ∈ S 1 . (3.1)
3.1 Lemma. Assume that β = 0. Then u minimizes F 0 in G d if and only if u is a d-Blaschke product.

Proof. We argue as in [5, Section 4.1]. Since |∇u| 2 ≥ 2 Jac u, we have

F 0 (u) = 1 2 ˆD |∇u| 2 ≥ ˆD Jac u = π deg (u, S 1 ) = πd, ( 3.2) 
the second equality following from (2.8). Equality in (3.2) requires |∇u| 2 = 2 Jac u a.e., which implies that u is holomorphic. In particular, if g = tr u, then u = u(g).

On the other hand, if g ∈ H 1/2 (S 1 ; S 1 ) and if u = u(g) is the harmonic extension of g, then Lemma 2.12 implies

lim |z|→1 |u(z)| = 1. (3.3)
In order to complete the proof of Lemma 3.1, it suffices to combine (3.3) with the holomorphy of u and with the following well-known result: let u ∈ Hol (D). [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF] Then lim |z|→1 |u(z)| = 1 uniformly ⇐⇒ u is a Blaschke product. [START_REF] Bourdaud | Fonctions qui opérent sur les espaces de Besov[END_REF] The first convergence is obtained by combining the fact that f n → f in H 1/2 with dominated convergence. The second convergence follows from the fact that g n -1 0 in H 1/2 . [START_REF] Bourgain | Lifting in Sobolev spaces[END_REF] The reader may wonder what happens when d ≤ 0. When d = 0, it is clear that minimizers of F α are precisely the constants of modulus 1. The case d < 0 is obtained from the case d > 0 by complex conjugation. [START_REF] Boutet De Monvel-Berthier | A boundary value problem related to the Ginzburg-Landau model[END_REF] We denote by Hol (Ω) the class of holomorphic functions in Ω.

For the sake of completeness, we recall the proof of "=⇒" (implication "⇐=" being obvious). Let Re f (z) = 0. By the maximum principle, we have Re f ≡ 0, and thus Im f ≡ const. Therefore, u = αv for some α ∈ S 1 .

Corollary.

Let g ∈ H 1/2 (S 1 ; S 1 ) have degree d > 0. Then |g| 2 H 1/2 ≥ πd, with equality if and only if g is a d-Blaschke product.

Fix now a smooth simply connected domain Ω and a conformal representation Φ : Ω → D. Then we define a (generalized) d-Blaschke product [START_REF] Brezis | Critical points in variational problems without compactness[END_REF] by the formula

B α,a 1 ,...,a d ,Φ (z) = α d j=1 Φ(z) -a j 1 -a j Φ(z) , z ∈ Ω, d ∈ N * , α ∈ S 1 , a j ∈ D, ∀ j ∈ 1, d ,
and a (generalized) Moebius transform via

M α,a,Φ (z) = α Φ(z) -a 1 -aΦ(z) , z ∈ Ω, α ∈ S 1 , a ∈ D.
Using Lemma 3.1 and the invariance of the Dirichlet integral under conformal representations, we obtain The next results implies, in particular, that the infimum of E ε in E d is not attained when ε < ∞.

Lemma. Let

β ≡ 0. If d = 0 then F β does not attain its minimum in G d . Proof. Let u ∈ G d . Then F β (u) ≥ F 0 (u) = πd.
We find that inf

G d F β ≥ πd. On the other hand, consider the d-Blaschke product u = d j=1 Φ -a j
1 -a j Φ and let a j → -1, ∀ j. Then u 1 in H 1 (Ω), and in particular

F β (u) → πd.
We find that inf

G d F β = πd.
In order to prove that the minimum is not attained, argue by contradiction: assume that u minimizes

F β in G d . Then F β (u) = F 0 (u) = πd. Thus u is a d-Blaschke product and ˆΩ β (1 -|u| 2 ) 2 = 0. This is impossible, since |u| < 1 in D and thus β (1 -|u| 2 ) 2 ≡ 0.
We complete this section with the following strong improvement of Lemma 3.1.

Lemma. The critical points of F

0 in G d are precisely: a) the d-Blaschke products if d > 0. b) the conjugates of (-d)-Blaschke products if d < 0. c) constants of modulus 1 if d = 0.
After our work was completed, we learned that the same result has also been obtained independently by V. Millot and Y. Sire [35].

Proof. We rely on the properties of the Hopf differential in arbitrary domains Ω ⊂ R 2 , for which we send the reader to [30, Chapter 4]; in particular, the reader will find there calculations similar to the ones leading to (3.5) or (3.6). If u : Ω → C is a smooth function, then the Hopf differential ξ of u is defined by the formula

ξ : Ω → C, ξ(z) = 4(∂ z u)(∂ z u) = (∂ x u -ı∂ y u)(∂ x u -ı∂ y u). (3.4)
If, in addition, u is harmonic, then ξ is holomorphic, and the equality ξ = 0 is equivalent to either u being holomorphic or u being anti-holomorphic. We next derive some identities valid when Ω or u have additional properties. Assume first that Ω is smooth and that u is smooth near some point z ∈ ∂Ω, and let ν = ν x + ıν y denote the outward normal to ∂Ω. Let ∂ ∂τ and ∂ ∂ν denote respectively the normal and the tangential derivative on ∂Ω (with respect to the counterclockwise orientation). Using the equalities

∂ ∂x = ν x ∂ ∂ν -ν y ∂ ∂τ and ∂ ∂ y = ν y ∂ ∂ν + ν x ∂ ∂τ u,
definition (3.4) can be rewritten as 

ξ(z) = (ν x -ıν y ) 2 ∂u ∂ν -ı ∂u ∂τ ∂u ∂ν -ı ∂u ∂τ . (3.5) If, in addition, u is a critical point of E ε in Ω (or of F β in D), then we have ∂ρ/∂τ = 0 on ∂Ω. Therefore, (2.24 

Moebius and almost Moebius transforms

In this section, we describe harmonic maps u which are "close" to Moebius maps. Recall that we defined the class

H d = {g ∈ H 1/2 (S 1 ; S 1 ); deg g = d}.
Recall that we denoted by N a the restriction to S 1 of the Moebius transform M 1,a . Recall also Corollary 3.2: for g ∈ H 1 we have |g| 2 H 1/2 ≥ π, with equality if and only if g = αN a for some a ∈ D and α ∈ S 1 .

Theorem.

There exists some δ 0 > 0 and a function f : (0, δ 0 ) → (0, ∞) such that lim δ→0 f (δ) = 0 with the following property: if g ∈ H 1 satisfies |g| 2 H 1/2 < π + δ for some δ < δ 0 , then: 1. The harmonic extension u = u(g) of g has exactly one zero, a = a(u) = a(g).

If we write g

= N a e ıψ with ψ ∈ H 1/2 (S 1 ; R), then |ψ| H 1/2 ≤ f (δ).
3. The map g → a is continuous.

4. In addition, given r ∈ (0, 1) and µ > 0, we may pick δ 0 such that αu • M -a -Id C 2 (D r ) < µ for some appropriate α ∈ S 1 .

Before proceeding to the proof, let us make two comments. First, using repeatedly Lemma 2.6, we find that g N a has degree zero, and thus we may write g = N a e ıψ for some ψ ∈ H 1/2 (S 1 ; R). The point

in item 2. is that |ψ| H 1/2 is small when |g| 2 H 1/2 is close to π.
Second, an equivalent and possibly more illuminating formulation of item 4. is the following: for sufficiently small δ 0 and for g as above, we have u

• M -1 α,a -Id C 2 (D r ) < µ for some α ∈ S 1 ;
that is, u is close, in an appropriate sense, to a Moebius transform.

Proof. Step 1. u has at least one zero in D. Indeed, otherwise we have u ∈ C(D; C \ {0}) and lim |z|→1 |u(z)| = 1. Thus |u| ≥ α > 0 for some α. By Lemma 2.7, we may write u = |u|e ıϕ , with ϕ ∈ H 1 (Ω; R). The fact that tr e ıϕ = g combined with the degree formula (2.8) leads to the contradiction

1 = deg (g, S 1 ) = 1 π ˆD Jac (e ıϕ ) = 0.
Let now a ∈ D be one of the (possibly several) zeroes of u.

Set v = u • M -a = u • M -1 a . Then v is harmonic, v(0) = 0, and v |S 1 = h, with h = g • N -a . In addition, we have |h| H 1/2 = |g| H 1/2 , by conformal invariance of the H 1/2 -semi-norm.
Step 2. Proof of 4. Argue by contradiction: there are some µ > 0, r ∈ (0, 1) such that inf

α∈S 1 αv n -Id C 2 (D r ) ≥ µ for some sequence (v n ) of harmonic maps such that          v n (0) = 0 h n := v n |S 1
has modulus 1 and degree 1.

|h n | 2 H 1/2 ≤ π + 1 n
We find that, possibly up to a subsequence, v n → v in C ∞ loc (D), and h n h ∈ H 1/2 (S 1 ; S 1 ). In addition, we have v = u(h). The limit v satisfies

       αv -Id C 2 (D r ) ≥ µ, ∀ α ∈ S 1 v(0) = 0 . |h| 2 H 1/2 ≤ π
We consider first the case where deg (h, S 1 ) = 1. Since |h| 2 H 1/2 ≤ π, Corollary 3.2 combined with v(0) = 0 leads to v = γ Id for some γ ∈ S 1 and this is impossible.

Thus deg (h, S 1 ) = 1. Then the Price Lemma 2.18 gives:

π = lim 1 2 ˆD |∇v n | 2 ≥ 1 2 ˆD |∇v| 2 + π| deg (h n , S 1 ) -deg (h, S 1 )| = 1 2 ˆD |∇v| 2 + π|1 -deg (h, S 1 )|. (4.1)
Therefore, v is a constant of modulus 1. This contradicts v(0) = 0.

In the remaining part of the proof, we assume that |g| 2 H 1/2 ≤ π + δ, where δ < δ 0 and δ 0 is to be chosen later.

Step 3. For 0 < s < r < 1 and for sufficiently small δ 0 (depending on s and r), we have |v| ≥ s on D \ D r . Indeed, let µ > 0 and let R ∈ (r, 1) to be specified later. By Step 2. we have

1 2 ˆDR |∇v| 2 ≥ πR 2 -µ and |v(x)| ≥ |x| -µ in D R (4.2)
provided δ 0 is sufficiently small. In particular, we have

1 2 ˆD\D R |∇v| 2 ≤ π -πR 2 + µ + δ 0 and |v| ≥ R -µ on ∂(D \ D R ). (4.3)
We next invoke the following special cases of [24, Theorem 3.6] combined with [24, Example 3.5 c)]. 

4.2 Lemma. 1. Let 0 < R < 1 and set ω := D \ D R . Let v ∈ H 1 (D)
some λ = λ(c) > 0 such that |v| ≥ λ in D.
Step 3 continued. Note that A s,t does not depend on R. Therefore, by combining item 1. of Lemma 4.2 with (4.3), we obtain the following: if R is sufficiently close to 1 and if µ and δ 0 are sufficiently small, then |v| ≥ s in D \ D R . We conclude by combining this fact with the second assertion in (4.2).

Step 4. The map u has exactly one zero. Indeed, by combining Step 3. with Step 2., we find that v has exactly one zero for small δ 0 (and that this zero is located near the origin). Whence the conclusion for u.

Step 5. The continuity of g → a.

This follows essentially from uniqueness, but some care is needed, since in principle zeroes could escape to the boundary. Let g n → g in H 1/2 (S 1 ; S 1 ). Then there is some r > 0 independent of n such

|u(g n )| ≥ 1 2 in D \ D r , ∀ n. (4.4)
This uniform version of (2.15) can be easily obtained by following the proof of [21, Theorem A3.2]. The continuity of g → a is a straightforward consequence of (4.4).

Step 6. We prove 2.

Since | | H 1/2 is invariant by composition with restrictions to S 1 of Moebius transforms and by multiplication with unimodular constants, we may assume that u(0) = 0, and that the conclusion of item 4. holds with a = 0 and α = 1. Let θ denote the polar angle and let r ∈ (1/2, 1). By item 4., for small δ we are in position to apply Corollary 2.9 with ω = D \ D r , u 1 = Id, u 2 = u = u(g). Therefore, for small δ we may write, in D \ D r , u = Id ηe ıϕ = |u|e ı(θ+ϕ) , with η, ϕ ∈ H 1 (D \ D r ; R). By Step 3. and the maximum principle Lemma 2.17, we can assume that 1/2 ≤ |u| ≤ 1. We denote by o(1) a quantity which tends to 0 uniformly in g as δ → 0. We will next prove the estimate

∇ϕ L 2 (D\D r ) = o(1). (4.5)
Assuming (4.5) proved for the moment, item 2. follows from (4.5) by taking the H 1/2 semi-norm of the trace ψ of ϕ on S 1 . In order to prove (4.5), we first note that u -Id H 1 = o(1). Indeed, consider a sequence (u n ),

u n = u(g n ), such that δ n := |g n | 2 H 1/2 -π → 0 as n → ∞
and that the conclusion of item 4. holds with a = 0 and α = 1. Then we have u n Id weakly in H 1 (D), and 1 2 We continue with a result similar to Theorem 4.1, in which a loss of information on the zero a of u(g) is compensated by the control of the phase ψ at higher energy levels of g.

ˆD |∇u n | 2 = |g n | H 1/2 → π = 1 2 ˆD |∇ Id| 2 as n → ∞. Therefore u n -Id H 1 → 0.

Theorem. There exists a non increasing function h

: (0, π] → (0, ∞) such that: if g ∈ H 1 satisfies |g| 2 H 1/2 ≤ 2π -δ for some δ ∈ (0, π], then:
1. We may write g = N a e ıψ for some ψ ∈ H 1/2 (S 1 ; R) such that |ψ| H 1/2 ≤ h(δ).

2. In addition, we may take the point a to be a zero of u(g), and the zeroes of u(g) are mutually close, in the following sense: there exist some R = R(δ) ∈ (0, 1)

and µ = µ(δ) ∈ (0, 1) such that, if a is a zero of u(g), then |u(g)| ≥ µ in D \ M -1 a (D R ).
Before proceeding to the proof, let us note the following more informative form of item 2.:

if u(g)(0) = 0, then |u(g)| ≥ µ outside D R . (4.6)
Proof. As in the proof of Theorem 4.1, Step 6., it suffices to establish item 2. in the special case where u(g)(0) = 0. We argue by contradiction: we assume that there exist a sequence (g n ) ⊂ H 1 and a sequence (z n ) ⊂ D such that:

|g n | 2 H 1/2 ≤ 2π -δ, |z n | → 1, u n := u(g n ) satisfies u n (0) = 0 and |u n (z n )| → 0. (4.7)
Possibly after passing to a subsequence, we may also assume that, for some D ∈ Z, g ∈ H D and u = u(g), we have

u n → u in C ∞ loc (D), u(0) = 0. (4.8)
We first prove that D = 1. Indeed, by the argument leading to (4.1) we have

2π > 2π -δ ≥ 1 2 ˆD |∇u| 2 + π|1 -D|.
(4.9)

By combining (4.9) with Corollary 3.2, we find that

D = 0 or D = 1. If D = 0, then ˆD |∇u| 2 ≤ 2(π -δ).
This inequality combined with Lemma 4.2 4. implies that |u| ≥ λ in D for some λ > 0. This contradicts (4.8). Thus D = 1. Let s ∈ (0, 1) to be chosen later. By Lemma 2.12, there exists some R ∈ (0, 1) such that |u(z)| > s on C R . Then, thanks to (4.8), we have |u j | ≥ s on C R when j is large. On the other hand, we have deg (u, C R ) = 1 provided R is chosen sufficiently close to 1; this follows by combining Lemma 2.2 with Lemma 2.12. By (4.8), for large n we have deg (u n , C R ) = 1. Using (2.10), we find that such that Theorem 4.4 1. holds. Argue by contradiction: otherwise, after passing to a subsequence, we have a → a ∈ D. The limit a cannot be close to 1, -1 and ı at the same time; say that we have a = 1.

1 2 ˆDR |∇u n | 2 ≥ πs 2 . ( 4 
Then, near z = 1, g N a is close to αN b for some α ∈ S 1 . Using the fact that the H 1/2 -semi-norm of the phase of N b (computed near z = 1) tends to ∞ as b → 1, and the fact that the phase is unique modulo 2π [14], we find that Theorem 4.4 does not hold for g as above.

The next result explains that, at low energy, the lack of weak compactness of the class H 1 is due solely to Moebius transforms.

4.6 Corollary. Let t < 2π and let

K (t) 1 = {g ∈ H 1 ; |g| 2 H 1/2 ≤ t}. Then K (t)
1 is weakly closed modulo Moebius transforms: If (g n ) ⊂ K (t) 1 , then there exists N a n such that the sequence

(g n • N -1 a n ) is weakly compact in K (t)
1 . In addition, we may take a n to be any zero of u(g n ).

In particular, for every t < 2π and a 0 ∈ D, the class

{g ∈ H 1 ; |g| 2 H 1/2 ≤ t, u(g) vanishes at a 0 }
is weakly compact.

We continue by presenting another consequence of Theorem 4.4.

Lemma.

Let 

β ∈ L ∞ (D), β ≥ 0, β ≡ 0. ( 4 
β(1 -|v| 2 ) 2 = b(1 -|v| 2 ) 2 (a). (4.17)
We obtain a contradiction by combining (4.16) and (4.17).

Though this will not be used in the subsequent analysis, we found useful to mention that part of Theorem 4.1 still holds for higher degrees. Then there exists some δ 0 > 0 and a function f : (0, δ 0 ) → (0, ∞) such that lim δ→0 f (δ) = 0 with the following property: if g ∈ H d satisfies |g| 2 H 1/2 < π d +δ for some δ < δ 0 , then we can write g = N a 1 . . . N a d e ıψ for some a 1 , . . . , a d ∈ D and for some ψ ∈ H 1/2 (S 1 ; R) such that |ψ| H 1/2 ≤ f (δ).

Consequently, if u ∈ G d is a harmonic function and if

1 2

ˆD |∇u| 2 < πd + δ, with δ < δ 0 , then u = B 1,a 1 ,...,a d u(e ıψ )+w, where ψ ∈ H 1/2 (S 1 ; R), w ∈ H 1 0 (D; C), |ψ| H 1/2 ≤ f (δ) and w H 1 ≤ h(δ).
Here, h(δ) → 0 as δ → 0.

Proof. The last part of the theorem follows by combining the first part of the theorem with Lemma 2. 21.

In order to prove the first part, it suffices to establish the following fact: if

(g n ) ⊂ H d is such that |g n | 2
H 1/2 → πd, then, possibly up to a subsequence and for large n, we may write

g n = N a 1 (n) . . . N a d (n) e ıψ n , with |ψ n | H 1/2 → 0 as n → ∞.
The proof of this fact is by induction on d.

Step 1. The case where d = 0. By Lemma 2.13, we have |u(g n )| → 1 uniformly in D. By Lemma 2.7 and (2.11), for large n we may write u(g n ) = ρ n e ıϕ n , with ∇ϕ n → 0 in L 2 (D). We conclude by letting ψ n = tr ϕ n .

Step 2. The case where d ≥ 1. By Step 1. in the proof of Theorem 4.1, the map u(g n ) has to vanish somewhere. Since our hypotheses and conclusions are invariant by conformal transforms, we may assume that u(g n )(0) = 0. Up to a subsequence, we have g n g, with g ∈ H D for some D ∈ Z. By combining (2.9) with the Price Lemma 2.18, we find that D ∈ 0, d and that |g| 2 H 1/2 = π D. By Corollary 3.2, u(g) is a D-Blaschke product. Since in addition we have u(g)(0) = 0, we find that D ∈ 1, d . If D = d, then we actually have g n → g strongly in H 1/2 , [START_REF] Brezis | Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz[END_REF] and thus g n /g → 1. [START_REF] Brezis | Sobolev Maps with Values into the Circle[END_REF] In this case, Step 1. implies that g n = ge ıψ n , with |ψ n | H 1/2 → 0, and we are done.

We next turn to the more delicate case where D < d. Let h n := g n /g, so that h n ∈ H d-D and h n 1. By Lemma 2.24 combined with the fact that |g| 2 H 1/2 = πD, we have

|h n | 2 H 1/2 → π(d -D)
. By the induction hypothesis, [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] we may write, for large n, h n = N a 1 (n) . . . N a d-D (n) e ıψ n , with |ψ n | H 1/2 → 0. We obtain the desired conclusion by noting that g n = gh n and that g is the trace of a D-Blaschke product.

Mountain pass approach

In this section and in Sections 8 and 9, we will prove existence of (almost) critical points of F β in different situations. Each case we examine will require a different functional setting; however the general strategy is the same, and is based on the existence of a mountain pass geometry. So let us start by recalling the standard mountain pass framework; see e.g. [34, Chapter 4]. This framework requires five objects and an inequality. The five objects are: two compact metric spaces K 0 ⊂ K, a Banach space or Banach manifold X , a map J : X → R (usually assumed C 1 ), and a fixed continuous [START_REF] Brezis | Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz[END_REF] Since g n g and |g| 2 [START_REF] Brezis | Sobolev Maps with Values into the Circle[END_REF] Here, we use the fact that multiplication is continuous in H 1/2 (S 1 ; S 1 ). This is folklore and is a special case of the following more general fact. If u n , u, v ∈ W s,p ∩ L ∞ , with 1 ≤ p < ∞ and s > 0, and if u n → u in W s,p and u n L ∞ ≤ C, then u n v → uv in W s,p . [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] Recall that D ≥ 1 and thus d -D < d.

H 1/2 = lim |g n | 2 H 1/2 .
map χ ∈ C(K 0 ; X ). [START_REF] Brezis | Degree Theory and BMO. II. Compact manifolds with boundaries[END_REF] We associate to these objects the minimization problem

c = inf max K J • F; F ∈ M , where M = F ∈ C(K; X ); F = χ on K 0 . (5.1)
Mountain pass geometry is characterized by the strict inequality

c > c 1 = max t∈K 0 J(χ(t)). (5.2)
We next recall the Mountain Pass Theorem of Ambrosetti and Rabinowitz [1], which will be used in the following form [34, Theorem 4.3, p. 77].

5.1 Theorem. Let K 0 , K, J, X and χ be as above. Assume that (5.2) holds. Assume that X is a Banach space and that J ∈ C 1 (X ; R). Then for every δ > 0 there exists x δ ∈ X such that

c -δ ≤ J(x δ ) ≤ c + δ (5.3) and J (x δ ) ≤ δ.
(5.4)

Equivalently, there exists a sequence

(x n ) ⊂ X such that J(x n ) → c and J (x n ) → 0 as n → ∞.
(5.5)

The same holds when X is a Banach manifold and J ∈ C 1 .

A sequence as in (5.5) is a "Palais-Smale sequence", and the x n 's are "almost critical points of J". [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] Under the additional assumption (PS) c each sequence (x n ) satisfying (5.5) contains a convergent subsequence (5.6) (the (PS) c ) condition of Brezis, Coron and Nirenberg [18]), (5.2) leads to the existence of a critical point x of J such that J(x) = c.

In practice, we will always take K = D r , K 0 = C r for some appropriate r ∈ (0, 1).

(5.7)

The underlying idea (in this section and in Section 8) is to create mountain pass geometry by letting χ(a) = M a , ∀ a ∈ C r , and J = F β . While the above choice of χ is not straightforward, and is one of the main ideas of this paper, the natural choices for J and X are J = F β and X = G (the set of complexvalued H 1 maps with modulus 1 on the boundary) or possibly X = G 1 . However, G and G 1 do not have a straightforward manifold structure. In this section, we present a first way of circumventing this difficulty. The approach we develop here allows us to prove the main result of this paper (Theorem 1.1), but has the drawback of working only for large values of ε. [START_REF] Santos | Local minimizers of the Ginzburg-Landau functional with prescribed degrees[END_REF] Thus we address the question of the existence of critical points under the assumption that β is small. [START_REF] Farina | Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions[END_REF] More specifically, we assume that the first eigenvalue λ 1 (-∆ -β) of the operator -∆ -β satisfies

λ 1 (-∆ -β) > 0,
(5.8) [START_REF] Brezis | Degree Theory and BMO. II. Compact manifolds with boundaries[END_REF] In order to distinguish the different constructions we will perform later, we will denote the corresponding function spaces X by X * , respectively X . We distinguish similarly the other objects. [START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF] At the level c, but this will be omitted. [START_REF] Santos | Local minimizers of the Ginzburg-Landau functional with prescribed degrees[END_REF] A second, more subtle, approach will be presented in the next section. [START_REF] Farina | Uniqueness of vortexless Ginzburg-Landau type minimizers in two dimensions[END_REF] Of particular interest for us is the fact that the assumption (5.8) is satisfied when in the original problem of finding critical points for E ε we take a large ε.

i.e., there is some δ > 0 such that

(1 -δ) ˆD |∇v| 2 ≥ ˆD βv 2 , ∀ v ∈ H 1 0 (D; R).
For such β and fixed boundary condition g ∈ H 1/2 (S 1 ; C), the energy functional F β is continuous, coercive and strictly convex in the affine space

H 1 g (D; C) = {u ∈ H 1 (D; C); tr u = g}.
Therefore, F β has exactly one critical point in the above space. Equivalently, the problem

-∆u = βu(1 -|u| 2 ) in D u = g on S 1 , (5.9) 
has a unique solution, which we denote T(g).

With this in mind, the role of the space X is played by X * = H 1/2 (S 1 ; R), and the role of the functional J by

J * : X * → R, J * (ψ) = F β T N 0 e ıψ , ∀ ψ ∈ X * .
Recall that we let K = D r and K 0 = C r , where 0 < r < 1. It remains to define the map χ * playing the role of χ. For this purpose, we note the following. If a ∈ C r , then the restriction N a of M a to S 1 can be written as N a = N 0 e ıψ a = e ı(θ+ψ a ) for some ψ a ∈ H 1/2 (S 1 ; R). The idea is to let, for any a ∈ C r , χ * (a) = ψ a . The next result shows that, when ψ a is properly chosen, χ * is a continuous map from C r into X * .

Lemma.

There exists a map H ∈ C ∞ (D; C ∞ (S 1 ; R)) such that N a = N 0 e ıH(a) , ∀ a ∈ D.

Proof. Let g a = N a /N 0 and let

F(a, •) = g a ∧ ∂g a ∂τ = -ı g a ∂g a ∂τ
. [START_REF] Gagliardo | Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili[END_REF] Then clearly F ∈ C ∞ (D × S 1 ; R), and ´S1 F(a, z)ds z = 0. Therefore, if we let η(a, •) be the primitive of F(a, •) with zero average, then η is smooth in both variables. In addition, we have

∂ ∂τ g a e -ıη(a,•) = g a e -ıη(a,•) g a ∂ ∂τ g a -ı ∂ ∂τ η(a, •) = 0,
i.e., g a e -ıη(a,•) is constant. Define L(a) := g a (1) e -ıη(a,1) . Then L ∈ C ∞ (D; S 1 ), and thus we may write L = e ıζ for some ζ ∈ C ∞ (D; R). Finally, if we let H = η + ζ, then H has all the required properties.

In what follows, we let ψ a = H(a), a ∈ C r .

We next prove that we do have a mountain pass geometry.

5.3 Lemma. Assume (4.14) and (5.8). Then, for r sufficiently close to 1, we have

c * := inf max D r J * • F; F ∈ C(D r ; H 1/2 (S 1 ; R)), F = χ * on C r > c * 1 := max C r J * • χ * .
(5.10) [START_REF] Gagliardo | Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili[END_REF] The last identity is easily checked using the fact that |g a | 2 = 1, and thus g a • ∂g a ∂τ = 0.

Proof. It is easy to see that |M a | → 1 in L 4 (D) as |a| → 1, and thus c * 1 → π as r → 1. We claim that, if r is sufficiently large, then c * is bounded from below by a constant larger than π; this implies (5.10).

In order to prove the claim, we fix a Lebesgue point a 0 of β where the approximate limit of β is (strictly) positive. We assume that c * < π + δ 0 , with δ 0 as in Theorem 4.1, for otherwise we are done. Let r > |a 0 |. For such r, consider any competitor F in (5.10), i.e., an F ∈ C(D r ; H 1/2 (S 1 ; R)) such that F = χ * on C r . Then we claim that there exists some z 0 ∈ D r (depending on F) such that the harmonic extension u(tr F(z 0 )) of tr F(z 0 ) has a zero at a 0 . Indeed from Theorem 4.1 and using the notation there, the map

G : D r → D, D r z G -→ a(tr F(z)) ∈ D
is continuous. Since G coincides with the identity on C r , G must take the value a 0 in D r , by the Brouwer fixed point theorem.

Next, from Lemma 4.7 we find that J * (F(z 0 )) ≥ c(β, a 0 ) > π, and thus c * > c(β, a 0 ) > π. We obtain the desired conclusion by choosing r sufficiently close to 1 in order to have c * 1 < min{c(β, a 0 ), π+δ 0 }.

We now prove that J * is C 1 (Lemma 5.8). As an immediate consequence, we will characterize the Palais-Smale sequences associated to (5.10) (Corollary 5.12). Before proceeding, let us recall a useful elementary fact.

Lemma.

Let X , Y be normed spaces. Let Z be a dense subspace of X . Let F ∈ C(X ; Y ) and

T ∈ C(X ; B(X ; Y )) be such that ∂F ∂z (x) = T (x)(z), ∀ x, z ∈ Z . (5.11) 
Then F ∈ C 1 and (5.11) holds for every x, z ∈ X .

Here, B(X ; Y ) denotes the space of bounded linear operators from X into Y . In practice, we will apply the above with Z = C ∞ , and the point will be to check the continuity of F and T .

We start with a straightforward consequence of the embedding H 1 (D) → L 4 (D).

Lemma. The map F

β is C 1 in H 1 (D; C) and F β (u)(v) = ˆD ∇u • ∇v -ˆD βu • v(1 -|u| 2 ), ∀ u, v ∈ H 1 (D; C).
(5.12)

Similarly, the map

G : H 1 (D; C) → R, H 1 (D; C) u → 1 4 ˆD β (1 -|u| 2 ) 2 , is C 1 , and G (u)(v) = -ˆD βu • v(1 -|u| 2 ).
Recall that • denotes the real scalar product.

5.6 Lemma. Assume that (5.8) holds. Then the map g → T(g), where T(g) denotes the unique solution of (5.9), is C 1 in a neighborhood of H .

Proof. Consider the maps

U : H 1/2 (S 1 ; C) → H 1 (D; C), g U -→ u(g)
and

V : H 1 0 (D; C) × H 1/2 (S 1 ; C) → H -1 (D; C), (v, g) V -→ -∆v -β(v + u(g))(1 -|v + u(g)| 2 ).
Thanks to the embedding H 1 (D) → L 4 (D) and to the continuity of U, it is easy to see that V ∈ C 1 and that the partial differential of V (v, g) in the v variable is given by

∂V ∂v (v, g)(w) = -∆w -β(1 -|v + u(g)| 2 )w + 2β(w • (v + u(g))) (v + u(g)), ∀ w ∈ H 1 0 (D; C).
The conclusion of the lemma follows via the implicit function theorem if we prove that the opera-

tor W = ∂V ∂v (v, g
) is invertible at each couple (T(g) -u(g), g) with g ∈ H . Since W is symmetric in [START_REF] Gérard | Description du défaut de compacité de l'injection de Sobolev[END_REF] it suffices to prove that the quadratic form Q associated to W is definite positive. We note that

H 1 0 (D; C),
Q(w) = ˆD |∇w| 2 -ˆD β(1 -|T(g)| 2 )|w| 2 + 2 ˆD β(w • T(g)) 2 ≥ ˆD |∇w| 2 -ˆD β(1 -|T(g)| 2 )|w| 2 ,
and positivity follows from (5.8) combined with the maximum principle Lemma 2.17.

The next result is reminiscent of the fact that H 1 harmonic functions have traces of the normal derivative on the boundary.

Lemma.

Let g ∈ H and let u satisfy (5.9). Then the vector field u ∧ ∇u has a trace tr (u ∧ ∇u) on S 1 , and this trace belongs to H -1/2 (S 1 ).

If, in addition, (5.8) holds, then the map

Y : H → H -1/2 (S 1 ), H g Y -→ tr (T(g) ∧ ∇T(g)) ∈ H -1/2 (S 1 ),
is continuous.

Proof. The vector field u ∧ ∇u belongs to L 2 and (by (5.9)) is divergence free. Existence of the trace is then standard; let us briefly recall the argument. By the (L 2 -version of the) Poincaré lemma, we may write u ∧ ∇u = -∇ ⊥ h for some h ∈ H 1 (D). We then set We note the integration by parts formula

tr u ∧ ∂u ∂ν = ∂ ∂τ tr h ∈ H -1/2 (S 1
ˆD(u ∧ ∇u) • ∇ζ = u ∧ ∂u ∂ν , tr ζ H -1/2 ,H 1/2 = ˆS1 u ∧ ∂u ∂ν ζ, ∀ ζ ∈ H 1 (D; R).
(5.13)

Although the last integral in (5.13) is defined only when u is sufficiently smooth, we will use the integral notation for a general u.

The second part of the lemma is obtained as follows: let g n → g in H . Set u n = T(g n ) and u = T(g). Then u n → u in H 1 (since T is continuous). Using the fact that |u n | ≤ 1 (Lemma 2.17), we find that u n ∧ ∇u n → u ∧ ∇u in L 2 . If we normalize the corresponding potentials h n such that ˆD h n = 0, then h n → h in H 1 . This implies convergence of tr (u n ∧ ∇u n ) to tr (u ∧ ∇u) in H -1/2 . 5.8 Lemma. Assume (5.8). Then we have J * ∈ C 1 and, if u := T N 0 e ıψ , then

J * (ψ)(η) = ˆS1 u ∧ ∂u ∂ν η = ˆD(u∧∇u)•∇ζ, ∀ ψ, η ∈ H 1/2 (S 1 ; R), ∀ ζ ∈ H 1 (D; R) such that tr ζ = η. (5.14)
More generally, the same holds if we consider the map

H 1/2 (S 1 ; R) ψ J * d --→ F β (T(N d 0 e ıψ ))
, where d ∈ Z.

Proof. Note that the equality of the two integrals in (5.14) is a consequence of (5.13). In order to prove (5.14), we rely on Lemma 5.4. Clearly, J * is continuous. On the other hand, if we let ζ = u(η) in (5.14) and we use the continuity of the map H 1/2 ψ → u ∧ ∇u ∈ L 2 , then we see that the second integral in (5.14) defines a map

T ∈ C(H 1/2 (S 1 ; R), H -1/2 (S 1 ; R)), T (ψ)(η) := ˆD(u ∧ ∇u) • ∇u(η).
Therefore, it suffices to prove that (5.14) holds when ψ and η are smooth and when ζ = u(η). For such ψ and η, let g t = N 0 e ı(ψ+tη) and set u t = T(g t ) (so that u = u 0 ). It is easy to see that t → g t ∈ H is smooth. By Lemma 5.5 and Lemma 5.6, the maps t → u t and t → J * (ψ + tη) are C 1 , and

d dt [J * (ψ + tη)] = ˆD ∇u t • ∇ d dt u t -ˆD βu t • d dt u t (1 -|u t | 2 ).
(5.15)

On the other hand, if v ∈ H 1 (Ω; C) is such that v = ıuζ on S 1 , where ζ ∈ C 1 (S 1 ; R), and if u solves (5.9), then

ˆD ∇u • ∇v -ˆD β(u • v)(1 -|u| 2 ) = ˆS1 u ∧ ∂u ∂ν ζ.
(5.16) Indeed, when u is smooth, this is a consequence of (5.9) and of the identity

∂u ∂ν • (ıuζ) = u ∧ ∂u ∂ν ζ on S 1 .
The general case follows by approximation, using Lemma 2.1 1. and the following fact: given β satisfying (5.8), we may find a uniformly bounded sequence (β n ) of smooth function satisfying (5.8) and such that β n → β. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] We next note that u t = N 0 e ı(ψ+tη) on S 1 , and therefore ∂ ∂t u t = ıu t η on S 1 . Thus, in (5.16), we may take u = u t and v = ∂ ∂t u t . We obtained the first identity in (5.14) by combining this remark with (5.15). [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] For an alternative argument not relying on (5.8), see Remark 5.9 below.

Remark.

Here is an alternative proof of (5.16), valid without the assumption (5.8). In view of (5.9), (5.16) holds when v ∈ H 1 0 , so that it suffices to prove (5.16) for a special v such that v = ıuζ on S 1 . Consider a C 1 extension of ζ, still denoted ζ, and let v = ıuζ. For this v, (5.16) is nothing else but (5.13).

5.10 Remark. Lemma 5.8 hides a small miracle. Recall that J * is constructed as follows:

J * = F β • T • S, H 1/2 (S 1 ; R) ψ S -→ g = N 0 e ıψ T -→ u = T(g) F β --→ F β (u).
By Lemmas 5.6 and 5.5, we know that T and F β are C 1 . We also know that J * is C 1 (Lemma 5.8). However, S is not C 1 ; see Lemma 5.11 below. Since J * is the composition of two operators, one, F β • T, smooth, the other one, S, non smooth, the conclusion of Lemma 5.8 is that the smoothing effect prevails. Smoothness comes from the main ingredient of the proof of Lemma 5.8, which is the existence of the boundary trace of the vector field u ∧ ∇u whenever u is a solution of (5.9). In turn, this relies basically on the Poincaré lemma and on the maximum principle. All in all, this turns F β •T (and finally J * ) into a smooth operator. On the other hand, we note that S is almost smooth: it is clearly Lipschitz.

5.11 Lemma. S is not differentiable. More generally, if g ∈ H , then the map

S g : H 1/2 (S 1 ; R) → H , H 1/2 (S 1 ; R) ψ S g --→ g e ıψ ∈ H
is not differentiable.

Proof. We start by reducing the general case to the special case g = 1. Let d = deg g and write g = N d 0 e ıϕ , with ϕ ∈ H 1/2 (S 1 ; R) (cf Lemma 2.6 4.). Multiplication with N d 0 being clearly a linear continuous bijective operator in H 1/2 , we see that S g is differentiable at ψ if and only if S is differentiable at ψ + ϕ.

We continue by finding functions ψ such that S is not differentiable at ψ. It is easy to see that, for η ∈ C ∞ (S 1 ; R), we have lim t→0 S(ψ + tη) -S(ψ) t = A(ψ, η) := ıS(ψ)η, (5.17)

the limit being considered in H 1/2 . If S is differentiable at ψ, then (5.17) holds for every η ∈ H 1/2 (S 1 ; R), and the map A(ψ, η) belongs to H 1/2 . The heuristics for concluding is the following:

H 1/2 ∩ L ∞ is an algebra, but H 1/2 is not. Thus, if we pick a function η ∈ H 1/2 ∩ L ∞ , then A(ψ, η) ∈ H 1/2
, but this need not hold when η is merely H 1/2 . Formally, we continue as follows: if S is differentiable at ψ, then A(ψ, ψ) = ıe ıψ ψ ∈ H 1/2 , and in particular B(ψ) := ψ cos ψ belongs to H 1/2 . We recall the following result of Bourdaud and Kateb [13]: a superposition operator ψ → G • ψ acts on H 1/2 if and only if G is Lipschitz. Though the result in [13] is stated in H 1/2 (R n ), the construction of counterexamples yields, for a non Lipschitz G, compactly supported maps ψ such that G •ψ ∈ H 1/2 ; see [38, Section 5.3.1, proof of Theorem 1]. Thus, even on the circle, G has to be Lipschitz. We conclude by noting that t → t cos t is not Lipschitz.

We are now in position to construct sequences of almost critical points. By combining Theorem 5.1 with Lemmas 5.3 and 5.8, we obtain the following.

5.12 Corollary. Assume that (5.8) holds. Let c * be defined by (5.10). Then, for each δ > 0, there exists some

ψ δ ∈ H 1/2 (S 1 ; R) such that u δ = T(N 0 e ıψ δ ) satisfies c * -δ ≤ J * (ψ δ ) = F β (u δ ) ≤ c * + δ (5.18) and ˆS1 u δ ∧ ∂u δ ∂ν η ≤ δ|η| H 1/2 , ∀ η ∈ H 1/2 (S 1 ; R).
(5. 19) In particular, the corollary applies if we take a large ε in the original energy E ε . Note that, by (5.13), (5.19) is equivalent to

ˆD (u δ ∧ ∇u δ ) • ∇ζ ≤ δ ∇ζ L 2 , ∀ ζ ∈ H 1 (D; R).
(5.20) 5.13 Corollary. Assume that (5.8) holds. Then every weak limit of u δ as δ → 0 is a critical point of F β in G , i.e., a solution of (2.23).

Proof. Assume that (possibly along a subsequence) u δ u in H 1 . Then on the one hand u satisfies -∆u = βu(1-|u| 2 ) (this relies on the maximum principle Lemma 2.17). On the other hand, u δ ∧∇u δ u ∧ ∇u in L 2 , and thus (using (5.20)) u satisfies (2.21), which is equivalent to (2.23), by Lemma 2.15.

Existence of critical points

We establish here the following generalization of Theorem 1.1. Then c * is a critical value of F β in G 1 , i.e., there exists a solution u of (2.23)

with d = 1 such that F β (u) = c * .
Before proceeding to the proof, let us note that, with the choice F(a) = N a , a ∈ D r , in (5.10), and for 18), where Φ : Ω → D is a conformal representation, we find that

β = 1 ε 2 Jac Φ -1 in (2.
c * ≤ max a∈D ˆD |∇M a | 2 + 1 4ε 2 ˆD(1 -|M a | 2 ) 2 Jac Φ -1 ≤ π + |Ω| 4ε 2 .
The latter quantity is < 2π for large ε. Thus Theorem 6.1 generalizes indeed Theorem 1.1.

Proof. Let u δ be as in Corollary 5.12. Let u be such that, up to a subsequence δ n → 0, we have u δ n u in H 1 . By Corollary 5.13, u satisfies (2.23). In order to complete the proof of Theorem 6.1, we will prove that deg (u, S 1 ) = 1 and that F β (u) = c * . In order to prove the former assertion, it suffices to obtain the existence of some r ∈ (0, 1) and of some λ > 0 such that (possibly along a further subsequence, still denoted (δ n ))

|u δ n (z)| ≥ λ when |z| ≥ r. (6.2)
Indeed, assume for a moment that (6.2) holds. Then deg (u, S 1 ) = 1, by Lemma 2.10. Also, condition (6.2) is essential in the proof of the strong convergence u δ n → u in H 1 .

Validity of (6.2) is established by contradiction: assuming that there exist sequences δ n → 0 and a n such that u δ n (a n ) → 0 and |a n | → 1, (6.3)

we will prove that (6.4) which contradicts Lemma 5.3. Before proceeding to the proof, we introduce lighter notation: we write u n instead of u δ n and still denote by (u n ) any subsequence extracted from (u n ), and the same for (a n ).

F β (u δ n ) → π,
We start by rescaling the sequence (u n ): we let

Φ n = M -a n , v n = u • Φ n , β n = β • Φ n Jac Φ n , F n (w) = 1 2 
ˆD |∇w| 2 + 1 4 ˆD β n (1 -|w| 2 ) 2 .
(6.5)

In particular, using Corollary 5.12 and the conformal invariance of the Dirichlet integral, we find that the rescaled sequence (v n ) ⊂ G 1 satisfies, with c n → 0,

                   -∆v n = β n v n (1 -|v n | 2 ) in D | tr v n | = 1 ˆD(v n ∧ ∇v n ) • ∇ζ ≤ c n ∇ζ L 2 , ∀ ζ ∈ H 1 (D) v n (0) → 0 F n (v n ) = F β (u n ) → c * . ( 6.6) 
We start by collecting some straightforward properties of β n and v n .

6.2 Lemma. 1. β n → 0 uniformly on compact subsets. In particular, (v n ) converges, up to a subsequence and in C

1,α loc (D), 0 < α < 1, to some solution v ∈ G of (2.23) with β = 0 and such that v(0) = 0. Moreover, (by Lemma 3.5) v ∈ G d for some d = 0, and v is either a d-Blaschke product, or the conjugate of such a product.

λ 1 (-∆

-β n ) > 0.
In particular, v n is a minimizer of F β n with respect with its own boundary condition.

Proof. The fact that β n → 0 uniformly on compact subsets followed from the definition (6.5) combined with the fact that |∇Φ n | → 0 uniformly on compact subsets. This convergence, together with the equation (6.6), implies that ∆v n → 0 uniformly on compact subsets. Let K be a compact subset of D and let L ⊂ D be a compact neighborhood of K. By standard elliptic estimates [27, Theorem 9.13, p. 239], we have

v n W 2,p (K) ≤ C( v n L 2 (D) + ∆v n L p (L) ) ≤ C , 1 < p < ∞,
and thus (6.6) and Ascoli's theorem, we find that (up to a subsequence) (v n ) converges in C 1,α loc (D), 0 < α < 1, to some harmonic function v ∈ G such that v(0) = 0. The last part in item 1. is simply a restatement of Lemma 3.5.

(v n ) is bounded in W 2,p loc (D), 1 < p < ∞. By the Sobolev embeddings, (v n ) is bounded in C 1,α loc (D), 0 < α < 1. Using
Item 2. follows from (5.8).

Step 1 (in the proof of Theorem 6.1). Let v be as in Lemma 6.2. Then we claim that v = M α,0 for some α ∈ S 1 . Indeed, we adapt the argument leading to (4.1): we have, by the Price Lemma 2.18 and Corollary 3.2,

2π > c * ≥ lim inf 1 2 ˆD |∇v n | 2 ≥ 1 2 ˆD |∇v| 2 + π|1 -d| ≥ π|d| + π|1 -d|,
where d = deg (v, S 1 ). We find that d = 0 or d = 1. Since d = 0 (by Lemma 6.2 1.), we obtain the desired conclusion by combining Lemma 6.2 1. with the fact that v(0) = 0.

Step 2. There exist r ∈ (0, 1) and λ > 0 such that |v n (z)| ≥ λ when |z| ≥ r.

In order to prove this, we argue by contradiction and assume that up to a subsequence we have v n (z n ) → 0, where the points z n ∈ D are such that |z n | → 1. By repeating the arguments leading to (4.10) and (4.11), we obtain that, for each s ∈ (0, 1), there exists some R ∈ (0, 1) such that lim inf 1

2 ˆDR |∇v n | 2 ≥ πs 2 (6.7)
and lim inf 1

2 ˆD\D R |∇v n | 2 ≥ πs 2 . (6.8)
Indeed, (6.7) is obtained exactly as (4.10). On the other hand, if we want to reproduce the argument leading to (4.11) we have to be in position to apply Lemma 4.2. This lemma requires that v n minimizes F n with respect to its own boundary conditions. This holds indeed in our case, by Lemma 6.2 2.

By combining (6.7) with (6.8), we find that lim inf 1 2

ˆD |∇v n | 2 ≥ 2π
. But this contradicts the assumption c * < 2π.

Step 3. We have (the contradiction)

F n (v n ) → π.
This step is a consequence of Step 2., of (6.6) and of Lemma 6.3 below. We start by stating the technical assumptions required in Lemma 6.3. For simplicity, we will state Lemma 6.3 when the underlying domain is D, but the same argument works for any simply connected domain.

We consider two sequences (β n ) and (v n ) and two maps γ and v such that:

β n , γ ∈ L ∞ (D), β n , γ ≥ 0, (6.9) 
β n → γ uniformly on compact subsets of D, (6.10)

v n , v ∈ H 1 (D; C), | tr v n | = 1, v n v in H 1 , (6.11) -∆v n = β n v n (1 -|v n | 2 ) in D, (6.12 
)

ˆD(v n ∧ ∇v n ) • ∇ζ ≤ c n ∇ζ L 2 , ∀ ζ ∈ H 1 (D), with c n → 0 as n → ∞.
(6.13)

Unlike our next hypothesis (6.14), the above assumptions are naturally satisfied by sequences of almost critical points obtained via the functional J * (as in Corollary 5.12).

6.3 Lemma. Assume that (6.9)-(6.13) hold. Assume in addition that there exists some λ > 0 such that

|v n (z)| ≥ λ ∀ z ∈ D such that |z| ≥ 1 -λ. ( 6.14) 
Then we have

ˆD |∇v n | 2 → ˆD |∇v| 2 (6.15)
and

ˆD β n (1 -|v n | 2 ) 2 → ˆD γ(1 -|v| 2 ) 2 .
(6.16)

Equivalently, we have v n → v strongly in H 1 and

F n (v n ) → F γ (v). (6.17) 
Step 3 completed. We take, in the above lemma, γ = 0 and v = M α,0 as in Step 1.

Proof of Lemma 6.3. It suffices to establish (6.15)-(6.16) along a subsequence. By the maximum principle Lemma 2.17, we have |v n |, |v| ≤ 1 in D. By standard elliptic estimates [27, Theorem 9.13, p. 239], we have

v n → v in W 2,p loc (D), ∀ p < ∞. (6.18) 
By (6.10) and (6.18), we find that (6.15) and (6.16) hold if we replace D by D 1-ε for each ε > 0. On the other hand, we have

lim ε→0 ˆD\D 1-ε (|∇v| 2 + γ(1 -|v| 2 ) 2 ) = 0.
Therefore, it suffices to prove that lim ε→0 lim sup

n→∞ ˆD\D 1-ε (|∇v n | 2 + β n (1 -|v n | 2 ) 2 ) = 0. (6.19) 
By (6.18), v n → v uniformly on compact subsets of D. Combining this fact with (6.14), we find that for large n we have

d := deg v |v| , C r = deg v n |v n | , C r , ∀ r ∈ [1 -λ, 1].
By Corollary 2.9 applied with

u 1 = z |z| d , u 2 = v n , ω = D \ D 1-λ , we may write, in ω, v n = ρ n e ı(dθ+ϕ n ) ,
and similarly v = ρ e ı(dθ+ϕ) , with λ ≤ ρ n , ρ ≤ 1, and ϕ n , ϕ ∈ H 1 (ω). By (2.11), we find that, possibly after extracting suitable multiples of 2π, we have ϕ n ϕ and ρ n ρ in H 1 (ω). On the other hand, by (6.18), we have ϕ n → ϕ and ρ n → ρ in C 1 loc (ω). We also note the fact that v ∈ C 1 (D), by Lemma 2.15. We next translate the properties of v n in terms of ρ n and ϕ n : (6.12) and (6.13) imply that

                   div (ρ 2 n ∇(dθ + ϕ n )) = 0 in ω -∆ρ n = β n ρ n (1 -ρ 2 n ) -ρ n |∇(dθ + ϕ n )| 2 in ω tr ρ n = 1 on S 1 v n ∧ ∇v n = ρ 2 n ∇(dθ + ϕ n ) in ω ˆD(v n ∧ ∇v n ) • ∇ζ ≤ c n ∇ζ L 2 , ∀ ζ ∈ H 1 (D) . (6.20) Let 0 < ε < λ. Since ϕ n → ϕ in C 1 (C 1-ε ), we find that that the function ϕ n -ϕ, defined in D \ D 1-ε , has an extension ζ n ∈ H 1 (D) such that ∇ζ n L 2 (D 1-ε ) → 0. Using the fact that ρ 2 n ∇(dθ) → ρ 2 ∇(dθ) and ρ 2 n ∇ϕ n ρ 2 ∇ϕ in L 2 (ω),
we find that

0 = lim n→∞ ˆD(v n ∧ ∇v n ) • ∇ζ n = lim n→∞ ˆD\D 1-ε (v n ∧ ∇v n ) • ∇ζ n = lim n→∞ ˆD\D 1-ε [ρ 2 n ∇(dθ + ϕ n )] • ∇(ϕ n -ϕ) = lim n→∞ ˆD\D 1-ε ρ 2 n |∇ϕ n | 2 - ˆD\D 1-ε ρ 2 |∇ϕ| 2 ,
which implies easily that

lim n→∞ ˆD\D 1-ε ρ 2 n |∇(dθ + ϕ n )| 2 = ˆD\D 1-ε ρ 2 |∇(dθ + ϕ)| 2 ,
and in particular lim

ε→0 lim n→∞ ˆD\D 1-ε ρ 2 n |∇(dθ + ϕ n )| 2 = 0. (6.21) 
We next multiply by η n = 1 -ρ n the equation satisfied by ρ n and find that

ˆD\D 1-ε |∇ρ n | 2 + ρ n 1 + ρ n β n (1 -|v n | 2 ) 2 = ˆD\D 1-ε ρ n η n |∇(dθ + ϕ n )| 2 + ˆC1-ε η n ∂ρ n ∂ν , (6.22) 
ν being the normal exterior to D 1-ε . We next note that, since v ∈ C 1 (D) and |v| = 1 on S 1 , we have

lim ε→0 lim n→∞ ˆC1-ε η n ∂ρ n ∂ν = lim ε→0 ˆC1-ε (1 -ρ) ∂ρ ∂ν = 0. (6.23) 
By combining (6.22) with (6.21), with(6.23), and with the assumption (6.14), we find that lim ε→0 lim sup

n→∞ ˆD\D 1-ε |∇ρ n | 2 + β n (1 -|v n | 2 ) 2 = 0. (6.24) 
We obtain (6.19) (and thus complete the proof of Lemma 6.3) by combining (6.21) with (6.24) and with the identity (2.11).

By combining (6.2) (whose validity has been established in the course of the proof of Theorem 6.1) with Lemma 6.3 applied to the original sequence (u n ) and to the weights β n = β and γ = β, we obtain the following improvement of Theorem 6.1.

6.4 Theorem. Assume that (5.8) holds and that c * < 2π. Then J * satisfies the Palais-Smale condition at level c * .

Asymptotic behavior of critical points as ε → ∞

We describe here the asymptotic behavior, when ε → ∞, of critical points of E ε in E 1 obtained by the mountain pass approach described in Section 5. For simplicity, we transfer the problem on D (as explained at the end of Section 2) and consider the energy F β , where

β = β ε = 1 ε 2 Jac Φ -1 = 1 ε 2 w. (7.1)
In order to emphasize dependence on ε, we denote by c * ε the number c * associated to F β , i.e.,

c * ε := inf max D r F β ε T N 0 e ıF ; F ∈ C(D r ; H 1/2 (S 1 ; R)), F(a) = ψ a for a ∈ C r ; (7.2) 
recall that

J * (ψ) = F β ε T N 0 e ıF . ( 7.3) 
We assume that r is sufficiently close to 1 so that Lemma 5.3 holds (at this point we also allow r to depend on ε). [START_REF] Golovaty | On uniqueness of vector-valued minimizers of the ginzburglandau functional in annular domains[END_REF] Before stating and proving our main result in this section, let us introduce some useful notation. Given v ∈ H 1 (D; C), v is the harmonic function in D which agrees with v on S 1 , i.e., v = u(tr v).

Also, given a function F ∈ C(D r ; H 1/2 (S 1 ; R)), we let F(a) := the harmonic extension of N 0 e ıF(a) . (

We next turn to the description of the asymptotic behavior of u ε as ε → ∞. Clearly, the Moebius transforms M α,a satisfy

ˆD w(1 -|M α,a | 2 ) 2 > 0, ∀ α ∈ S 1 , ∀ a ∈ D, and lim |a|→1 ˆD w(1 -|M α,a | 2 ) 2 = 0.
Therefore, the maximization problem

M := max a∈D α∈S 1 ˆD w(1 -|M α,a | 2 ) 2 (7.6)
has a solution and, if M α,a is a maximizer, then so is M γ,a for every γ ∈ S 1 . In addition, there exists some r 0 < 1 such that every maximizer in (7.6) satisfies |a| ≤ r 0 . In what follows, we always assume that r 0 < r < 1.

7.1 Theorem. Let u ε be obtained via (7.2). Then, possibly up to a subsequence, u ε → M α,a as ε → ∞, strongly in H 1 (D). Here, M α,a is a maximizer in (7.6).

Remark.

Equivalently, Theorem 7.1 states that, if v ε is a critical point in E 1 obtained by the mountain pass approach in Ω and for the original energy E ε , then the family (v ε ) converges (possibly up to a subsequence) as ε → ∞, strongly in H 1 (Ω), to a maximizer of

M := max a∈Ω α∈S 1 ˆΩ(1 -|M α,a,Φ | 2 ) 2 .
Before proceeding to the proof, let us note the following. Let H be the map given by Lemma 5.2. Then the restriction H (r) of H to D r is a competitor in (7.2). Thus (with

β = β ε ) c * ε ≤ max D r F β T N 0 e ıH (r) = max a∈D r F β (T (N a )) . (7.7) 
Proof.

Step 1. We have

c * ε = π + 1 4ε 2 M + o 1 ε 2 as ε → ∞. (7.8) 
Indeed, on the one hand the upper bound c * ε ≤ π + 1 4ε 2 M is a consequence of (7.7) combined with the fact that

F β (T(N a )) = min{F β (u); tr u = N a } ≤ F β (M a ) = π + 1 4ε 2 ˆD w(1 -|M a | 2 ) 2 .
(7.9)

We obtain the upper bound by considering, as a competitor in (7.7), the map a → H(a), a ∈ D r , (with H as in Lemma 5.2), and by using (7.9). For the lower bound, fix some ξ ∈ D r such that M ξ is a maximizer in (7.6). Let F be a competitor in (7.7) such that J * (F(a) Corollary 3.2, that F(a) (which depends on ε) converges, as ε → 0, strongly in H 1 (D) to M α,ξ for some α ∈ S 1 . We find that 1 2

) < c * ε + 1 ε 4 for each a ∈ D r . Clearly, u → u is continuous from H 1 (D; C) into itself. By
ˆD |∇F(a)| 2 + 1 4ε 2 ˆD w(1 -|F(a)| 2 ) 2 ≥ π + 1 4ε 2 M + o 1 ε 2 as ε → ∞. (7.10) 
The lower bound in (7.8) is obtained by combining (7.10) with Lemma 7.3 below. In order to state this lemma, and for further use, let us introduce the following class.

Z ε = u ∈ G ; -∆u = 1 ε 2 w u(1 -|u| 2 ) . (7.11) 7.3 Lemma. Let u ∈ Z ε . Then ∇u -∇ u L 2 (D) + u -u L ∞ (D) = O 1 ε 2 as ε → ∞, (7.12 
)

ˆD |∇u| 2 = ˆD |∇ u| 2 + O 1 ε 4 as ε → ∞, (7.13) 
and

ˆD w(1 -|u| 2 ) 2 = ˆD w(1 -| u| 2 ) 2 + O 1 ε 2 as ε → ∞. (7.14) Proof of Lemma 7.3. Let v = u-u. Let p > 2.
By combining the equation (5.9) satisfied by every u ∈ Z ε with the maximum principle Lemma 2.17, with the Sobolev embeddings and with standard elliptic estimates [27, Theorem 9.15, p. 241], we have

∇v L 2 (D) + v L ∞ (D) ≤ C ∆v L p (D) = C ∆u L p (D) ≤ C ε 2 ,
i.e., (7.12) holds.

We obtain (7.13) by combining (7.12) with the identity

´D |∇u| 2 = ´D |∇ u| 2 + ´D |∇v| 2 .
Finally, we note that (by the maximum principle Lemma 2.17) we have |u| ≤ 1, | u| ≤ 1 and therefore |v| ≤ |u| + | u| ≤ 2. We find that

ˆD w(1 -|u| 2 ) 2 -ˆD w(1 -| u| 2 ) 2 = -ˆD w(2 u • v + |v| 4 ) = O v L 2 (D) + v 2 L 4 (D) = O 1 ε 2 as ε → ∞
(by (7.12) and |v| ≤ 2), and therefore (7.14) holds.

Proof of Theorem 7.1 continued. To summarize: we have the expansion (7.8) of the energy. Using the identity |∇u| 2 = 2 Jac u + 4|∂ z u| 2 and formula (2.8), we find that

2 ˆD |∂ z u ε | 2 + 1 4ε 2 ˆD w(|u ε | 2 -1) 2 = 1 4ε 2 M + o 1 ε 2 as ε → ∞. (7.15) 
In order to complete the proof of Theorem 7.1, it suffices to show that

ˆD |∂ z u ε | 2 = o 1 2 as ε → ∞. (7.16) 
Indeed, assume for the moment that (7.16) holds. As in the proof of Lemma 6.2, Step 1., we see that any possible weak limit of the u ε 's is either a constant of modulus 1, or a Moebius map M α,a . By (7.15) and (7.16), the former case cannot hold. By (7.8), (7.15), (7.16) and Corollary 3.2, we find that u ε → M α,a in H 1 (D), where M α,a is a maximizer in (7.6).

Step 2 in the proof of Theorem 7.1. Proof of (7.16). This proof is similar to the analysis performed in [7, Section 5] in somewhat different context of magnetic Ginzburg-Landau functional in a doubly connected domain.

Introduce h ε as a solution of

∇ ⊥ h ε = u ε ∧ ∇u ε in D h ε = 0 on S 1 .
Existence of h ε follows from the fact that (by (2.23)) we have div (

u ε ∧ ∇u ε ) = 0 in D and u ε ∧ ∂u ε ∂ν = 0 on S 1 . Define v ε = 1 -|u ε | 2 2 + h ε . (7.17)
The following is straightforward and left to the reader.

7.4 Lemma. We have

∆h ε = 2 Jac u ε in D h ε = 0 on S 1 , (7.18)    ∆v ε = w ε 2 |u ε | 2 (1 -|u ε | 2 ) -4 |∂ z u ε | 2 in D v ε = 0 on S 1 (7.19)
and

|∇v ε | 2 = 4|u ε | 2 |∂ z u ε | 2 . (7.20)
The key ingredient of the proof of Step 2. is the following 7.5 Lemma. We have

v ε L ∞ (D) → 0 as ε → ∞. (7.21)
Proof of Lemma 7.5. For large ε, let a = a ε be the unique zero of u ε (cf Theorem 4.1 1.).

Set U ε = u ε • M -a and H ε = h ε • M -a .
In view of (7.17), we have

v ε • M -a = 1 -|U ε | 2 2
+ H ε , and thus (7.21) amounts to

1 -|U ε | 2 2 + H ε → 0 uniformly in D as ε → ∞. (7.22) 
As in Step 1., Corollaries 4.6 and 3.2 combined with (7.8) imply that, up to a subsequence, U ε → M γ,0 = γ Id strongly in H 1 (D) as ε → ∞. (7.23) By (7.12), we also have

U ε → M γ,0 = γ Id strongly in H 1 (D) as ε → ∞. (7.24)
Using Lemma 2.19 1. combined with (7.24) and with the fact that (by (7.18)) H ε satisfies

∆H ε = 2 Jac U ε in D H ε = 0 on S 1 ,
we find that

H ε (z) → 1 2 (|z| 2 -1) uniformly in D as ε → ∞. (7.25)
On the other hand, by combining Lemma 2.13 with (7.23), we find that

| U ε (z)| → |z| uniformly in D as ε → ∞.
The above convergence combined with (7.12) implies that Step 2 continued. If we multiply (7.19) by v ε and take (7.15), (7.20) and Lemma 7.5 into account, we find that

|U ε (z)| → |z| uniformly in D as ε → ∞. ( 7 
ˆD |u ε | 2 |∂ z u ε | 2 = o 1 ε 2 as ε → ∞. (7.27)
In view of (7.26) and of the conformal invariance of the integral in (7.27), estimate (7.27) implies in particular that

ˆD\D 1/2 |∂ zU ε | 2 = o 1 ε 2 as ε → ∞. (7.28)
Therefore, in order to complete the proof of Step 2. it suffices to prove that ˆD1/2

|∂ zU ε | 2 = o 1 ε 2 as ε → ∞. ( 7.29) 
Estimate (7.29) is obtained via the equation satisfied by ∂ zU ε . In view of (5.9), we have

∆(∂ zU ε ) = 1 ε 2 ∂ z β • M -a ε Jac M -a ε U ε (1 -|U ε | 2 ) γ ε in D. (7.30)
We next invoke the following standard estimate. If ω is relatively compact in Ω, and if -∆u = f in Ω, then

∇u L 2 (ω) ≤ C u L 2 (Ω\ω) + C f L 2 (Ω) . 29 (7.31) 
Noting that γ ε is uniformly bounded on compact subsets of D, we find, via (7.28) and (7.31), that

∂ zU ε L 2 (D 1/2 ) ≤ C ∆(∂ zU ε ) L 2 (D 3/4 ) + C ∂ zU ε L 2 (D 3/4 \D 1/2 ) ≤ C 1 ε 2 + o 1 ε as ε → ∞.
This implies (7.29). The proof of Theorem 7.1 is complete.

7.6 Remark. The construction of critical points of E ε in E d and Theorem 7.1 can be generalized to the case of magnetic Ginzburg-Landau functional, whose minimizers with prescribed degrees were studied in [8] for ε ≥ 2. This shows that critical points with prescribed degree one still exist when ε < 2. However, their type changes when passing the critical value 2, namely when ε > 2 we have minimizers while for ε < 2 they become minimax critical points. [START_REF] Han | Elliptic partial differential equations[END_REF] This estimate is obtained as follows. We assume for simplicity that u is real-valued. We multiply the equation

-∆u = f by ζ 2 u, where ζ ∈ C ∞ c (Ω; R) is fixed such that ζ = 1 in ω.
After some straightforward calculations, we find that

ˆΩ |∇(ζu)| 2 = ˆΩ ζ 2 f u + 2 ˆΩ ζu∇u • ∇ζ,
and this leads to 8 Bubbling analysis for small ε When ε is small instead of large, our proof of Theorem 1.1 breaks down, although we expect its conclusion to remain true. In fact the very definition of J * is valid only for large ε since it requires the uniqueness of solutions of (5.9). Nevertheless we present in this section an alternative minimax setting which is valid for any ε > 0, and for which the proof of Theorem 1.1 can be carried out up to and including the analysis of Palais-Smale sequences, i.e., the analog of Corollary 4.6. We believe this result is interesting in its own right.

ˆΩ |∇(ζu)| 2 ≤ C 1 u 2 L 2 (Ω\ω) + ε ζu 2 L 2 (Ω) + C(ε) f 2 L 2 (Ω) . ( 7 
Let X := H 1 0 (D; C) × H 1/2 (S 1 ; R) and

U : X → H 1 (D; C), X (v, ψ) → U(v, ψ) := v + u N 0 e ıψ .
Recall that N 0 is the identity of S 1 and that u(w) is the harmonic extension of w.

Set J (v, ψ) := F β (U(v, ψ)).
As in Section 5, we let K = D r , K 0 = C r and we write N a = N 0 e ıψ a . Define

χ : C r → X , C r a → χ (a) = 0, ψ a .
We have

U • χ (a) = M a .
We also define We next establish the analogs of Lemma 5.8 and of Corollary 5.12 when J * is replaced by J ; this will require more involved arguments. We start with some straightforward consequences of Lemma 5.4.

c := inf max K J • F; F ∈ C(K; X ), F = χ on K 0 , c 1 := max K 0 J • χ . ( 8 

Lemma

. Let 1 ≤ p < ∞. Let u 0 ∈ H 1/2 ∩ L ∞ (S 1 ; C).
Then the map

F 1 : H 1/2 (S 1 ; R) → L p (S 1 ; C), H 1/2 (S 1 ; R) ψ F 1 --→ u 0 e ıψ , is C 1 , and F 1 (ψ)(η) = ıu 0 e ıψ η.
Proof. The point to be checked is that T (ψ)(η) := ıu 0 e ıψ η defines a map T ∈ C(H 1/2 ; B(H 1/2 ; L p )). This follows from

T (ψ 1 ) -T (ψ 2 ) ≤ sup η H 1/2 ≤1 (ψ 1 -ψ 2 )η L p ≤ sup η H 1/2 ≤1 ψ 1 -ψ 2 L 2p η L 2p ≤ C ψ 1 -ψ 2 H 1/2 ,
by the Sobolev embedding H 1/2 (S 1 ) → L 2p (S 1 ).

Lemma

. Let 1 ≤ p < ∞. Let u 0 ∈ H 1/2 ∩ L ∞ (S 1 ; C). Then the map F 2 : H 1 0 (D; C) × H 1/2 (S 1 ; R) → L p (D), H 1 0 (D; C) × H 1/2 (S 1 ; R) (v, ψ) F 2 --→ v + u u 0 e ıψ ,
is C 1 , and F 2 (v, ψ)(w, η) = w + u ıu 0 e ıψ η .

Proof. It suffices to combine the previous lemma with the embedding H 1 (D) → L p (D) and with the continuity of the map L p (S 1 ) f → u( f ) ∈ L p (D).

By combining the above result with Lemma 5.5, we obtain 8.5 Lemma. With u 0 as above and β ∈ L ∞ (D), the map

F 3 : H 1 0 (D; C) × H 1/2 (S 1 ; R) → R, H 1 0 (D; C) × H 1/2 (S 1 ; R) (v, ψ) F 3 --→ 1 4 ˆD β 1 -v + u u 0 e ıψ 2 2
, is C 1 , and, if we set u := v + u u 0 e ıψ , then

F 3 (v, ψ)(w, η) = -ˆD βu • w + u ıu 0 e ıψ η (1 -|u| 2 ).
8.6 Lemma. The map

F 4 : H 1/2 (S 1 ; R) → R, H 1/2 (S 1 ; R) ψ F 4 --→ 1 2 ˆD ∇u u 0 e ıψ 2 ,
is C 1 , and, if u = u u 0 e ıψ , then

F 4 (ψ)(η) = ˆS1 u ∧ ∂u ∂ν η = ˆD(u∧∇u)•∇ζ, ∀ ψ, η ∈ H 1/2 (S 1 ; R), ∀ ζ ∈ H 1 (D; R) such that tr ζ = η. (8.2)
Proof. The equality of the two integrals in (8.2) is justified as in the proof of (5.14).

In order to prove that F 4 (ψ)(η) = T (ψ)(η), where T (ψ)(η) := ˆD(u ∧∇u)•∇u(η), we rely on Lemma 5.4. The map ψ → u ∧ ∇u ∈ L 2 (D) is continuous, [START_REF] Hélein | Constant mean curvature surfaces, harmonic maps and integrable systems[END_REF] and thus T ∈ C(H 1/2 ; H -1/2 ). On the other hand, it is clear that F 4 is continuous. Therefore, it remains to prove that (8.2) holds when ψ and η are smooth. By replacing u 0 with u 0 e ıψ , we may assume that ψ = 0. We have 

u 0 e ıtη = u 0 (1 + ıtη) + R(t), with R(t) H 1/2 ≤ Ct
(0) = ˆD ∇u • ∇(ıu 0 η) = ˆS1 u ∧ ∂u ∂ν η = T (0)(η).
Proof. All items except item 6. are straightforward. Indeed, let U n := u N 0 e ıψ n . Since u * n = v n +U n u, we find that U n U as n → ∞ for some harmonic U ∈ G , and thus and v n v := u -U as n → ∞. Using the fact that (u * n ) is a Palais-Smale sequence, we find, by passing to the limits in (8.4), [START_REF] Lamy | Existence of critical points with semi-stiff boundary conditions for singular perturbation problems in simply connected planar domains[END_REF] that -∆v = βu(1 -|u| 2 ), whence the last assertion in item 1. Item 2. follows by combining the inequality |U n | ≤ 1 with the fact that v is smooth. [START_REF] Lions | The concentration-compactness principle in the calculus of variations. The limit case[END_REF] Item 3. follows from the fact that u n → u as n → ∞ in L p for every p < ∞. This item implies that u n → u in W 2,p as n → ∞, ∀ p < ∞, and thus item 4. Item 5. is an easy consequence of the fact that v n → v in H 1 as n → ∞ (which in turn follows from item 4.) combined with the fact that u * n -u n → 0 as n → ∞ in every L p . We now turn to property 6., which is at the heart of the lemma. Since ∆U n = 0 in D, we have

ˆD(U n ∧ ∇U n ) • ∇ζ = ˆD div ((U n ∧ ∇U n )ζ) = ˆS1 ∂U n ∂ν • (ıU n η) = ˆD ∇U n • ∇u(ıN 0 e ıψ n η).
We plug this into (8.4) and integrate by parts to find, with ζ ∈ H 1 (D) such that tr ζ = η, that

J (v, ψ n )(0, η) = ˆD ∇U n • ∇u(ıN 0 e ıψ n η) -ˆD βu n • u ıN 0 e ıψ n η (1 -|u n | 2 ) = ˆD ∇u n • ∇u(ıN 0 e ıψ n η) -ˆD βu n • u ıN 0 e ıψ n η (1 -|u n | 2 ) = ˆS1 u n ∧ ∂u n ∂ν η - ˆD ∆u n + βu n (1 -|u n | 2 ) • u ıN 0 e ıψ n η = ˆD(u n ∧ ∇u n ) • ∇ζ + ˆD u n ∧ ∆u n ζ - ˆD ∆u n + βu n (1 -|u n | 2 ) • u ıN 0 e ıψ n η .
The above calculation is valid for smooth η and ζ. By density, it still holds for every η ∈ H 1/2 (S 1 ; R) and every η ∈ H 1 (D; R) such that tr ζ = η. In particular, we have

ˆD(u n ∧ ∇u n ) • ∇ζ ≤ J (v, ψ n )(0, η) + ˆD |u n ∧ ∆u n | |ζ| + ˆD ∆u n + βu n (1 -|u n | 2 ) u ıN 0 e ıψ n η .
We take, in the above inequality, ζ with zero mean and such that η = tr ζ. With this choice, if we invoke Poincaré's inequality, combined with the bounds

|η| H 1/2 ≤ C ∇ζ L 2 and u ıN 0 e ıψ n η L p ≤ C|η| H 1/2 , ∀ p < ∞,
and with items 3. and 5., then we obtain item 6.

Finally, the first assertion in item 1. follows by combining 6. with the second part of item 1.

8.9 Definition. In the following we will denote by the term bubble either a Moebius transform or the conjugate of a Moebius transform. We will denote such a bubble by B a , with a ∈ D. Thus either B a = M a or B a = M a .

A multi-bubble is either a (non trivial) Blaschke product, or the conjugate of such a product.

The key result in the analysis of the Palais-Smale sequences associated to J is the following.

8.10 Lemma. Let (v n ) ⊂ G be a sequence of harmonic functions with the following properties:

v n 1 in H 1 (D) as n → ∞; (8.7) 1 2 ˆD |∇v n | 2 → Kπ as n → ∞; (8.8) ˆD(v n ∧ ∇v n ) • ∇ζ ≤ c n ∇ζ L 2 , ∀ ζ ∈ H 1 (D; R), with c n → 0 as n → ∞.
(8.9)

Then K is an integer and, up to a subsequence, there exist points a 1 (n), . . . , a K (n), corresponding bubbles B a j (n) , j ∈ 1, K and a constant γ ∈ S 1 , such that

|a j (n)| → 1 as n → ∞, ∀ j ∈ 1, K ; (8.10) v n -γ K j=1 B a j (n) → 0 strongly in H 1 (D) as n → ∞. (8.11)
Proof. The proof is by induction on the integer part [K] of K.

Step 1. Case where K < 1.

In this case, we will prove that v n → 1 strongly in H 1 (D) as n → ∞. By Lemma 4.2 4., if K < 1 then |v n | ≥ a > 0 for large n and some constant a. Thus we may write, globally in D, v n = ρ n e ıϕ n (Lemma 2.7 3.). If we take ζ = ϕ n in (8.9), then using (2.11) we find that ∇ϕ n → 0 in L 2 as n → ∞. Since v n is harmonic, we have

∆ρ n = ρ n |∇ϕ n | 2 in D ρ n = 1 on S 1
, and therefore ρ n → 1 strongly in H 1 (D) as n → ∞.34 Using (2.11) and the facts that ∇ϕ n → 0 and ∇ρ n → 0 in L 2 , we obtain that v n → 1 as n → ∞ strongly in H 1 , i.e., that (8.11) holds with K = 0.

Step 2. Induction step. Assume that [K] ≥ 1. Then the H 1 convergence of (v n ) (or any subsequence of (v n )) to 1 is weak, but not strong. By the argument developed in Step 1., there exists no a > 0 such that |v n | ≥ a holds along a subsequence. Thus we may pick z n ∈ D such that v n (z n ) → 0. In view of (8.7), we have

|z n | → 1 as n → ∞. Let w n = v n • M -z n .
The new sequence (w n ) satisfies (8.8), (8.9) and w n (0) → 0 as n → ∞. Let w be the weak limit of (w n ) (possibly along a subsequence). Then w is harmonic, w(0) = 0 and, by (8.9), w satisfies (2.23) with β = 0. In view of Lemma 3.5, there exist a 1 , . . . , a L in D and a constant γ ∈ S 1 such that

w = γM a 1 . . . M a L , or w = γM a 1 . . . M a L .
(8.12)

In particular, 1 2

ˆD |∇w| 2 = Lπ, with L a positive integer. Let f := tr w and g n := tr (w n w). Then g n 1 in H 1/2 (S 1 ; S 1 ) as n → ∞. We also note the following. On the one hand, we have w n = u( f g n ). On the other hand, if we set h n := u(g n ), then h n 1 in H 1 (D) as n → ∞ (and also h n → 1 in C 1 loc (D) as n → ∞.) By Lemmas 2.22 and 2.24, we have w n -wh n → 0 in H 1 (D) and 1 2

ˆD |∇h n | 2 → (K -L)π as n → ∞.
We now turn back to the original sequence (v n ). Set )), and with the fact that w n is harmonic, we find that the map z n solves

t n := γ n w • M z n , y n := h n • M z n , where γ n = w • M z n (0)/|w • M z n (0)| (note that |w • M z n (0)| = |w(-z n )| → 1 as n → ∞).
-∆z n = βu(w n -1)(1 -|u| 2 ) -2∇u • ∇w n in D z n = 0 on S 1 .
Then, by Remark 2.23, we obtain that z n → 0 in H 1 (D). We turn to item 2. By combining item 1. with the fact that w n 1 weakly in H 1 and w n → 1 strongly in L p as n → ∞, ∀p ∈ [1, ∞) (p ≥ 1), we find that item 2. amounts to proving that, as n → ∞, we have

ˆD |∇(uw n )| 2 = ˆD |∇u| 2 + ˆD |∇w n | 2 + o(1). (8.15)
The starting point in the proof of (8.15) is the identity

|∇(uw n )| 2 = |u| 2 |∇w n | 2 + |∇u| 2 |w n | 2 + 2(u∇w n ) • (w n ∇u).
Since w n is harmonic and w n 1 in H 1 as n → ∞, we have w n → 1 in C 1 loc as n → ∞. On the other hand, we have |u(x)| → 1 uniformly as x → ∂D. Therefore

ˆ|u| 2 |∇w n | 2 = ˆ|∇w n | 2 + o(1) and ˆ|∇u| 2 |w n | 2 = ˆ|∇u| 2 + o(1) as n → ∞.
Finally, since uw n ∇u → u∇u strongly in L 2 (D) and ∇w n 0 weakly in L 2 (D), we see that

ˆ(u∇w n ) • (w n ∇u) = o(1) as n → ∞.
This proves (8.15) and item 2.

As for item 3., we start from the identity

ˆD((uw n ) ∧ ∇(uw n )) • ∇ζ = ˆD(|u| 2 -1)(w n ∧ ∇w n ) • ∇ζ + ˆD(w n ∧ ∇w n ) • ∇ζ + ˆD |w n | 2 (u ∧ ∇u) • ∇ζ,
and argue as in the proof of Lemma 8.10.

A straightforward combination of the two preceding lemmas implies the main result of this section.

8.13 Theorem. Let (v n , ψ n ) be a Palais-Smale sequence associated to J , and set u * n := v n + u N 0 e ıψ n . Then, up to a subsequence, there exist: a critical point u of F β in G , an integer K, points a 1 (n), . . . , a K (n), corresponding bubbles B a j (n) , j ∈ 1, K and a constant γ ∈ S 1 , such that

|a j (n)| → 1 as n → ∞, ∀ j ∈ 1, K ; (8.16) u * n -γu K j=1 B a j (n) → 0 strongly in H 1 (D) as n → ∞; (8.17) F β (u * n ) = F β (u) + Kπ + c n , with c n → 0 as n → ∞. ( 8 

.18)

In particular, we have (with c given by (8.5))

c = F β (u) + Kπ. 35 (8.19)
Proof. From Lemma 8.12, we have u * n -uw n H 1 → 0 as n → ∞, where (w n ) satisfies the hypotheses of Lemma 8.10. In order to conclude, it suffices to apply Lemma 8.10 to (w n ).

Results in the spirit of Theorem 8.13 has proven useful in many variational settings, especially in geometry. Let us simply mention the pioneering work of Sacks and Uhlenbeck [39] about minimal 2-spheres, the analysis of Brezis and Coron [17] of constant mean curvature surfaces, or the one of Struwe [41] of equations involving the critical Sobolev exponent. There are also abstract approaches to bubbling as in the work of Lions [33] about concentration-compactness or the characterization of lack of compactness of critical embeddings in Gérard [26], Jaffard [31] or Bahouri, Cohen and Koch [2].

We conclude with the following obvious consequence of our analysis of the Palais-Smale sequences.

8.14 Theorem. Assume that c given by (8.1) satisfies c < 2π. Assume in addition that there exists no solution u ∈ G of (2.23) such that F β (u) = cπ. (8.20) Then F β has a critical point u ∈ G 1 .

In addition, under the above assumptions the functional F β satisfies the (PS) c condition given by (5.6) at the level c = c . Note that, by Remark 8.1, our assumption on c generalizes assumption (6.1). Theorem 8.14 combined with our next result implies Theorem 6.1 (and thus Theorem 1.1).

8.15 Lemma. Assume that (5.8) and (5.10) hold. Let u be a critical point of F β in G such that F β (u) < π. Then u is a constant (and thus F β (u) = 0). Proof. Assumption (5.8) implies that critical points of F β are actually minimizers of F β with respect to their own boundary conditions. We next argue as in Step 1. in the proof of Lemma 8.10. If u is such a minimizer and F β (u) < π, then there exists some a > 0 such that |u| ≥ a (Lemma 4.2 4.). Then we may write, globally in D, u = ρ e ıϕ (Lemma 2.7 3.). Assume, in addition, that u is a critical point of F β . If we take ζ = ϕ in (2.21), then we find that ϕ is constant, say ϕ = 0. Thus ρ satisfies

-∆ρ = βρ(1 -ρ 2 ) in D ρ = 1
on S 1 . By multiplying this equation with ρ -1, we find that ρ ≡ 1.

Open Problem 1. Let u ∈ G be a critical point of F β . Assume that F β (u) < π. [START_REF] Pacard | Linear and nonlinear aspects of vortices[END_REF] Is it true that u is a constant? More generally, does the same hold if we replace the smallness assumption F β (u) < π by the weaker assumption 1 2

ˆD |∇u| 2 < π?
9 Bubbling analysis in multiply connected domains

In this section, we establish the analog of Theorem 8.13 in multiply connected domains Ω. To start with, this requires defining Palais-Smale sequences and bubbles. In defining Palais-Smale sequences, we can take as a starting point either Lemma 8.7 (and define a sequence (u * n )) or Lemma 8.8 (and define a sequence (u n )). We adopt here the latter point of view.

Definition

. Let β ∈ L ∞ (Ω). A sequence (u n ) ⊂ E is a Palais-Smale sequence for F β if there exists a sequence c n → 0 as n → ∞ such that ˆΩ ∇u n • ∇w -ˆΩ βu n • w(1 -|u n | 2 ) ≤ c n ∇w L 2 , ∀ w ∈ H 1 0 (Ω; C); (9.1) ˆΩ(u n ∧ ∇u n ) • ∇ζ ≤ c n ∇ζ L 2 , ∀ ζ ∈ H 1 (Ω; R). (9.2) 
We next define bubbles.

9.2 Definition. Let Γ , ∈ 1, L , be the components of ∂Ω. We assume that Γ 1 encloses Ω. Let ω 1 be the simply connected domain enclosed by Γ 1 , and for ≥ 2 let ω be the exterior domain bounded by Γ in the extended plane C ∪ {∞}. For each , fix a conformal representation Φ : ω → D . For a ∈ D and ∈ 1, L , the corresponding bubble B a is defined as either B a = M 1,a,Φ , or B a = M 1,a,Φ .

Note that, unlike the case of simply connected domains, bubbles do not belong to E . However, as a → Γ , the trace of B a almost fulfills the condition | tr B a | = 1.

The analog of Theorem 8.13 is 9.3 Theorem. Let (u n ) be a Palais-Smale sequence. Then, up to a subsequence, there exist: a critical point u of F β in E , an integer K, indices 1 , . . . , K ∈ 1, L , points a 1 (n), . . . , a K (n) ∈ Ω, corresponding bubbles B j a j (n) , j ∈ 1, K and a constant γ ∈ S 1 , such that dist (a j (n), Γ l j ) → 0 as n → ∞, ∀ j ∈ 1, K ; Proof. Up to a subsequence, we have u n u ∈ E as n → ∞. We define g n : ∂Ω → S 1 by g n = tr (u n /u) on Γ 1 on ∂Ω \ Γ , so that g n := tr (u n /u) satisfies g n = L =1 g n . Let v n := u(g n ) and v n := u(g n ). An inspection of the proof of Lemma 8.12 shows that the conclusions of this lemma hold in our case. [START_REF] Ponce | Équation de Ginzburg-Landau et singularités[END_REF] That is, u n -v n u → 0 strongly in H 1 (Ω), and F β (u n ) = F β (u)+ 1 2

ˆΩ |∇v n | 2 + c n , with c n → 0 as n → ∞. (9.6) Moreover, the sequence (v n ) satisfies (9.2). We next prove an analogue of Lemma 8.10. We first introduce two useful objects. Let w n denote the harmonic extension to ω of the trace of g n on Γ . We also set W n : D → C, W n := w n • (Φ ) -1 . (9.9)

The same holds for w n . It is then clear that v n -v n → 0 in C k loc (Ω \ ∪ j = Γ j ) as n → ∞. Combined with (9.9), this fact leads to the expansion

ˆΩ |∇v n | 2 = L =1 ˆΩ |∇v n | 2 + c n , with c n → 0 as n → ∞
and to the strong convergence

v n - L =1 v n → 0 in C ∞ (Ω) as n → ∞.
(9.10)

By the above, in order to conclude it suffices to invoke the fact that |w n | ≤ 1 (Lemma 2.17) and to prove that w n -v n → 0 strongly in H 1 (Ω) as n → ∞. (9.11) In turn, (9.11) is obtained by noting that y n := w n -v n is harmonic and that tr y n → 0 in H 1/2 (∂Ω) as n → ∞.

9.5 Lemma. Up to a subsequence, the sequence (W n ) n satisfies the assumptions of Lemma 8.10. As a consequence, up to a subsequence there are integers K( ), points a 1 (n), . . . , a K( ) (n) ∈ Ω and a constant γ ∈ S 1 such that:

1. dist (a j (n), Γ ) → 0 as n → ∞, ∀ j ∈ 1, K( ) .

2.

1 2

ˆΩ |∇w n | 2 → K( )π as n → ∞.
3. w n -γ K( ) j=1 B a j (n) → 0 strongly in H 1 (Ω) as n → ∞.

Proof. We have to prove that the sequence (W n ) n satisfies (8.9). By conformal invariance, it suffices to check the same property for (w n ) n . By (9.11) Using Lemma 8.12, (9.9) and (9.10), we find that

ˆΩ(v n ∧ ∇v n ) • ∇ξ ≤ ˆΩ (v n ∧ ∇v n ) • ∇ξ + ˆΩ\Ω (v n ∧ ∇v n ) • ∇ξ ≤ ˆΩ (v n ∧ ∇v n ) • ∇ξ + c n ˆΩ |∇ξ | ≤ c n ∇ξ L 2 ,
with c n → 0 as n → ∞.

(9.13)

Similarly, we have ˆΩ(v n ∧ ∇v n ) • ∇λ ≤ c n ∇λ L 2 , with c n → 0 as n → ∞.

(9.14)

We obtain (8.9) for the sequence (v n ) by combining (9.12)-(9.14). Items 1. and 3. are obtained from the analog results for W n via composition with Φ . As for item 2., it follows from (8.8) once we note that for some integer K, for some constant γ ∈ S 1 and for some points a 1 (n), . . . , a K (n) ∈ Ω satisfying (9.3). Using this fact in (9.6), we obtain (9.4) and (9.5).

ˆΩ |∇w n | 2 = ˆD |∇W n | 2 - ˆD\(Φ ) -1 (Ω) |∇W n | 2 = ˆD |∇W n | 2 + c n ,
We conclude with an application of the above analysis to the existence of critical points in doubly connected domains. For simplicity, we assume that we have circular symmetry and we let Ω = D\D R , with 0 < R < 1, but Theorem 9.6 below extends to arbitrary doubly connected domains. With d = (d 1 , d 2 ) ∈ Z 2 , we let

E d := {u ∈ E ; deg (u, S 1 ) = d 1 , deg (u, C R ) = d 2 }.
Our result is the following. 9.6 Theorem. Assume that R is sufficiently small. Then there exists some ε 0 such that, for ε ∈ (ε 0 , ∞], E ε has critical points in E (1,0) .

The above result is reminiscent of Coron's result on the existence of non trivial solution of the equation -∆u = u (n+2)/(n-2) in domains Ω ⊂ R n with small holes [22]. Since later Bahri and Coron [3] proved that the size of the hole is irrelevant for existence of such solutions, we address the following Open Problem 2. Let R ∈ (0, 1). Does there exist some ε 0 > 0 such that E ε has critical points in E (1,0) for ε ∈ (ε 0 , ∞]?

Proof of Theorem 9.6. We start by describing the functional setting. We let, with 0 < r < 1, K = D r , K 0 = C r , X = H 1 0 (Ω; C) × H 1/2 (∂Ω; R).

Let N : ∂Ω → S 1 , N(z) = z, if |z| = 1 1, if |z| = R . Then we define J : X → R, H 1 0 (Ω; C) × H 1/2 (∂Ω; R) (v, ψ)

J -→ E ε v + u N e ıψ .
Note that v + u N e ıψ ∈ E (1,0) . For a ∈ D, we write, as in Section 5, N a = N 0 e ıψ a , and let η a = ψ a , on S 1 0, on C R . We then set χ ∈ C(K 0 ; X ), K 0 a χ -→ 0, η a and define

c = c R,r,ε = inf max K J • F; F ∈ C(K; X ), F = χ on K 0 .
The plan is to prove that, for small R and large ε, the compactness condition (PS) c described in (5.6) is satisfied. This will imply existence of critical points of E ε in E (1,0) . To start with, note that, as in the proof of Lemma 3.1, we have

E ε (u) ≥ 1 2 ˆΩ |∇u| 2 ≥ ˆΩ | Jac u| ≥ ˆΩ Jac u = π, ∀ u ∈ E (1,0) . (9.15) 
Before proceeding further, we establish few auxiliary results. 9.7 Lemma. Let δ > 0. Then there exist R 0 < 1, r 0 < 1, and ε 0 > 0 such that c = c R,r,ε < π + δ provided R < R 0 , r > r 0 and ε > ε 0 . We also have 

ˆΩ(1 -ζ R ) 2 |∇M a | 2 + C(δ + δ + ε -2 ) ≤ π + C(δ + δ + ε -2 ).
This implies the first part of the lemma. For the second part, let us note that, when |a| → 1, we have aM a → -1 in C k loc (D), and this leads to lim sup |a|→1 E ε (P(a)) ≤ π. (9.17) We conclude by combining (9.17) with (9.15).

The next result is the content of [5, Lemma D.3 By the above and the area formula, for a.e. a ∈ D the set u -1 (a) is a singleton. The latter fact combined with the open mapping theorem for holomorphic functions implies that u is one-to-one. In conclusion, u : Ω → D is a homeomorphism, which is the desired contradiction (since Ω and D are not homeomorphic). Consider now a minimizing sequence (u n ) and assume that u n u as n → ∞. Since u ∈ E (1,0) , we find that u is a constant, by the Price Lemma 2.18. This constant has to be of modulus one.

The next result is the analog of Theorem 4.1 in doubly connected domains. If u ∈ H 1 (Ω), then we define u as the harmonic extension to D of the trace of u on S 1 . In particular, if u ∈ E (1,0) , then u ∈ E 1 .

Lemma.

There exists some δ 0 = δ 0 (R) > 0 and a function f : (0, δ 0 ) → (0, ∞) such that lim δ→0 f (δ) = 0 with the following property: if u ∈ E (1,0) satisfies 1 2

ˆΩ |∇u| 2 < π + δ, with δ < δ 0 , then 1 
ˆD |∇u| 2 < π + f (δ). 2 
In particular, if δ 0 is sufficiently small then there exists a continuous map

H : u ∈ E (1,0) ; 1 2 
ˆΩ |∇u| 2 < π + δ 0 → D, u H -→ a u , (9.20) 
where a u is the unique zero of u. Moreover, we have

|H(u)| → 1 when 1 2
ˆD |∇u| 2 → π. (9.21) 

  S 1 and that | tr u| = 1. Then, for r close to 1, we have deg (tr u, S 1 ) = deg (u, C r ) = deg (u/|u|, C r ).

z 1 ,∈

 1 . . . , z d be the zeroes of u in D, counted with their multiplicities. Let v(z) Hol (D). Then w = 0 in D and lim |z|→1 |w(z)| = 1 uniformly. Thus w = e f , where f ∈ Hol (D) satisfies lim |z|→1

3. 3

 3 Corollary. The minimizers of E ∞ in E d are precisely the d-Blaschke products.

6 ) 2 - ∂ϕ ∂τ 2 ∈

 622 ) combined with (3.5) leads to ξ = (ν x -ıν y ) 2 ∂ρ ∂ν We now complete the proof of Lemma 3.5. Since problem (2.23) with β = 0 is invariant by conformal representations, we may assume that Ω = D. When u is harmonic, the map η : D → C, η(z) = z 2 ξ(z), is holomorphic. If in addition Ω = D and u solves (2.23), then (3.6) becomes η = ∂ρ ∂ν R on S 1 . (3.7) By (3.7), η is constant in D. On the other hand, η vanishes at the origin. It follows that ξ ≡ 0, and therefore u is either holomorphic or anti-holomorphic. Since |u| = 1 on S 1 , we obtain the desired conclusion as in the proof of Lemma 3.1.

  Next we write |∇ϕ| = ∇ |Id| u |u| Id in D \ D r , and obtain (4.5) by combining the fact that u -Id H 1 = o(1) with the pointwise bounds 1/2 ≤ |u| ≤ 1 and 1/2 ≤ |Id| ≤ 1 on D \ D r . 4.3 Remark. Theorem 4.1 comes with no estimate of the function f (δ) in item 2. It would be interesting to have a quantitative form of this result.

. 10 ) 1 2 2 H 1 / 2 ≤

 101212 On the other hand, since |u n (z n )| → 0 and |u n | ≥ s on ∂(D \ D R ), we obtain, by applying Lemma 4.2 1., that lim infn→∞ ˆD\D R |∇u n | 2 ≥ πs 2 . (4.11)For s sufficiently close to 1, we obtain a contradiction by combining (4.10) with(4.11).Once the existence of R and µ as in item 2. is established, item 1. is obtained as follows. By conformal invariance, we may assume that u(0) = 0. By Lemma 2.2, we have deg (u, C R ) = 1. Arguing as at the beginning of Step 6. in the proof of Theorem 4.1, we may globally write, in D \ D R , u = |u|e ı(θ+ϕ) . (4.12) By (2.11), (4.12) and the bound ´D |∇u| 2 ≤ 4π, we obtain that ˆD\D R |∇ϕ| 2 ≤ C. (4.13) Item 1. follows from (4.13). 4.5 Remark. It is not clear whether the restriction |g| 2 H 1/2 < 2π is optimal in Theorem 4.4. However, some bound is required. Here is an example with a sketch of proof. Let g = g b,c,d = N b N c N d . Then |g| 9π. If we let, say, b → 1, c → -1 and d → ı, then we claim that there exists no a = a(b, c, d)

. 14 )

 14 Consider a Lebesgue point a 0 ∈ D of β at which the approximate limit of β is b > 0. Then c(β, a 0 ) := inf F β (v); g = tr v ∈ H 1 , u(g) vanishes at a 0 > π.(4.15)Proof. If c(β, a) ≥ 2π,there is nothing to prove. Otherwise, we apply Corollary 4.6 and obtain that the minimum is attained in (4.15). Argue by contradiction and assume that c(β, a 0 ) = π. If v attains the minimum in (4.15) then, by Corollary 3.2, v = M α,a and ˆD β(1 -|v| 2 ) 2 = 0. (4.16) Our choice of a implies that lim r→0 B(a,r)

17

 17 

4. 8

 8 Theorem. Let d ∈ N.

6. 1

 1 Theorem. Assume that (5.8) holds and that the value c * in (5.10) satisfies c * < 2π.(6.1) 

2 ˆD

 2 Theorem 4.1 3., for large ε the map G : D r → D, G(a) = the zero of the harmonic extension F(a) of N 0 e ıF(a) is continuous and satisfies G(a) = a if |a| = r. By the Brouwer fixed point theorem, we may find some a = a ε such that F(a) vanishes at z = ξ. Since 1 |∇F(a)| 2 ≤ c * ε , we find, via Corollary 4.6 and

. 26 )

 26 Assertion(7.22) (and thus also assertion (7.21)) is obtained by combining (7.26) with(7.25).

. 1 ) 8 . 1

 181 Remark. Assume, just in this remark, that (5.8) holds. Then we clearly have c = c * and c 1 = c * 1 , with c * and c * 1 as in (5.10). By repeating the proof of Lemma 5.3, we find the following 8.2 Lemma. Assume (4.14). Then, for r sufficiently close to 1, we have c > c 1 .

  n) → 0 strongly in H 1 (Ω) as n → ∞; (9.4)F β (u n ) = F β (u) + Kπ + c n , with c n → 0 as n → ∞.(9.5)

9. 4

 4 Lemma. We haveˆΩ |∇v n | 2 = L =1 ˆΩ |∇w n | 2 + c n , with c n → 0 as n → ∞, 0 strongly in H 1 (Ω) as n → ∞. (9.8) Proof. By standard interior estimates [29, Proposition 1.13, p. 6] and global estimates [27, Theorem 9.19, p. 243], the fact that g n 1 in H 1/2 (∂Ω) as n → ∞ and the fact that g n = 1 on ∂Ω \ Γ imply v n → 1 in C k loc (Ω \ Γ ) as n → ∞.

2 ˆΩ

 2 with c n → 0 as n → ∞; here, we use the fact that W n → 1 in C k loc (D) as n → ∞. Proof of Theorem 9.3 completed. By combining Lemma 9.4 with Lemma 9.5, we obtain an analog of Lemma 8.10, i.e., n) → 0 strongly in H 1 (Ω) as n → ∞, and1 |∇v n | → Kπ as n → ∞,

lim r→1 max K 0 J

 0 • χ = π.(9.16) Proof. Let δ > 0 to be fixed later. Pick R 0 such that for R < R 0 there exists someζ R ∈ C ∞ (Ω; [0, 1]) such that ζ R = 1 near S 1 , ζ R = 0 near C R and ˆΩ |∇ζ R | 2 <δ . This is always possible provided R 0 is sufficiently small, since the H 1 -capacity of a point is zero. DefineP : D → E (1,0) , D a P -→ ζ R M a + 1 -ζ R .Let also F(a) = (0, η a ), a ∈ K. Then tr P(a) = tr u (N e ıη a ), and a straightforward calculation leads toc ≤ max K J • F = maxa∈K E ε u N e ıη a ≤ max a∈K E ε (P(a))

  a) u(Ω) ⊂ D (by the maximum principle). b) u(Ω) ⊃ D (since the total degree of u on ∂Ω is one). c) ˆΩ | Jac u| = π.

  ω ⊂ R 2 is smooth,

∂ ∂τ

stands for the tangential differentiation on ∂ω endowed with its natural orientation (counterclockwise on the outer boundary of ω, clockwise on the inner components of ∂ω). The notation ∂ ∂ν stands for the differentiation with respect to the outward normal.

4. If ω ⊂ R 2 is a smooth bounded open set and if g ∈ L 1 (∂ω; C), then we let u(g) denote the harmonic extension of g, i.e., u(g

2.12 Lemma. Let

  u ∈ H 1 (Ω; C) satisfy ∆u ∈ L ∞ and | tr u| = 1. Then

	The next result is essentially due to Brezis and Nirenberg [21, Theorem A3.2].	
	lim z→∂Ω	|u(z)| = 1.	(2.15)
	Proof. When ∆u = 0, (2.15) follows by combining [21, Theorem A3.2] with the embedding H 1/2 (Γ) →
	V MO.		

  and E d the classes G = {u ∈ H 1 (D; C); | tr u| = 1}, respectivelyG d = u ∈ H 1 (D; C); | tr u| = 1, deg (u, S 1 ) = d . (2.19) In view of the conformal invariance of the Dirichlet integral, it is easy to see that finding critical points (or minimizers) of E ε in E d is equivalent to finding critical points (or minimizers) of F β in G d . It will be convenient to consider the energy F β for more general weights. In what follows, we always assume that

	2 ,	(2.18)
	and to E β is non negative and essentially bounded.	(2.20)

2.15 Lemma. Let

  u belong to G d . Then u is a critical point of F β if and only if u ∈ W 2,p (D), ∀p ∈ [1, ∞), and

	.22)
	A solution of (2.22) will be referred to as a critical point of F β with respect to its own Dirichlet
	boundary condition.
	Problems (2.21) and (2.22) transpose steadily to multiply connected domains.

  be a complex-valued harmonic function. Assume that t ≤ |v| ≤ 1 on ∂ω, for some t ≥ 0, and let s = inf Then we haveˆω |∇v| 2 ≥ 4A s,t ,where A s,t is the area of the region {z ∈ D; |z| ≤ t, Re z ≥ s}.2. Same conclusion ifω = D.3. Same conclusion ifω = D or D\D R and if v minimizes F β in D with respect with its own boundary condition. 4. Special case: if v is as above and satisfies |v| = 1 on S 1 , and if ´D |∇v| 2 ≤ c < 2π, then there exists

ω |v|.

  ).

	When u is smooth, say u ∈ C 1 , the notation u ∧ ∂u ∂ν even if u is merely H 1 . ∂ ∂τ tr h is nothing else than u ∧	∂u ∂ν	; with an abuse of notation, we keep

  .32) We obtain(7.31) by combining (7.32) with Poincaré's inequality ζu L 2 (Ω) ≤ C ∇(ζu) L 2 (Ω) .

  ˆD |∇u| 2 + t ˆD ∇u • ∇u ıu 0 η + S(t), with S(t) H 1/2 ≤ Ct 2 as t → 0.

		2 as t → 0,	
	and thus		
	F 4 (tη) =	1 2	(8.3)
	Using (8.3) and (5.16) with β = 0, we find that	
	∂F 4		
	∂η		

  Then we have:Proof. Let u n = v+ u N 0 e ıψ n , where v = lim n v n as in Lemma 8.8. By Lemma 8.8, item 1. amounts to proving that z n := uw n -u n converges strongly to 0 in H 1 (D) as n → ∞. By combining the fact that u solves (2.21) with Lemma 8.8 (which implies that -∆u n = -∆v = βu(1 -|u|[START_REF] Bahouri | A general wavelet-based profile decomposition in the critical embedding of function spaces[END_REF] 

  , we are reduced to checking the same for (v n ) n . Let Ω ⊂ C be an open set such that Ω ∩∂Ω = Γ . Let η ∈ C ∞ c (Ω ; R) be such that η = 1 in a neighborhood of Γ . If ζ ∈ H 1 (Ω; R), set ξ := η ζ, λ := ζξ .Assuming in addition that ˆΩ ζ = 0, we have the Poincaré type inequality ∇ξ L 2 + ∇λ L 2 ≤ C ∇ζ L 2 . 38 (9.12)

  ]. 9.8 Lemma. We haveinf{E ε (u); u ∈ E (1,1) } ≥ min{E ∞ (u); u ∈ E (1,1) } = 2π 1 Then 1. m ε = π and m ε is not attained. 2. If (u n ) is a minimizing sequence in (9.19), then, up to a subsequence, u n α ∈ S 1 in H 1 (Ω). Proof. Let Φ t : C → C, Φ t (z) = z/t, if |z| ≤ t z/|z| if |z| ≥ t. It is easy to see that, when a ∈ D and |a| → 1, we may pick some t = t(a) → 1 such that we haveΦ t • M a ∈ E (1,0) and E ε (Φ t • M a ) → π.This together with (9.15) implies that m ε = π. As in the proof of Lemma 3.1, if E ε (u) = π, then u is holomorphic. However, we claim that there is no holomorphic map in E (1,0) . Indeed, otherwise we have:

	-R 1 + R	.	(9.18)
	9.9 Lemma. Consider the minimization problem		
	m ε = inf{E ε (u); u ∈ E (1,0) }.		(9.19)

A well-known similar situation occurs for the equation -∆u = u (n+2)/(n-2) in Ω ⊂ R n with n ≥

[START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[END_REF], where a non trivial topology leads to the existence of critical points[START_REF] Coron | Topologie et cas limite des injections de Sobolev[END_REF],[START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[END_REF].[START_REF] Bahri | On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[END_REF] In turn, this bound can be explicitly expressed in terms of the H 1 -capacity of the domain.

Such a limit is a critical point of E ε with degree one.

If we specialize to simply connected domains, some of our arguments can be substantially simplified. See e.g. Lemma 2.24 and Remark 2.25.

When ω is simply connected, this equivalence is already implicit in Gagliardo's paper on trace theory[START_REF] Gagliardo | Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili[END_REF].

The point here is not density of smooth maps, but density of smooth circle-valued maps.

In Ω and with respect to Φ, but this will be tacitly understood in what follows.

Or for negative degrees, but this is simply obtained by complex conjugation.

Here, we endow C with the scalar product of R 2 and we identify H 1 0 (D; C) with a space of R 2 -valued functions.

It will be shown in the proof of Theorem 7.1 that for sufficiently large ε the value of r can be chosen independent of ε.

This argument was already used in the proof of Lemma 5.7.

(8.4) is applied to the couple (v n , ψ n ), with η = 0 and for fixed w.

Here, we use Lemmas 2.17 and 2.15.

This is obtained by multiplying by ρ n -1 the equation of ρ n .

Thus we have the following obvious upper bound on the number K of bubbles: K ≤ c /π.

But we do not make any smallness assumption on β. In particular, we do not assume (5.8).

With u n instead of u * n .

This is easily obtained by contradiction.
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An immediate consequence of Lemma 8.6 is the analog of Lemma 5.8. 8.7 Lemma. The map J is C 1 . In addition, with u = v + u N 0 e ıψ and with U = u N 0 e ıψ , we have J (v, ψ)(w, η) = ˆD ∇v • ∇w + ˆD(U ∧ ∇U) • ∇ζ -ˆD βu • w + u ıN 0 e ıψ η (1 -|u| 2 ) (8.4) for every ζ ∈ H 1 (D) such that tr ζ = η.

Proof. It suffices to note that J (v, ψ) = F 4 (ψ) + 1 2

ˆD |∇v| 2 , with F 4 as in Lemma 8.6. [START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF] We next turn to the properties of the Palais-Smale sequences associated to J . Note that an application of Theorem 5.1 in conjunction with Lemma 8.2 leads to a sequence (v n , ψ n ) such that, with u * n := v n + u N 0 e ıψ n ∈ G , we have

In the asymptotic analysis of the Palais-Smale sequences, the smoothness of u * n is not sufficient. In the remaining part of this section, we find a better Palais-Smale sequence and establish its main properties. More specifically, we let u n := v+u N 0 e ıψ n , where v ∈ H 1 0 (D) is such that v n v as n → ∞. In the original variables of J , this amounts to replacing v n by v. The next result is the analog of Corollary 5.12.

8.8 Lemma. Assume that (v n , ψ n ) satisfy (8.5), with u * n := v n + u N 0 e ıψ n , and that v n v as n → ∞. Then, letting u n := v + u N 0 e ıψ n , the sequence (u n ) has the following properties.

1. u is a solution of (2.23), and we have -∆v = βu(1 -|u| 2 ).

|u

In particular, u n u and F β (u n ) → c as n → ∞.

(u n

) is a Palais-Smale sequence.

6. There exists a sequence c n → 0 such that

(8.6) [START_REF] Jaffard | Analysis of the lack of compactness in the critical Sobolev embeddings[END_REF] With

2. Letting a j (n) := M -z n (a j ), we have |a j (n)| → 1 as n → ∞, and either t n = γ n γ j M a j (n) , or tn = γ n γ j M a j (n) .

3. 1 2

In order to complete the proof of Lemma 8.10, we apply the induction hypothesis to the sequence (y n ).

To this end we need to establish the validity of (8.9) for the sequence (y n ). This is done as follows. By conformal invariance of (8.9) and the fact that (8.9) holds for (v n ), we find that (8.9) holds for (w n ).

On the other hand, (8.12) implies that ´D(w ∧ ∇w) • ∇ζ = 0. We next recall that w n = wh n + r n , where

, and thus r n → 0 in L ∞ (D) as n → ∞. Therefore, we have

From this we find that

The fact that h n → 1 in C 1 loc (D) and in L 4 (D) as n → ∞ and the fact that |w(z)| → 1 as |z| → 1 easily imply that (8.14) It follows from (8.13) and (8.14) that (h n ) satisfies (8.9). By conformal invariance of (8.9), the same holds for (y n ).

8.11 Remark. Lemma 8.10 is about bubbling of harmonic functions in the unit disc D, and clearly this analysis extends to the case of simply connected domains. It is still possible to study the case of multiply connected domains. Such analysis, which is not relevant for the subsequent results in this section, is postponed to Section 9.

8.12 Lemma. Let (v n , ψ n ) be a Palais-Smale sequence associated to J , and set u * n := v n + u N 0 e ıψ n . Assume that u * n u in H 1 (D) as n → ∞. Set g n = tr (u * n u) and w n = u(g n ). Then

3. The sequence (w n ) satisfies the assumptions of Lemma 8.10.

Proof. For the first part of the lemma, it suffices to prove that, if (u n ) ⊂ E (1,0) and 1 2 By (9.15), we may assume that u n is harmonic. By Lemma 9.9 2., we have, up to a subsequence, u n → α in C k loc (Ω). Thus, for R < r < 1, the restriction of u n to D \ D r has an extension v n to D such that 1 2

The second part of the theorem follows from Theorem 4.1. As for the last part, consider a sequence

By Lemma 9.9, we have, up to a subsequence, u n α ∈ S 1 , and thus u n α, whence the conclusion.

Proof of Theorem 9.6 completed. We start by proving that c > π. Indeed, let δ 0 = δ 0 (R) be such that H given by (9.20) is well-defined and satisfies |H(u)| ≥ 1/2. We claim that c ≥ π + δ 0 . Indeed, otherwise let F ∈ C(K; X ) be such that F = χ on K 0 and

Here,

By construction, G is continuous and we have G =Id on C r . This contradicts Brouwer's fixed point theorem.

The fact that c > π combined with (9.16) implies that for r close to 1 we have

and that c does not depend on r close to 1. (9.22), combined with the proofs of Lemmas 8.7 and 8.8 and with Lemma 9.7 and Theorem 9.3 leads to the following: if R < R 0 , r > r 0 and ε > ε 0 , then:

2. There exists a sequence (u n ) ⊂ E (1,0) as in Theorem 9.3. [START_REF] Sacks | The existence of minimal immersions of 2-spheres[END_REF] We complete the proof of Theorem 9.6 if we prove that the integer K in Theorem 9.3 is zero. Let u be as in Theorem 9.3, and let D ∈ Z 2 be such that u ∈ E D . By Theorem 9.3 and the fact that c < 2π, one of the following cases occurs:

1. K = 0 and D = (1, 0), which is the desired conclusion.

2. K = 1, D = (1, 1) and E ε (u) = cπ.

3. K = 1, D = (0, 0) and E ε (u) = cπ. [START_REF] Sacks | The existence of minimal immersions of 2-spheres[END_REF] With E ε instead of F β .

The second case is ruled out thanks to Lemma 9.8 and to the fact that cπ < 2π 1 -R 1 + R .

We next turn to the third case. Since 1 2

ˆΩ |∇u| 2 < π, [START_REF] Serfaty | Stability in 2d Ginzburg-Landau passes to the limit[END_REF] Lemma 4.2 4. implies that |u| ≥ a > 0 in Ω.

By Lemma 2.8, in Ω we may globally write u = ρ e ıϕ . As in the proof of Lemma 8.15, this implies that u is constant. This contradicts the fact that c > π.

The proof of Theorem 9.6 is complete.