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Abstract

Let Ω⊂R2 be smooth bounded simply connected. We consider the simplified Ginzburg-Landau

energy Eε(u)= 1
2

ˆ
Ω
|∇u|2+ 1

4ε2

ˆ
Ω

(1−|u|2)2, where u :Ω→C. We prescribe |u| = 1 and deg (u,∂Ω)=
1. In this setting, there are no minimizers of Eε. Using a mountain pass approach, we obtain
existence, for large ε, of critical points of Eε. Our analysis relies on Wente estimates and on the
analysis of bubbling phenomena for Palais-Smale sequences.

1 Introduction
We consider a smooth bounded simply connected domain Ω⊂R2 and set Γ= ∂Ω. Let

E = {
u ∈ H1(Ω;C); |tr u| = 1

}
.

Here, tr u denotes the trace of u on Γ. If u ∈ E and we let g = tr u, then g ∈ H1/2(Γ;S1), and therefore
we may define the winding number (degree) of g [14, Appendix], denoted by deg (u,Γ) or deg (g,Γ). In
particular, for d ∈N∗ we may define the class

Ed = {
u ∈ H1(Ω;C); |tr u| = 1 on Γ,deg (u,Γ)= d

}
.

For ε ∈ (0,∞], we consider the simplified Ginzburg-Landau energy

Eε(u)= 1
2

ˆ
Ω
|∇u|2 + 1

4ε2

ˆ
Ω

(1−|u|2)2.

Our paper is devoted to the existence of critical points of Eε in Ed, with special focus on the case d = 1.
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Boundary condition |tru| = 1 can be regarded as a relaxation of the S1-valued Dirichlet boundary
condition. This latter condition was considered in details in the classical work [10], where the asymp-
totic behavior of critical points of Eε was studied in the limit ε→ 0. It was shown, in particular, that
zeroes (vortices) of critical points are distant from the boundary, i.e., boundary "repeals" vortices. The
Ginzburg-Landau equation with the Neumann boundary condition presents another extremal effect
– "vortices flow through the boundary outside the domain", more precisely, there are no stable (global)
minimizers with vortices [33]. The semi-stiff boundary conditions were introduced and studied in [9],
[6][8]. It is intermediate between the Dirichlet and Neumann conditions in the following sense: it is
the Dirichlet condition |u| = 1 for the modulus and the Neumann for the phase of u on the boundary.

In order to obtain nontrivial (nonconstant) critical points one can prescribe nonzero degree on the
boundary. Note that the topological degree is continuous with respect to the strong convergence in
H1(Ω;C) and one can show that sets Ed are connected components of E (in the topology inherited from
H1(Ω;C)). Thus minimizers of Eε in Ed (if they exist) are local minimizers in E .

A first natural issue is existence of minimizers of Eε in Ed. When ε=∞, it is easy to see that the
minimizers of E∞ in E1 are precisely the conformal representations of Ω into the unit disc D; it is also
possible to characterize the minimizers E∞ in Ed for d ≥ 2 (Corollary 3.2). When ε<∞, Eε does not
attain its minimum in Ed (Lemma 3.4).

Next natural question is existence of critical points. Our main result is the following.

1.1 Theorem. There exists some ε0 > 0 such that, for ε> ε0, Eε has critical points in E1.

The interesting features of existence/nonexistence of critical points were observed in [9]. Next a
nontrivial result on existence of critical points for Ginzburg-Landau functional with semi-stiff bound-
ary conditions was obtained in [25] for annuli by minimization of Eε with prescribed degrees d on both
connected component of the boundary. This result (in the case d = 1) was improved and extended in
[6] to general doubly connected domains. The existence/nonexistence study for doubly connected do-
mains was completed in [4]. Works [6] and [4] show that the existence of minimizers crucially depends
on the upper energy bound obtained by minimizing the Dirichlet energy among S1-valued maps.1

Namely, if this bound does not exceed a certain threshold then minimizers exist for all ε, otherwise
they exist for large ε and do not exist for small ε. It can be conjectured on the basis of aforementioned
works that global minimizers with prescribed degrees either do not exist or, if they exist, have no
zeroes (vortices). However, in [8] it was shown that critical points with zeroes (vortices) do exist (for
small ε) for all prescribed degrees on components of a doubly connected domain. The method in [8]
makes use of nontrivial topological structure of energy sublevel sets in the case of doubly connected
domain, and critical points found in [8] are local minimizers. This approach extends to general multi-
ply connected domains [22], but cannot be applied to find critical points in simply connected domains.
An important tool in the construction of [8] is the approximate bulk degree functional, introduced in
that work for doubly connected domains. The latter notion can be generalized to multiply connected
domains [22]; however, it does not have an analogue for simply connected domains.

The techniques developed in the works cited above for semi-stiff boundary conditions do not lead
to (locally or globally) minimizing solutions in simply connected domains. Thus a natural question
arises: can one find minimax (saddle) critical points for semi-stiff boundary conditions? This question
motivated the present work.

By contrast with the above references and especially [8], our approach is not based on the direct
method: in Theorem 1.1, critical points are minimax type ones; their existence is obtained via the
Mountain Pass Theorem of Ambrosetti and Rabinowitz [1] combined with an asymptotic analysis of
the Palais-Smale sequences. This analysis is rather delicate, since our problem is non compact. Non

1In turn, this bound can be explicitly expressed in terms of the H1-capacity of the domain.
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compact problems have been broadly considered in the PDE literature for more then three decades.
They include nonlinear problems with critical growth (in particular, the celebrated Yamabe problem),
three body problem, Yang-Mills equations, harmonic map problem etc (see e.g. the references in [15]).
In non compact problems, analysis of Palais-Smale sequences and the validity of the (PS)c (Palais-
Smale condition at the energy level c) condition of Brezis, Coron and Nirenberg [17] play a crucial
role. This analysis is also at the heart of the proof of Theorem 1.1.

Our paper is organized as follows. In Section 2, we recall existence and basic properties of the
boundary degree for maps in E , as well as some applications of the Wente estimates, which are crucial
in the analysis of the Palais-Smale sequences. In Section 3, we prove (non)existence of minimizers
of Eε. Section 4 gives the structure of maps close (in a suitable sense) to Moebius transforms, and
more generally to Blaschke products. Results in Section 4 are essential for establishing the presence
of a mountain pass geometry; this is achieved in Section 5. In Section 5, we rely on the Mountain
Pass Theorem in order to obtain sequences of almost critical points of Eε and an almost critical level
c > π. In Section 6 we prove Theorem 1.1. The rather simple proof requires both ε large and c < 2π.
Once existence of critical points is established, we determine in Section 7 their behavior as ε→∞.
We next turn to the task of generalizing Theorem 1.1 to larger ε. This relies on a careful analysis of
Palais-Smale sequences. Although Theorem 1.1 is about degree 1 and simply connected domains, we
found interesting to present in Section 8 the analysis of Palais-Smale sequences when the boundary
degree is arbitrary and the domain is allowed to be multiply connected.2 We next rely on this analysis
in order to obtain a slight generalization of Theorem 1.1; see Theorem 8.13.

Acknowledgements. We are grateful to J.-M.Coron for a very helpful conversation in the early
stages of this paper. The work of LB and VR was supported by NSF grant DMS-DMS-1106666.
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2 Functional setting
We start by specifying some notation used throughout the paper.

2If we specialize to simply connected domains, some of our arguments can be substantially simplified. See e.g. Lemma
2.23 and Remark 2.24.
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1. D, respectively S1, denote the unit disc, respectively the unit circle. More generally, we will
denote {z ∈C; |z| < r}, respectively {z ∈C; |z| = r}, by Dr, respectively Cr.

2. ω and Ω will usually denote smooth open subsets of R2.

3. If ω⊂ R2 is a smooth bounded open set and if g : ∂ω→C, then we let u(g) denote the harmonic
extension of g. If in addition g ∈ H1/2(∂ω;C), then we define a semi-norm in H1/2 via the formula

|g|2H1/2 =
1
2

ˆ
ω

|∇u(g)|2. (2.1)

4. ∧ stands for the vector product of complex numbers: (a1+ıa2)∧(b1+ıb2)= a1b2−a2b1. Similarly,
the notation u∧∇v, with u and v complex-valued functions, denotes the vector-field u1∇v2 −
u2∇v1.

5. If (a,b) ∈R2, then (a,b)⊥ = (−b,a). With complex notations, z⊥ = ız.

6. · stands for the real scalar product. E.g., we have (a1 + ıa2) · (b1 + ıb2) = a1b1 + a2b2, and if
u = u1 + ıu2 and v = v1 + ıv2 are complex vectors, then u ·v = u1 ·v1 +u2 ·v2.

7. Several function spaces will appear frequently:

a) E = {u ∈ H1(Ω;C); |tr u| = 1}. If, in addition, Ω is simply connected and d ∈Z, then Ed = {u ∈
E ; deg (u,∂Ω)= d}.

b) When Ω=D, the two above spaces are denoted G , respectively Gd.

c) We let H = H1/2(S1;S1) and Hd = {g ∈H ; deg g = d}.

We next turn to the description of a functional setting adapted to the study of critical points.
If g ∈ H1/2(S1;C), then the semi-norm |g|H1/2 is easily expressed in terms of Fourier coefficients: if

we write g =∑
aneınθ, then

|g|2H1/2 =π
∑ |n||an|2. (2.2)

As noticed first by Boutet de Monvel and Gabber [14, Appendix], a map g ∈ H1/2(S1;S1) has a
well-defined winding number (degree), denoted deg (g,S1), or simply deg g. This degree is defined as
follows. On the one hand, C∞(S1;S1) is dense in H1/2(S1;S1) [14, Appendix].3 On the other hand, if
we write in Fourier series a smooth circle-valued map g as g =∑

aneınθ , then

deg g =∑
n|an|2. (2.3)

Via (2.2), we easily obtain that the degree of smooth maps is continuous with respect the H1/2 conver-
gence. This implies that the right side of (2.3) is an integer for each map g ∈ H1/2(S1;S1); this integer
is the degree of g.

When S1 is replaced by a smooth simple closed planar curve Γ, the degree of a map g ∈ H1/2(Γ;S1)
can be defined using the above procedure: we first establish density of C∞(Γ;S1) into H1/2(Γ;S1),
next prove continuity of the degree of smooth maps for H1/2 convergence. An alternative equivalent
approach is the following. Let Ω be the interior of Γ and fix some conformal representation Φ ∈

3The point here is not density of smooth maps, but density of smooth circle-valued maps.
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C∞(Ω;D). Let Ψ=Φ|Γ :Γ→S1. If g ∈ H1/2(Γ;S1), then we have g◦Ψ−1 ∈ H1/2(S1;S1) and thus we may
set

deg (g,Γ)= deg (g ◦Ψ−1,S1). (2.4)

Formula (2.4) reduces the study of degree to the case where Γ = S1 and Ω = D. Existence of the
degree suffices to describe the functional setting we need. However, in subsequent sections we will
use further properties of the degree. For the convenience of the reader, these properties are recalled
below. The results we present are well-known to the experts but difficult to find in the literature. We
follow mainly unpublished lecture notes of a graduate course of H. Brezis at Paris 6. Other useful
references are [14, 19, 20, 13, 18].

2.1 Lemma. 1. C∞(Γ;S1) is dense in H1/2(Γ;S1).

2. The degree of H1/2(Γ;S1) maps is continuous with respect to strong H1/2-convergence.

3. The degree of H1/2(Γ;S1) maps is not continuous with respect to weak H1/2-convergence.

Proof. The first two items rephrase the beginning of this section. For the third one, we let Γ=S1 and
proceed as follows: let ga(z) = z−a

1−az
, z ∈ S1, a ∈ (0,1). Then ga * −1 as a → 1 and deg ga = 1, but

deg (−1)= 0.

Lack of continuity with respect to weak convergence makes the minimization of Eε in Ed non
trivial.

We continue with a result relating the degree of H1/2 maps to the more familiar degree of contin-
uous maps.

2.2 Lemma. Let u ∈ H1(D;C)∩C(D;C). Assume that 1/2 ≤ |u| ≤ 2 in a neighbourhood of S1 and that
|tr u| = 1. Then, for r close to 1, we have

deg (tr u,S1)= deg (u,Cr). (2.5)

In the remaining part of this section, unless if stated otherwise, Ω is a smooth bounded simply
connected domain and Γ= ∂Ω.

We continue with two useful formulas giving the degree. The first one is merely an interpretation
of (2.3).

2.3 Lemma. Let g ∈ H1/2(Γ;S1) and let u ∈ H1(Ω;C) be such that tr u = g. Then

deg g = 1
2ıπ

〈
∂u
∂τ

,u
〉

H−1/2,H1/2
= 1

2π

ˆ
Γ

u∧ ∂u
∂τ

(2.6)

and

deg g = 1
π

ˆ
Ω

Jac u. (2.7)

The second equality in (2.6) is valid only when g is sufficiently smooth, say g ∈ C1. In this paper,
we always use this notation, but the integral has to be understood in the sense of the H1/2 −H−1/2

duality.
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2.4 Corollary. Let u ∈ H1(Ω;C).

1. If |u| = 1 on ∂Ω, thenˆ
Ω
|∇u|2 ≥ 2π|deg (tr u,∂Ω)|. (2.8)

2. If |u| ≥ ρ > 0 on ∂Ω, then
ˆ
Ω
|∇u|2 ≥ 2πρ2|deg (tr u,∂Ω)|. (2.9)

Proof. The first conclusion above is obtained by combining (2.7) with the pointwise inequality 2|Jac u| ≥
|∇u|2. The second one is obtained by applying (2.8) to Φ(u), where Φ(z)=

{
z/ρ, if |z| ≤ ρ
z/|z|, if |z| > ρ .

As one may expect, the degree of H1/2 maps inherits some well-known properties of the degree of
continuous maps.

2.5 Lemma. deg is locally constant in H1/2(Γ;S1).

2.6 Lemma. Let g,h ∈ H1/2(Γ;S1). Then the following hold.

1. If g is continuous, then the degree of g in the sense H1/2 maps is the same as the degree of g in
the sense of continuous maps.

2. deg (gh)= deg g+deg h.

3. deg (g/h)= deg g−deg h.

4. deg g = 0⇐⇒ g = eıψ for some ψ ∈ H1/2(Γ;R).
More generally, deg g = d ⇐⇒ g = g0eıψ for some ψ ∈ H1/2(Γ;R) and a fixed smooth reference map
g0 ∈ C∞(Γ;S1) of degree d.

Item 4. above gives a first characterization of degree zero maps. Further characterization are
related to existence of circle-valued extensions.

2.7 Lemma. 1. Let u ∈ H1(Ω;C) be such that essinf |u| > 0. Then we may write u = ρeıϕ, where
ρ = |u| ∈ H1(Ω;R) and ϕ ∈ H1(Ω;R).

2. Let g ∈ H1/2(Γ;S1). Then

deg g = 0 ⇐⇒ g = tr u for some u ∈ H1(Ω;S1)
⇐⇒ g = tr u for some u ∈ H1(Ω;C) such that essinf |u| > 0.

3. Let g ∈ H1/2(Γ;S1) be such that deg g = 0. Write g = eıψ, with ψ ∈ H1/2(Γ;R). Then

H1
g(Ω;S1) := {u ∈ H1(Ω;C); |u| = 1 and tr u = g}= {eıϕ; ϕ ∈ H1(Ω;R) and tr ϕ=ψ}

and, for C > 0,

{u ∈ H1(Ω;C); essinf |u| ≥ C, tr u = g}= {ρeıϕ; ρ,ϕ ∈ H1(Ω;R), tr ϕ=ψ,essinf ρ ≥ C}.
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Let us also note that, if u = ρeıϕ with ϕ ∈ H1 and ρ ∈ H1∩L∞ such that essinf ρ > 0, then we have
the identities

|∇u|2 = |∇ρ|2 +ρ2|∇ϕ|2 and ∇ϕ=
(

u
ρ

)
∧∇

(
u
ρ

)
. (2.10)

As for continuous maps, in a multiply connected domain ω a circle-valued H1 map u need not have a
phase ϕ as in Lemma 2.7. However, as a consequence of Lemma 2.7 1, if essinf |u| > 0 then we may
locally write

u = ρ eıϕ, with ρ = |u| and such that (2.10) holds. (2.11)

In particular, ∇ϕ is globally defined. Global existence of ϕ itself is governed by the next result, which
is the H1-counterpart of a well-known property of continuous circle-valued maps.

2.8 Lemma. Let ω ⊂ R2 be a smooth bounded domain. Let u ∈ H1(ω;C) be such that essinf |u| > 0.
Then

u = |u|eıϕ, with ϕ ∈ H1(ω;R)⇐⇒ deg
(

u
|u| ,γ

)
= 0, ∀γ component of ∂ω.

2.9 Corollary. Let ω⊂R2 be a smooth bounded domain. Let u j ∈ H1(ω;C), j ∈ J1,2K, be such that 0<
essinf |u j| ≤ esssup |u j| <∞, j ∈ J1,2K. Assume that deg

(
u1

|u1|
,γ

)
= deg

(
u2

|u2|
,γ

)
, for each component

γ of ∂ω.

Then we may write u2 = u1ηeıψ, where η=
∣∣∣∣u2

u1

∣∣∣∣ ∈ H1(ω;R) and ψ ∈ H1(ω;R).

An immediate consequence of Lemma 2.1 3 is that the class Ed (and in particular Gd) is closed
with respect to strong H1 convergence, but it is not closed with respect to the weak H1 convergence.
However, we do have weak closedness in absence of vortices, as explained in the next couple of results.

Let ω⊂R2 be smooth and bounded. Let Γ j, j ∈ J1,kK, be the components of ∂ω. Consider, for λ> 0,
the class Hλ := {u ∈ H1(ω;C); |u| ≥λ}. For u ∈Hλ, let d(u) ∈Zk, d j(u) := deg (u/|u|,Γ j).

2.10 Lemma. Let (un)⊂Hλ be such that un * u. Then, for large n, we have d(un)=d(u).
In particular, for every d ∈Zk, the class

Hλ,d := {u ∈Hλ; d(u)=d}

is weakly closed.

Proof. The above lemma follows essentially from the results of White on the existence of homotopical
invariants [36], but we present below a simple direct proof.

It is straightforward that, if un * u, then
un

|un|
*

u
|u| . Therefore, we may assume all the maps

circle-valued.
Let f ∈ C∞(ω). Then we have the identity [6, (2.2)]

2
ˆ
ω

f Jac un =
ˆ
∂ω

f un ∧ ∂un

∂τ
+
ˆ
ω

(
∂ f
∂y

un ∧ ∂un

∂x
− ∂ f
∂x

un ∧ ∂un

∂y

)
. (2.12)
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Since un is circle-valued, we have Jac un ≡ 0 [18]. Combining this fact with (2.6) we find that, if f is
such that f = 1 on Γ j and f = 0 on ∂ω\Γ j, then (2.12) becomes

deg (un,Γ j)=− 1
2π

ˆ
ω

(
∂ f
∂y

un ∧ ∂un

∂x
− ∂ f
∂x

un ∧ ∂un

∂y

)
. (2.13)

We conclude via the fact that the right-hand side of (2.13) is continuous with respect to the weak H1

convergence of uniformly bounded maps.

By combining Lemma 2.10 with Corollary 2.9 and with (2.10), we obtain the following straightfor-
ward consequence, whose proof is left to the reader.

2.11 Lemma. Let ω be as above. Let (un)⊂Hλ satisfy un * u and |un| ≤Λ.
Then, for large n, we may write un = uηneıψn , with λ/Λ≤ ηn ≤Λ/λ and ηn * 1, ψn * 0 in H1(ω;R).

The next result is essentially due to Brezis and Nirenberg [20, Theorem A3.2].

2.12 Lemma. Let u ∈ H1(Ω;C) satisfy ∆u ∈ L∞ and |tr u| = 1. Then

lim
z→∂Ω

|u(z)| = 1. (2.14)

Proof. When ∆u = 0, (2.14) follows by combining [20, Theorem A3.2] with the embedding H1/2(Γ) ,→
V MO.

In the general case, we write u = v+w, with v harmonic and tr w = 0. Then w ∈ C0(Ω) and thus
lim

z→∂Ω
w(z)= 0. We conclude via the fact that lim

z→∂Ω
|v(z)| = 1.

We will also need the following version of Lemma 2.12.

2.13 Lemma. Let u j,u ∈ H1(Ω;C) be such that |tr u j| = 1, u j → u in H1 and |∆u j| ≤ C. Then

|u j|→ |u| uniformly in Ω. (2.15)

Proof. By standard interior estimates, we have u j → u uniformly on compacts of Ω.
In order to describe the boundary behavior of u j, write, as in the previous lemma, u j = v j+w j and

u = v+w. The proof of [20, Theorem A3.2] gives the following uniform estimate:

lim
z→∂Ω

inf
j
|v j(z)| = 1. (2.16)

On the other hand, w j → w uniformly in Ω, by standard elliptic estimates. We conclude by combining
this uniform convergence with (2.16).

We next return to our initial problem of finding critical points of Eε in Ed and transfer it from Ω

to D. For this purpose, we consider a fixed conformal representation Φ :Ω→ D. Let w = Jac Φ−1 ∈
C∞(D; (0,+∞)) and set β= 1

ε2 w. We associate to Φ and ε the energy

Fβ(u)= 1
2

ˆ
D

|∇u|2 + 1
4

ˆ
D

β(x)(1−|u|2)2, (2.17)

8



and to E and Ed the classes G = {u ∈ H1(D;C); |tr u| = 1}, respectively

Gd = {
u ∈ H1(D;C); |tr u| = 1,deg (u,S1)= d

}
. (2.18)

In view of the conformal invariance of the Dirichlet integral, it is easy to see that finding critical
points (or minimizers) of Eε in Ed is equivalent to finding critical points (or minimizers) of Fβ in Gd.
It will be convenient to consider the energy Fβ for more general weights. In what follows, we always
assume that

β is non negative and essentially bounded. (2.19)

We continue with a brief discussion concerning the critical points of Fβ.

2.14 Definition. By a critical point of Fβ we mean a solution of
−∆u = β u(1−|u|2) in D
|tr u| = 1 on S1ˆ

D

(u∧∇u) ·∇ζ = 0 ∀ζ ∈ H1(D)

deg (u,S1) = d

. (2.20)

The above definition is motivated by the fact that (2.20) consists of the Euler-Lagrange equations
obtained by variations of u with compact support in D and by variations of the type ueıt f , where
f ∈ Ck(D̄;R).

2.15 Lemma. Let u belong to Gd. Then u is a critical point if and only if u ∈W2,p(D), p <∞, and
−∆u = β u(1−|u|2) in D
|tr u| = 1 on S1

u∧ ∂u
∂ν

= 0 on S1

deg (u,S1) = d

. (2.21)

In addition, if β is smooth, then so is u.

Proof. Follow the argument in [5, Lemma 4.4].

For further use, let us mention the maximum principle, essentially established in [10].

2.16 Lemma. Let u ∈ G be a critical point of Fβ with respect to its own boundary condition g ∈
H1/2(S1;S1). Then |u| ≤ 1 in D.

In our analysis we also rely on the following Price Lemma [6, Lemma 1].

2.17 Lemma. Let ω ⊂ R2 be smooth and bounded. Let Γ j, j ∈ J1,kK, be the components of ∂Ω. Let
(un)⊂ H1(ω;C) satisfy: un * u in H1(ω), |tr un| = 1, deg (un,Γ j)≡ d j. Let β ∈ L∞(ω). Then

liminf Fβ(un)≥ Fβ(u)+π
k∑

j=1
|d j −deg (u,Γ j)|. (2.22)

9



We end this section by recalling one of the important tools in our proofs, the Wente estimates [35]
in the sharp form of Bethuel and Ghidaglia [11], and some of their applications.

In the remaining part of this section, ω⊂R2 is assumed to be smooth and bounded.

2.18 Lemma. Let f ∈ H1
0(ω;R) and g,h ∈ H1(ω;R). Let u ∈ W1,1

0 (ω) be the solution of ∆u = Jac (g,h),
where

Jac (g,h) :=∇g ·∇⊥h. (2.23)

Then:

1. We have u ∈ C(ω)∩H1(ω) and

‖u‖L∞ ≤ 2‖∇g‖L2‖∇h‖L2 , (2.24)

‖∇u‖L2 ≤
p

2‖∇g‖L2‖∇h‖L2 . (2.25)

In particular, the map

[H1(D;R)]2 3 (g,h) 7→ u ∈ C(ω)∩H1(ω)

is continuous.

2. We have∣∣∣∣ˆ
ω

f Jac (g,h)
∣∣∣∣≤p

2‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 . (2.26)

2.19 Lemma. Let

H := {h ∈ H1(ω;R);∆h = 0}. (2.27)

Let f ∈ H1
0(ω;R), g ∈ H1(ω;R) and h ∈H. Then∣∣∣∣ˆ

ω

f∇g ·∇h
∣∣∣∣≤ C(ω)‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 . (2.28)

Proof. We start with the simpler case where ω is simply connected. If h ∈ H, let h∗ denote the

harmonic conjugate of h, normalized by
ˆ
∂ω

h∗ = 0. Then from (2.23) and since ∇h∗ = ∇⊥h, we haveˆ
ω

f∇g ·∇h =−
ˆ
ω

f Jac (g,h∗). Using (2.26), we obtain (2.28) with C(ω)=p
2.

We next turn to a multiply connected domain. Let ω j, j ∈ J1,kK, be the bounded components of

R2 \ω. Fix a j ∈ω j and let X j(x) := 1
2π

(∇ ln(x−a j)
)⊥.4 Note that each X j is closed. Let X := (∇h)⊥. By

a standard mean value argument, we may find curves Γ j ⊂ω, j ∈ J1,kK, such that the following hold:

1. Γ j is homotopic in ω to ∂ω j.5

2.

∣∣∣∣∣
ˆ
Γ j

X ·τ
∣∣∣∣∣≤ C‖∇h‖L2 .

Let c j :=
ˆ
Γ j

X ·τ and set Y := X −∑
j c j X j. By construction, the vector field Y is closed, and satisfies

‖Y ‖L2 ≤ C‖∇h‖L2 and
ˆ
Γ j

Y ·τ = 0, ∀ j.6 Since the Γ j ’s span the homotopy group π1(ω), this implies

4Recall that (a,b)⊥ = (−b,a).
5In particular, these curves span the homotopy group π1(ω).

6The latter property follows from the identity
ˆ
Γ j

X l =
{

1, if j = l
0, if j 6= l

.
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that
ˆ
Γ

Y ·τ= 0 for each smooth closed curve Γ⊂ω. Thus we may write Y =∇u for some u, and it is

easy to see that ‖∇u‖L2 ≤ C‖∇h‖L2 . Using (2.26), we find that∣∣∣∣ˆ
ω

f∇g ·∇h
∣∣∣∣=

∣∣∣∣∣
ˆ
ω

f Jac (g,u)+∑
j

c j

ˆ
ω

f∇g · X⊥
j

∣∣∣∣∣≤ C(ω)‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 .

Recall that given a function f on ∂ω we let u( f ) denote the harmonic extension of f .

2.20 Lemma. If f , g ∈ H1/2(∂ω), then u := u( f g)−u( f )u(g) belongs to C(ω)∩H1
0(ω) and we have

‖u‖L∞ ≤ C(ω)| f |H1/2 |g|H1/2 (2.29)

and

‖u‖H1 ≤ C(ω)| f |H1/2 |g|H1/2 . (2.30)

Proof. It suffices to establish the above estimates when f and g are smooth. In this case, u is smooth
and we have7{

−∆u = 2∇u( f ) ·∇u(g) in ω

u = 0 on ∂ω
. (2.31)

If we multiply (2.31) by u and use (2.28), we find thatˆ
ω

|∇u|2 ≤ C(ω)‖∇u‖L2‖∇u( f )‖L2‖∇u(g)‖L2 ≤ C(ω)‖∇u‖L2 | f |H1/2 |g|H1/2 ,

whence (2.30).
On the other hand, by the proof of Lemma 2.19, we may write ∇u(g)=−∇v− c j X⊥

j , with ‖∇v‖L2 ≤
C|g|H1/2 and |c j| ≤ C|g|H1/2 . We find that

∆u = 2Jac (u( f ),v)−2
∑

c j(∇u( f ))∧ X j. (2.32)

By combining (2.32) with Lemma 2.18 1 and with standard elliptic estimates, we find that

‖u‖L∞ ≤ C(ω)
(‖∇u( f )‖L2‖∇v‖L2 +

∑ |c j|‖∇u( f )‖L2‖X j‖L∞
)≤ C(ω)| f |H1/2 |g|H1/2 .

From the above, if fn * f and gn * g in H1/2, then for the corresponding u’s we have un * u in
H1(ω). This conclusion can be strengthened as follows.

2.21 Lemma. Let f , gn, g ∈ H1/2(∂ω) be such that gn * g in H1/2. Then u( f gn)− u( f )u(gn) → 0
strongly in H1(ω).

As a consequence, if fn → f and gn * g in H1/2 then u( fn gn)−u( fn)u(gn)→ 0 strongly in H1(ω).

Proof. We may assume that g = 0. Let un := u( f gn)−u( f )u(gn). By Lemma 2.20, we have |un| ≤ C
and un * 0 in H1(ω). Thus un∇u( f )→ 0 in L2(ω). Using (2.31), we find thatˆ

ω

|∇un|2 = 2
ˆ
ω

(un∇u( f )) ·∇u(gn)→ 0 as n →∞.

7For further use, let us note that a byproduct of the proof is that (2.31) still holds for arbitrary f and g.
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2.22 Remark. Lemma 2.21 can be rephrased as follows: if gn * g, then ∇u( f ) ·∇u(gn) → 0 strongly
in H−1(ω). The above proof leads to the following more general fact: if u ∈ H1(ω) and vn * v in H1(ω),
with vn harmonic, then ∇u ·∇vn →∇u ·∇v strongly in H−1(ω).8

2.23 Lemma. Let f , gn ∈ H1/2(∂ω;S1). Assume that gn * 1 in H1/2. Thenˆ
ω

|∇u( f gn)|2 =
ˆ
ω

|∇u( f )|2 +
ˆ
ω

|∇u(gn)|2 + o(1) as n →∞. (2.33)

Equivalently, | f gn|2H1/2 = | f |2
H1/2 +|gn|2H1/2 + o(1).

Proof. Let u := u( f ) and vn := u(gn). In view of Lemma 2.21, (2.33) is equivalent toˆ
ω

|u∇vn +vn∇u|2 =
ˆ
ω

|∇u|2 +
ˆ
ω

|∇vn|2 + o(1). (2.34)

Using the maximum principle Lemma 2.16 combined with the fact that vn → 1 pointwise and ∇vn * 0
in L2(ω), we find thatˆ

ω

(u∇vn) · (vn∇u)=
ˆ
ω

∇vn · (vnu∇u)→ 0.

By the above, (2.34) amounts toˆ
ω

|u|2|∇vn|2 +
ˆ
ω

|vn|2|∇u|2 =
ˆ
ω

|∇vn|2 +
ˆ
ω

|∇u|2 + o(1). (2.35)

In turn, (2.35) is easily obtained by combining the following ingredients:

1. |u(z)|→ 1 uniformly as dist(z,∂ω)→ 0 (cf Lemma 2.12).

2.
ˆ

K
|∇vn|2 → 0 on each compact K ⊂ω.

3. |vn| ≤ 1 (cf Lemma 2.16).

4. vn → 1 uniformly on compacts of ω.

2.24 Remark. The proof of (2.33) is much simpler when ω is simply connected. Indeed, by conformal
invariance of the quantities we consider, we may assume that ω=D. In this case, if f =∑

aneınθ, then
Parseval’s identity combined with (2.2) yieldsˆ

S1

ˆ
S1

| f (x)− f (y)|2
|x− y|2 dxdy= 4π2 ∑ |n||an|2 = 4π| f |2H1/2 .

Thus (2.33) amounts toˆ
S1

ˆ
S1

| f (x)gn(x)− f (y)gn(y)|2
|x− y|2 dxdy=

ˆ
S1

ˆ
S1

| f (x)− f (y)|2
|x− y|2 dxdy

+
ˆ
S1

ˆ
S1

|gn(x)− gn(y)|2
|x− y|2 dxdy+ o(1).

(2.36)

In turn, using the fact that | f | = |gn| = 1, (2.36) is equivalent toˆ
S1

ˆ
S1

Fn ·Gn → 0, with Fn(x, y)= f (x)gn(y)
f (x)− f (y)
|x− y| and Gn(x, y)= gn(x)− gn(y)

|x− y| . (2.37)

We obtain (2.37) using the fact that Fn → 0 and Gn * 0 in L2(S1 ×S1).

8When ω is simply connected, see [23, Lemma 4.2].
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3 The basic example
We discuss here the minimization of Fβ in Gd with d ∈N∗.9

Recall that a Blaschke product is a map of the form

Bα,a1,...,ad (z)=α
d∏

j=1

z−a j

1−a j z
, z ∈D, d ∈N∗, α ∈S1, a j ∈D, ∀ j ∈ J1,dK.

More specifically, we will call such a product a d-Blaschke product. In the special case d = 1, a
Blaschke products reduces to a Moebius transform

Mα,a(z)=α z−a
1−az

, z ∈ D,α ∈S1, a ∈D.

For further use, let us also define Ma = M1,a and the restriction of Ma to S1:

Na :S1 →S1, Na(z)= Ma(z), z ∈S1. (3.1)

3.1 Lemma. Assume that β= 0. Then u minimizes F0 in Gd if and only if u is a d-Blaschke product.

Proof. We argue as in [5, Section 4.1]. Since |∇u|2 ≥ 2Jac u, we have

F0(u)= 1
2

ˆ
D

|∇u|2 ≥
ˆ
D

Jac u =πdeg (u,S1)=πd, (3.2)

the second equality following from (2.7). Equality in (3.2) requires |∇u|2 = 2Jac u a.e., which amounts
to u holomorphic. In particular, if g = tr u, then u = u(g).

On the other hand, if g ∈ H1/2(S1;S1) and if u = u(g) is the harmonic extension of g, then Lemma
2.12 implies

lim
|z|→1

|u(z)| = 1. (3.3)

In order to complete the proof of Lemma 3.1, it suffices to combine (3.3) with the holomorphy of u and
with the following well-known result: let u ∈Hol(D).10 Then

lim
|z|→1

|u(z)| = 1 uniformly ⇐⇒ u is a Blaschke product.

For the sake of completeness, we recall the proof of "=⇒" (implication "⇐=" being obvious). Let

z1, . . . , zd be the zeroes of u in D, counted with their multiplicities. Let v(z) =
d∏

j=1

z− z j

1− z j z
and set

w = u
v
∈Hol(D). Then w 6= 0 in D and lim

|z|→1
|w(z)| = 1 uniformly. Thus w = e f , where f ∈Hol(D) satisfies

lim
|z|→1

Re f (z) = 0. By the maximum principle, we have Re f ≡ 0, and thus Im f ≡ const. Therefore,

u =αv for some α ∈S1.

3.2 Corollary. Let g ∈ H1/2(S1;S1) have degree d > 0. Then |g|2
H1/2 ≥ πd, with equality if and only if

g is a d-Blaschke product.
9The reader may wonder what happens when d ≤ 0. When d = 0, it is clear that minimizers of Fα are precisely the

constants of modulus 1. The case d < 0 is obtained from the case d > 0 by complex conjugation.
10We denote by Hol(Ω) the class of holomorphic functions in Ω.
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Fix now a smooth simply connected domain Ω and a conformal representation Φ :Ω→D. Then we
define a (generalized) d-Blaschke product11 by the formula

Bα,a1,...,ad ,Φ(z)=α
d∏

j=1

Φ(z)−a j

1−a jΦ(z)
, z ∈Ω, d ∈N∗, α ∈S1, a j ∈D, ∀ j ∈ J1,dK,

and a (generalized) Moebius transform via

Mα,a,Φ(z)=α Φ(z)−a
1−aΦ(z)

, z ∈Ω, α ∈S1, a ∈D.

Using Lemma 3.1 and the invariance of the Dirichlet integral under conformal representations, we
obtain

3.3 Corollary. The minimizers of E∞ in Ed are precisely the d-Blaschke products.

The next results implies, in particular, that the infimum of Eε in Ed is not attained when ε<∞.

3.4 Lemma. Let β 6≡ 0. If d 6= 0 then Fβ does not attain its minimum in Gd.

Proof. Let u ∈ Gd. Then Fβ(u) ≥ F0(u) = πd. We find that inf
Gd

Fβ ≥ πd. On the other hand, consider

the d-Blaschke product u =
d∏

j=1

Φ−a j

1−a jΦ
and let a j →−1, ∀ j. Then u* 1 in H1(Ω), and in particular

Fβ(u) → πd. We find that inf
Gd

Fβ = πd. In order to prove that the minimum is not attained, argue by

contradiction: assume that u minimizes Fβ in F . Then Fβ(u) = F0(u) = πd. Thus u is a d-Blaschke

product and
ˆ
Ω
β (1−|u|2)2 = 0. This is impossible, since |u| < 1 in D and thus β (1−|u|2)2 6≡ 0.

We end this section with a strong improvement of Lemma 3.1.

3.5 Lemma. The critical points of E∞ in Ed are precisely:

a) the d-Blaschke products if d > 0.

b) the conjugates of (−d)-Blaschke products if d < 0.

c) constants of modulus 1 if d = 0.

After our work was completed, we learned that the above result has also been obtained independently
by V. Millot and Y. Sire [30].

Proof. Since the equation (2.21) of critical points is invariant by conformal representations, we may
assume that Ω=D.

We rely on the properties of the Hopf differential, for which we send the reader to [26, Chapter 4].
If u : U →C is a harmonic function, where U is a domain in C, then the function

ω : U →C, ω(z)= 4(∂zu)(∂zu)= (∂xu− ı∂yu)(∂xu− ı∂yu),

is holomorphic, and ω= 0 is equivalent to either u being holomorphic or u being anti-holomorphic.

11In Ω and with respect to Φ, but this will be tacitly understood in what follows.
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Let u satisfy (2.21) with β = 0. Then u ∈ C∞(D), by Lemma 2.15. If we write, locally near some
point z0 ∈S1, u = ρ eıϕ, with ρ and ϕ smooth, then the boundary conditions in (2.21) give

∂ρ

∂τ
= 0,

∂ϕ

∂ν
= 0 on S1. (3.4)

Using (3.4), we easily find that

z2ω(z)=
(
∂ρ

∂ν

)2
−

(
∂ϕ

∂τ

)2
, ∀ z ∈S1. (3.5)

We find that the holomorphic function z 7→ z2ω(z) is real, thus constant, in D. On the other hand, this
function vanishes at the origin, so that ω = 0, and therefore u is holomorphic or anti-holomorphic.
Since |u| = 1 on S1, we obtain the desired conclusion as in the proof of Lemma 3.1.

4 Moebius and almost Moebius transforms
In this section, we describe harmonic maps u which are "close" to Moebius maps. Recall that we
defined the class

Hd = {g ∈ H1/2(S1;S1); deg g = d}.

Recall that we denoted by Na the restriction to S1 of the Moebius transform M1,a. Recall also Corol-
lary 3.2: for g ∈ H1 we have |g|2

H1/2 ≥ π, with equality if and only if g = αNa for some a ∈ D and
α ∈S1.

4.1 Theorem. There exists some δ0 > 0 and a function f : (0,δ0) → (0,∞) such that lim
δ→0

f (δ) = 0 with

the following property: if g ∈H1 satisfies |g|2
H1/2 <π+δ for some δ< δ0, then:

1. The harmonic extension u = u(g) of g has exactly one zero, a = a(u)= a(g).

2. If we write g = Naeıψ with ψ ∈ H1/2(S1;R), then |ψ|H1/2 ≤ f (δ).

3. The map g 7→ a is continuous.

4. In addition, given r ∈ (0,1) and µ > 0, we may pick δ0 such that the above hold and ‖αu ◦ M−a −
Id‖C2(Dr) <µ for some appropriate α ∈S1.

Before proceeding to the proof, let us make two comments. First, using repeatedly Lemma 2.6, we
find that

g
Na

has degree zero, and thus we may write g = Naeıψ for some ψ ∈ H1/2(S1;R). The point

in item 2. is that |ψ|H1/2 is small when |g|2
H1/2 is close to π. Second, an equivalent and possibly more

illuminating formulation of item 4. is the following: for sufficiently small δ0 and for g as above, we
have ‖u◦M−1

α,a−Id‖C2(Dr) <µ for some α ∈S1; that is, u is close, in an appropriate sense, to a Moebius
transform.

Proof. Step 1. u has to vanish somewhere.
Indeed, otherwise we have u ∈ C(D;C\{0}) and lim

|z|→1
|u(z)| = 1. Thus |u| ≥α> 0 for some α. By Lemma

2.7, we may write u = |u|eıϕ, with ϕ ∈ H1(Ω;R). The fact that tr eıϕ = g combined with the degree
formula (2.7) leads to the contradiction

1= deg (g,S1)= 1
π

ˆ
D

Jac (|u|eıϕ)= 0.
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Let now a ∈ D be one of the (possibly several) zeroes of u. Set v = u ◦ M−a = u ◦ M−1
a . Then v is

harmonic, v(0) = 0, and v|S1 = h, with h = g ◦N−a. In addition, we have |h|H1/2 = |g|H1/2 , by conformal
invariance of the H1/2-semi-norm.

Step 2. Proof of 4.
Argue by contradiction: there are some µ> 0, r ∈ (0,1) such that

inf
α∈S1

‖αvn − Id‖C2(Dr) ≥µ

for some sequence (vn) of harmonic maps such that
vn(0)= 0
hn := vn|S1 has modulus 1 and degree 1.

|hn|2H1/2 ≤π+
1
n

We find that, possibly up to a subsequence, vn → v in C∞
loc(D), and hn * h ∈ H1/2(S1;S1). In addition,

we have v = u(h). The limit v satisfies
‖αv− Id‖C2(Dr) ≥µ, ∀α ∈S1

v(0)= 0 .
|h|2

H1/2 ≤π

We consider first the case where deg (h,S1) = 1. Since |h|2
H1/2 ≤ π, Corollary 3.2 combined with

v(0)= 0 leads to v = γ Id for some γ ∈S1 and this is impossible.
Thus deg (h,S1) 6= 1. Then the Price Lemma 2.17 gives:

π= lim
1
2

ˆ
D

|∇vn|2 ≥ 1
2

ˆ
D

|∇v|2 +π|deg (hn,S1)−deg (h,S1)| = 1
2

ˆ
D

|∇v|2 +π|1−deg (h,S1)|. (4.1)

Therefore, v is a constant of modulus 1. This contradicts v(0)= 0.

In the remaining part of the proof, we assume that |g|2
H1/2 ≤π+δ, where δ< δ0 and δ0 is to be fixed

later.

Step 3. For 0< s < r < 1 and for sufficiently small δ0 (depending on s and r), we have |v| ≥ s on D\Dr.
Indeed, let µ> 0. By Step 2 we have

1
2

ˆ
Dr

|∇v|2 ≥πr2 −µ and |v| ≥ r−µ on Cr

provided δ0 is sufficiently small. In particular, we have

1
2

ˆ
D\Dr

|∇v|2 ≤π−πr2 +µ+δ0 and |v| ≥ r−µ on ∂(D\Dr). (4.2)

Estimate (4.2) combined with [23, Example 3.5 c)] and [23, Theorem 3.6] imply that |v| ≥ r−2µ in
D\Dr, provided δ0 is small. We conclude by taking µ= r− s

2
.

Step 4. The map u has exactly one zero.
Indeed, by combining Step 3 with Step 2, we find that v has exactly one zero for small δ0 (and that
this zero is located near the origin). Whence the conclusion for u.
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Step 5. The continuity of g 7→ a.
This follows essentially from uniqueness, but some care is needed, since in principle zeroes could
escape to the boundary. Let gn → g in H1/2(S1;S1). Then there is some r > 0 independent of n such

|u(gn)| ≥ 1
2

in D\Dr,∀n. (4.3)

This uniform version of (2.14) can be easily obtained by following the proof of [20, Theorem A3.2].
The continuity of g 7→ a is a straightforward consequence of (4.3).

Step 6. We prove 2.
Since | |H1/2 is invariant by composition with restrictions to S1 of Moebius transforms, we may assume
that u(0)= 0. We fix some r ∈ (0,1) close to 1. For small δ, we may write, in D\Dr, u = |u|eı(θ+ϕ), with
1/2≤ |u| ≤ 1 and ϕ ∈ H1(D\Dr;R). Since deg (u,S1)= 1 and u ∈ C∞, we have

∇ϕ=
(

ue−ıθ

|u|
)
∧∇

(
ue−ıθ

|u|
)

in D\Dr.

We find that ‖∇ϕ‖L2(D\Dr) ≤ C, and 2. follows by taking the semi-norm of the trace of ϕ on S1.

We continue with a similar result, where control of the phase ψ at higher energy levels of g is
compensated by loss of information on the zero a.

4.2 Theorem. There exists a function h : (0,2π) → (0,∞) such that: if g ∈ H1 satisfies |g|2
H1/2 ≤ 2π−δ

for some δ ∈ (0,2π), then:

1. We may write g = Naeıψ for some ψ ∈ H1/2(S1;R) such that |ψ|H1/2 ≤ h(δ).

2. In addition, we may take the point a to be a zero of u(g), and the zeroes of u(g) are mutually close,
in the following sense: there exist some R = R(δ) ∈ (0,1) and µ= µ(δ) ∈ (0,1) such that, if a is a zero
of u(g), then |u(g)| ≥µ in D\ M−1

a (DR).

Before proceeding to the proof, let us note the following more informative form of item 2:

if u(g)(0)= 0, then |u(g)| ≥µ outside DR . (4.4)

Proof. As in the proof of Theorem 4.1, Step 6, it suffices to establish item 2 in the special case where
u(g)(0) = 0. We argue by contradiction: we assume that there exist a sequence (gn) ⊂ H1 and a
sequence (zn)⊂D such that:

|gn|2H1/2 ≤ 2π−δ, |zn|→ 1, un := u(gn) satisfies un(0)= 0 and |un(zn)|→ 0. (4.5)

Possibly after passing to a subsequence, we may also assume that, for some D ∈ Z, g ∈ HD and
u = u(g), we have

un → u in C∞
loc(D), u(0)= 0. (4.6)

We first prove that D = 1. Indeed, by the argument leading to (4.1) we have

2π> 2π−δ≥ 1
2

ˆ
D

|∇u|2 +π|1−D|. (4.7)
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By combining (4.7) with Corollary 3.2, we find that D = 0 or D = 1. If D = 0, then
ˆ
D

|∇u|2 ≤π−δ. This

inequality combined with [23, Theorem 3.6], implies the existence of some λ> 0 such that |u| ≥ λ in
D; this contradicts (4.6). Thus D = 1.

Let s ∈ (0,1) to be fixed later. By Lemma 2.12, there is some R ∈ (0,1) such that |u(z)| > s on
C(0,R), and the same holds for u j provided j is large. On the other hand, we have deg (u,CR) = 1
provided R is chosen sufficiently close to 1; this follows by combining Lemma 2.2 with Lemma 2.12.
By (4.6), for large n we have deg (un,CR)= 1. Using (2.9), we find that

1
2

ˆ
DR

|∇un|2 ≥πs2. (4.8)

On the other hand, since |un(zn)| → 0 and |un| ≥ s on ∂(D\ DR), we obtain, by applying [23, Theorem
3.6], that

liminf
n→∞

1
2

ˆ
D\DR

|∇un|2 ≥πs2. (4.9)

For s sufficiently close to 1, we obtain a contradiction by combining (4.8) with (4.9).
Once existence of R and µ as in item 2 is established, the proof of item 1 is identical to the one of

Theorem 4.1, item 2: we repeat Step 6 in the proof of Theorem 4.1, and rely on (4.1).

4.3 Remark. It is not clear whether the restriction |g|2
H1/2 < 2π is optimal in Theorem 4.2. However,

some bound is required. Here is an example with a sketch of proof. Let g = gb,c,d = NbNc

Nd
. Then

|g|2
H1/2 ≤ 9π. If we let, say b → 1, c →−1 and d → ı, we claim that there is no a = a(b, c,d) such that

Theorem 4.2 1. holds. Argue by contradiction: otherwise, after passing to a subsequence, a → ã ∈D.
The limit ã cannot be close to 1, −1 and ı at the same time; say ã 6= 1. Then, near z = 1,

g
Na

is close to

αNb for some α ∈S1. Using the fact that the H1/2-semi-norm of the phase of Nb (computed near z = 1)
tends to ∞ as b → 1, and the fact that the phase is unique modulo 2π [13], we find that Theorem 4.2
does not hold for g as above.

The next result explains that, at low energy, the lack of weak compactness of the class H1 is due
solely to Moebius transforms.

4.4 Corollary. Let t < 2π and let H t
1 = {g ∈H1; |g|2H1/2 ≤ t}.

Then H t
1 is weakly closed modulo Moebius transforms: If (gn) ⊂ H t

1, then there exists Nan such
that the sequence (gn ◦N−1

an
) is weakly compact in H t

1.
In addition, we may take an to be any zero of u(gn).
In particular, for each t < 2π and a0 ∈D, the class

{g ∈H1; |g|2H1/2 ≤ t, u(g) vanishes at a0}

is weakly compact.

We continue by presenting another consequence of Theorem 4.2.

4.5 Lemma. Let

β ∈ L∞(D), β≥ 0, β 6≡ 0. (4.10)

Consider a Lebesgue point a0 ∈D of β at which the approximate limit of β is b > 0. Then

c(β,a0) := inf
{
Fβ(v); g = tr v ∈H1, u(g) vanishes at a0

}>π. (4.11)
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Proof. If c(β,a)≥ 2π, there is nothing to prove. Otherwise, we apply Corollary 4.4 and obtain that the
minimum is attained in (4.11). Argue by contradiction and assume that c(β,a0) = π. If v attains the
minimum in (4.11) then, by Corollary 3.2, v = Mα,a and

ˆ
D

β(1−|v|2)2 = 0. (4.12)

Our choice of a implies that

lim
r→0

 
B(a,r)

β(1−|v|2)2 = b(1−|v|2)2(a). (4.13)

We obtain a contradiction by combining (4.12) and (4.13).

Though this will not be used in the subsequent analysis, we found useful to mention that part of
Theorem 4.1 still holds for higher degrees.12

4.6 Theorem. Let d ∈ N. Then there exists some δ0 > 0 and a function f : (0,δ0) → (0,∞) such that
lim
δ→0

f (δ)= 0 with the following property: if g ∈Hd satisfies |g|2
H1/2 <πd+δ for some δ< δ0, then we may

write g = Na1 . . . Nad eıψ for some a1, . . . ,ad ∈D and for some ψ ∈ H1/2(S1;R) such that |ψ|H1/2 ≤ f (δ).

Consequently, if u ∈Gd is a harmonic function and if
1
2

ˆ
D

|∇u|2 <πd+δ, then u = B1,a1,...,ad u(eıψ)+
w, where ψ ∈ H1/2(S1;R), w ∈ H1

0(D;C), |ψ|H1/2 ≤ f (δ) and ‖w‖H1 ≤ f (δ).

Proof. The last part of the theorem follows by combining the first part of the theorem with Lemma
2.20.

In order to prove the first part, it suffices to establish the following fact: if (gn)⊂Hd is such that
|gn|2H1/2 →πd, then, possibly up to a subsequence and for large n, we may write gn = Na1(n) . . . Nad(n) eıψn ,
with |ψn|H1/2 → 0 as n →∞. The proof of this fact is by induction on d.

Step 1. The case where d = 0.
By Lemma 2.13, we have |u(gn)| → 1 uniformly in D. By Lemma 2.7 and (2.10), for large n we may
write u(gn)= ρneıϕn , with ∇ϕn → 0 in L2(D). We conclude by letting ψn = tr ϕn.

Step 2. The case where d ≥ 1.
By Step 1 in the proof of Theorem 4.1, the map u(gn) has to vanish somewhere. Since our hypotheses
and conclusions are invariant by conformal transforms, we may assume that u(gn)(0) = 0. Up to a
subsequence, we have gn * g, with g ∈HD for some D ∈Z. By combining (2.8) with the Price Lemma
2.17, we find that D ∈ J0,dK and that |g|2

H1/2 = πD. By Corollary 3.2, u(g) is a D-Blaschke product.
Since in addition we have u(g)(0)= 0, we find that D ∈ J1,dK. If D = d, then we actually have gn → g
strongly in H1/2, and thus gn/g → 1. In this case, Step 1 implies that gn = geıψn , with |ψn|H1/2 → 0,
and we are done.

We next turn to the more delicate case where D < d. Let hn := gn/g, so that hn ∈ Hd−D and
hn * 1. By Lemma 2.23 combined with the fact that |g|2

H1/2 = πD, we have |hn|2H1/2 → π(d −D). By
the induction hypothesis,13 we my write, for large n, hn = Na1(n) . . . Nad−D (n) eıψn , with |ψn|H1/2 → 0.
We obtain the desired conclusion by noting that gn = ghn and that g is the trace of a D-Blaschke
product.

12Or for negative degrees, but this is simply obtained by complex conjugation.
13Recall that D ≥ 1 and thus d−D < d.
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5 Mountain pass approach
Let us start by recalling the standard mountain pass situation; see e.g. [29, Chapter 4]. Let K0 ⊂ K
be compact metric spaces, X a metric space and J : X →R. Consider a fixed map χ ∈ C(K0; X ) and the
minimization problem

c := inf
{

max
K

J ◦F; F ∈ C(K ; X ), F = χ on K0

}
. (5.1)

Mountain pass geometry is characterized by the inequality

c > c1 :=max
K0

J ◦χ. (5.2)

Under additional assumptions on X and J, (5.2) leads to existence of a critical point x of J such that
J(x)= c.

In our case, we let K =Dr, where 0< r < 1, and K0 = Cr. Then the most straightforward approach
would be to let J = Fβ, X =G be the set of complex-valued H1 maps with modulus 1 on the boundary,
and χ(a) = Ma. Since G is not a linear space, however, we need to parametrize it in an appropriate
way. We present a first way of doing this in this section, which allows to prove the main result of this
paper but is not defined for small values of ε. A second approach will be presented in the next section.

When β is small, it is possible to modify the above construction as follows.14 Assume that

λ1(−∆−β)> 0, (5.3)

that is that there is some δ> 0 such that

(1−δ)
ˆ
D

|∇v|2 ≥
ˆ
D

βv2, ∀β ∈ H1
0(D;R).

For such β and fixed boundary condition g ∈ H1/2(S1;C), the energy functional Fβ is strictly convex in
the affine space

H1
g(D;C)= {u ∈ H1(D;C); tr u = g}.

Thus, the problem{
−∆u =βu(1−|u|2) in D
u = g on S1 , (5.4)

has a unique solution, which we denote T(g). Our function space is now X∗ = H1/2(S1;R) and we let,
for any ψ ∈ X∗,

J∗(ψ)= Fβ

(
T(eıψ)

)
.

For a ∈ Cr, the restriction of Ma to S1 can be written eı(θ+ψa) for some ψa ∈ H1/2(S1;R).15 We let, for
any a ∈ Cr, χ∗(a)=ψa. This defines a map from Cr into X∗.

14Of particular interest for us is the fact that the assumption (5.3) is satisfied when in the original problem of finding
critical points for Eε we take a large ε.

15ψa is actually smooth.
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5.1 Lemma. Assume (4.10) and (5.3). Then, for r sufficiently close to 1, we have

c∗ := inf
{

max
K

J∗ ◦F; F ∈ C(K ; X∗), F = χ∗ on K0

}
> c∗1 :=max

K0
J∗ ◦χ∗. (5.5)

Proof. It is easy to see that |Ma| → 1 in L4(D) as |a| → 1, and thus c∗1 → π as r → 1. Fix a Lebesgue
point a0 of β. Then, if r > |a0|, for any F ∈ C(K ;G ) such that F = χ on Cr there exists some z0 ∈ Dr
such that the harmonic extension of tr F(z0) has a zero at a0. Indeed from Theorem 4.1 and using
the notations there, the map

G :Dr →D, Dr 3 z G−→ a(tr F(z)) ∈D

is continuous, and then since it is the identity on Cr and using the Brouwer fixed point theorem, it
must take the value a0.

Now, from Lemma 4.5 we find that J∗(F(z0)) ≥ c(β,a0) > π, therefore c∗ > c(β,a0) > π. Choosing r
close enough to 1 so that c∗1 < c(β,a0) proves the result.

We now prove that J∗ is C1 (Lemma 5.6). As an immediate consequence, we will characterize the
Palais-Smale sequences associated to (5.5) (Corollary 5.11). Before proceeding, let us recall a useful
elementary fact.

5.2 Lemma. Let X , Y be normed spaces. Let Z be a dense subspace of X . Let F ∈ C(X ;Y ) and
T ∈ C(X ;B(X ;Y )) be such that

∂F

∂z
(x)=T (x)(z), ∀x, z ∈Z . (5.6)

Then F ∈ C1 and (5.6) holds for every x, z ∈X .

Here, B(X ;Y ) denotes the space of bounded linear operators from X into Y . In practice, we will
apply the above with Z = C∞, and the point will be to check the continuity of F and T .

We start with a straightforward consequence of the embedding H1(D) ,→ L4(D).

5.3 Lemma. The map Fβ is C1 in H1(D;C) and

F ′
β(u)(v)=

ˆ
D

∇u ·∇v−
ˆ
D

βu ·v(1−|u|2), ∀u,v ∈ H1(D;C). (5.7)

Similarly, the map

G : H1(D;C)→R, H1(D;C) 3 u 7→ 1
4

ˆ
D

β (1−|u|2)2,

is C1, and G′(u)(v)=−
ˆ
D

βu ·v(1−|u|2).

Recall that · denotes the real scalar product.

5.4 Lemma. Assume that (5.3) holds. Then the map g → T(g), where T(g) denotes the unique
solution to (5.4), is C1 in a neighborhood of H .
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Proof. Consider the maps

V : H1/2(S1;C)→ H1(D;C), g V−→ u(g)

and

U : H1
0(D;C)×H1/2(S1;C)→ H−1(D;C), (v, g) U−→−∆v−β(v+u(g))(1−|v+u(g)|2).

Thanks to the embedding H1(D) ,→ L4(D) and to the continuity of V , it is easy to see that U ∈ C1 and
that the partial differential of U in the v variable is given by

∂U
∂v

(v, g)(w)=−∆w−β(1−|v+u(g)|2)w+2β(w · (v+u(g))) (v+u(g)), ∀w ∈ H1
0(D;C).

The conclusion of the lemma follows via the implicit function theorem if we prove that the opera-

tor W = ∂U
∂v

(v, g) is invertible at each couple (T(g)− u(g), g) with g ∈ H . Since W is symmetric in

H1
0(D;C),16 it suffices to prove that the quadratic form Q associated to W is definite positive. We note

that

Q(w)=
ˆ
D

|∇w|2 −
ˆ
D

β(1−|T(g)|2)|w|2 +2
ˆ
D

β(w ·T(g))2 ≥
ˆ
D

|∇w|2 −
ˆ
D

β(1−|T(g)|2)|w|2,

and positivity follows from (5.3) combined with the maximum principle Lemma 2.16.

The next result is reminiscent of the fact that H1 harmonic functions have traces of the normal
derivative on the boundary.

5.5 Lemma. Let g ∈H and let u satisfy (5.4). Then the vector field u∧∇u has a trace tr (u∧∇u) on
S1, and this trace belongs to H−1/2(S1).

If, in addition, (5.3) holds, then the map

Y : H → H−1/2(S1), H 3 g Y−→ tr (T(g)∧∇T(g)) ∈ H−1/2(S1),

is continuous.

Proof. The vector field u∧∇u belongs to L2 and (by (5.4)) is divergence free. Existence of the trace is
then standard; let us briefly recall the argument. By the (L2-version of the) Poincaré lemma, we may
write u∧∇u =−∇⊥h for some h ∈ H1(D). We then set

tr
(
u∧ ∂u

∂ν

)
= ∂

∂τ
tr h ∈ H−1/2(S1),

where τ stands for the tangential derivative. When u is smooth, say u ∈ C1,
∂

∂τ
tr h is nothing else

than u∧ ∂u
∂ν

; with an abuse of notation, we keep the notation u∧ ∂u
∂ν

even if u is merely H1.
We note the integration by parts formula
ˆ
D

(u∧∇u) ·∇ζ=
〈

u∧ ∂u
∂ν

,tr ζ
〉

H−1/2,H1/2
=
ˆ
S1

(
u∧ ∂u

∂ν

)
ζ, ∀ζ ∈ H1(D;R). (5.8)

16Here, we endow C with the scalar product of R2 and we identify H1
0(D;C) with a space of R2-valued functions.
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Although the last integral in (5.8) is defined only when u is sufficiently smooth, we will use the
integral notation for a general u.

The second part of the lemma is obtained as follows: let gn → g in H . Set un = T(gn) and u = T(g).
Then un → u in H1 since T is continuous. Since |un| ≤ 1 (Lemma 2.16), we find that un∧∇un → u∧∇u

in L2. If we normalize the corresponding potentials hn such that
ˆ
D

hn = 0, then hn → h in H1. This

implies convergence of tr (un ∧∇un) to tr (u∧∇u) in H−1/2.

5.6 Lemma. Assume (5.3). Then we have J∗ ∈ C1 and, if u := T
(
N0eıψ)

,

J∗′(ψ)(η)=
ˆ
S1

(
u∧ ∂u

∂ν

)
η=

ˆ
D

(u∧∇u)·∇ζ, ∀ψ,η ∈ H1/2(S1;R), ∀ζ ∈ H1(D;R) such that tr ζ= η. (5.9)

More generally, the same holds if we consider the map

H1/2(S1;R) 3ψ J∗
d−−→ Fβ(T(Nd

0 eıψ)), where d ∈Z.

Proof. Note that the equality of the two integrals in (5.9) is a consequence of (5.8). We rely on Lemma
5.2. Clearly, J∗ is continuous. On the other hand, if we let ζ= u(η) in (5.9) and we use the continuity
of H1/2 3ψ 7→ u∧∇u ∈ L2, then we see that the second integral in (5.9) defines a map

T ∈ C(H1/2(S1;R),H−1/2(S1;R)), T (ψ)(η) :=
ˆ
D

(u∧∇u) ·∇u(η).

Therefore, it suffices to prove that (5.9) holds when ψ and η are smooth and when ζ= u(η). For such
ψ and η, let gt = N0 eı(ψ+tη) and set ut = T(gt), u = u0. It is easy to see that t 7→ gt ∈H is smooth. By
Lemma 5.3 and Lemma 5.4, the maps t 7→ ut and t 7→ J∗(ψ+ tη) are C1, and

d
dt

[J∗(ψ+ tη)]=
ˆ
D

∇ut ·∇
(

d
dt

ut

)
−
ˆ
D

βut ·
(

d
dt

ut

)
(1−|ut|2). (5.10)

On the other hand, if v ∈ H1(Ω;C) is such that v = ıuζ on S1, where ζ ∈ C1(S1;R), and if u solves (5.4),
then ˆ

D

∇u ·∇v−
ˆ
D

β(u ·v)(1−|u|2)=
ˆ
S1

(
u∧ ∂u

∂ν

)
ζ. (5.11)

Indeed, when u is smooth, this is a consequence of (5.4) and of the identity

∂u
∂ν

· (ıuζ)=
(
u∧ ∂u

∂ν

)
ζ on S1.

The general case follows by approximation, using Lemma 2.1 1., and the fact that given β satisfying
(5.3) we may find a uniformly bounded sequence (βn) of smooth function satisfying (5.3) and such that
βn →β.17

We next note that ut = N0eı(ψ+tη) on S1, and therefore
∂

∂t
ut = ıutη on S1. Thus, in (5.11), we

may take u = ut and v = ∂

∂t
ut. We obtained the first identity in (5.9) by combining this remark with

(5.10).
17For an alternative argument not relying on (5.3), see Remark 5.7 below.
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5.7 Remark. Here is an alternative proof of (5.11), valid without the assumption (5.3). In view of
(5.4), (5.11) holds when v ∈ H1

0, so that it suffices to prove (5.11) for a special v such that v = ıuζ on
S1. Consider a C1 extension of ζ, still denoted ζ, and let v = ıuζ. For this v, (5.11) is nothing else but
(5.8).

5.8 Remark. Lemma 5.6 hides a small miracle. Recall that J∗ is constructed as follows:

J∗ = Fβ ◦T ◦S, H1/2(S1;R) 3ψ S−→ g = eıψ T−→ u = T(g)
Fβ−−→ Fβ(u).

By Lemmas 5.4 and 5.3, we know that T and Fβ are C1. We also know that J∗ is C1 (Lemma 5.6).
However, S is not C1; see Lemma 5.9 below. Since J∗ is the composition of two operators, one, Fβ ◦T,
smooth, the other one, S, non smooth, the conclusion of Lemma 5.6 is that the smoothing effect
prevails. Smoothness comes from the main ingredient of the proof of Lemma 5.6, which is existence
of the boundary trace of the vector field u∧∇u for a solution u of (5.4). In turn, this relies basically
on the maximum principle. All in all, this turns Fβ ◦T (and finally J∗) into a smooth operator. On
the other hand, we note that S is almost smooth: it is clearly Lipschitz.

5.9 Lemma. S is not differentiable. More generally, if g ∈H , then the map

Sg : H1/2(S1;R)→H , H1/2(S1;R) 3ψ Sg−−→ g eıψ ∈H

is not differentiable.

Proof. We start by reducing the general case to the special case g = 1. Let d = deg g and write g =
Nd

0 eıϕ, with ϕ ∈ H1/2(S1;R) (cf Lemma 2.6 4). Multiplication with Nd
0 being clearly a linear continuous

bijective operator in H1/2, we see that Sg is differentiable at ψ if and only if S is differentiable at ψ+ϕ.
We continue by finding functions ψ such that S is not differentiable at ψ. It is easy to see that, for

η ∈ C∞(S1;R), we have

lim
t→0

S(ψ+ tη)−S(ψ)
t

= A(ψ,η) := ıS(ψ)η, (5.12)

the limit being considered in H1/2. If S is differentiable atψ, then (5.12) holds for every η ∈ H1/2(S1;R),
and the map A(ψ,η) belongs to H1/2. The heuristics for concluding is the following: H1/2 ∩L∞ is an
algebra, but H1/2 is not. Thus, if we pick a function η ∈ H1/2 ∩L∞, then A(ψ,η) ∈ H1/2, but this need
not hold when η is merely H1/2. Formally, we continue as follows: if S is differentiable at ψ, then
B(ψ) := ıeıψψ ∈ H1/2, and in particular C(ψ) :=ψcosψ belongs to H1/2. We recall the following result
of Bourdaud and Kateb [12]: a superposition operator ψ 7→ G ◦ψ acts on H1/2 if and only if G is
Lipschitz. Though the result in [12] is stated in H1/2(Rn), the construction of counterexamples yields,
for a non Lipschitz G, compactly supported maps ψ such that G ◦ψ 6∈ H1/2; see [31, proof of Theorem
1, Section 5.3.1]. Thus, even on the circle, G has to be Lipschitz. We conclude by noting that t 7→ tcos t
is not Lipschitz.

We are now in position to construct sequences of almost critical points as a consequence of the
Mountain Pass Theorem of Ambrosetti and Rabinowitz [1], which will be used in the following form
[29, Theorem 4.3, p. 77].

5.10 Theorem. Let K0 ⊂ K be compact metric spaces. Let X be a Banach space and J ∈ C1(X ;R). Fix
χ ∈ C(K0; X ) and define

M = {F ∈ C(K ; X ); F = χ on K0}.
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Assume that

c := inf
F∈M

max
t∈K

J(F(t))> c1 :=max
t∈K0

J(χ(t)). (5.13)

Then for every δ> 0 there exists xδ ∈ X such that

c−δ≤ J(xδ)≤ c+δ (5.14)

and

‖J′(xδ)‖ ≤
p
δ. (5.15)

By combining this theorem with Lemmas 5.1 and 5.6, we obtain the following

5.11 Corollary. Assume that (5.3) holds. Let c be defined by (5.5). Then, for each δ> 0, there is some
ψδ ∈ H1/2(S1;R) such that uδ = T(N0 eıψδ) satisfies

c∗−δ≤ J∗(ψδ)= Fβ(uδ)≤ c∗+δ (5.16)

and ∣∣∣∣ˆ
S1

(
uδ∧

∂uδ
∂ν

)
η

∣∣∣∣≤p
δ|ζ|H1/2 , ∀η ∈ H1/2(S1;R). (5.17)

In particular, the corollary applies if we take a large ε in the original energy Eε. Note that, by
(5.8), (5.17) is equivalent to∣∣∣∣ˆ

D

(uδ∧∇uδ) ·∇ζ
∣∣∣∣≤p

δ‖∇ζ‖L2 , ∀ζ ∈ H1(D;R). (5.18)

5.12 Corollary. Assume that (5.3) holds. Then every weak limit of uδ as δ→ 0 is a critical point of
Fβ in G , i.e., a solution of (2.21).

Proof. Assume that (possibly along a subsequence) uδ* u in H1. By the maximum principle Lemma
2.16, on the one hand u satisfies −∆u =βu(1−|u|2). On the other hand, uδ∧∇uδ* u∧∇u in L2, and
thus (using (5.18)) u satisfies (2.20), which is equivalent to (2.21), by Lemma 2.15.

6 Proof of Theorem 1.1
We establish here the following generalization of Theorem 1.1.

6.1 Theorem. Assume that (5.3) holds and that the value c∗ in (5.5) satisfies

c∗ < 2π. (6.1)

Then c∗ is a critical value of Fβ in G1, i.e., there exists a solution u of (2.21) with d = 1 such that
Fβ(u)= c∗.
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Before proceeding to the proof, let us note that, with the choice F(a)= Na, a ∈Dr, in (5.5), and for

β= 1
ε2 Jac Φ−1 in (2.17), where Φ :Ω→D is a conformal representation, we find that

c∗ ≤max
a∈D

(ˆ
D

|∇Ma|2 + 1
4ε2

ˆ
D

(1−|Ma|2)2 Jac Φ−1
)
≤π+ |Ω|

4ε2 .

The latter quantity is < 2π for large ε. Thus Theorem 6.1 generalizes indeed Theorem 1.1.

Proof. Let uδ be as in Corollary 5.11. By combining Corollary 5.11 with Corollary 5.12 and with
Lemma 2.10, we see that the conclusion of the theorem holds provided we find some r ∈ (0,1) and
some λ> 0 such that (possibly along a subsequence δn → 0)

|uδn(z)| ≥λ when |z| ≥ r. (6.2)

Validity of (6.2) is established by contradiction: assuming that there exist sequences δn → 0 and an
such that

uδn(an)→ 0 and |an|→ 1, (6.3)

we will prove that

Fβ(uδn)→π, (6.4)

which contradicts Lemma 5.1.
Before proceeding to the proof, we introduce lighter notation: we write un instead of uδn and

denote by (un) any subsequence extracted from (un), and the same for (an).
We start by rescaling the sequence (un): we let

Φn = M−an , vn = u ◦Φn, βn =β◦Φn Jac Φn, Fn(w)= 1
2

ˆ
D

|∇w|2 + 1
4

ˆ
D

βn(1−|w|2)2.

In particular, using Corollary 5.11 and the conformal invariance of the Dirichlet integral, we find that
the rescaled sequence (vn)⊂G1 satisfies, with cn → 0,

−∆vn =βnvn(1−|vn|2) in D
|tr vn| = 1∣∣∣∣ˆ
D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D)

vn(0)→ 0
Fn(vn)= Fβ(un)→ c∗

. (6.5)

We start by collecting some straightforward properties of βn and vn.

6.2 Lemma. 1. βn → 0 uniformly on compacts. In particular, (vn) converges, up to a subsequence and
in C1,α

loc(D), 0 < α< 1, to some solution v ∈ G of (2.21) with β= 0 and such that v(0) = 0. Moreover,
(by Lemma 3.5) v ∈ Gd for some d 6= 0, and v is either a d-Blaschke product, or the conjugate of
such a product.

2. λ1(−∆−βn) > 0. In particular, vn is a minimizer of Fβn with respect with its own boundary condi-
tion.
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Proof. The first item follows from (6.5) and Lemma 2.16 combined with standard elliptic estimates,
Corollary 5.12 and Lemma 3.5. The second one follows from (5.3).

Step 1 (in the proof of Theorem 6.1). Let v be as in Lemma 6.2 Then v = Mα,0 for some α ∈S1.
Indeed, we adapt the argument leading to (4.1): we have, by the Price Lemma 2.17 and Corollary 3.2,

2π> c∗ ≥ liminf
1
2

ˆ
D

|∇vn|2 ≥ 1
2

ˆ
D

|∇v|2 +π|1−d| ≥π|d|+π|1−d|,

where d = deg (v,S1). We find that d = 0 or d = 1. Since d 6= 0 (by Lemma 6.2 1), we obtain the desired
conclusion by combining Lemma 6.2 1 with the fact that v(0)= 0.

Step 2. There exist r ∈ (0,1) and λ> 0 such that |vn(z)| ≥λ when |z| ≥ r.
In order to prove this, we argue by contradiction and assume that up to a subsequence we have
vn(zn) → 0, where the points zn ∈ D are such that |zn| → 1. By repeating the arguments leading to
(4.8) and (4.9), we obtain that, for each s ∈ (0,1), there is some R ∈ (0,1) such that

liminf
1
2

ˆ
DR

|∇vn|2 ≥πs2 (6.6)

and

liminf
1
2

ˆ
D\DR

|∇vn|2 ≥πs2. (6.7)

Indeed, (6.6) is obtained exactly as (4.8). On the other hand, (4.9) relies on [23, Theorem 3.6]. In
order to apply, this result requires that vn minimizes Fn with respect to its own boundary conditions.
This holds indeed in our case, by Lemma 6.2 3.

By combining (6.6) with (6.7), we find that liminf
1
2

ˆ
D

|∇vn|2 ≥ 2π. But this contradicts the as-

sumption c∗ < 2π.

Step 3. We have (the contradiction) Fn(vn)→π.
This step is a consequence of Step 2, of (6.5) and of Lemma 6.3 below.

We start by stating the technical assumptions required in Lemma 6.3. For simplicity, we stated
Lemma 6.3 when the underlying domain is D, but this is not relevant for our analysis.

We consider two sequences (βn) and (vn) and two maps γ and v such that:

βn,γ ∈ L∞(D), βn,γ≥ 0, (6.8)
βn → γ uniformly on compacts of D, (6.9)

vn,v ∈ H1(D;C), |tr vn| = 1, vn * v in H1, (6.10)

−∆vn =βnvn(1−|vn|2) in D, (6.11)∣∣∣∣ˆ
D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D), with cn → 0 as n →∞. (6.12)

Unlike our next hypothesis (6.13), the above assumptions are naturally satisfied by sequences of
almost critical points obtained via the functional J∗ (as in Corollary 5.11).

6.3 Lemma. Assume that (6.8)-(6.12) hold. Assume in addition that there exists some λ > 0 such
that

|vn(z)| ≥λ ∀ z ∈D such that |z| ≥ 1−λ. (6.13)
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Then we haveˆ
D

|∇vn|2 →
ˆ
D

|∇v|2 (6.14)

and ˆ
D

βn(1−|vn|2)2 →
ˆ
D

γ(1−|v|2)2. (6.15)

Equivalently, we have vn → v strongly in H1 and

Fn(vn)→ Fγ(v). (6.16)

We complete Step 3 by taking, in the above lemma, γ= 0 and v = Mα,0 as in Step 1.

Proof of Lemma 6.3. It suffices to establish (6.14)-(6.15) along a subsequence.
By the maximum principle Lemma 2.16, we have |vn|, |v| ≤ 1 in D. By standard elliptic estimates,

vn → v in W2,p
loc (D), ∀ p <∞. (6.17)

By (6.9) and (6.17), we find that (6.14) and (6.15) hold if we replace D by D1−ε for each ε> 0. On the
other hand, we have

lim
ε→0

ˆ
D\D1−ε

(|∇v|2 +γ(1−|v|2)2)= 0.

Therefore, it suffices to prove that

lim
ε→0

limsup
n→∞

ˆ
D\D1−ε

(|∇vn|2 +βn(1−|vn|2)2)= 0. (6.18)

By (6.17), vn → v uniformly on compacts of D. Combining this fact with (6.13), we find that for large
n we have

d := deg
(

v
|v| ,Cr

)
= deg

(
vn

|vn|
,Cr

)
,∀ r ∈ [1−δ,1].

By Corollary 2.9 applied with u1 =
(

z
|z|

)d
, u2 = vn, ω=D\D1−λ, we may write, in ω, vn = ρneı(dθ+ϕn),

and similarly v = ρeı(dθ+ϕ), with λ ≤ ρn,ρ ≤ 1, and ϕn,ϕ ∈ H1(ω). By (2.10), we find that, possibly
after extracting suitable multiples of 2π, we have ϕn *ϕ and ρn * ρ in H1(ω). On the other hand, by
(6.17), we have ϕn →ϕ and ρn → ρ in C1

loc(ω). We also note the fact that v ∈ C1(D), by Lemma 2.15.
We next translate the properties of vn in terms of ρn and ϕn: (6.11) and (6.12) imply that

div (ρ2
n∇(dθ+ϕn))= 0 in ω

−∆ρn =βnρn(1−ρn)2 −ρn|∇(dθ+ϕn)|2 in ω

tr ρn = 1 on S1

vn ∧∇vn = ρ2
n∇(dθ+ϕn) in ω∣∣∣∣ˆ

D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D)

. (6.19)
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Let 0< ε<λ. Since ϕn →ϕ in C1(C1−ε), we find that that the function ϕn−ϕ, defined in D\D1−ε, has
an extension ζn ∈ H1(D) such that ‖∇ζn‖L2(D1−ε) → 0. Using the fact that

ρ2
n∇(dθ)→ ρ2∇(dθ) and ρ2

n∇ϕn * ρ2∇ϕ in L2(ω),

we find that

0= lim
n→∞

ˆ
D

(vn ∧∇vn) ·∇ζn = lim
n→∞

ˆ
D\D1−ε

(vn ∧∇vn) ·∇ζn

= lim
n→∞

ˆ
D\D1−ε

[ρ2
n∇(dθ+ϕn)] ·∇(ϕn −ϕ)= lim

n→∞

ˆ
D\D1−ε

ρ2
n|∇ϕn|2 −

ˆ
D\D1−ε

ρ2|∇ϕ|2,

which implies easily that

lim
n→∞

ˆ
D\D1−ε

ρ2
n|∇(dθ+ϕn)|2 =

ˆ
D\D1−ε

ρ2|∇(dθ+ϕ)|2,

and in particular

lim
ε→0

lim
n→∞

ˆ
D\D1−ε

ρ2
n|∇(dθ+ϕn)|2 = 0. (6.20)

We next multiply by ηn = 1−ρn the equation satisfied by ρn and find that
ˆ
D\D1−ε

(
|∇ρn|2 + ρn

1+ρn
βn(1−|vn|2)2

)
=
ˆ
D\D1−ε

ρnηn|∇(dθ+ϕn)|2 +
ˆ

C1−ε
ηn
∂ρn

∂ν
, (6.21)

ν being the normal exterior to D1−ε.
We next note that, since v ∈ C1(D) and |v| = 1 on S1, we have

lim
ε→0

lim
n→∞

ˆ
C1−ε

ηn
∂ρn

∂ν
= lim
ε→0

ˆ
C1−ε

(1−ρ)
∂ρ

∂ν
= 0. (6.22)

By combining (6.21) with (6.20), (6.22) and with the assumption (6.13), we find that

lim
ε→0

limsup
n→∞

ˆ
D\D1−ε

(|∇ρn|2 +βn(1−|vn|2)2)= 0. (6.23)

We obtain (6.18) (and thus complete the proof of Lemma 6.3) by combining (6.20) with (6.23) and with
the identity (2.10).

By combining (6.2) (whose validity has been established in the course of the proof of Theorem 6.1)
with Lemma 6.3 applied to the original sequence (un) and to the weights βn =β and γ=β, we obtain
the following improvement of Theorem 6.1.

6.4 Theorem. Assume that (5.3) holds and that c∗ < 2π. Then J∗ satisfies the Palais-Smale condition
at level c∗. In particular, the infimum is attained in (5.5).
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7 Asymptotic behavior of critical points as ε→∞
We describe here the asymptotic behavior, when ε → ∞, of critical points of Eε in E1 obtained by
the mountain pass approach described in Section 5. For simplicity, we transfer the problem on D (as
explained at the end of Section 2) and consider the energy Fβ, where

β=βε = 1
ε2 Jac Φ−1 = 1

ε2 w. (7.1)

In order to emphasize dependence on ε, we denote the number c∗ associated to Fβ as c∗ε .
Before stating our main result in this section, let us translate the mountain pass approach as-

sociated to J∗ into a more tractable one involving critical points of the Ginzburg-Landau equations
with respect to their own boundary conditions. Under assumption (5.3), we may identify a map
g ∈ H1/2(S1;C) with the solution u = T(g) of (5.4). Let us denote by Zε the set of solutions of (5.4)
(with arbitrary g):

Zε =
{

u ∈G ; −∆u = 1
ε2 w u(1−|u|2)

}
. (7.2)

Let us also denote, for each u ∈ H1(D;C), by ũ the harmonic extension of tr u, i.e., ũ = u(tr u).

7.1 Lemma. Assume that (5.3) holds. Then we have

c∗ε =min
{
maxFβ(F(a)); F ∈ C(Dr; Zε), �F(a)= Ma on Cr

}
. (7.3)

Proof. Indeed, “≤” is clear. For the opposite inequality, let G ∈ C(Dr; X∗) be such that G = χ∗ on Cr.
If we define F(a) := �G(a), then F is continuous (by Lemma 5.4), and clearly �F(a) = Ma on Cr. On the
other hand, assumption (5.3) implies that maps in Zε are minimizers of Fβ with respect to their own
boundary datum, and thus we have Fβ(F(a))≤ Fβ(G(a)).

We next turn to the description of the asymptotic behavior of uε as ε→∞. Clearly, the Moebius
transforms Mα,a satisfy

ˆ
D

w(1−|Mα,a|2)2 > 0, ∀α ∈S1,∀a ∈D and lim
|a|→1

ˆ
D

w(1−|Mα,a|2)2 = 0.

Therefore, the maximization problem

M :=max
a∈D
α∈S1

ˆ
D

w(1−|Mα,a|2)2 (7.4)

has a solution and, if Mα,a is a maximizer, then so is Mγ,a for every γ ∈S1. In addition, there is some
r0 < 1 such that every maximizer in (7.4) satisfies |a| ≤ r0. In what follows, we always assume that
r0 < r < 1.

7.2 Theorem. Let uε be obtained via (7.3). Then, possibly up to a subsequence, uε→ Mα,a strongly in
H1(D), where Mα,a is a solution of (7.4).
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7.3 Remark. Equivalently, Theorem 7.2 states that, if vε is a critical point in E1 obtained by the
mountain pass approach in Ω and for the original energy Eε, then the family (vε) converges, possibly
up to a subsequence, strongly in H1(Ω) to a maximizer of

M :=max
a∈Ω
α∈S1

ˆ
Ω

(1−|Mα,a,Φ|2)2.

Proof. Step 1. We have

c∗ε =π+
1

4ε2 M+ o
(

1
ε2

)
as ε→∞. (7.5)

Indeed, on the one hand the upper bound c∗ε ≤ π+ 1
4ε2 M is trivial: consider, as a competitor in (7.3),

the map F given by �F(a)= Ma for every a ∈Dr.
For the lower bound, fix some ξ ∈ Dr such that Mξ is a maximizer in (7.4). Let F be a competitor in

(7.3) such that Fβ(F(a))< c∗ε +
1
ε4 for each a ∈Dr. By Theorem 4.1 3, for large ε the map

G :Dr →D, G(a)= the zero of �F(a)

is continuous and satisfies G(a) = a if |a| = r. By the Brouwer fixed point theorem, we may find

some a = aε such that �F(a) vanishes at z = ξ. Since
1
2

ˆ
D

|∇�F(a)|2 ≤ c∗ε , we find, via Corollary 4.4 and

Corollary 3.2, that F(a) converges, up to a subsequence, strongly in H1(D) to Mα,ξ for some α ∈ S1.
We find that

1
2

ˆ
D

|∇�F(a)|2 + 1
4ε2

ˆ
D

w(1−|�F(a)|2)2 ≥π+ 1
4ε2 M+ o

(
1
ε2

)
as ε→∞. (7.6)

The lower bound in (7.5) is obtained by combining (7.6) with the following straightforward conse-
quence of the equation (5.4) satisfied by every u ∈ Zε and of the maximum principle Lemma 2.16.

7.4 Lemma. Let u ∈ Zε. Then

‖∇u−∇ũ‖L2(D) +‖u− ũ‖L∞(D) =O
(

1
ε2

)
, (7.7)

ˆ
D

|∇u|2 =
ˆ
D

|∇ũ|2 +O
(

1
ε4

)
(7.8)

and ˆ
D

w(1−|u|2)2 =
ˆ
D

w(1−|ũ|2)2 +O
(

1
ε2

)
. (7.9)

To summarize: we have the expansion (7.5) of the energy. Using the identity |∇u|2 = Jac u+4|∂z̄u|2
and formula (2.7), we find that

2
ˆ
D

|∂z̄uε|2 + 1
4ε2

ˆ
D

w(|uε|2 −1)2 = 1
4ε2 M+ o

(
1
ε2

)
. (7.10)
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In order to complete the proof of Theorem 7.2, it suffices to show that
ˆ
D

|∂z̄uε|2 = o
(

1
ε2

)
. (7.11)

Indeed, assume for the moment that (7.11) holds. As in the proof of Lemma 6.2, Step 1, we see that
any possible weak limit of the uε’s is either a constant of modulus 1, or a Moebius map Mα,a. By
(7.10) and (7.11), the former case cannot hold. By (7.5), (7.10), (7.11) and Corollary 3.2, we find that
uε→ Mα,a in H1(D), where Mα,a is a maximizer in (7.4).

Step 2. Proof of (7.11).
We follow the main lines of [7]. Let hε solve{

∇⊥hε = uε∧∇uε in D
hε = 0 on S1

(existence of hε follows from the fact that div (uε∧∇uε) = 0 in D and uε∧ ∂uε
∂ν

= 0 on S1). Define

vε = 1−|uε|2
2

+hε. The following is straightforward.

7.5 Lemma. We have{
∆hε = 2Jac uε in D
hε = 0 on S1 , (7.12)

∆vε = w
ε2 |uε|2(1−|uε|2)−4 |∂z̄uε|2 in D

vε = 0 on S1
(7.13)

and

|∇vε|2 = 4|uε|2 |∂z̄uε|2 . (7.14)

The key ingredient of the proof of Step 2 is the following

7.6 Lemma. We have

‖vε‖L∞(D) → 0. (7.15)

Proof. For large ε, let a = aε be the unique zero of ũε (cf Theorem 4.1 1). Set Uε = uε ◦M−a and Hε =
hε ◦M−a. As in Step 1, Corollaries 4.4 and 3.2 combined with (7.5) imply that, up to a subsequence,

Ũε→ Mγ,0 = γId strongly in H1(D).

By (7.7), we also have

Uε→ Mγ,0 = γId strongly in H1(D). (7.16)

Using Lemma 2.18 1. combined with (7.16) and with the fact that (by (7.12)) Hε satisfies{
∆Hε = 2Jac Uε in D
Hε = 0 on S1 ,
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we find that

Hε(z)→ 1
2

(|z|2 −1) uniformly in D as ε→ 0. (7.17)

On the other hand, by combining Lemma 2.13 with (7.16), we find that

|Ũε(z)|→ |z| uniformly in D.

The above convergence combined with (7.7) implies that

|Uε(z)|→ |z| uniformly in D. (7.18)

(7.15) is obtained by combining (7.18) with (7.17).

Step 2 continued. If we multiply (7.13) by vε and take (7.10), (7.14) and Lemma 7.6 into account, we
find thatˆ

D

|uε|2|∂z̄uε|2 = o
(

1
ε2

)
. (7.19)

In view of (7.18) and of the conformal invariance of the integral in (7.19), estimate (7.19) implies in
particular that

ˆ
D\D1/2

|∂z̄Uε|2 = o
(

1
ε2

)
. (7.20)

Therefore, in order to complete the proof of Step 2 it suffices to prove that
ˆ
D1/2

|∂z̄Uε|2 = o
(

1
ε2

)
. (7.21)

Estimate (7.21) is obtained via the equation satisfied by ∂z̄Uε. In view of (5.4), we have

∆(∂z̄Uε)= 1
ε2∂z̄

(
β◦M−aε Jac M−aεUε(1−|Uε|2)︸ ︷︷ ︸

γε

)
in D. (7.22)

Noting that γε is uniformly bounded on compacts of D, we find, by standard estimates and (7.20), that

‖∂z̄Uε‖L2(D1/2) ≤ C‖∆(∂z̄Uε)‖H−1(D3/4) +C‖∂z̄Uε‖L2(D3/4\D1/2) ≤ C
1
ε2 + o

(
1
ε

)
.

This implies (7.21). The proof of Theorem 7.2 is complete.

7.7 Remark. The construction of critical points of Eε in Ed and Theorem 7.2 can be generalized to
the case of magnetic Ginzburg-Landau functional, whose minimizers with prescribed degrees were
studied in [7] for ε ≥p

2. This shows that critical points with prescribed degree one still exist when
ε < p

2. However, their type changes when passing the critical value
p

2, namely when ε > p
2 we

have minimizers while for ε<p
2 they become minimax critical points.
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8 Bubbling analysis for small ε
When ε is small instead of large, our proof of Theorem 1.1 breaks down, although we expect its
conclusion to remain true. In fact the very definition of J∗ is valid only for large ε since it requires
the uniqueness of solutions to (5.4).

Nevertheless we present in this section an alternative min-max setting which is valid for any
ε > 0, and for which the proof of Theorem 1.1 can be carried out up to and including the analysis of
Palais-Smale sequences, i.e., the analog of Corollary 4.4. We believe this result is interesting in its
own right.

Let X ] := H1
0(D;C)×H1/2(S1;R) and

U : X ]→ H1(D;C), X ] 3 (v,ψ) 7→U(v,ψ) := v+u
(
N0eıψ)

.

Recall that N0 is the identity of S1 and that u(w) is the harmonic extension of w. Set J](v,ψ) :=
Fβ(U(v,ψ)).

As in the previous construction, let K =Dr, K0 = Cr and write Na = N0eıψa . Define

χ] : Cr → X ], Cr 3 a 7→ χ](a)= (
0,ψa

)
.

We have U ◦χ](a)= Ma.
We also define

c] := inf
{

max
K

J] ◦F; F ∈ C(K ; X ]), F = χ] on K0

}
, c]1 :=max

K0
J] ◦χ].

By repeating the proof of Lemma 5.1, we find the following

8.1 Lemma. Assume (4.10). Then, for r sufficiently close to 1, we have c] > c]1.

We next establish the analog of Lemma 5.6 and Corollary 5.11 for J]; this will require more
involved arguments. We start with some straightforward consequences of Lemma 5.2.

8.2 Lemma. Let 1≤ p <∞. Let u0 ∈ H1/2 ∩L∞(S1;C). Then the map

F : H1/2(S1;R)→ Lp(S1;C), H1/2(S1;R) 3ψ F−→ u0 eıψ,

is C1, and F ′(ψ)(η)= ıu0 eıψη.

Proof. The point to be checked is that T (ψ)(η) := ıu0 eıψη defines a map T ∈ C(H1/2;B(H1/2;Lp)).
This follows from

‖T (ψ1)−T (ψ2)‖ ≤ sup
‖η‖H1/2≤1

‖(ψ1 −ψ2)η‖Lp ≤ sup
‖η‖H1/2≤1

‖ψ1 −ψ2‖L2p‖η‖L2p ≤ C‖ψ1 −ψ2‖H1/2 ,

by the Sobolev embedding H1/2(S1) ,→ L2p(S1).

8.3 Lemma. Let 1≤ p <∞. Let u0 ∈ H1/2 ∩L∞(S1;C). Then the map

F : H1
0(D;C)×H1/2(S1;R)→ Lp(D), H1

0(D;C)×H1/2(S1;R) 3 (v,ψ) F−→ v+u
(
u0 eıψ)

,

is C1, and F ′(v,ψ)(w,η)= w+u
(
ıu0 eıψη

)
.
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Proof. It suffices to combine the previous lemma with the embedding H1(D) ,→ Lp(D) and with the
continuity of the map Lp(S1) 3 f 7→ u( f ) ∈ Lp(D).

By combining the above result with Lemma 5.3, we obtain

8.4 Lemma. With u0 as above and β ∈ L∞(D), the map

F : H1
0(D;C)×H1/2(S1;R)→ Lp(D;C), H1

0(D;C)×H1/2(S1;R) 3 (v,ψ) F−→ 1
4

ˆ
D

β
(
1− ∣∣v+u

(
u0 eıψ)∣∣2)2

,

is C1, and, if we set u := v+u
(
u0 eıψ)

, then

F ′(v,ψ)(w,η)=−
ˆ
D

βu · (w+u
(
ıu0eıψη

))
(1−|u|2).

8.5 Lemma. The map

F : H1/2(S1;R)→R, H1/2(S1;R) 3ψ F−→ 1
2

ˆ
D

∣∣∇u
(
u0eıψ)∣∣2 ,

is C1, and, if u = u
(
u0eıψ)

, then

F ′(ψ)(η)=
ˆ
S1

(
u∧ ∂u

∂ν

)
η=

ˆ
D

(u∧∇u)·∇ζ, ∀ψ,η ∈ H1/2(S1;R), ∀ζ ∈ H1(D;R) such that tr ζ= η. (8.1)

Proof. The equality of the two integrals in (8.1) is justified as in the proof of (5.9).

In order to prove that F ′(ψ)(η)=T (ψ)(η), where T (ψ)(η) :=
ˆ
D

(u∧∇u) ·∇u(η), we rely on Lemma

5.2. The map ψ 7→ u∧∇u ∈ L2(D) is continuous,18 and thus T ∈ C(H1/2;H−1/2). On the other hand,
it is clear that F is continuous. Therefore, it remains to prove that (8.1) holds when ψ and η are
smooth. By replacing u0 with u0eıψ, we may assume that ψ= 0. We have

u0eıtη = u0(1+ ıtη)+R(t), with ‖R(t)‖H1/2 ≤ Ct2 as t → 0,

and thus

F (tη)= 1
2

ˆ
D

|∇u|2 + t
ˆ
D

∇u ·∇u
(
ıu0η

)+S(t), with ‖S(t)‖H1/2 ≤ Ct2 as t → 0. (8.2)

Using (8.2) and (5.11) with β= 0, we find

∂F

∂η
(0)=

ˆ
D

∇u ·∇(ıu0η)=
ˆ
S1

(
u∧ ∂u

∂ν

)
η=T (0)(η).

An immediate consequence of Lemma 8.5 is the analog of Lemma 5.6.

8.6 Lemma. J] is C1. With u = v+u
(
N0eıψ)

and U = u
(
N0eıψ)

we have

J]′(v,ψ)(w,η)=
ˆ
D

∇v ·∇w+
ˆ
D

(U ∧∇U) ·∇ζ−
ˆ
D

βu · (w+u
(
ıN0eıψη

))
(1−|u|2) (8.3)

for every ζ ∈ H1(D) such that tr ζ= η.
18This argument was already used in the proof of Lemma 5.5.
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Proof. It suffices to note that J](v,ψ)=F (ψ)+ 1
2

ˆ
D

|∇v|2, where F is the map from Lemma 8.5.19

We next turn to the properties of the Palais-Smale sequences associated to J]. Note that an
application of Theorem 5.10 in conjunction with Lemma 8.1 leads to a sequence (vn,ψn) such that,
with u∗

n := vn +u
(
N0eıψn

) ∈G , we have

J]′(vn,ψn)→ 0, J](vn,ψn)→ c], u∗
n * u in H1. (8.4)

In the asymptotic analysis of the Palais-Smale sequences, the smoothness of u∗
n is not sufficient. In

the remaining part of this section, we find a better Palais-Smale sequence and establish its main
properties. More specifically, we let un := v+u

(
N0eıψn

)
, where v ∈ H1

0(D) is such that vn * v. In the
original variables of J], this amounts to replacing vn by v. The next result is the analog of Corollary
5.11.

8.7 Lemma. Assume that (vn,ψn) satisfy (8.4), with u∗
n := vn + u

(
N0eıψn

)
, and that vn * v. Then,

letting

un := v+u
(
N0eıψn

)
,

the sequence (un) has the following properties.

1. u is a solution of (2.21) and −∆v =βu(1−|u|2).

2. |un| ≤ C.

3. −∆un −βun(1−|un|2)→ 0 as n →∞ in every Lp, p <∞.

4. un −u∗
n → 0 in H1(D). In particular, un * u and Fβ(un)→ c].

5. (un) is a Palais-Smale sequence.

6. There exists a sequence cn → 0 such that∣∣∣∣ˆ
D

(un ∧∇un) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D;R). (8.5)

Proof. All points except 6 are straightforward. Indeed, let Un := u
(
N0eıψn

)
. Since u∗

n = vn +Un * u,
we find that Un *U for some harmonic U ∈ G , and thus and vn * v := u−U . Using the fact that
(u∗

n) is a PS-sequence, we find, by passing to the limits in (8.3),20 that −∆v =βu(1−|u|2), whence the
last assertion in item 1. Item 2 follows by combining the inequality |Un| ≤ 1 with the fact that v is
smooth.21 Item 3 follows from the fact that un → u in Lp for every p < ∞. This item implies that
un → u in W2,p, p <∞, and thus item 4. Item 5 is an easy consequence of the fact that vn → v in H1

(which follows from item 4) combined with the fact that u∗
n −un → 0 in every Lp.

We now turn to property 6, which is at the heart of the lemma. Since ∆Un = 0 in D, we have
ˆ
D

(Un ∧∇Un) ·∇ζ=
ˆ
D

div((Un ∧∇Un)ζ)=
ˆ
S1

∂Un

∂ν
· (ıUnη)=

ˆ
D

∇Un ·∇u(ıN0eıψnη).

19With u0 = N0.
20(8.3) is applied to the couple (vn,ψn), with η= 0 and for fixed w.
21Here, we use Lemmas 2.16 and 2.15.
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We plug this into (8.3) and integrate by parts to find, with ζ ∈ H1(D) such that tr ζ= η, that

J]′(v,ψn)(0,η)=
ˆ
D

∇Un ·∇u(ıN0eıψnη)−
ˆ
D

βun ·u
(
ıN0eıψnη

)
(1−|un|2)

=
ˆ
D

∇un ·∇u(ıN0eıψnη)−
ˆ
D

βun ·u
(
ıN0eıψnη

)
(1−|un|2)

=
ˆ
S1

un ∧ ∂un

∂ν
η−

ˆ
D

(
∆un +βun(1−|un|2)

) ·u (
ıN0eıψnη

)
=
ˆ
D

(un ∧∇un) ·∇ζ+
ˆ
D

un ∧∆unζ−
ˆ
D

(
∆un +βun(1−|un|2)

) ·u (
ıN0eıψnη

)
.

The above holds calculation is valid for smooth η and ζ. By density, it still holds for every η ∈
H1/2(S1;R) and every η ∈ H1(D;R) such that tr ζ= η. In particular, we have∣∣∣∣ˆ

D

(un ∧∇un) ·∇ζ
∣∣∣∣≤ ∣∣∣J]′(v,ψn)(0,η)

∣∣∣+ˆ
D

|un ∧∆un| |ζ|+
ˆ
D

∣∣∆un +βun(1−|un|2)
∣∣ ∣∣u (

ıN0eıψnη
)∣∣ .

If we take, in the above inequality, ζ with zero mean and η = tr ζ, then we obtain the conclusion of
item 6, using the Poincaré inequality, the bounds

|η|H1/2 ≤ C‖∇ζ‖L2 and ‖u
(
ıN0eıψnη

)‖Lp ≤ C|η|H1/2 , ∀ p <∞,

and items 3 and 5.
Finally, the first assertion in item 1 follows by combining 6 with the second part of 1.

8.8 Definition. In the following we will denote by the term bubble either a Moebius transform or
the conjugate of a Moebius transform. We will denote such a bubble by Ba, with a ∈ D. Thus either
Ba = Ma or Ba = Ma.

A multi-bubble is either a (non trivial) Blaschke product, or the conjugate of such a product.

The key result is the following.

8.9 Lemma. Let (vn)⊂G be a sequence of harmonic functions with the following properties:

vn * 1 in H1(D); (8.6)
1
2

ˆ
D

|∇vn|2 → Kπ; (8.7)∣∣∣∣ˆ
D

(vn ∧∇vn) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(D;R), with cn → 0 as n →∞. (8.8)

Then K is an integer and, up to a subsequence, there exist points a1(n), . . . ,aK (n) and corresponding
bubbles Ba j(n), j ∈ J1,KK, such that

|a j(n)|→ 1 as n →∞, ∀ j ∈ J1,KK; (8.9)

vn −
K∏

j=1
Ba j(n) → 0 strongly in H1(D) as n →∞. (8.10)
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Proof. The proof is by induction on the integer part [K] of K .

Step 1. Case where K < 1.
In this case, we will prove that vn → 1 strongly in H1(D). By [23, Corollary 3.7], if K < 1 then
|vn| ≥ a > 0 for large n and some constant a. Thus we may write, globally in D, vn = ρneıϕn (Lemma
2.7 3). If we take ζ = ϕn in (8.8), then we find that ∇ϕn → 0 in L2. Since vn is harmonic, we have{
∆ρn = ρn|∇ϕn|2 in D
ρn = 1 on S1 , and therefore ρn → 1 strongly in H1(D).22 We conclude via (2.10) that

vn → 1 strongly in H1, i.e., that (8.10) holds with K = 0.

Step 2. Induction step.
Assume that [K] ≥ 1. Then the convergence of (vn), or any subsequence, is not strong hence there is
no a > 0 such that |vn| ≥ a holds along a subsequence. Thus we may pick zn ∈D such that vn(zn)→ 0.
In view of (8.6), we have |zn|→ 1. Let wn = vn ◦M−zn . The new sequence (wn) satisfies (8.7), (8.8) and
wn(0)→ 0.

Let w be the weak limit of (wn). Then w is harmonic, w(0)= 0 and, by (8.8), w satisfies (2.21) with
β= 0. In view of Lemma 3.5, there exist a1, . . . ,aL in D such that

w = Ma1 . . . MaL , or w̄ = Ma1 . . . MaL . (8.11)

In particular,
1
2

ˆ
D

|∇w|2 = Lπ, with L a positive integer. Let f := tr w and gn := tr (wnw). Then

gn * 1 in H1/2(S1;S1) and we have wn = u( f gn) and hn := u(gn)* 1 in H1(D) (and hn → 1 in C1
loc(D).)

By Lemmas 2.21 and 2.23, we have wn −whn → 0 in H1(D) and
1
2

ˆ
D

|∇hn|2 → (K −L)π. We now turn

back to the original sequence (vn). Set tn := w◦Mzn , yn := hn ◦Mzn . Then we have:

1. vn − tn yn → 0 in H1(D).

2. Letting a j(n)= M−zn(a j), we have |a j(n)|→ 1 and either tn =∏
j Ma j(n) or t̄n =∏

j Ma j(n).

3.
1
2

ˆ
D

|∇yn|2 → (K −L)π.

4. yn * 1 in H1(D) (since vn * 1 and w◦Mzn * 1).

We are in position to complete the proof of Lemma 8.9 by applying the induction hypothesis to the se-
quence (yn) provided we establish the validity of (8.8) for the sequence (yn). By conformal invariance,
(8.8) holds for (wn). On the other hand, (8.11) implies that

ˆ
D

(w∧∇w) ·∇ζ= 0.

We recall that wn = whn + rn, where rn → 0 in H1(D). Since ∆rn =−2∇w ·∇hn * 0 weakly in L2(Ω),
we also have rn → 0 in L∞(D). Therefore

wn ∧∇wn = |hn|2(w∧∇w)+|w|2(hn ∧∇hn)+Fn,
22This is obtained by multiplying by ρn −1 the equation of ρn.
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with Fn ∈ L2(D :R2) satisfying ‖Fn‖L2 → 0. From the above, we find that
ˆ
D

(hn ∧∇hn) ·∇ζ=
ˆ
D

(wn ∧∇wn) ·∇ζ+
ˆ
D

(1−|w|2)(hn ∧∇hn) ·∇ζ

+
ˆ
D

(1−|hn|2)(w∧∇w) ·∇ζ−
ˆ
D

(w∧∇w) ·∇ζ−
ˆ
D

Fn ·∇ζ

=
ˆ
D

(wn ∧∇wn) ·∇ζ+
ˆ
D

(1−|w|2)(hn ∧∇hn) ·∇ζ

+
ˆ
D

(1−|hn|2)(w∧∇w) ·∇ζ−
ˆ
D

Fn ·∇ζ.

(8.12)

The fact that hn → 1 in C1
loc(D) and |w(z)|→ 1 as |z|→ 1 easily implies that∣∣∣∣ˆ

D

(1−|w|2)(hn ∧∇hn) ·∇ζ
∣∣∣∣+ ∣∣∣∣ˆ

D

(1−|hn|2)(w∧∇w) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , with cn → 0. (8.13)

(8.12) and (8.13) imply that (8.8) is satisfied by (hn). By conformal invariance, the same holds for
(yn).

8.10 Remark. Lemma 8.9 is about bubbling of harmonic functions in the unit disc D, and clearly
this analysis extends to the case of simply connected domains. It is still possible to study the case of
multiply connected domains. Such analysis, which is not relevant for the subsequent results in this
section, is postponed to Section 9.

8.11 Lemma. Let (vn,ψn) be a Palais-Smale sequence associated to J], and set u∗
n := vn+u

(
N0eıψn

)
.

Assume that un * u in H1(D). Set gn = u∗
nū and wn = u(gn). Then

1. u∗
n −uwn → 0 strongly in H1(D) as n →∞.

2. Fβ(u∗
n)= Fβ(u)+ 1

2

ˆ
D

|∇wn|2 + cn, with cn → 0 as n →∞.

3. The sequence (wn) satisfies the assumptions of Lemma 8.9.

Proof. Let un = v+u
(
N0eıψn

)
, where v = limn vn as in Lemma 8.7. By Lemma 8.7, item 1 amounts

to proving that zn := uwn − un converges strongly to 0 in H1(D). This convergence is obtained via
Remark 2.22. Indeed, since u solves (2.20), since from Lemma 8.7 we have −∆un =−∆v =βu(1−|u|2),
and since wn is harmonic, the map zn solves{

−∆zn =βu(wn −1)(1−|u|2)−2∇u ·∇wn in D
zn = 0 on S1 .

We turn to item 2. By combining item 1 with the fact that wn → 1 weakly in H1 and strongly in Lp,
we note that item 2 amounts to proving that, as n →+∞,

ˆ
D

|∇(uwn)|2 =
ˆ
D

|∇u|2 +
ˆ
D

|∇wn|2 + o(1). (8.14)

The starting point in the proof of (8.14) is the identity

|∇(uwn)|2 = |u|2|∇wn|2 +|∇u|2|wn|2 +2(u∇wn ·wn∇u).
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Since wn is harmonic and wn * 1 in H1 we have wn → 1 in C1
loc, while |u(x)|→ 1 uniformly as x → ∂D.

Thereforeˆ
|u|2|∇wn|2 =

ˆ
|∇wn|2 + o(1) and

ˆ
|∇u|2|wn|2 =

ˆ
|∇u|2 + o(1).

Finally, using Remark 2.22 we find thatˆ
(u∇wn) · (wn∇u)= o(1) as n →∞.

This proves (8.14) and item 2.
As for item 3, we start from the identityˆ

D

((uwn)∧∇(uwn)) ·∇ζ=
ˆ
D

(|u|2 −1)(wn ∧∇wn) ·∇ζ+
ˆ
D

(wn ∧∇wn) ·∇ζ+
ˆ
D

|wn|2(u∧∇u) ·∇ζ

and argue as in the proof of Lemma 8.9.

A straightforward combination of the two preceding lemmas implies the main result of this sec-
tion.

8.12 Theorem. Let (vn,ψn) be a Palais-Smale sequence associated to J] and set u∗
n := vn+u

(
N0eıψn

)
.

Then, up to a subsequence, there exist: a critical point u of Fβ in G , an integer K , points a1(n), . . . ,aK (n)
and corresponding bubbles Ba j(n), j ∈ J1,KK, such that

|a j(n)|→ 1 as n →∞, ∀ j ∈ J1,KK; (8.15)

u∗
n −u

K∏
j=1

Ba j(n) → 0 strongly in H1(D) as n →∞; (8.16)

Fβ(u∗
n)= Fβ(u)+Kπ+ cn, with cn → 0 as n →∞. (8.17)

In particular, we have (with c given by (8.4))

c = Fβ(u)+Kπ. (8.18)

Proof. From Lemma 8.11, we have ‖u∗
n −uwn‖H1 → 0, where (wn) satisfies the hypothesis of Lemma

8.9. In order to conclude, it suffices to apply Lemma 8.9 to (wn).

This type of result has proven useful in many variational settings, especially in geometry. Let
us simply mention the pioneering work of Sacks and Uhlenbeck [32] about minimal 2-spheres, the
analysis of Brezis and Coron [16] of constant mean curvature surfaces, or the one of Struwe [34] of
equations involving the critical Sobolev exponent. There are also abstract approaches to bubbling as
in the work of Lions [28] about concentration-compactness or the characterization of noncompactness
of critical embeddings in Gérard [24], Jaffard [27] or Bahouri, Cohen and Koch [2].

We end with the following obvious consequence of our analysis of the Palais-Smale sequences.

8.13 Theorem. In the setting of Section 5, let c∗ > π be defined by (5.5). Assume that (6.1) holds, i.e.,
c∗ < 2π. Assume in addition that

there is no solution u ∈G of (2.21) such that Fβ(u)= c∗−π. (8.19)

Then Fβ has a critical point u ∈G1.
In addition, Fβ satisfies the (PS)c condition at the level c = c∗.
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Theorem 8.13 combined with our next result implies Theorem 6.1 (and thus Theorem 1.1).

8.14 Lemma. Assume that (5.3) and (5.5) hold. Let u be a critical point of Fβ in G such that Fβ(u)<π.
Then u is a constant (and thus Fβ(u)= 0).

Proof. Assumption (5.3) implies that critical points of Fβ are actually minimizers of Fβ with respect
to their own boundary conditions. We next argue as in Step 1 in the proof of Lemma 8.9. If u is
such a minimizer and Fβ(u) < π, then there exists some a > 0 such that |u| ≥ a [23, Corollary 3.7].
Then we may write, globally in D, u = ρeıϕ (Lemma 2.7 3). Assume, in addition, that u is a critical
point of Fβ. If we take ζ = ϕ in (2.20), then we find that ϕ is constant, say ϕ = 0. Then ρ satisfies{
−∆ρ =βρ(1−ρ2) in D
ρ = 1 on S1 . By multiplying this equation with ρ−1, we find that ρ ≡ 1.

Open Problem 1. Let u ∈ G be a critical point of Fβ. Assume that Fβ(u) < π.23 Is it true that u is
a constant? More generally, does the same hold if we replace the smallness assumption Fβ(u) < π by

the weaker assumption
1
2

ˆ
D

|∇u|2 <π?

9 Bubbling analysis in multiply connected domains
In this section, we establish the analog of Theorem 8.12 in multiply connected domains Ω. To start
with, this requires defining Palais-Smale sequences and bubbles. In defining Palais-Smale sequences,
we can take as a starting point either Lemma 8.6 (and define a sequence (u∗

n)) or Lemma 8.7 (and
define a sequence (un)). We adopt here the latter point of view.24

9.1 Definition. Let β ∈ L∞(Ω). A sequence (un)⊂ E is a Palais-Smale sequence for Fβ if there exists
a sequence cn → 0 such that∣∣∣∣ˆ

Ω
∇un ·∇w−

ˆ
Ω
βun ·w(1−|un|2)

∣∣∣∣≤ cn‖∇w‖L2 , ∀w ∈ H1
0(Ω;C); (9.1)

∣∣∣∣ˆ
Ω

(un ∧∇un) ·∇ζ
∣∣∣∣≤ cn‖∇ζ‖L2 , ∀ζ ∈ H1(Ω;R). (9.2)

We next define bubbles.

9.2 Definition. Let Γ`, ` ∈ J1,LK, be the components of ∂Ω. We assume that Γ1 encloses Ω. Let ω1 be
the interior of Γ1, and for `≥ 2 let ω` be the exterior of Γ` in the extended plane C∪ {∞}. For each `,
fix a conformal representation Φ` :ω` →D . For a ∈D and ` ∈ J1,LK, the corresponding bubble B`

a is
defined as either B`

a = M1,a,Φ`
, or B`

a = M1,a,Φ`
.

Note that, unlike the case of simply connected domains, bubbles do not belong to E . However, as
a →Γ`, the trace of B`

a almost fulfills the condition |tr B`
a| = 1.

The analog of Theorem 8.12 is

23But we do not make any smallness assumption on β. In particular, we do not assume (5.3).
24An inspection of the proof of Lemma 8.7 shows that passing from (u∗

n) to (un) relies on Lemma 2.20, which is valid in
arbitrary domains.
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9.3 Theorem. Let (un) be a Palais-Smale sequence. Then, up to a subsequence, there exist: a critical
point u of Fβ in E , an integer K , indices `1, . . . ,`K ∈ J1,LK, points a1(n), . . . ,aK (n) ∈Ω and correspond-
ing bubbles B

` j
a j(n), j ∈ J1,KK, such that

dist(a j(n),Γl j )→ 0 as n →∞, ∀ j ∈ J1,KK; (9.3)

un −u
K∏

j=1
B

l j
a j(n) → 0 strongly in H1(Ω) as n →∞; (9.4)

Fβ(un)= Fβ(u)+Kπ+ cn, with cn → 0 as n →∞. (9.5)

Proof. Up to a subsequence, we have un * u ∈ E . We define g`n : ∂Ω→S1 by

g`n =
{

tr (un/u) on Γ`
1 on ∂Ω\Γ`

,

so that gn := tr (un/u) satisfies gn = ∏L
`=1 g`n. Let vn := u(gn) and v`n := u(g`n). An inspection of the

proof of Lemma 8.11 shows that the conclusions of the lemma hold in our case.25 We complete the
proof of Theorem 9.3 by combining the conclusions of Lemma 8.11 with the next couple of lemmas
and with Lemma 8.9.

We first introduce two useful objects. Let w`
n denote the harmonic extension to ω` of the trace of

gn on Γ`. We also set W`
n :D→C, W`

n := w`
n ◦ (Φ`)−1.

9.4 Lemma. We haveˆ
Ω
|∇vn|2 =

L∑
`=1

ˆ
Ω
|∇w`

n|2 + cn, with cn → 0 as n →∞ (9.6)

and

vn −
L∏
`=1

w`
n → 0 strongly in H1(Ω) as n →∞. (9.7)

Proof. By standard estimates, the fact that g`n * 1 in H1/2(∂Ω) and g`n = 1 on ∂Ω\Γ` implies that

v`n → 1 in Ck
loc(Ω\Γ`). (9.8)

The same holds for w`
n. It is then clear that vn−v`n → 0 in Ck

loc(Ω\Γ`), and this leads to the expansion
ˆ
Ω
|∇vn|2 =

L∑
`=1

ˆ
Ω
|∇v`n|2 + cn, with cn → 0 as n →∞

and to the strong convergence

vn −
L∏
`=1

v`n → 0 in C∞(Ω). (9.9)

By the above, in order to conclude it suffices to invoke the fact that |w`
n| ≤ 1 (Lemma 2.16) and to

prove that

w`
n −v`n → 0 strongly in H1(Ω). (9.10)

In turn, (9.10) is obtained by noting that y`n := w`
n−v`n is harmonic and that tr y`n → 0 in H1/2(∂Ω).

25With un instead of u∗
n.
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9.5 Lemma. Up to a subsequence, the sequence (W`
n )n satisfies the assumptions of Lemma 8.9.

As a consequence, up to a subsequence there are integers K(`) and points a1(n), . . . ,aK(`)(n) ∈Ω
such that:

1. dist(a j(n),Γ`)→ 0 as n →∞, ∀ j ∈ J1,K(`)K.

2.
1
2

ˆ
Ω
|∇w`

n|2 → K(`)π.

3. w`
n −

∏K(`)
j=1 B`

a j(n) → 0 strongly in H1(Ω).

Proof. We have to prove that the sequence (W`
n )n satisfies (8.8). By conformal invariance, it suffices

to check the same property for (w`
n)n. By (9.10), we are reduced to checking the same for (v`n)n. Let

Ω` ⊂C be an open set such thatΩ`∩∂Ω=Γ`. Let η` ∈ C∞
c (Ω`;R) be such that η` = 1 in a neighborhood

of Γ`. If ζ ∈ H1(Ω;R), set ξ` := η`ζ, λ` := ζ−ψ`. Assuming in addition that
ˆ
Ω
ζ = 0, we have the

Poincaré type inequality

‖∇ξ`‖L2 +‖∇λ`‖L2 ≤ C‖∇ζ‖L2 . (9.11)

Using Lemma 8.11, (9.8) and (9.9), we find that∣∣∣∣ˆ
Ω

(v`n ∧∇v`n) ·∇ξ`
∣∣∣∣≤ ∣∣∣∣ˆ

Ω`

(v`n ∧∇v`n) ·∇ξ`
∣∣∣∣+ ∣∣∣∣ˆ

Ω\Ω`

(v`n ∧∇v`n) ·∇ξ`
∣∣∣∣

≤
∣∣∣∣ˆ
Ω`

(vn ∧∇vn) ·∇ξ`
∣∣∣∣+ cn

ˆ
Ω
|∇ξ`| ≤ cn‖∇ξ`‖L2 , with cn → 0 as n →∞.

(9.12)

Similarly, we have∣∣∣∣ˆ
Ω

(v`n ∧∇v`n) ·∇λ`
∣∣∣∣≤ cn‖∇λ`‖L2 , with cn → 0 as n →∞. (9.13)

We obtain (8.8) for the sequence (v`n) by combining (9.11)-(9.13).
Items 1 and 3 are obtained from the analog results for W`

n via composition with Φ` . As for item
2, it follows from (8.7) once we note that

ˆ
Ω
|∇w`

n|2 =
ˆ
D

|∇W`
n |2 −

ˆ
D\(Φ`)−1(Ω)

|∇W`
n |2 =

ˆ
D

|∇W`
n |2 + cn, with cn → 0 as n →∞;

here, we use the fact that W`
n → 1 in Ck

loc(D).

We end with an application of the above analysis. We let Ω = D\DR , with 0 < R < 1.26 With
d= (d1,d2) ∈Z2, we let

Ed := {u ∈ E ; deg (u,S1)= d1, deg (u,CR)= d2}.

Our result is the following.

9.6 Theorem. Assume that R is sufficiently small. Then there exists some ε0 such that, for ε ∈ (ε0,∞],
Eε has critical points in E(1,0).

26Theorem 9.6 below extends to arbitrary doubly connected domains.
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The above result is reminiscent of Coron’s result on the existence of non trivial solution of the
equation −∆u = u(n+2)/(n−2) in domains Ω⊂Rn with small holes [21]. Since later Bahri and Coron [3]
proved that the size of the hole is irrelevant for existence of such solutions, we address the following

Open Problem 2. Let R ∈ (0,1). Does there exist some ε0 > 0 such that Eε has critical points in E(1,0)
for ε ∈ (ε0,∞]?

Proof of Theorem 9.6. We start by describing the functional setting. We let, with 0< r < 1,

K =Dr, K0 = Cr, X ] = H1
0(Ω;C)×H1/2(∂Ω;R).

Let N : ∂Ω→S1, N(z)=
{

z, if |z| = 1
1, if |z| = R

. Then we define

J] : X ]→R, H1
0(Ω;C)×H1/2(∂Ω;R) 3 (v,ψ) J]−→ Eε

(
v+u

(
Neıψ))

.

Note that v + u
(
N eıψ) ∈ E(1,0). For a ∈ D, we write, as in Section 5, Na = N0eıψa , and let ηa ={

ψa, on S1

0, on CR
. We then set

χ] ∈ C(K0; X ]), K0 3 a
χ]−→ (

0,ηa
)

and define

c = cR,r,ε = inf
{

max
K

J] ◦F; F ∈ C(K ; X ]), F = χ] on K0

}
.

The plan is to prove that, for small R and large ε, the compactness condition (PS)c is satisfied. This
will imply existence of critical points of Eε in E(1,0).

To start with, note that, as in the proof of Lemma 3.1, we have

Eε(u)≥ 1
2

ˆ
Ω
|∇u|2 ≥

ˆ
Ω
|Jac u| ≥

∣∣∣∣ˆ
Ω

Jac u
∣∣∣∣=π, ∀u ∈ E(1,0). (9.14)

Before proceeding further, we establish few auxiliary results.

9.7 Lemma. Let δ> 0. Then there exist R0 < 1, r0 < 1, and ε0 > 0 such that c <π+δ provided R < R0,
r > r0 and ε> ε0.

We also have

lim
r→1

max
K0

J] ◦χ] =π. (9.15)

Proof. Let δ′ > 0 to be fixed later. Pick R0 such that for R < R0 there exists some ζR ∈ C∞(Ω; [0,1])

such that ζR = 1 near S1, ζR = 0 near CR and
ˆ
Ω
|∇ζR |2 < δ′. This is always possible, since the H1-

capacity of a point is zero. Define

P :D→ E(1,0), D 3 a P−→ ζR Ma +1−ζR .
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Let also F(a)= (0,ηa), a ∈ K . Then tr P(a)= tr u (Neıηa), and a straightforward calculation leads to

c ≤max
K

J] ◦F =max
a∈K

Eε

(
u

(
Neıηa

))≤max
a∈K

Eε(P(a))

≤max
a∈K

(
1
2

ˆ
Ω

(1−ζR)2|∇Ma|2 +C(δ′+
p
δ′+ε−2)

)
≤π+C(δ′+

p
δ′+ε−2).

This implies the first part of the lemma. For the second part, let us note that, when |a| → 1, we have
aMa →−1 in Ck

loc(D), and this leads to

limsup
|a|→1

Eε(P(a))≤π. (9.16)

We conclude by combining (9.16) with (9.14). ä
The next result is the content of [5, Lemma D.3].

9.8 Lemma. We have

inf{Eε(u); u ∈ E(1,1)}≥min{E∞(u); u ∈ E(1,1)}= 2π
1−R
1+R

. (9.17)

9.9 Lemma. Consider the minimization problem

mε = inf{Eε(u); u ∈ E(1,0)}. (9.18)

Then

1. mε =π and mε is not attained.

2. If (un) is a minimizing sequence in (9.18), then, up to a subsequence, un *α ∈S1 in H1(Ω).

Proof. Let Φt : C→ C, Φt(z) =
{

z/t, if |z| ≤ t
z/|z| if |z| ≥ t

. It is easy to see that, when a ∈D and |a| → 1, we may

pick some t = t(a)→ 1 such that we have Φt◦Ma ∈ E(1,0) and Eε(Φt◦Ma)→π. This together with (9.14)
implies that mε = π. As in the proof of Lemma 3.1, if Eε(u) = π, then u is holomorphic. However, we
claim that there is no holomorphic map in E(1,0). Indeed, otherwise we have:

a) u(Ω)⊂D (by the maximum principle).

b) u(Ω)⊃D (since the total degree of u on ∂Ω is one).

c)
ˆ
Ω
|Jac u| =π.

By the above and the area formula, for a.e. a ∈D the set u−1(a) is a singleton. This implies that u is
one-to-one. In conclusion, u :Ω→D is a homeomorphism, which is the desired contradiction.

Consider now a minimizing sequence (un) and assume that un * u. Since u 6∈ E(1,0), we find that
u is a constant, by the Price Lemma 2.17. This constant has to be of modulus one. ä

The next result is the analog of Theorem 4.1 in doubly connected domains. If u ∈ H1(Ω), we define
ũ as the harmonic extension to D of the trace of u on S1. In particular, if u ∈ E(1,0), then ũ ∈ E1.
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9.10 Lemma. There exists some δ0 = δ0(R)> 0 and a function f : (0,δ0)→ (0,∞) such that lim
δ→0

f (δ)= 0

with the following property: if u ∈ E(1,0) satisfies
1
2

ˆ
Ω
|∇u|2 < π+δ, with δ < δ0, then

1
2

ˆ
D

|∇ũ|2 <
π+ f (δ).

In particular, if δ0 is sufficiently small then there exists a continuous map

H :
{

u ∈ E(1,0);
1
2

ˆ
Ω
|∇u|2 <π+δ0

}
→D, u H−→ a (ũ) , (9.19)

where a (ũ) is the unique zero of ũ.
Moreover, we have

|H(u)|→ 1 when
1
2

ˆ
D

|∇u|2 →π. (9.20)

Proof. For the first part of the lemma, it suffices to prove that, if (un) ⊂ E(1,0) and
1
2

ˆ
Ω
|∇un|2 → π,

then (possibly along a subsequence)
1
2

ˆ
D

|∇ũn|2 → π. By (9.14), we may assume that un is harmonic.

By Lemma 9.9 2, we have, up to a subsequence, un →α in Ck
loc(Ω). Thus, for R < r < 1, the restriction

of un to D\Dr has an extension vn to D such that

1
2

ˆ
D

|∇ũn|2 ≤ 1
2

ˆ
D

|∇vn|2 ≤ 1
2

ˆ
Ω
|∇un|2 + cn with cn → 0 as n →∞.

The second part of the theorem follows from Theorem 4.1. As for the last part, consider a sequence

(un) ⊂ E(1,0) such that
1
2

ˆ
Ω
|∇un|2 → π. By Lemma 9.9, we have, up to a subsequence, un * α ∈ S1,

and thus ũn *α, whence the conclusion. ä

Proof of Theorem 9.6 completed. We start by proving that c >π. Indeed, let δ0 = δ0(R) be such that H
given by (9.19) is well-defined and satisfies |H(u)| ≥ 1/2. We claim that c ≥ π+δ0. Indeed, otherwise
let F ∈ C(K ; X ]) be such that F = χ] on K0 and J] ◦F <π+δ0. Let

G :Dr →D\D1/2, G := H ◦U] ◦F.

Here,

U] : X ]→ E(1,0), X ] 3 (v,ψ) U]

−−→ v+u
(
Neıψ)

.

By construction, G is continuous and we have G =Id on Cr. This contradicts Brouwer’s fixed point
theorem.

The fact that c >π combined with (9.15) implies that for r close to 1 we have

c >max
K0

J] ◦χ], (9.21)

and that c does not depend on r close to 1.
(9.21), combined with the proofs of Lemmas 8.6 and 8.7 and with Lemma 9.7 and Theorem 9.3

leads to the following: if R < R0, r > r0 and ε> ε0, then:
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1. π< c <min
{

2π,π+2π
1−R
1+R

}
.

2. There exists a sequence (un)⊂ E(1,0) as in Theorem 9.3.27

We complete the proof of Theorem 9.6 if we prove that the integer K in Theorem 9.3 is zero. Let u be
as in Theorem 9.3, and let D ∈Z2 be such that u ∈ ED. By Theorem 9.3 and the fact that c < 2π, one
of the following cases occurs:

1. K = 0 and D= (1,0), which is the desired conclusion.

2. K = 1, D= (1,1) and Eε(u)= c−π.

3. K = 1, D= (0,0) and Eε(u)= c−π.

The second case is ruled out thanks to Lemma 9.8 and to the fact that c−π< 2π
1−R
1+R

.

We next turn to the third case. Since
1
2

ˆ
Ω
|∇u|2 < π,28 [23, Corollary 3.7] implies that |u| ≥ a > 0

in Ω. By Lemma 2.8, in Ω we may globally write u = ρeıϕ. As in the proof of Lemma 8.14, this implies
that u is constant. This contradicts the fact that c >π.

The proof of Theorem 9.6 is complete. ä
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