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Le déterminant jacobien (d'après Brezis et Nguyen)

Introduction

Récemment, Brezis et Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF][START_REF] Brezis | On the distributional Jacobian of maps from S N into S N in fractional Sobolev and Hölder spaces[END_REF] ont décrit les espaces fonctionnels permettant de définir, de manière robuste, la distribution jacobien. Leurs résultats unifient les résultats connus auparavant. Par ailleurs, [START_REF] Brezis | The Jacobian determinant revisited[END_REF] et [START_REF] Brezis | On the distributional Jacobian of maps from S N into S N in fractional Sobolev and Hölder spaces[END_REF] apportent un nouvel éclairage au théorème classique de Reshetnyak sur la compacité faible des jacobiens [START_REF]RESHETNYAK -Mappings with bounded distortion as extremals of integrals of Dirichlet type[END_REF]. Dans ces travaux, un rôle important est joué par plusieurs identités faisant intervenir la structure algébrique du jacobien. De ce point de vue, ces travaux s'inscrivent dans une longue série de résultats qui utilisent de manière cruciale la structure particulière du déterminant jacobien. Dans la suite, je présenterai quelques-uns des résultats marquants dans cette direction, des travaux de Morrey [START_REF] Ch | Multiple integrals in the calculus of variations[END_REF] et Reshetnyak [START_REF]RESHETNYAK -Mappings with bounded distortion as extremals of integrals of Dirichlet type[END_REF] à ceux de Brezis et Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF] et [START_REF] Brezis | On the distributional Jacobian of maps from S N into S N in fractional Sobolev and Hölder spaces[END_REF].

Le jacobien des fonctions peu régulières

Si u = (u 1 , . . . , u n ) ∈ C 1 (Ω, R n ), avec Ω ouvert de R n , alors son (déterminant) jacobien est Ju = det(∇u 1 , . . . , ∇u n ) = det(∇u) = det (∂ k u i ) i,k∈ 1,n . 1 Il est souvent nécessaire de considérer la quantité Ju lorsque u n'est pas C 1 . Voici trois exemples.

Applications à distorsion bornée

Les applications quasiconformes furent introduites par Grötzsch [START_REF]GRÖTZSCH -Über einige Extremalprobleme der konformen Abbildung. I, II[END_REF] en 1928. 2 Son point de départ est le suivant : il est impossible de représenter de manière conforme un carré C sur un rectangle R qui n'est pas un carré tout en envoyant les sommets sur les sommets. Grötzsch chercha à mesurer la non conformité (= distorsion) d'une application en considérant une représentation u : C → R qui fasse se correspondre les sommets et qui soit « la plus conforme » possible. Les applications quasiconformes sont les applications dont la non conformité est finie. En langage moderne, une application quasiconforme est u : Ω → R 2 (avec Ω ⊂ R 2 ouvert) telle que 1. u est un homéomorphisme ; 2. Mais pas le terme quasiconforme. Celui-ci fut proposé par Ahlfors [START_REF] Mironescu | AHLFORS -Zur Theorie der Überlagerungsflächen[END_REF] en 1935.

3. W 1,p (Ω) désigne l'espace de Sobolev W 1,p (Ω) = {u ∈ L p (Ω) ; du ∈ L p (Ω)}. W Le coefficient K ≥ 1 mesure la distorsion. Les représentations conformes sont des exemples d'applications quasiconformes. Un autre exemple est z → |z| α-1 z, avec α > 0. Notons que, dans le cas des applications quasiconformes, parler du jacobien Ju ne pose, a priori, pas de problème : on a Ju ∈ L 1 loc , et donc Ju est bien défini comme distribution. C'est Lavrent'ev [START_REF] Lavrent | EV -Sur une classe de représentations continues[END_REF] qui, dans ses travaux sur l'équation de Beltrami ∂ z f = µ∂ z f (dans un ouvert de R 2 ), considéra des applications à distorsion bornée ; ce sont des généralisations des applications quasiconformes dont nous donnerons la définition plus loin. C'est toujours Lavrent'ev [START_REF] Lavrent | EV -Sur un critère différentiel des transformations homéomorphes des domaines à trois dimensions[END_REF] qui eut, le premier, l'intuition du rôle important que pouvait jouer les applications quasiconformes en dimension quelconque. Reshetnyak [START_REF]RESHETNYAK -Estimates of the modulus of continuity for certain mappings, Sibirsk[END_REF] initia l'étude des applications à distorsion bornée (en toute dimension), dont la définition est :

1. u continue ; 2. u ∈ W 1,n loc (Ω), avec Ω ⊂ R n ouvert. Ju est de signe constant p. p. ; 3. sup |h|≤1 |du(h)| n ≤ K|Ju|.
La monographie de Reshetnyak [START_REF]RESHETNYAK -Space mappings with bounded distortion[END_REF] donne un aperçu de la théorie des applications à distorsion bornée. Pour la théorie des applications quasiconformes et ses applications géométriques, voir le grand classique d'Ahlfors [START_REF]AHLFORS -Lectures on quasiconformal mappings[END_REF] ou la monographie récente [START_REF] Fletcher | MARKOVIC -Quasiconformal maps and Teichmüller theory[END_REF].

Élasticité

En mécanique, une déformation est une application ϕ : Ω → R 3 injective et qui préserve l'orientation (avec Ω ⊂ R 3 ouvert). Sous réserve de régularité suffisante de ϕ, cette dernière condition s'écrit Jϕ > 0. À la place de ϕ, il est plus commode de travailler avec u = ϕ -Id, qui est le déplacement. Souvent, u est obtenu en minimisant l'énergie associée au problème, et il peut arriver que la régularité de u soit a priori trop faible pour définir J(Id + u) de manière robuste. À titre d'exemple, prenons une forme simplifiée du système de l'élasticité linéarisée. 4 Dans ce cas, u est obtenu comme solution du problème

inf λ 2 ˆΩ(div v) 2 + µ 4 i,k ˆΩ(∂ i v k + ∂ k v i ) 2 -T(v) ; v ∈ W 1,2 (Ω), tr v = 0 sur Γ 0 .
Ici, Ω ⊂ R 3 est suffisamment régulier, λ, µ > 0 sont des constantes élastiques, Γ 0 est une partie de mesure superficielle > 0 du ∂Ω, et T ∈ H -1 (Ω). D'après l'inégalité de Korn [START_REF] Korn | Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas où les efforts sont donnés à la surface[END_REF][START_REF] Korn | Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen[END_REF], l'infimum est atteint, mais a priori u n'est pas mieux que W 1,2 (Ω). Pour un tel u, quel sens donner à la quantité J(Id + u) ? Une première idée est de la regarder comme une quantité définie p. p. Dans ce cas, le jacobien vit dans l'espace L 2/3 (Ω), et en particulier il ne s'agit pas d'une distribution. Une autre approche consiste à utiliser une identité qui se trouve dans Morrey [START_REF] Ch | Multiple integrals in the calculus of variations[END_REF]Lemma 4.4.6], mais était probablement connue avant. 5 Plus spécifiquement, si u est régulière, alors on a :

si n = 2 : Ju = ∂ 1 (u 1 ∂ 2 u 2 ) -∂ 2 (u 1 ∂ 1 u 2 ) = 1 2 ∂ 1 det(u, ∂ 2 u) + 1 2 ∂ 2 det(∂ 1 u, u), et, en toute dimension, Ju = n k=1 ∂ k u i C k i = 1 n n k=1 ∂ k det(∂ 1 u, . . . , ∂ k-1 u, u, ∂ k+1 u, . . . , ∂ n u), (2.1) 
où (C k i ) i,k∈ 1,n est la matrice des cofacteurs de la matrice ∇u. De manière équivalente, on a 

div (C k i ) k∈ 1,n = k ∂ k C k i = 0, ∀ i ∈ 1, n . ( 2 
(Ω) ∩ L q loc (Ω), avec n -1 p + 1 q = 1.
Après intégration par parties, la définition revient à [START_REF]BALL -Convexity conditions and existence theorems in nonlinear elasticity[END_REF]. Son article a ouvert de nombreuses voies, et plusieurs résultats dont il sera question plus loin sont directement inspirés par [START_REF]BALL -Convexity conditions and existence theorems in nonlinear elasticity[END_REF].

Ju(ϕ) = - n k=1 ˆΩ det(∂ 1 u, . . . , ∂ k-1 u, u, ∂ k+1 u, . . . , ∂ n u) ∂ k ϕ, ∀ ϕ ∈ C ∞ c (Ω). ( 2 

Cristaux liquides

Un cristal liquide est un état de la matière intermédiaire entre le solide et le fluide isotrope [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF]. La modélisation mathématique des cristaux liquides fait intervenir les Q-tenseurs [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF] ; leur analyse est délicate, ce qui explique le succès d'un modèle très simplifié, celui d'Oseen et Frank [START_REF]OSEEN -Beiträge zur Theorie anisotroper Flüssigkeiten[END_REF][START_REF] Frank | On the theory of liquid crystals[END_REF]. Selon ce modèle, 7 un cristal liquide en équilibre est une application u : Ω → S 2 (avec Ω ouvert borné régulier de R 3 ) minimisant de l'énergie de Dirichlet ˆΩ |∇u| 2 par rapport à sa propre condition aux limites, g ∈ C ∞ (∂Ω; S 2 ). D'après un résultat profond de Schoen et Uhlenbeck [START_REF] Schoen | UHLENBECK -A regularity theory for harmonic maps[END_REF][START_REF] Schoen | UHLENBECK -Boundary regularity and the Dirichlet problem for harmonic maps[END_REF], u est régulière sauf en un nombre fini de points a 1 , . . . , a k . Brezis, Coron et Lieb [START_REF] Brezis | LIEB -Harmonic maps with defects[END_REF] ont découvert que, si u ∈ W 1,2 (Ω; S 2 ) est régulière sauf en un nombre fini de points, alors son jacobien, défini par (2.1), « entend » les singularités de u : Ju = 4π 3 d j δ a j . Ici, la somme se fait sur les singularités a j de u, et l'entier d j est le degré topologique de u sur une petite sphère autour de a j . 8 Dans le cas particulier où u(x) = x |x| , ceci avait été remarqué par Ball [START_REF]BALL -Convexity conditions and existence theorems in nonlinear elasticity[END_REF]. Par ailleurs, le déterminant det(∇u) vaut 0 presque partout (en fait, en dehors des singularités), et donc n'entend rien. 9 Raison de plus de considérer que le bon jacobien est donné par (2.1) !

Compacité

On doit à Reshetnyak [START_REF]RESHETNYAK -Mappings with bounded distortion as extremals of integrals of Dirichlet type[END_REF] ce surprenant résultat.

3.1 Théorème. Soit (u j ) ⊂ W 1,n (Ω), avec Ω ouvert de R n . Si u j u, alors Ju j → Ju au sens des distributions.

Notons que la convergence est due à la structure spéciale du jacobien ; elle n'a pas lieu pour un terme de la forme ∂ 1 u 1 j . . . ∂ n u n j . 10 6. Hypothèse raisonnable, car le déplacement u est censé être petit. 7. Dans sa forme la plus simple : approximation à une constante élastique et condition d'ancrage. 8. Par un argument d'homotopie, d j ne dépend pas de la sphère. 9. Preuve : si u ∈ C ∞ au voisinage de x, alors les dérivées ∂ j u(x) sont orthogonales à u(x), ce qui s'obtient en dérivant la relation |u| 2 ≡ 1. Il s'ensuit que ces dérivées ne sont pas indépendantes. On obtient det(∇u) = 0 p. p. On se servira de ce fait dans la section 5.

10. Prendre n = 2, u j (x 1 , x 2 ) = 1 j (sin( jx 1 ) cos( jx 2 ), cos( jx 2 ) sin( jx 1 )).
Démonstration. On montre, par récurrence sur l ∈ 1, n , que

ˆΩ du 1 j ∧ . . . ∧ du l j ∧ ϕ → ˆΩ du 1 ∧ . . . ∧ du l ∧ ϕ, ∀ ϕ ∈ L n/(n-l) (Ω; Λ n-l (R n )).
Le cas l = n donne la conclusion ; le cas l = 1 est clair. Le cas l = 2 est déjà générique. Pour le traiter, on part de

ˆΩ du 1 j ∧ du 2 j ∧ ϕ = -ˆΩ du 1 j ∧ (u 2 j d ϕ), ∀ ϕ ∈ C ∞ c (Ω; Λ n-2 (R n )).
De par le théorème de Rellich-Kondratchov, la parenthèse converge fortement dans L n (Ω) vers u 2 d ϕ, ce qui permet de conclure. 11 Le même argument donne : si ∇u j ∇u dans

L p loc (Ω) et u j → u dans L q loc (Ω), avec n -1 p + 1 q = 1,
alors Ju j → Ju dans D (Ω). Cas particulier : si p > p n , alors on a convergence sous la seule hypothèse u j u dans W 1,p loc . En effet, dans ce cas l'injection W 1,p loc → L q loc est compacte. Il est nécessaire de supposer au moins une convergence forte afin de conclure. En effet, Dacorogna et Murat [START_REF] Dacorogna | On the optimality of certain Sobolev exponents for the weak continuity of determinants[END_REF] ont construit une suite bornée dans W 1,p n (Ω), avec u j u mais Ju j → Ju. Cette construction a été généralisée par Brezis et Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF].

Proposition

. Si 1 ≤ p ≤ p n et n -1 p + 1 q = 1 
, alors il existe u et une suite (u j ) tels que u j u dans W 1,p ∩ L q , mais Ju j → Ju.

Démonstration. La preuve est basée sur la construction du dipôle, qui remonte à Brezis, Coron et Lieb [START_REF] Brezis | LIEB -Harmonic maps with defects[END_REF]. Exemple en dimension 2 : on considère le losange L a,b de sommets (0, 0), ( 

dans W 1,p ∩ L q (B R 2 (0, 1)) et J u a,b /c → ∂ 1 δ 0 .
Retour au théorème de Reshetnyak. Sa preuve n'est pas explicite : elle ne donne pas la vitesse de convergence. Brezis et Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF] ont découvert une inégalité qui permet de retrouver en une ligne le théorème de Reshetnyak.

Théorème

. Si u, v ∈ W 1,p ∩ L q (Ω), avec Ω ⊂ R n et n -1 p + 1 q = 1, alors Ju(ϕ) -Jv(ϕ) u -v L q ( ∇u n-1 L p + ∇v n-1 L p ) ∇ϕ L ∞ . 12 (3.1)
Démonstration. La première égalité de (2.1) combinée avec l'identité

det(a 1 , . . . , a n ) -det(b 1 , . . . , b n ) = n k=1 det(b 1 , . . . , b k-1 , a k -b k , a k+1 , . . . , a n ), (3.2) 
donne

Ju(ϕ) -Jv(ϕ) = - n k=1 ˆΩ(u k -v k ) det(∇v 1 , . . . , ∇v k-1 , ∇ϕ, ∇u k+1 , . . . , ∇u n ). (3.3)
On conclut grâce à l'inégalité de Hölder. Un argument similaire donne

Ju(ϕ) -Jv(ϕ) ∇u -∇v L p ( ∇u n-2 L p + ∇v n-2 L p )( u L q + v L q ) ∇ϕ L ∞ .
11. Au vu de (2.1), la preuve est intuitive : on a u n j → u n dans L n (Ω). Avec des notations naturelles, il reste à montrer que

C k, j n C k n dans L n/(n-1) (Ω).
Le théorème 3.3 peut être amélioré dans le cas p = n -1, q = ∞, mais ceci nécessite une excursion dans le monde des espaces de Hardy.

À l'origine de ce détour, il y a un étonnant théorème de Müller [START_REF] Müller | Higher integrability of determinants and weak convergence in L 1[END_REF].

3.4 Théorème. Si u ∈ W 1,n (Ω), avec Ω ⊂ R n , et si w = Ju ≥ 0, alors la fonction w ln(2 + w) est localement intégrable.

Démonstration. La preuve de Müller est basée sur un argument géométrique, plus spécifiquement sur l'inégalité suivante

ˆBR n (0,1) Ju ˆSn-1 n i,k=1 |C k i | n/(n-1) , ∀ u ∈ C ∞ ( BR n (0, 1); R n ), (3.4) 
à parfum d'inégalité isopérimétrique. 13 En utilisant (3.4) sur une boule B(x, ρ) et en intégrant par rapport à ρ ∈ (R, 2R), avec 0 < R < 1 2 dist (x, ∂Ω), on obtient, grâce à la positivité de w :

B(x,R) w B(x,2R) n i,k=1 |C k i | n/(n-1) M (|∇u| n-1 )(x) n/(n-1) ; (3.5)
ici, M est la fonction maximale de Hardy-Littlewood,

M f (x) = sup 0<r<dist (x,∂Ω) B(x,r) | f (y)| d y.
Par un argument standard, (3.5) reste vraie pour tout 1) , le théorème de la fonction maximale donne M (|∇u| n-1 ) ∈ L n/(n-1) . Ce fait, combiné avec (3.5), implique M w ∈ L 1 loc . Il s'ensuit que w ln(2 + w) ∈ L 1 loc . 14 Le résultat de Müller mena à deux directions de recherche. D'une part, trouver d'autres situations d'intégrabilité « améliorée » du jacobien (compris au sens ponctuel). Dans cette direction, citons deux résultats.

u ∈ W 1,n . Comme |∇u| n-1 ∈ L n/(n-

Théorème.

Soient Ω un ouvert borné de R n et u ∈ W 1,1 (Ω) telle que ˆΩ |∇u| = 1 et w = det(∇u) ≥ 0 p. p. 15 Soit K un compact de Ω.

1) (Iwaniec et Sbordone [START_REF] Iwaniec | SBORDONE -On the integrability of the Jacobian under minimal hypotheses[END_REF]) On a

ˆK w ˆΩ |∇u| n ln(2 + |∇u|) . ( 3.6) 
2) (Brezis, Fusco et Sbordone [START_REF] Brezis | SBORDONE -Integrability for the Jacobian of orientation preserving mappings[END_REF]) 

Pour 0 < α < 1, on a ˆK w ln α (2 + w) ˆΩ |∇u| n ln 1-α (2 + |∇u|) . ( 3 
Ju = 1 2 ˆS1 u - S 1 u ∧ ∂u ∂τ ≤ 1 2 u - S 1 u L ∞ (S 1 ) ˆS1 |∇u| ˆS1 |∇u| 2 .
On notera que c'est encore une intégration par parties ! 14. L'implication

M f ∈ L 1 loc =⇒ f ln(2 + | f |) ∈ L 1
loc est connue sous le nom de lemme de Stein [START_REF]STEIN -Note on the class L log L[END_REF]. 15. A priori, ici w est juste une fonction mesurable, pas une distribution.

Démonstration. Ces deux résultats seraient des conséquences immédiates de (3.5) et des propriétés standard de la fonction maximale. Mais je ne sais pas si (3.5) reste vraie si, au lieu de supposer u ∈ W 1,n , on suppose uniquement la finitude du membre de droite de (3.6) ou (3.7). La preuve repose sur une forme plus faible de (3.5) qui, elle, est vraie sous cette hypothèse. Plus spécifiquement, on a

B(x,R) w M (|∇u| n 2 /(n+1) )(x) (n+1)/n
. 16 (3.8)

Fin de la preuve : par une généralisation bien connue du théorème de la fonction maximale [START_REF] Bennett | RUDNICK -On Lorentz-Zygmund spaces[END_REF], on a 

ˆΩ (M η) p ln 1-α (2 + M η) ∼ ˆΩ η p ln 1-α (2 + η) , ∀ p > 1, ∀ 0 ≤ α ≤ 1. ( 3 
ˆΩ |η| ln α (2 + |η|) ˆΩ M η ln 1-α (2 + M η) , ∀ 0 < α ≤ 1, si Ω |η| = 1.
Dans une autre direction, un célèbre résultat de Coifman, Lions, Meyer et Semmes [START_REF] Coifman | SEMMES -Compensated compactness and Hardy spaces[END_REF] apporta un nouvel éclairage au théorème de Müller. Avant de le formuler, revenons à (2.1) et notons que, si

u ∈ W 1,n (R n ), alors Ju = A • B, avec A = ∇u 1 ∈ L n vérifiant rot A = 0 et B = (C k 1 )
k∈ 1,n ∈ L n/(n-1) satisfaisant div B = 0. 17 Rappelons aussi la définition de l'espace de Hardy réel H 1 (R n ), introduit par Stein et Weiss [START_REF] Stein | On the theory of harmonic functions of several variables, I. The theory of H p -spaces[END_REF] :

H 1 (R n ) = { f ∈ L 1 (R n ) ; M ρ f = sup ε>0 | f * ρ ε | ∈ L 1 (R n )} ; ici, ρ est un noyau régularisant et ρ ε (x) = 1 ε n ρ x ε . H 1 (R n ) est muni de la norme f H 1 = M ρ f L 1 .
L'un des résultats de [START_REF] Coifman | SEMMES -Compensated compactness and Hardy spaces[END_REF] est

3.6 Théorème. Soient 1 < p, q < ∞, avec 1 p + 1 q = 1. Si A ∈ L p (R n ), B ∈ L q (R n ) vérifient rot A = 0 et div B = 0, alors A • B ∈ H 1 (R n ). Démonstration. Soient 1 < a ≤ p, 1 < b ≤ q tels que 1 a + 1 b = 1 + 1 n . L'hypothèse rot A = 0 permet d'écrire A = ∇ f . En utilisant la condition div B = 0, on obtient w := A • B = div ( f B) dans D (R n ). En 17.
Ce point de vue permet de faire le lien entre le théorème de Reshetnyak et la compacité par compensation développée par Tartar [START_REF]TARTAR -Compensated compactness and applications to partial differential equations[END_REF][START_REF]TARTAR -The compensated compactness method applied to systems of conservation laws[END_REF][START_REF] Tartar | Remarks on oscillations and Stokes' equation[END_REF] et Murat [START_REF] Murat | Compacité par compensation[END_REF][START_REF] Murat | Compacité par compensation, II[END_REF][START_REF] Murat | Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant[END_REF] à partir de 1978. En effet, avec des notations naturelles, la preuve du théorème de Reshetnyak suit le schéma A j A, B j B =⇒ A j •B j → A •B, ce qui est un cas très particulier de la compacité par compensation.

supposant supp ρ ⊂ B R n (0, 1), on a 18

|w * ρ ε (x)| = n j=1 ( f B j ) * ∂ j (ρ ε )(x) = 1 ε n+1 n j=1 ˆBR n (x,ε) ∂ j ρ x -y ε f (y) - B R n (x,ε) f B j (y) d y 1 ε   B R n (x,ε) f - B R n (x,ε) f b/(b-1)   (b-1)/b B R n (x,ε) |B| b 1/b B R n (x,ε) |∇ f | a 1/a B R n (x,ε) |B| b 1/b , (3.11) 
la dernière ligne découlant de l'inégalité de Poincaré. On obtient

M ρ w(x) M (|∇ f | a ) 1/a M (|B| b ) 1/b = M (|A| a ) 1/a M (|B| b ) 1/b . (3.12)
Le théorème de la fonction maximale, combiné avec l'inégalité de Hölder donne alors

M ρ w L 1 (R n ) A L p (R n ) B L q (R n ) . (3.13) 3.7 Corollaire. Soient u j ∈ W 1,p j (R n ), j ∈ 1, n , avec 1 < p 1 < ∞ et n j=1 1 p j =1. Alors Ju ∈ H 1 (R n ).

De plus, on a

Ju

H 1 n j=1 ∇u j L p j (R n ) . (3.14) 
Ce corollaire implique le théorème de Müller : si Ju ≥ 0 dans un ouvert Ω ⊂ R n , alors M (Ju) ∈ L 1 loc (Ω), et on conclut grâce au lemme de Stein. Avant d'aller plus loin, rappelons que, d'après un résultat célèbre de Fefferman [START_REF]FEFFERMAN -Characterizations of bounded mean oscillation[END_REF], le dual de H 1 (R n ) est BMO(R n ). Cet espace, introduit par John [START_REF]JOHN -Rotation and strain[END_REF] et étudié initialement par John et Nirenberg [START_REF] John | NIRENBERG -On functions of bounded mean oscillation[END_REF], est normé (modulo des constantes) par

| f | BMO = sup C f (x) - C f dx ; C ⊂ R n cube . L'espace BMO(R n ) est (strictement) plus grand que L ∞ (R n ). Plus précisément, on a L ∞ (R n )/R → BMO(R n ).
Retour au théorème 3.3. Dans le cas particulier p = n -1, q = ∞, Brezis et Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF] ont obtenu l'amélioration suivante.

Théorème. Soit n

≥ 3. 1) On peut définir Ju via (2.3) si u ∈ W 1,n-1 ∩ BMO(R n ). 2) On a Ju(ϕ) -Jv(ϕ) |u -v| BMO ( ∇u n-1 L n-1 + ∇v n-1 L n-1 ) ∇ϕ L ∞ . 19 (3.15)
Démonstration. On part de (3.3). Le corollaire 3.7 combiné avec la dualité

H 1 (R n )-BMO(R n ) donne Ju(ϕ) -Jv(ϕ) ≤ n k=1 |u k -v k | BMO det(∇v 1 , . . . , ∇v k-1 , ∇ϕ, ∇u k+1 , . . . , ∇u n ) H 1 |u -v| BMO ( ∇u n-1 L n-1 + ∇v n-1 L n-1
) ∇ϕ L ∞ . 1) s'obtient de (3.15) en prenant v = 0. 20 18. Encore par une intégration par parties ! 20. Si n = 2, la preuve ne marche plus. Par ailleurs, il n'est pas connu s'il est possible ou non de définir Ju pour

u ∈ W 1,1 ∩ BMO(R 2 ).
4 Définition de Ju... ...ou l'art de l'intégration par parties. 21 Les formules (2.1) ou (2.3) permettent de définir Ju si u ∈ W 1,p ∩ L q , avec n -1 p + 1 q = 1. Ceci mène naturellement à deux questions : s'il y a un cadre commun contenant tous ces cas, et s'il est possible d'aller au-delà de ces espaces. Les réponses de Brezis et Nguyen [START_REF] Brezis | The Jacobian determinant revisited[END_REF] font appel aux espaces de Sobolev fractionnaires (ou espaces de Slobodeskii) W s,p (Ω). Si 0 < s < 1, 1 ≤ p < ∞ et Ω est borné régulier, alors ces espaces sont normés modulo les constantes par

|u| W s,p = Ω×Ω |u(x) -u(y)| p |x -y| n+sp dxd y 1/p .

Théorème ([15]

). Soit Ω ⊂ R n un ouvert borné régulier. 1) On peut définir de manière robuste Ju pour u ∈ W 1-1/n,n (Ω).

2) L'espace W 1-1/n,n (Ω) est optimal.

Traduction : l'application u → Ju, définie a priori pour u ∈ C ∞ (Ω), se prolonge par continuité + densité à tout l'espace W 1-1/n,n (Ω), à valeurs D (Ω). Par ailleurs, ce résultat devient faux si on remplace W 1-1/n,n (Ω) par un espace de Sobolev W s,p (Ω) qui n'est pas contenu dans W 1-1/n,n (Ω).

Avant de passer à la preuve, quelques commentaires. Les inégalités de Gagliardo-Nirenberg pour les espaces de Sobolev 22 donnent

|u| W 1-1/n,n u 1/n L q ∇u 1-1/n L p , ∀ u ∈ C ∞ c (R n ), n -1 p + 1 q = 1, (4.1) 
à l'exception notable du cas n = 2, p = 1, q = ∞, pour lequel cette inégalité est fausse. Ainsi, l'espace W 1-1/n,n est contenu dans W 1,p ∩ L q dans tous les cas où on sait définir le jacobien Ju via (2.1) (sauf le cas exceptionnel ci-dessus). Par ailleurs, l'estimation (4.4) qui vient avec la preuve du théorème 4.1, combinée avec (4.1), permet d'affiner (3.1).

De même, il est possible de retrouver le théorème 3.8 à partir du théorème 4.1 et de l'inégalité suivante à la Gagliardo-Nirenberg

|u| W 1-1/n,n |u| 1/n BMO ∇u 1-1/n L n-1 , ∀ u ∈ C ∞ c (R n ), ∀ n ≥ 3. 23 (4.2)
Intuitivement, une fonction de W s,p a s dérivées dans L p . Il existe d'autres espaces de fonctions qui s'interprètent naturellement comme espaces de fonctions ayant un nombre fractionnaire de dérivées dans L p : les espaces de Besov ou de Bessel (ou plus généralement de Lizorkin-Triebel). L'existence du jacobien dans les espaces de Besov a été étudiée par Youssfi [START_REF]YOUSSFI -Bilinear operators and the Jacobian-determinant on Besov spaces[END_REF] ; dans les espaces de Bessel par Sickel et Youssfi [START_REF] Sickel | YOUSSFI -The characterisation of the regularity of the Jacobian determinant in the framework of potential spaces[END_REF][START_REF] Sickel | YOUSSFI -The characterization of the regularity of the Jacobian determinant in the framework of Bessel potential spaces on domains[END_REF]. Leurs résultats, dont les preuves sont assez sophistiquées, sont des cas particuliers du théorème 4.1.

Démonstration du Théorème 4.1. 1) La possibilité de définir Ju est encore une histoire d'intégration par parties. Le point de départ est une identité qui remonte à [START_REF] Bourgain | MIRONESCU -H 1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg-Landau equation[END_REF] (voir aussi [START_REF] Hang | LIN -A remark on the Jacobians[END_REF]) : si

U ∈ C 1 (Ω × (0, 1); R n ) est une extension de u ∈ C 1 (Ω; R n ), et si Φ ∈ C 1 c (Ω × [0, 1); R) est une extension de ϕ ∈ C 1 c (Ω; R), alors ˆΩ det(∇u) ϕ = n+1 k=1 ˆΩ×(0,1) D k (U)∂ k Φ, (4.3) 
21. J'ai emprunté ce joli titre à Iwaniec [START_REF]IWANIEC -Null Lagrangians, the art of integration by parts, in The interaction of analysis and geometry[END_REF]. 22. Dues à Gagliardo [START_REF]GAGLIARDO -Ulteriori proprietà di alcune classi di funzioni in più variabili[END_REF] et Nirenberg [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] pour le cas d'un nombre entier de dérivées, et à Jawerth [START_REF]JAWERTH -Some observations on Besov and Lizorkin-Triebel spaces[END_REF] pour le cas général. où

D k (U) = (-1) n-k det(∂ 1 U, . . . , ∂ k-1 U, ∂ k+1 U, . . . , ∂ n+1 U), ∀ k ∈ 1, n , et D n+1 (U) = -det(∂ 1 U, . . . , ∂ n U).
On peut choisir Φ de sorte que ∇Φ L ∞ ∇ϕ L ∞ . Par ailleurs, la théorie des traces [START_REF]GAGLIARDO -Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili[END_REF] permet de choisir U tel que ∇U L n |u| W 1-1/n,n . On trouve

ˆΩ det(∇u) ϕ |u| n W 1-1/n,n ∇ϕ L ∞ .
On conclut de manière standard, par densité.

Par ailleurs, une identité à la (3.2) donne

|Ju(ϕ) -Jv(ϕ)| |u -v| W 1-1/n,n (|u| n-1 W 1-1/n,n + |v| n-1 W 1-1/n,n ) ∇ϕ L ∞ . ( 4.4) 
2) Dans la preuve de l'optimalité, le cas délicat est s = 1 -1/n et p > n. 24 25 Ce cas est traité en adaptant, au cas des espaces fractionnaires, un exemple « oscillant » classique dans l'étude du jacobien, dont l'idée remonte à Tartar et qui apparaît chez Murat [45,p. 252] et Ball et Murat [START_REF] Ball | MURAT -W 1,p -quasiconvexity and variational problems for multiple integrals[END_REF]Counterexample 7.3].

Un dernier résultat pour conclure cette partie : dans les cas où Ju peut être défini via (2.1), Ju est mieux qu'une distribution « quelconque » : on a Ju ∈ div L 1 . Le même résultat est vrai si u ∈ W 1-1/n,n [START_REF] Bourgain | MIRONESCU -H 1/2 maps with values into the circle : minimal connections, lifting, and the Ginzburg-Landau equation[END_REF][START_REF] Brezis | The Jacobian determinant revisited[END_REF]. La preuve se fait ainsi : on utilise (4.3) avec un Φ de la forme Φ(x,

x n+1 ) = ϕ(x)ζ(x n+1 ). Le théorème de Fubini donne Ju(ϕ) = n k=1 ˆΩ v k ∂ k ϕ + ˆΩ v n+1 ϕ, avec v k ∈ L 1 , k ∈ 1, n + 1 . Pour conclure, il suffit d'écrire v n+1 comme la divergence d'un champ L 1 .

Applications à valeurs dans une sphère

Si u ∈ C 1 (S n ; S n ), alors son degré de Brouwer est donné par la formule de Kronecker

deg u = S n det(du) = S n det(∇u, u). (5.1) 
Dans la première intégrale, u est regardée comme une application à valeurs S n , et le déterminant est celui d'une matrice n × n ; dans la deuxième, u est considérée comme une application à valeurs R n+1 , et le déterminant est celui d'une matrice (n + 1) × (n + 1). Le thème de cette section est la façon de donner un sens à (5.1) ou à des quantités similaires pour des fonctions peu régulières. 26 Pour commencer : via (5.1), on peut définir de manière robuste [START_REF] Frank | On the theory of liquid crystals[END_REF]. Les autres cas se traitent essentiellement par un argument de changement d'échelle. 25. Petite remarque au passage : on interprète W s,p comme un espace de fonctions ayant s dérivées dans L p . Mais cette interprétation a ses limites. Exemple : si p > q, s est entier et Ω est borné, alors W s,p (Ω) → W s,q (Ω). Mais ceci est faux si s n'est pas entier [41]. En particulier, W 1-1/n,p (Ω) → W 1-1/n,n (Ω) si p > n.

26. L'une des motivations est la possibilité d'entendre les singularités des applications à valeurs sphères, à l'instar de ce qui a été évoqué dans la section 2 pour les cristaux liquides. Ce point ne sera pas développé ici, mais voir, à ce sujet, [START_REF] Alberti | ORLANDI -Functions with prescribed singularities[END_REF] ou [START_REF] Bourgain | MIRONESCU -Lifting, degree, and distributional Jacobian revisited[END_REF]. deg u si u ∈ W 1,n (S n ; R n+1 ). On peut faire un peu mieux si on part de la remarque suivante : si V ∈ C 1 (B R n+1 (0, 1); R n+1 ) est une extension de u, alors

S n det(∇u, u) = B R n+1 (0,1)
det(∇V ). 27 (5.2)

En prenant V une extension par moyennes de u et en utilisant la théorie des traces, (5.2) permet de donner une définition robuste du membre de gauche de (5.2) si u ∈ W 1-1/(n+1),n+1 (S n ; R n+1 ). Mais ceci n'utilise pas le fait que u est à valeurs S n . Nous verrons comment on peut intégrer dans les calculs l'information géométrique |u| ≡ 1. 28 Commençons par le cas des fonctions continues. Dans ce cas, on sait que le degré de Brouwer est bien défini, et stable par convergence uniforme. Il est possible de voir ceci à travers une intégration par parties. L'idée qui suit remonte à [START_REF] Bourgain | MIRONESCU -Lifting, degree, and distributional Jacobian revisited[END_REF]. On considère une projection approchée sur S n , c'est-

à-dire une application Ψ ∈ C ∞ c (R n ; R n ) telle que Ψ(x) = x |x| si |x| ≥ a > 0. Soit U : B R n+1 (0, 1) → R n+1
une extension par moyennes de u. 29 Si u ∈ C 1 , alors (5.2) donne

deg u = B R n+1 (0,1)
det(∇(Ψ • U)).

(5.3)

5.1 Proposition ([40]). Si u ∈ C(S n ; S n ), alors ˆ|det(∇(Ψ • U))| < ∞ et C(S n ; S n ) u → B R n+1 (0,1) det(∇(Ψ • U))
est continue. 30 Démonstration.

Il existe R = R(u) < 1 tel que |U(x)| ≥ a si |x| ≥ R. Si |x| > R, alors |Ψ•U| 2 ≡ 1, d'où det(∇(Ψ • U)(x)) = 0. On trouve B R n+1 (0,1) det(∇(Ψ • U)) ˆBR n+1 (0,R) |∇U| n+1 < ∞.
La deuxième partie s'obtient en notant que, si u j → u, alors il est possible de considérer un R(u j ) indépendant de j, et que

L 1 (S n ) u → U ∈ W 1,n+1 loc (B R n+1 (0, 1)) est continue.
Un cas plus délicat est celui des fonctions VMO (S n ; S n ). L'espace VMO de Sarason [START_REF]SARASON -Functions of vanishing mean oscillation[END_REF] est défini comme l'adhérence de C 0 dans BMO, et est caractérisé par

lim t→0 sup C f (x) - C f dx ; C ⊂ R n cube, |C| ≤ t = 0.
Les applications de l'espace VMO (S n ; S n ) ont un degré ; ceci remonte à Boutet de Monvel et Gabber [START_REF] Boutet De Monvel | PURICE -A boundary value problem related to the Ginzburg-Landau model[END_REF]Appendix] (et aussi à Schoen et Uhlenbeck [START_REF] Schoen | UHLENBECK -A regularity theory for harmonic maps[END_REF]), et l'exploration systématique des propriétés de ce degré est due à Brezis et Nirenberg [START_REF] Brezis | NIRENBERG -Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]. L'existence du degré repose sur deux ingrédients : (i) la densité de C 1 (S n ; S n ) dans VMO (S n ; S n ) ;

(ii) la continuité de u → B R n+1 (0,1) det(∇(Ψ • U)) dans VMO (S n ; S n ).
Dans la preuve de (i), l'ingrédient essentiel est le suivant 28. Les résultats décrits plus loin s'adaptent en partie au cas des applications à valeurs dans une variété compacte quelconque M ; en particulier, il est possible de prendre en compte la contrainte u(x) ∈ M p. p.

29. On peut aussi prendre U l'extension harmonique de u. 30. Ce résultat permet d'obtenir en quelques lignes l'existence du degré de Brouwer.

Proposition ([17]

). Soit u ∈ VMO(S n ; S n ). Soit U : B R n+1 (0, 1) → R n+1 l'extension par moyennes de u. Alors lim Démonstration. Il est commode de redresser la sphère (de départ) et de supposer U

(x, t) = B R n (x,t)
u.

On a à montrer que lim

t→0 |U(x, t)| = 1. Ceci suit de 1 -|U(x, t)| = B R n (x,t) (|u(y)| -|U(x, t)|) d y ≤ B R n (x,t) |u(y) -U(x, t)| d y → 0 quand t → 0.
La preuve de (ii) est une variante de celle de la proposition 5.1 [START_REF]MIRONESCU -Sobolev maps on manifolds : degree, approximation, lifting[END_REF].

Motivés par l'existence du degré, Brezis et Nguyen [START_REF] Brezis | On the distributional Jacobian of maps from S N into S N in fractional Sobolev and Hölder spaces[END_REF] ont étudié la possibilité de définition de manière robuste le jacobien de u en tant que distribution. Il s'agit donc d'étendre l'application

C 1 (S n ; R) ϕ → Ju(ϕ) = ˆSn det(du)ϕ (5.4)
au-delà de la classe C 1 (S n ; S n ). Je vais citer un seul de leurs résultats, simple à énoncer ; sa preuve va laisser deviner des résultats plus généraux.

Théorème (

[16]). Soit n ≥ 2. 1) Si n ≥ 2 et n -1 n < α < 1, alors Ju est défini de manière robuste dans C α (S n ; S n ).
2) Ceci n'est plus vrai dans C (n-1)/n (S n ; S n ).

Démonstration. 1) C'est à nouveau une question d'intégration par parties. Si V , respectivement Φ, est une extension de u, respectivement de ϕ, à B R n+1 (0, 1), et si toutes les fonctions sont C 1 , alors on a l'identité

Ju(ϕ) = (n + 1) ˆBR n+1 (0,1) det(∇V )Φ + n+1 k=1 ˆBR n+1 (0,1) D k (V )∂ k Φ, (5.5) 
où

D k (V ) = det(∂ 1 V , . . . , ∂ k-1 V , V , ∂ k+1 V , . . . , ∂ n+1 V ).
On utilise cette identité avec V = Ψ•U. D'après la proposition 5.1, la première intégrale passe à la limite en cas de convergence uniforme. Par un argument standard, on peut conclure si les autres intégrales sont contrôlées par |u| C α . Or, ceci découle de l'inégalité ˆBR n+1 (0,1)

D k (V )∂ k Φ ≤ ˆBR n+1 (0,1) |∇V | n ∂ k Φ L ∞ ,
de la théorie des traces et de l'injection C α → W 1-1/n,n , valable si α > n -1 n .

2) Le contre-exemple est semblable à celui qui sert dans la preuve du théorème 4.1.

En examinant de plus près cette preuve, on devine que, pour n ≥ 2, un cadre fonctionnel convenable pour définir la distribution jacobien est VMO ∩ W 1-1/n,n (S n ; S n ). 31 En effet, la convergence dans VMO permet de mimer la preuve de la proposition 5.1 et de passer à la limite la première intégrale dans (5.5). La convergence dans W 1-1/n.n combinée avec la théorie des traces permet de passer à la limite les autres intégrales. Par ailleurs, il est possible de remplacer la convergence dans VMO par une condition plus faible assurant (avec les notations de la preuve de la proposition 5.1) l'existence d'un R indépendant de la suite (u j ). Pour plus de détails, voir [START_REF] Brezis | On the distributional Jacobian of maps from S N into S N in fractional Sobolev and Hölder spaces[END_REF]Theorem 1]. A nouveau, le résultat obtenu est essentiellement optimal : on ne peut pas affaiblir les hypothèses de convergence. Le lecteur trouvera dans [START_REF] Brezis | On the distributional Jacobian of maps from S N into S N in fractional Sobolev and Hölder spaces[END_REF] des estimations bien plus fines ; en particulier, des estimations très délicates de la quantité ˆ|det(∇(Ψ • U))|. Ces estimations ont comme point de départ une preuve non publiée de Bourgain [10, Section 4] et ont été développées dans [START_REF] Bourgain | NGUYEN -A new estimate for the topological degree[END_REF][START_REF] Nguyen | Optimal constant in a new estimate for the degree[END_REF]. Avant de citer un résultat précis, donnons l'esprit de ces estimations. La théorie des traces donne, si u ∈ W 1-1/(n+1),n+1 (S n ; S n ) : (5.7)

ˆBR n+1 (0,
La preuve de [START_REF] Bourgain | NGUYEN -A new estimate for the topological degree[END_REF] montre qu'il est possible de remplacer la contrainte |u(x) -u(y)| > 1 par |u(x) -u(y)| > c pour tout c < 2. Mais la valeur 2 n'est pas optimale ; la valeur optimale 32 a été trouvée par Nguyen dans le très joli article [START_REF] Nguyen | Optimal constant in a new estimate for the degree[END_REF].
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  loc (Ω) est l'espace obtenu en remplaçant L p par L p loc .

  , (-b, a), et la fonction u a,b qui vaut zéro en dehors de L a,b et qui parcourt, sur l'intersection de L a,b avec chaque droite verticale, le cercle C((1, 0); 1) une fois (à partir de l'origine) dans le sens direct et à vitesse constante. En jouant avec les paramètres a, b, c → 0, on a, pour 1 < p ≤ 4 3 , u a,b /c 0

. 7 ) 13 .

 713 Dans le cas particulier où u : B R n (0, 1) → Ω est un C 1 -difféomorphisme préservant l'orientation, ˆdet(∇u) n'est rien d'autre que le volume de Ω. Par ailleurs, l'intégrale de surface qui apparaît dans (3.4) contrôle l'aire de ∂Ω. Donc, dans ce cas particulier, (3.4) s'obtient bien à partir de l'inégalité isopérimétrique. Comme noté dans[START_REF] Müller | Higher integrability of determinants and weak convergence in L 1[END_REF], le cas général peut être obtenu à partir de l'inégalité isopérimétrique pour les courants [21, Theorem 4.5.9 (31)], mais Müller donne aussi une preuve directe[START_REF] Müller | Higher integrability of determinants and weak convergence in L 1[END_REF] Section 3]. La preuve de (3.4) est simple en dimension 2 ; autant la présenter. Une intégration par parties donne ˆBR 2 (0,1) 

31 .

 31 Si n = 1, ce cadre devient VMO ∩ B, où B est l'espace de Besov B 0 1,1 .

1 )

 1 | det(∇(Ψ • U))| ˆ|∇U| n+1 S n ×S n |u(x) -u(y)| n+1 |x -y| 2n dxd y. (5.6) Considérons le cas d'une fonction u proche, en norme L ∞ , d'un point P ∈ S n . Pour une telle fonction, on a |Ψ • U| ≡ 1, et donc det(∇(Ψ • U)) ≡ 0, alors que le membre de droite de (5.6) peut être arbitrairement grand, car il voit les petites oscillations de u. Ceci donne l'idée qu'une bonne estimation ne doit tenir compte que des grandes oscillations de u. En voici une. 5.4 Théorème ([11]). Si u ∈ C(S n ; S n ), alors ˆBR n+1 (0,1) | det(∇(Ψ • U))| |u(x)-u(y)|>1 1 |x -y| 2n dxd y.

  .2) 4. Ce système est une approximation linéaire du problème de mixte déplacement-traction lorsque le déplacement u est petit.5. Le cas n = 2 était connu par Poincaré[START_REF] Mawhin | Communication personnelle[END_REF]. Le cas général semble être dû à Kronecker.Revenons au cas de l'élasticité linéarisée. Si u est borné,6 alors on peut définir la distribution J(Id + u) à partir de (2.1) appliquée à Id + u. Ceci donne bien une distribution, car le membre de droite de (2.1) appartient à div L 1 . Plus généralement, on peut définir, via la formule (2.1), la distribution Ju si u ∈ W

	1,p
	loc