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Abstract – The macroscopic behavior of two microscopic unimolecular evaporation models is 

examined. The temperature dependence of bulk equilibrium vapor pressures deduced from the Rice-

Ramsperger-Kassel (RRK) model and from the Weisskopf model, respectively, are compared. The bulk 

vapor pressures of sodium given by both models are compared, over a wide temperature range, with the 

experimental vapor pressures. The Weisskopf model is in better agreement with the experimental data 

than the RRK theory: From the melting temperature to the critical temperature (370K-2500K), the 

vapor pressures of sodium calculated using the Weisskopf model agree with experimental values within 

2%, whereas RRK theory leads to errors of more than 40%. Weisskopf theory satisfying detailed 

balance principle, whereas RRK theory does not, may explain this result. 

 

Introduction 

Evaporation is an ubiquitous physical phenomenon in 

which single particles escape from the solid or liquid state into 

the gas phase. 

At the macroscopic scale, evaporated particles form a 

vapor, whose pressure depends on the nature of the substance 

and of its temperature. The evaporation rate of atoms or 

molecules from the bulk in solid or liquid state is 

characterized by its equilibrium vapor pressure, at which the 

evaporation probability exactly counterbalances the 

condensation probability. Many experimental methods exist 

since a long time for determining equilibrium vapor pressures 

of various substances [1]. 

At the molecular scale, thermal evaporation of atoms or 

molecules from single small objects, such as molecules or 

clusters, cannot be described, nor experimentally 

characterized, by an equilibrium vapor pressure, which is a 

statistical description of a large number of particles. However, 

the evaporation rate of isolated small particles can be 

experimentally investigated by mass spectrometry methods 

[2].  

Some phenomena, such as droplets nucleation in a 

supersaturated vapor for instance, require a description of 

evaporation that should be valid at both microscopic and 

macroscopic scales. One way to obtain such a description is to 

extend asymptotically to infinite size systems the expressions 

for evaporation and condensation given by microscopic 

models. The macroscopic evaporation rates obtained must of 

course obey the known bulk properties; in particular, they 

must be able to reproduce the experimental evolution of 

equilibrium vapor pressures with temperature. 

The present paper aims at establishing a bridge between 

microscopic models of thermal evaporation and the related 

properties of bulk. Experimental vapor pressures of sodium 

are compared here to calculated values obtained from the 

extension to macroscopic systems of two models widely used 

to describe microscopic evaporation: the RRK model and the 

Weisskopf model. Sodium is chosen as a typical example 

since the evaporation of sodium clusters is well documented 

and both RRK and Weisskopf models are able to reproduce 

microscopic experimental data [2]. 

A significant difference between Weisskopf and RRK 

approaches, which has important consequences as it will be 

shown, is that the RRK model does not account for the density 

of states of the evaporated particle (it is a non-microreversible 

model), whereas the Weisskopf model, which obeys the 

detailed balance principle (it is a microreversible model), 

does. It will be shown that this issue with RRK theory, which 

was already pointed out [3,4,5], makes it incompatible with 

classical thermodynamics when applied to macroscopic 

systems.  

The simple analytical expressions of RRK and Weisskopf 

evaporation rates of this paper are the most commonly used. 

The RRK expression of evaporation rates used here, in 

particular, is not one of the modified versions introduced by 

some authors to avoid its intrinsic violation of the detailed 

balance principle [3,4]. The purpose of the present study is not 

to obtain accurate macroscopic extension of RRK and 
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Weisskopf theories, but to give a rationale for their 

macroscopic extension and to stress the failure of the non-

microreversible RRK model, which is unable to reproduce 

some properties of macroscopic systems such as equilibrium 

vapor pressures. The evaporation rate given by RRK-based 

models is an Arrhenius law of the form  TkDA Bexp  

where A  does not depend on the temperature, whereas the 

Weisskopf model gives an expression of the form 

 TkDTA Bexp . Intermediate forms are also found in the 

literature, for instance   TkDTA Bexp  [6], Some 

authors, after having obtained the 1/T dependence of the 

prefactor in a microreversible scheme, finally give up this 1/T 

dependence and unjustifiably use a pure Arrhenius form with 

a constant prefactor [7],  

A practical conclusion of the paper is that, when a simple 

analytical expression is required to describe evaporation, the 

second form  TkDTA Bexp  is preferable, especially 

when dealing with multiscale phenomena that runs from 

microscopic to macroscopic scales.  

 

 

Microscopic models of unimolecular evaporation 

The calculation of equilibrium vapor pressure requires 

describing the two basic phenomena involved, the evaporation 

of atoms from the condensed phase and the reverse process, 

the attachment of atoms onto condensed phase systems. 

Equilibrium between the condensed phase and the vapor is 

reached when attachment and evaporation probabilities are 

equal: the fulfillment of this condition is used here to calculate 

the vapor pressure as a function of temperature. 

Two simple analytical expressions for the macroscopic 

equilibrium vapor pressure of a monoatomic compound are 

derived below, starting from the RRK model and the 

Weisskopf model, respectively, to calculate evaporation rates 

and using the hard sphere approximation to evaluate 

attachment rate. Simple versions of RRK and Weisskopf 

models are used, which do not include anharmonicity nor 

rotation, where the condensed phase is described as a 

collection of harmonic oscillators at the same frequency and 

the vapor is considered as a perfect gas. This simplicity allows 

calculating analytical expressions of Weisskopf and RRK 

evaporation rates, and of classical thermodynamics properties. 

The main difference between RRK and Weisskopf models lies 

in the fact that Weisskopf approach accounts for the 

translational density of states of the evaporated atom or 

molecule, whereas RRK theory which is an “activated 

complex theory”, does not. As a consequence, RRK-based 

theories are unable to account for the entropy of the 

macroscopic vapor.  

We will first recall the basics of RRK and Weisskopf 

models, then we will derive analytical expressions of 

equilibrium vapor pressure as a function of temperature from 

both models and compare these expressions to experimental 

equilibrium vapor pressures of sodium. 

 

The RRK evaporation rate 

 RRK model has been developed by Rice and Ramsperger 

[8] and, in parallel, by Kassel [9]. The basics of this well 

known theory are widely available in the literature [10]. Let’s 

just recall the main ideas: the dissociation of the so-called 

“activated complex” occurs as soon as the necessary energy is 

accumulated in one of the vibrational modes that lead to 

dissociation, called “critical oscillators”. The dissociation 

probability is calculated from the ratio of the total number of 

quantum states of all activated complexes relative to the total 

number of states accessible to the system. 

A system of n particles is represented as a collection of 

s=3n-6 quantum harmonic oscillators of the same frequency 

. The energy of each oscillator is h. The system contains a 

total energy E, whose distribution among the oscillators 

fluctuates randomly at a frequency close to . Evaporation 

occurs as soon as at least the dissociation energy D is 

accumulated on one particular oscillator, in other words when 

at least m>(D/h) quanta are focused on this critical oscillator. 

Let us call Wn>m the total number of configurations that fulfill 

this condition, and Wn the total number of configurations 

allowed for the system. The probability that a particular 

oscillator contains at least m quanta is Pn>m=Wn>m/Wn [10]. To 

obtain the probability that one atom evaporates from the 

whole cluster, this quantity is generally multiplied by the 

number of surface atoms next [11,12,13]. If one considers that 

the internal energy fluctuates at the frequency , the 

evaporation probability per unit time is given by 

 

    (1) 

 

For large enough particles, the number of surface atoms 

of a spherical cluster containing n atoms is next(36)1/3n2/3 

[11,12]; in order to calibrate in the following the parameters D 

and  from the experimental bulk equilibrium vapor pressure, 

it is useful here to state the evaporation rate as a function of 

the hard sphere cross section n. The radius R of a cluster 

containing n atoms scales as r0n
1/3, and the hard sphere cross 

section n is equal to r0
2n2/3, thus next=(36)1/3n/(r0

2). 

Expression (1) is valid in the microcanonical ensemble, at a 

given total energy E. However, in the canonical ensemble, as 

far as the activation energy D is small compared with the 

mean total energy of the system E, the canonical rate constant 

 Tnk RRK

evap ,  is well approximated by the microcanonical rate 

constant  Enk RRK

evap ,  [14]. The mean thermal internal energy 

is given here by TskE B . Finally, for large n, using 

  xn

n enx  1lim , the RRK evaporation rate constant 

is given by [10,11,12] 
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The Weisskopf evaporation rate 
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An alternative description of thermal evaporation, 

initially developed to describe neutron evaporation from 

nuclei, was developed by V. Weisskopf [15]. There is an 

important conceptual difference between both theories: While 

the RRK model is based on properties of the density of states 

of the “activated complex” and does not account for the 

properties of the dissociated product (when the evaporated 

atom or molecule is infinitely separated from the cluster), the 

Weisskopf model explicitly considers the density of state of 

the evaporated subunit. The Weisskopf theory satisfies the 

detailed balance principle: The evaporation rate 
evap

nW and 

the attachment rate stick

nW 1
must be linked by the following 

relation: 
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where  is the translationnal energy of the evaporated atom, 

Dn is the dissociation energy (subscript n refer here and in the 

following to the number of atoms in the cluster), En is the total 

internal energy of the cluster, and n-1, atom and  n are the 

density of states of the product cluster, the evaporated atom 

and the parent cluster, respectively. An analytic expression of 

the evaporation rate 
evap

nW  can be obtained from relation (3) 

under the following approximations [4]: n (and similarly n-

1) is calculated assuming that, as in the RRK calculation 

presented above, clusters are represented by s=3n-6 harmonic 

oscillators at the same frequency ; the density of states of the 

evaporated atom
atom  is assumed to be the translational 

density of states of a free particle of kinetic energy  in a 

volume V,  atomatom hV v8 3 , where 
atomv  is the 

velocity of the ejected atom and µ the reduced mass of the 

atom-cluster system; the attachment cross section is evaluated 

in the hard sphere approximation; rotational effects are 

neglected. Under these assumptions, the integration of relation 

(3) over all allowed energies  gives the following expression 

for the evaporation rate per unit time of a cluster of size n 

containing an internal energy E [4]:  
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where n-1 is the attachment cross section of an atom onto 

the cluster of size n-1 and Dn is the dissociation energy of a 

cluster containing n atoms. For large enough clusters 

( DDDn  
, m ), if the mean thermal internal 

energy is given by TskE B , and approximating again the 

canonical rate  Tnk
evap

,  by the microcanonical rate 

  TEnk
evap

,  [14], equation (4) becomes: 
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When applied to very small systems, expressions (1) and 

(4) are of course to be corrected to take into account the size 

variation of D  [2,16]. 

 

The bulk equilibrium vapor pressure 

The equilibrium vapor pressure is calculated assuming 

that the number of evaporated atoms per unit time is the same 

as the number of atoms attached to the cluster during the same 

time. The attachment probability is deduced from the 

attachment cross section n, calculated in the hard sphere 

approximation (thus independent of collision energy). The 

vapor of density  is described as a perfect gas. The 

attachment rate is given by: 

  atomn

stick

n nk v     (6) 

where vatom is the mean velocity of atoms. The bulk 

equilibrium vapor Psat is equal to satkBT in the perfect gas 

approximation. It is calculated here by setting 

 Tkk evap

n

stick

n   . 
stick

nk   is given by relations (6) and 

 Tk evap

n   is given by relations (2) and (5), in the RRK and 

Weisskopf approximations, respectively. Finally, the 

equilibrium vapor pressure 
RRK

satP and 
Weisskopf

satP obtained 

from RRK and Weisskopf models, respectively, are given by 

the following relations: 
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An expression similar to relation (8) is implicitly given by 

Bertsch and coworkers [17]. The most important difference 

between both expressions, beyond the difference in the 

prefactors (that are independent of temperature), is the 

temperature dependence of the last term in the exponential 

factor, equal to  Tln21  in the RRK expression and to 

 Tln21  in the Weisskopf expression. This difference in 

the temperature dependence of both models directly arises 

from the introduction of the translational density of states of 

the evaporated atoms in the Weisskopf model, thus it is 

closely related to the Weisskopf theory obeying detailed 

balance principle while RRK theory does not. Moreover, it is 

shown in appendix that the Weisskopf expression of 

 TPWeisskof

sat
 is compatible with classical thermodynamics in 

the perfect gas approximation, whereas RRK expression of 

 TPRRK

sat
 is not. 
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Another difference between Weisskopf and RRK-derived 

expressions of Psat lies in their different sensitivity to the 

energy dependence of the sticking cross section, which is not 

taken into account here. The equilibrium vapor pressure is less 

sensitive to the energy dependence of the sticking cross 

section when the Weisskopf model (or any microreversible 

model) is used, since the evaporation rate is “naturally” 

proportional to the sticking cross section, so that when writing 

the equilibrium condition (sticking rate = evaporation rate), 

the cross section (and thus its possible energy dependence) 

vanishes within the approximations used in this paper. This 

might contribute to the almost surprisingly good agreement of 

Weisskopf expression of vapor pressures with experimental 

data. This argument does not hold in the RRK approach, 

where the sticking cross section is “artificially” introduced in 

the expression of evaporation rate (see relation (2)). 

  

A widely used semi-empirical expression for vapor 

pressures is the Kirchhoff’s expression 

CTBTAP  lnln , where A,B and C  are constant 

parameters that are tabulated. It is worth noting that B is 

usually a positive constant (to very few exceptions such as 

helium) [18], which is consistent with expression (8) where 

B=+1/2, while it is in contradiction with expression (7) where 

B=-1/2. 

 

 

Comparison with experiment of calculated vapor 

pressure of sodium 

We take here the following Kirchhoff-type approximation 

of experimental vapor pressure of sodium  TPsat

exp
 [19]: 

  TTTPsat ln4672.0126339463.11ln exp   (9) 
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Fig. 1: (Colour on-line) ratio of calculated to experimental 

sodium vapor pressures. The (red online) solid line is obtained 

using Weisskopf model of evaporation and the (blue online) 

dashed line is obtained using RRK model of evaporation. The 

theoretical parameters  and D are determined from the best 

fit of experimental vapor pressures given by relation (9): 

11210845.1  sWeisskopf ;
112108.5  sRRK ;

eVDWeisskopf 0915.1 ; eVDRRK 009.1  

 

 

Figure 1 shows the ratio of the values given by expression 

(9) to the values calculated using relations (7) and (8), in the 

RRK and Weisskopf approximations, respectively. The 

comparison spans the whole temperature range from sodium 

melting temperature (370 K) up to its critical temperature 

(2500K). The value of r0  used in relation (7) is 2Å [16]. The 

two free parameters  and D  are determined by a best fit 

approximation of expression (9).  Using the Weisskopf 

approximation of  TPsat

exp
, the best fit parameters are 

11210845.1  s  and eVD 0915.1 ; in the RRK 

approximation, the best fit values are 
112108.5  s  and 

eVD 009.1 . These parameters are in agreement with 

expected values : the D values are not far from the cohesive 

energy of bulk sodium (D= 1.13 eV/atom [16]), and the   

values are compatible with the ones used in Weisskopf or 

RRK models to account for evaporation rates of free sodium 

clusters (the phonon frequency of the solid  
112101.3  s  is used in reference [2], and the value 

1121035.2  s  is taken in reference [16]; the exact value 

of   is not crucial in modelizing clusters evaporation rates). 

Figure 1 shows very clearly that the Weisskopf expression of 

vapor pressure given by relation (8) is in much better 

agreement with experiment that RRK’s one given by relation 

(7). The discrepancy between the RRK curve and the 

experimental curve is much larger than the uncertainty on the 

approximation given by relation (9) of experimental data [19].  

 

Conclusion 

The calculation of bulk vapor pressure from RRK and 

Weisskopf models, respectively, has been exemplified here in 

the case of sodium, for which small clusters evaporation 

properties are well documented. It is shown that the bulk 

equilibrium vapor pressures of sodium calculated using 

Weisskopf model are in better agreement with experimental 

data than the ones obtained using RRK model. It is 

demonstrated that the violation of detailed balance principle 

by RRK theory makes it inconsistent with classical 

thermodynamics and is certainly responsible of the poor 

agreement with the experimental data. The free parameters of 

microscopic evaporation models, namely the vibrational 

frequency of the cluster   and its dissociation energy D , 

can be deduced from experimental equilibrium vapor 

pressures. The values found for sodium using Weisskopf 

model, eVD 09.1  and 
11210845.1  s , are very 

realistic. The method used here to deduce them from 

experimental equilibrium vapor pressures is a convenient way 

to calibrate them. The variation with temperature of the latent 



 

 

heat of evaporation given by classical thermodynamics is the 

same as the one deduced from Weisskopf theory, whereas it is 

not compatible with the one deduced from RRK theory (see 

appendix). Contrary to the RRK analytical expression of the 

bulk vapor pressure, the Weisskopf expression of the vapor 

pressure is compatible with the Kirchhoff expression for most 

compounds. Finally, it is shown that, when a simple 

expression is needed, an expression of the form 

 TkBTA Bexp  seems to be preferable to an expression 

of the form  TkBA Bexp (where A and B do not depend 

on temperature in both cases) to evaluate the evaporation 

probability of a substance, especially when multiscale 

reliability from microscopic scale to macroscopic scale is 

required. 

 

 

Appendix 

The temperature dependence of the latent heat of 

evaporation L(T) can be calculated from Weisskopf and RRK 

evaporation rate and using the Clausius-Clapeyron relation. It 

is shown below that LWeisskopf(T) deduced from the Weisskopf 

expression of evaporation rate is in agreement with classical 

thermodynamics (at the same approximation level as in the 

Weisskopf model concerning the description of the cluster and 

the vapor), whereas LRRK(T) is not. 

Considering the vapor as a perfect gas and neglecting the 

variation of volume of the condensed phase, the Clausius-

Clapeyron gives the following relation between the latent heat 

of evaporation L and the temperature dependence of 

equilibrium vapor pressure Pvap: 

dT

Pd
TkL

vap

B

ln
2     (a) 

Using this relation, the expression of LWeisskopf and  LRRK 

can be deduced from relations (7) and (8), respectively: 

   TkDTL B

Weisskopf 21    (b) 

  TkDTL B

RRK 21    (c) 

Classical thermodynamics, in the perfect gas 

approximation, gives the following temperature dependence 

of the latent heat: 

     TCCLTL cluster

p

vapor

p

classical  0  

which is easily calculated for a cluster-perfect gas system 

from the following relations: 

  DL 0  

  B

cluster

v

cluster

pBcluster kCCTknE 363 

BB

vapor

v

vapor

p kkCC 25  

Finally,   TkDTL B

classical 21 , which is the 

same expression as  TLWeisskopf
 given above by relation 

(b). 
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