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Study of a low Mach nuclear core model
for two-phase flows with phase
transition I: stiffened gas law

Manuel Bernard∗, Stéphane Dellacherie†,
Gloria Faccanoni‡, Bérénice Grec§ and Yohan Penel¶

October 30, 2012

In this paper, we are interested in modelling the flow of the coolant (water) in a
nuclear reactor core. To this end, we use a monodimensional low Mach number model
coupled to the stiffened gas law. We take into account potential phase transitions by
a single equation of state which describes both pure and mixture phases. In some
particular cases, we give analytical steady and/or unsteady solutions which provide
qualitative information about the flow. In the second part of the paper, we introduce
two variants of a numerical scheme based on the method of characteristics to simulate
this model. We study and verify numerically the properties of these schemes. We
finally present numerical simulations of a loss of flow accident (LOFA) induced by a
coolant pump trip event.

AMS Classifications 35Q35, 35Q79, 65M25, 76T10.

Introduction
Several physical phenomena have to be taken into account when modelling a water nuclear reactor
such as PWRs1 or BWRs2 (see [8] for an introduction). In particular, the present work deals
with the handling of the high thermal dilation of the coolant fluid induced by thermal transfers
in nuclear cores (Figure 1 schematically pictures PWR and BWR reactors). A natural approach
is to represent the evolution of the flow by means of a system of PDEs similar to the compressible
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2BWR is the acronym for Boiling Water Reactor.
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Navier-Stokes equations coupled to the modelling of phase transition which is the case in classical
industrial codes [1, 4, 20].

In nominal and incidental situations as well as in some accidental situations studied in safety
evaluations, the magnitude of the sound velocity is much higher than the one of the velocity of
the coolant fluid, which means that the Mach number of the flow is small. The discretization
of compressible Navier-Stokes type systems may induce numerical issues directly related to the
existence of fast acoustic waves even in low Mach number flows (see for example [11, 15, 16, 22]
when the convective part of the compressible Navier-Stokes system is discretized by means of a
Godunov type scheme).

Nevertheless, in a low Mach number regime, the acoustic phenomena can be neglected in energy
balances although the flow is highly compressible because of the thermal dilation. Thus, to
overcome the numerical difficulties, S. Dellacherie proposed in [12] another model obtained by
filtering out the acoustic waves in the compressible model. Let us underline that this approach
was applied to model firstly low Mach combustion phenomena [26] and then thermal dilation
of the interface of bubbles at low Mach number [9, 10, 28]. The low Mach number model de-
rived in [12] and called the Low Mach Nuclear Core (Lmnc) model was discretized in [3] in the
monodimensional (1D) case. Moreover, 1D unsteady analytical solutions were also given in [3]
which allowed to validate the numerical schemes.

Despite relevant numerical results, the approach proposed in [3, 12] was not satisfying since in
particular, it was restricted to monophasic flows. Thus, we extend in this study the results
stated in [3, 12] by taking into account phase transition in the Lmnc model. If we neglect
diffusion terms, the Lmnc model proposed in this paper may be seen as the low Mach number
limit of the Homogeneous Equilibrium Model (HEM) [7] with source terms. Let us recall that
the HEM model is the compressible Euler system in which the two phases are supposed to be at
local kinematic and thermodynamical equilibria.

A crucial step in the process is the modelling of properties of the fluid through the equation
of state. It is important from a physical point of view to match experimental data and from
a mathematical point of view to close the system of PDEs. In the present work, this point
is achieved by using the stiffened gas law. A major result in this paper is the exhibition of
1D unsteady analytical solutions with phase transition (see Proposition 6). These solutions are
of great importance: on the one hand to accurately estimate heat transfers in a nuclear core
in incidental and accidental situations, and on the other hand to assess the robustness of the
monodimensional numerical schemes presented in this article.

At last, we wish to underline that although this study is specific to dimension 1 (which is essential
to obtain in particular the unsteady analytical solutions with phase change), it remains useful
from an industrial point of view since many safety evaluations use a 1D modelling to describe
the flow in each component of the nuclear reactor and, thus, in the nuclear core. Nevertheless,
the extension of this work to the 2D and 3D cases is a natural and important perspective.

This paper is organized as follows. In the first section, the LMNC model is recalled under some
assumptions, and we study the existence of (more or less) equivalent formulations of the model
that can be used depending on the variables we aim at focusing on. The second section is devoted
to the modelling of phase transition and to the EOS that is needed to close the system. In the
third section, we prove some theoretical results stated (but not proved) in [3] and we extend them
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Figure 1: Scheme of nuclear reactors whose coolant is water: the major difference between PWR
and BWR is the steam void formation in the core of the latter.

to the multiphasic case. Exact and asymptotic solutions are thus exhibited. Numerical aspects
are then investigated in the fourth section where a new version of the method of characteristics is
presented. This scheme is then applied in the fifth section to various situations with occurrence
of phase transition.

1 The low Mach nuclear core model
The Low Mach Nuclear Core (Lmnc) model introduced in [12] is obtained by filtering out the
acoustic waves in a compressible Navier-Stokes type system. This is achieved through an asymp-
totic expansion with respect to the Mach number assumed to be very small in this framework.
One of the major consequences is the modification of the nature of the equations: the filtering
out of the acoustic waves – which are solutions of a hyperbolic equation in the compressible
system – introduces a new unknown (namely the dynamic pressure) which is solution to an el-
liptic equation in the Lmnc model. Another consequence is that we are able to compute explicit
monodimensional unsteady solutions of the Lmnc model with or without phase transition3 (see
section 3) and to construct 1D robust and accurate numerical schemes4 (see section 4).

In this section, we recall the Lmnc model and we present equivalent formulations for smooth
solutions. Since we are interested in the 1D case in this paper, we do not extend results to
2D/3D. Nevertheless, this can easily be done (provided the boundary conditions are adapted).

3This is not the case for the 1D compressible system from which the Lmnc is derived.
4 The existence of fast acoustic waves in the compressible system induces numerical difficulties – see [11,22] for
example – which cannot arise in the Lmnc model since the acoustic waves have been filtered out to obtain
this low Mach number model.
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1.1 Governing equations
The 1D nonconservative formulation of the Lmnc model [12] is written as

∂yv =
β(h, p0)

p0
Φ(t, y), (1a)

ρ(∂th+ v∂yh) = Φ(t, y), (t, y) ∈ R+ × [0, L] (1b)

∂t(ρv) + ∂y(ρv2 + p) = F(v)− ρg, (1c)

where v and h denote respectively the velocity and the enthalpy of the fluid. The density
ρ = ρ(h, p = p0) is related to the enthalpy by an equation of state (EOS – see section 2). So
does the dimensionless compressibility coefficient β(h, p0) which is defined by

β(h, p0) def=− p0

ρ2(h, p0)
· ∂ρ
∂h

(h, p0). (2)

The power density Φ(t, y) is a given function of time and space modelling the heating of the
coolant fluid due to the fission reactions in the nuclear core. Finally, g is the gravity field and
F(v) models viscous effects: the classical internal friction in the fluid, and also the friction on
the fluid due to technological devices in the nuclear core (e.g. the friction on the fluid due to the
fuel rods). In the sequel, we take

F(v) = ∂y(µ∂yv).

In this case, µ is a turbulent viscosity given by an homogenized turbulent model. Nevertheless,
we explain in the sequel that the exact choice of F(v) is not important in the 1D case (this is no
more the case in 2D/3D).

We must also emphasize that model (1) is characterized by two pressure fields, which is classical
in low Mach number approaches: the thermodynamic pressure p0 is involved in the equation
of state and the dynamic pressure p appears in equation (1c). In the 1D case, equation (1c)
decouples from the two other equations and may be considered as a post-processing leading to
the computation of p (this is why the expression of F(v) is not really important in 1D). Thus,
equation (1c) will often be left apart in the sequel and equations (1a)-(1b) will often be referred
to as the Lmnc model for the sake of simplicity.

From now on, we suppose that:

Hypothesis 1.

1. Φ(t, y) ≥ 0 for all (t, y) ∈ R+ × [0, L];

2. p0 is a positive constant.

The first assumption characterizes the fact that we study a nuclear core where the coolant
fluid is heated. In the steam generator of a PWR type reactor (see Figure 1(a)) – which could
also be modelled with a Lmnc type model, we would have Φ(t, y) ≤ 0. The second assumption
is justified by the fact that a negative thermodynamic pressure does not have any physical sense
in our context.
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Boundary conditions The fluid is injected at the bottom of the core at a given enthalpy he and
at a given flow rate De. We also impose the dynamic pressure p at the exit of the core (y = L).
The boundary conditions are thus written as

h(t, 0) = he(t), (ρv)(t, 0) = De(t), p(t, L) = p0.

The entrance velocity ve(t) to apply at y = 0 is deduced from the relation ve(t) = De(t)/ρe(t)
where ρe = ρ(he, p = p0). The fact that he and De depend on time enables to model transient
regimes induced by accidental situations. For example, when De(t) tends to zero, it models a
main coolant pump trip event which is a Loss Of Flow Accident (LOFA) as at the beginning of
the Fukushima accident in the reactors 1, 2 and 3.

We also assume in the sequel that:

Hypothesis 2.

1. De is non-negative.

2. he is such that ρe is well-defined and positive.

The first assumption corresponds to a nuclear power plant of PWR or BWR type: the flow
is upward5. The second assumption means that the EOS ρ(h, p) is such that ρ(he, p0) can be
computed. Moreover, we also suppose that ρ(he, p0) > 0 since a negative density does not have
any physical sense in our context.

We finally make the following modelling hypothesis:

Hypothesis 3. β is non-negative.

Positivity assumptions about Φ, De, β and ρ in Hypotheses 1, 2 and 3 ensure that the velocity
v(t, y) remains non-negative at any time and anywhere in the core. Otherwise, the system could
become ill-posed (see section 4.2 in [12] where this question is partially studied).

Well-prepared initial conditions The model is finally closed by means of initial conditions
h(0, y) = h0(y) and (ρv)(0, y) = D0(y). However, these data cannot be randomly chosen.
Indeed, as system (1) consists of steady and unsteady equations, the initial velocity v0 must
satisfy equation (1a) for t = 0, which means

v′0(y) =
β
(
h0(y), p0

)
p0

Φ(0, y).

Hence, h0 prescribes both the initial density through the EOS and the initial velocity through
the previous equality (together with the compatibility condition v0(0) = ve(0)). We then deduce
D0 = ρ0v0. When this condition holds, such initial data (h0, D0) are said to be well-prepared.
This will be implicitly assumed in the sequel.

5 The flow could be downward when the nuclear reactor is a material testing reactor.
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1.2 Origin and different formulations of the model
The 1D Lmnc model (1) is written in [12] as ∂yv =

β(h, p0)

p0
Φ(t, y), (3a)

ρ(h, p0) · (∂th+ v∂yh) = Φ(t, y). (3b)

We recall that in the 1D case, equation (1c) is a post-processing of (3). It is important to note
that the low Mach number model (3) is justified only under smoothness assumptions. To study
the existence of weak solutions, it might be better to use a conservative formulation which is
equivalent to (3) for smooth solutions. This conservative formulation is the following:

Proposition 1. Under smoothness assumptions, system (3) is equivalent to{
∂tρ+ ∂y(ρv) = 0, (4a)
∂t(ρh) + ∂y(ρhv) = Φ(t, y). (4b)

System (4) (coupled to equation (1c)) is the Lmnc model written in conservative variables.
Although (4) is more general than (3), system (3) is interesting as it stresses on the fact that the
filtering out of the acoustic waves turns the hyperbolic nature of the compressible Navier-Stokes
system (related to the acoustic waves) to an elliptic constraint similar to the incompressible case.

Proof of Proposition 1.

• ⇒ According to definition (2) of β, we have

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(∂th+ v∂yh)︸ ︷︷ ︸

(3b)
= Φ

ρ

+ρ∂yv︸︷︷︸
(3a)
= βΦ

p0

= 0 (5)

which gives (4a). We also obtain

∂t(ρh) + ∂y(ρhv) = h
(
∂tρ+ ∂y(ρv)

)
+ ρ (∂th+ v∂yh) = Φ.

Using (3b) and (4a), we recover (4b).

• ⇐ Because of (4a), we deduce (3b) from (4b). Moreover, we deduce from (4a) and (3b) that

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(∂th+ v∂yh) + ρ∂yv =

∂ρ

∂h
· Φ

ρ
+ ρ∂yv = 0,

which gives (3a) thanks to definition (2) of β.

Moreover, under smoothness assumptions and for a particular class of EOS, we can derive
a semi-conservative formulation equivalent to (3), and which may be useful to derive efficient
numerical schemes. Indeed, we have the following proposition.

Proposition 2. Under smoothness assumptions:

6



1. System (3) implies  ∂yv =
β(h, p0)

p0
Φ(t, y), (6a)

∂t
(
ρ(h, p0)h

)
+ ∂y

(
ρ(h, p0)hv

)
= Φ(t, y). (6b)

2. For equations of state such that
∂ρ

∂h
(h, p0) 6= −ρ(h, p0)

h
, (7)

systems (3) and (6) are equivalent.

This new formulation will be a perspective of great interest for the extension to dimension 2,
especially in view of the method developped in [5]. Nevertheless, condition (7) upon ρ seems to
be quite restrictive insofar as it does not enable to handle perfect gas (for which ∂ρ

∂h = − ρ
h ). In

the latter case, equations (6a) and (6b) are nothing but the same equation, which implies that
we have to use formulations (3) or (4).

Proof of Proposition 2. The first point is a direct consequence of Proposition 1 since

∂t
(
ρ(h, p0)h

)
+ ∂y

(
ρ(h, p0)hv

)
= ρ(h, p0) · (∂th+ v∂yh)︸ ︷︷ ︸

(3b)
= Φ

+h
[
∂t
(
ρ(h, p0)

)
+ ∂y

(
ρ(h, p0)v

)]︸ ︷︷ ︸
(5)
= 0

.

To prove the second point, we just have to show that (6) implies (3) under condition (7). On
the one hand, since

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(h, p0)(∂th+ v∂yh) + ρ(h, p0)∂yv,

by using (2) and (6a), we obtain

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(h, p0)

(
∂th+ v∂yh−

Φ

ρ(h, p0)

)
. (8)

On the other hand, (6b) leads to

ρ(h, p0) · (∂th+ v∂yh) + h
[
∂t
(
ρ(h, p0)

)
+ ∂y

(
ρ(h, p0)v

)]
= Φ(t, y)

that is to say

∂tρ+ ∂y(ρv) = −ρ(h, p0)

h

(
∂th+ v∂yh−

Φ

ρ(h, p0)

)
. (9)

Thus, by comparing (8) and (9), we obtain

∂th+ v∂yh−
Φ

ρ(h, p0)
= 0

under condition (7), which proves that (6) implies (3).

Remark 1. The equivalence between systems (3), (4) and (6) also holds in higher dimensions.
Nevertheless, the momentum equation is strongly coupled to the other equations in 2D/3D and
must be taken into account under conservative or under nonconservative form. Indeed, these
forms are equivalent as soon as the unknowns are smooth and the mass conservation law holds.

Remark 2. A generalization of this model would consist in taking into account the thermal
conductivity. In this case, it is convenient to work with another formulation of the model where
the temperature is considered as the main variable instead of the enthalpy. The equation of state
then becomes ρ = ρ(T, p = p0). However, this equation of state is no longer invertible when phase
transition occurs (see section 2 for more details).
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2 Equation of state for two-phase fluids
For the system to be closed, an additional equation is required: the equation of state (EOS). It
corresponds to the modelling of thermodynamical properties and consists of an algebraic relation
between thermodynamical variables. The issue is here to construct an EOS that models all phases
of a fluid. Indeed, perturbations of the inlet velocity or of the power density may strongly modify
the temperature in the fluid and cause phase transition from liquid phase to vapor phase. At
this modelling scale, the fluid can thus be under liquid, vapor or mixture phases.

The model used in this study is based on the assumption of local kinematic and thermodynamical
equilibria between phases. This means that the phases are assumed to move at the same velocity,
that vaporisation, condensation and heat transfer processes are assumed to be instantaneous. As
a consequence, the two-phase flow can be considered as a single-phase problem provided the EOS
(h, p) 7→ ρ(h, p) (and thus the compressibility coefficient β defined by (2)) takes phase transition
into account. With this modelling, the two-phase flow evolution at low Mach number can be
described ny means of the Lmnc model (1). In this case and when viscous effects modelled
by F(v) in (1c) are neglected, the Lmnc model (1) is the low Mach limit of the Homogeneous
Equilibrium Model (HEM) [7] with source terms.

2.1 General thermodynamics
In classical thermodynamics, two variables are sufficient to represent a thermodynamical state
of a pure single-phase fluid. This is done by means of an EOS which is a relation between the
internal energy, the density and the entropy. In the literature, there exist numerous EOS specific
to the fluid and to the model which are considered. In the case of liquid-vapor phase transitions,
the EOS must not only represent the behavior of each pure phase (liquid or vapor), but also
model the evolution of a mixture. Its behavior is coarsely pictured on Figure 2a.

There may be a mixture region where the two phases coexist: it is called the saturation zone.
This region is bounded by two curves connected at the critical point (1/ρc, pc) which also belongs
to the critical isotherm T = Tc. Another curve of interest is the coexistence curve ps(T ) which
relates the pressure to the temperature at saturation (see Figure 2b).

These curves can be obtained experimentally (see [25] for instance) and correspond to thermo-
dynamical equilibria of temperature, pressure and Gibbs potential of the two phases. The Van
der Waals law associated to the Maxwell construction is the most common example of this kind
of EOS.

Nevertheless, it is very complicated to derive a unique EOS describing accurately both pure and
mixture phases. To better handle pure phases and saturation curves, an idea consists in using
two laws (one for each phase) so that each phase has its own thermodynamics. In the following
section we detail the general construction of the EOS in the mixture region given one EOS for
each phase.

2.2 Construction of the EOS in the mixture
The difficulty using this approach is to specify a unique EOS that can model all possible states
for the fluid: pure liquid, pure vapor and two-phase mixture. In this section, we explain how to
specify the EOS in the mixture given an EOS for each pure phase. We then adapt these results
when pure phases are governed by the stiffened gas law.
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Figure 2: Saturation and coexistence curves.

Characterization of the two-phase media We consider each phase κ as a compressible fluid
governed by a given EOS that is a function (ρ, ε) 7→ ηκ where ρ, ε and ηκ denote respectively
the specific density, the specific internal energy and the specific entropy of the fluid. We assume
that ηκ has a negative-definite Hessian matrix.

We then define classically for phase κ = ` (liquid phase) and phase κ = g (vapor phase) the
temperature Tκ def= 1/ [(∂ηκ/∂ε)ρ], the pressure pκ def=−ρ2Tκ(∂ηκ/∂ρ)ε and the chemical potential
gκ

def= ε+ pκ/ρ− Tκηκ. Finally α denotes the volume fraction of vapor phase. This variable char-
acterizes the volume of vapor in each unit volume: α = 1 means that this volume is completely
filled by vapor; similarly, a full liquid volume corresponds to α = 0. Liquid and vapor are thus
characterized by their thermodynamical properties.

The mixture density ρ and the mixture internal energy ε are defined by{
ρ = αρg + (1− α)ρ`, (10a)
ρε = αρgεg + (1− α)ρ`ε`, (10b)

where ρg, ρ`, εg and ε` denote respectively vapor/liquid densities and vapor/liquid internal
energies. Recalling that the internal energy is connected to the enthalpy by the relation ρh =
ρε + p, we can compute the mixture enthalpy h when the pressure is the same in both phases
(which is the case in the Lmnc model where the thermodynamical pressure p is constant and
equal to p0). This leads to

ρh = αρghg + (1− α)ρ`h`, (11)

where hg, h` are respectively vapor/liquid enthalpies.

When taking phase transition into account, the two-phase mixture is constructed according to
the second principle of thermodynamics. The key idea is that, when phases coexist (i.e. when
0 < α < 1), they have the same pressure, the same temperature and their chemical potentials
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are equal. The corresponding temperature, noted T s for temperature at saturation, is obtained
by expliciting the equality of chemical potentials g`(p, T s) = gg(p, T

s). This implies a relation
between T s and p (see for example [6, 18, 21] for more details). In the sequel we choose to
express the temperature in the mixture as a function of the pressure and we define functions at
saturation ρsκ and hsκ by p 7→ ρsκ

def= ρκ
(
p, T s(p)

)
and p 7→ hsκ

def= hκ
(
p, T s(p)

)
. Consequently, all

thermodynamical quantities can be expressed as functions of the enthalpy and the pressure as
it will be seen below. The choice to focus on pressure relies on the fact that the pressure in the
Lmnc model is supposed to be constant and equal to p0. Notice that for most fluids hs` < hsg
(see [25]).

Density of the two-phase media Given functions at saturation, we are now able to model
density in pure and mixture phases. Using equations (10a) and (11), the density is written as a
function of enthalpy h and pressure p as follows

ρ(h, p) =


ρ`(h, p), if h ≤ hs`(p),

ρm(h, p) def=

[
ρsgρ

s
`(h

s
g − hs`)

]
(p)

[ρsgh
s
g − ρs`hs` ](p)− h · [ρsg − ρs` ](p)

, if hs`(p) < h < hsg(p),

ρg(h, p), if h ≥ hsg(p).

(12)

Temperature of the two-phase media The temperature in the mixture T s is implicitly defined
by the equation g`(p, T

s) = gg(p, T
s) so that the temperature depends continuously on the

enthalpy and on the pressure and reads

T (h, p) =


T`(h, p), if h ≤ hs`(p),
T s(p), if hs`(p) < h < hsg(p),

Tg(h, p), if h ≥ hsg(p).
(13)

We must emphasize that the function h 7→ T (h, p = p0) cannot be inverted in the mixture zone
for a constant pressure (as it is the case in the Lmnc model). This remark prevents from working
with equations on T instead of equations on h (see Remark 2).

Compressibility coefficient of two-phase media Computing the derivative of the density (12),
we obtain the compressibility coefficient β (previously defined by (2))

β(h, p) def=− p

ρ2
· ∂ρ
∂h

∣∣∣∣
p

=


β`(h, p), if h ≤ hs`(p),

βm(p) def=−p ·
[

ρsg − ρs`
ρsgρ

s
`(h

s
g − hs`)

]
(p), if hs`(p) < h < hsg(p),

βg(h, p), if h ≥ hsg(p).

(14)

We notice that independently of the EOS in the pure phases, the compressibility coefficient is
constant in the mixture (since the pressure is constant in the Lmnc model). Moreover, it is
generally discontinuous between pure and mixture phases.

Speed of sound of two-phase media In [2,18,19] it has been proven that the speed of sound is
always positive when using the previous approach. To compute explicitly the speed of sound as
a function of the enthalpy and the pressure, we start from the usual thermodynamical relation

Tdη = dε− p

ρ2
dρ.
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On the one hand, the relation h = ε+ p
ρ coupled to the previous statement leads to

d(ρε) = (ρT )dη + hdρ.

On the other hand, we have

d(ρε) =
∂(ρε)

∂ρ

∣∣∣∣
p

dρ+
∂(ρε)

∂p

∣∣∣∣
ρ

dp.

Therefore, the comparison of the two previous equalities yields

dp =
h− ∂(ρε)

∂ρ

∣∣∣
p

∂(ρε)
∂p

∣∣∣
ρ

dρ+
ρT

∂(ρε)
∂p

∣∣∣
ρ

dη,

so that the speed of sound c∗ is given by

(c∗)
2 def=

∂p

∂ρ

∣∣∣∣
η

=
h− ∂(ρε)

∂ρ

∣∣∣
p

∂(ρε)
∂p

∣∣∣
ρ

=
h− ∂(ρh)

∂ρ

∣∣∣
p

∂(ρh)
∂p

∣∣∣
ρ
− 1

, (15)

since ρε = ρh− p.

• In the pure phase κ, the volume fraction α is 0 or 1, so that ρ = ρκ, h = hκ and equation (15)
becomes

(c∗κ)
2

=
−ρκ ∂hκ

∂ρκ

∣∣∣
p

ρκ
∂hκ
∂p

∣∣∣
ρκ
− 1

. (16a)

• In the mixture, using (11) and noticing that ρκhκ = ρsκh
s
κ (since T = T s(p) in the mixture),

which only depends on p, we can write

∂(ρh)

∂ρ

∣∣∣∣
p

=
∂α

∂ρ

∣∣∣∣
p

(ρsgh
s
g) + α

�
����∂(ρsgh

s
g)

∂ρ

∣∣∣∣
p

− ∂α

∂ρ

∣∣∣∣
p

(ρs`h
s
`) + (1− α)

���
��∂(ρs`h
s
`)

∂ρ

∣∣∣∣
p

,

∂(ρh)

∂p

∣∣∣∣
ρ

=
∂α

∂p

∣∣∣∣
ρ

(ρsgh
s
g) + α

∂(ρsgh
s
g)

∂p

∣∣∣∣
ρ

− ∂α

∂p

∣∣∣∣
ρ

(ρs`h
s
`) + (1− α)

∂(ρs`h
s
`)

∂p

∣∣∣∣
ρ

.

Because of (10a), we compute the partial derivatives of the volume fraction α

∂α

∂ρ

∣∣∣∣
p

=
1

ρsg − ρs`
,

∂α

∂p

∣∣∣∣
ρ

=
−(ρs`)

′(ρsg − ρs`)− (ρ− ρs`)((ρsg)′ − (ρs`)
′)

(ρsg − ρs`)2
= −

α(ρsg)
′ + (1− α)(ρs`)

′

ρsg − ρs`
,

where (ρsκ)′ is the derivative of p 7→ ρsκ(p). Hence:

(
c∗m(h, p)

)2 def=
h− ρsgh

s
g−ρ

s
`h
s
`

ρsg−ρs`

−(α(ρsg)
′ + (1− α)(ρs`)

′)
ρsgh

s
g−ρs`h

s
`

ρsg−ρs`
+ α(ρsgh

s
g)
′ + (1− α)(ρs`h

s
`)
′ − 1

. (16b)
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Finally, the speed of sound is given by

c∗(h, p) =


c∗` (h, p), if h ≤ hs`(p),

c∗m(h, p), if hs`(p) < h < hsg(p),

c∗g(h, p), if h ≥ hsg(p).

(17)

Remark 3. The speed of sound is discontinuous across the saturation curve, and it is smaller
in the mixture than in any pure phase. The minimum value is reached for void ratios close to
zero (see [18]).

2.3 The stiffened gas EOS
Several EOS can be considered to describe thermodynamical properties of pure phases. In this
paper (like in [3]) we use the stiffened gas law. This EOS is the simplest prototype that contains
the main physical properties of pure fluids such as repulsive and attractive molecular effects,
thereby facilitating the handling of thermodynamics through a simple analytical formulation. It
is a generalization of the well-known ideal gas law (which is a commonly used EOS to describe
the vapor phase), and it is an acceptable model for the liquid phase (for more details see the
appendix).

The complete form of the stiffened gas EOS is written as

(ρ, ε) 7→ η = cv ln(ε− q − π/ρ)− cv(γ − 1) ln ρ+m, (18)

where η is the entropy written as a function of the density ρ and the internal energy ε. The
parameters cv > 0 (specific heat at constant volume), γ > 1 (adiabatic coefficient), π (constant
reference pressure), q (binding energy) and m (reference entropy) are some constants describing
thermodynamical properties of the phase. Note that the case of an ideal gas EOS is recovered by
setting π and q to zero. For η to be well-defined, it is necessary to have ρ > 0 and ε−q−π/ρ > 0.

The term (γ − 1)(ε− q)ρ > 0 models repulsive effects that are present for any state (gas, liquid
or solid) and is due to molecular vibrations. The constant γπ > 0 represents the attractive
molecular effect that guarantees the cohesion of matter in liquid or solid phases (hence π = 0 for
gas).

The classical definitions in thermodynamics provide the following expressions for the temperature
T , the pressure p, the enthalpy h and the Gibbs potential g as functions of the density ρ and the
internal energy ε:

p(ρ, ε) def=−Tρ2 ∂η

∂ρ

∣∣∣∣
ε

= (γ − 1)(ε− q − π/ρ)ρ− π = (γ − 1)(ε− q)ρ− γπ,

T (ρ, ε) def=

(
∂η

∂ε

∣∣∣∣
ρ

)−1

=
ε− q − π/ρ

cv
,

h(ρ, ε) def= ε+
p

ρ
= q + (ε− q − π/ρ)γ,

g(ρ, ε) def= ε− Tη +
p

ρ
= q + (ε− q − π/ρ)

(
γ − m

cv
− ln

(
(ε− q − π/ρ)ρ1−γ)) .

Remark 4. Since we assumed ε− q− π/ρ > 0 and γ > 1, the definition of the enthalpy implies
that h− q > 0.
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Temperature and enthalpy at saturation We assume that each phase κ is described by its own
stiffened gas EOS. To complete the results from section 2.2, we have to express the temperature at
saturation. As the temperature is constant in the mixture, we make a change of thermodynamical
variables from (ρ, ε) to (p, T ) which can be made explicit for this kind of EOS. The variables are
now given by

ρκ(p, T ) =
p+ πκ

(γκ − 1)cvκT
,

εκ(p, T ) = cvκT
p+ πκγκ
p+ πκ

+ qκ,

hκ(p, T ) = qκ + γκcvκT,

gκ(p, T ) = qκ + T
(
cvκγκ − q′κ − cvκγκ lnT + cvκ(γκ − 1) ln(p+ πκ)

)
,

where for the sake of simplicity we denoted q′κ
def=mκ + cvκγκ ln cvκ + cvκ(γκ − 1) ln(γκ − 1) as

in [23, 30]. We are now able to define the temperature at saturation T s as the solution of the
equation g`(p, T s) = gg(p, T

s) which yields

(cvgγg−cv`γ`)
(
1−lnT s(p)

)
−(q′g−q′`)+cvg (γg−1) ln(p+πg)−cv`(γ`−1) ln(p+π`) =

q` − qg
T s(p)

.

We remark that if q` = qg or if cvgγg = cv`γ`, we can compute T s analytically. Otherwise, a
Newton algorithm can be used to solve this nonlinear equation for all fixed p. We then deduce
the enthalpy at saturation for each phase

hsκ(p) = qκ + γκcvκT
s(p).

Density The density is linked to the enthalpy by relation (12) where

ρκ(h, p) =
γκ

γκ − 1

p+ πκ
h− qκ

, (19a)

ρsκ(p) =
p+ πκ

(γκ − 1)cvκT
s(p)

. (19b)

Temperature The temperature satisfies relation (13) with

Tκ(h, p) =
h− qκ
γκcvκ

.

Compressibility coefficient Relation (14) provides the expression of the compressibility coeffi-
cient with

βκ(h, p) =
γκ − 1

γκ

p

p+ πκ
.

We notice that βκ is independent from h whereas β depends on h through the choice of the phase
κ ∈ {`,m, g}.

Remark 5. If we define q as

q(h, p) =


q`, if h ≤ hs`(p),

qm
def=

[
ρsgh

s
g − ρs`hs`
ρsg − ρs`

]
(p), if hs`(p) < h < hsg(p),

qg, if h ≥ hsg(p),
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and given relations (12) and (14), the density can be expressed as

ρ(h, p) =
p/β(h, p)

h− q(h, p)

and equation (1b) can be rewritten as

∂th+ v∂yh =
β(h, p0)

p0

(
h− q(h, p0)

)
Φ. (20)

We recall that h− q(h, p0) > 0 for all p0 according to Remark 4.

Speed of sound To compute the speed of sound c∗ in a pure phase using (16a), we need to
express the enthalpy h as a function of the density ρ and the pressure p. Inverting (19a) for
κ ∈ {`, g}, we obtain

hκ(ρ, p) = qκ +
γκ(p+ πκ)

ρ(γκ − 1)

so that (16a) becomes

c∗κ(ρ, p) =

√
γκ(p+ πκ)

ρ
.

In the mixture, the speed of sound satisfies equation (16b) which is written as(
c∗m(h, p)

)2
=

h− qm[
−α(ρsg)

′ + (1− α)(ρs`)
′
]
qm + α(ρsgh

s
g)
′ + (1− α)(ρs`h

s
`)
′ − 1

.

In this expression, we introduced the following notations

(ρsκ)′(p) =
1

(γκ − 1)cvκT
s(p)

(
1− (p+ πκ)

(T s)′

T s
(p)

)
,

(ρsκh
s
κ)′(p) =

1

(γκ − 1)cvκT
s(p)

(
qκ + γκcvκT

s(p)− (p+ πκ)qκ
(T s)′

T s
(p)

)
,

(T s)′(p) =

(γg−1)cvg
p+πg

− (γ`−1)cv`
p+π`

(cv`γ` − cvgγg) +
q`−qg
T s(p)

T s(p).

Graphs of density, temperature, compressibility coefficient and speed of sound for liquid water
and steam at p = 155× 105 Pa with parameters of Table 1 (page 40) are pictured on Figure 3.

We must emphasize that as the pressure variable p is supposed to be constant and equal to p0

in the Lmnc model, most parameters are constant throughout the study (such as T s, βκ or qκ).
That is why references to the dependence on the pressure may be dropped in the sequel for the
sake of simplicity.

3 Theoretical study
In this section we derive some analytical steady and unsteady solutions to system (1). For a
single phase flow we obtain exact and asymptotic solutions for different power densities and inlet
velocities. We then generalize these calculations to two-phase flows with phase transition.
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h

ρ

ρs`

hs`

ρsg

hsg

(a) Density as a function of the enthalpy: the den-
sities of the liquid phase and the vapor phase
at saturation are ρs` ≈ 632.663 kg ·m−3 and
ρsg ≈ 52.937 kg ·m−3.

 

 

h

T

T s

hsghs`

(b) Temperature as a function of the enthalpy: the
temperature at saturation is T s ≈ 654K.

 

 

h

β
βg

hsg
β`

βm

hs`

(c) Compressibility coefficient as a function of the
enthalpy: the compressibility coefficients of the
liquid phase, the mixture at saturation and the
vapor phase are β` ≈ 0.008769, βm ≈ 0.194852
and βg ≈ 0.300699.

h

c∗

(c∗g)
s

hsg

(c∗` )
s

hs`

(d) Speed of sound as a function of the enthalpy: the
speed of sound of the liquid phase and the va-
por phase at saturation are (c∗` )s ≈ 1942m · s−1

and (c∗g)s ≈ 647m · s−1; in the mixture at
saturation the speed of sound is in the range
(78m · s−1, 631m · s−1).

Figure 3: EOS with phase transition for parameters of Table 1 at page 40 with p0 = 155× 105 Pa:
the enthalpies of the liquid phase and the vapor phase at saturation are hs` ≈
1.627× 106 J ·K−1 and hsg ≈ 3.004× 106 J ·K−1.
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Figure 4: Sketch of the method of characteristics and definitions of ξ(t, y) and t∗(t, y).

3.1 Exact and asymptotic solutions for single-phase flow
In this section we compute some analytical solutions of (1) supplemented with the stiffened gas
law for some particular cases (according to Φ and ve) when a single phase κ ∈ {`,m, g} is present.
The compressibility coefficient β and the coefficient q are thus constant. The following results
have first been stated in [3]. The proofs are detailed therein.

Since we focus on the 1D case, we can compute the velocity v by a direct integration of equa-
tion (1a), which gives

v(t, y) = ve(t) +
βκ
p0

∫ y

0

Φ(t, z) dz. (21)

This velocity is obviously non-negative under Hypotheses 1, 2 and 3, so that system (1) is well-
posed. As mentioned earlier, equation (1b) can be rewritten as (20). We can thus apply the
method of characteristics to compute the enthalpy.

3.1.1 Constant power density

Proposition 3. Assume the power density Φ = Φ0 and the inlet velocity ve constant in time
and space and denote Φ̂0

def= βκΦ/p0. Let ξ(t, y) and t∗(t, y) be defined as follows

ξ(t, y) def=

(
y +

ve

Φ̂0

)
e−Φ̂0t − ve

Φ̂0

,

t∗(t, y) def= t− 1

Φ̂0

ln

(
1 +

Φ̂0

ve
y

)
= − 1

Φ̂0

ln

(
1 +

Φ̂0

ve
ξ(t, y)

)
.

Then the solution h of equation (1b) is given by

h(t, y) =


qκ +

[
h0

(
ξ(t, y)

)
− qκ

]
eΦ̂0t, if ξ(t, y) ≥ 0,

qκ +
[
he
(
t∗(t, y)

)
− qκ

](
1 +

Φ̂0y

ve

)
= he

(
t∗(t, y)

)
+

Φ0y

De

(
t∗(t, y)

) , if ξ(t, y) < 0.

(22)

Corollary 1. The solution p of equation (1c) is given by
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• if ξ(t, y) ≥ 0 then

p(t, y) = Φ̂0[µ(y)− µ(L)]+

p0

βκ

{
βκ +

(
g + Φ̂0vee

Φ̂0t
) [
H0

(
ξ(t, L)

)
−H0

(
ξ(t, y)

)]
+ Φ̂2

0e
Φ̂0t
[
H0

(
ξ(t, L)

)
−H0

(
ξ(t, y)

)]}
, (23a)

• otherwise

p(t, y) = Φ̂0[µ(y)− µ(L)]+

p0

βκ

{
βκ +

(
g + Φ̂0vee

Φ̂0t
) [
H0

(
ξ(t, L)

)
−H0(0)

]
+ Φ̂2

0e
Φ̂0t
[
H0

(
ξ(t, L)

)
−H0(0)

]
− ve

(
g + Φ̂0vee

Φ̂0t
) [
He(0)−He

(
t∗(t, y)

)]
− Φ̂0v

2
e

[
He(0)−He

(
t∗(t, y)

)]}
, (23b)

where H0, H0, He and He are respectively some primitive functions of y 7→ 1/(h0(y) − q),
y 7→ y/(h0(y)− q), t 7→ 1/(he(t)− q) and t 7→ e−Φ̂0t/(he(t)− q).

Proof of Proposition 3. Equation (21) becomes

v(t, y) = ve + Φ̂0y. (24)

Given this velocity field, we introduce the characteristic curves: let χ(τ ; t, y) be the position at
time τ of a particle located in y at time t in a flow driven at velocity v. Hence χ is solution to
the parametrized ODE for t ≥ 0 and y ∈ (0, L)

dχ

dτ
(τ ; t, y) = v

(
τ, χ(τ ; t, y)), (25a)

χ(t; t, y) = y. (25b)

Since v is linear, the Cauchy-Lipschitz theorem ensures the existence of χ over some interval
(depending on t and y). Moreover, χ is continuous with respect to (τ, t, y). We then solve
ODE (25) using expression (24). We obtain

χ(τ ; t, y) =

(
y +

ve

Φ̂0

)
eΦ̂0(τ−t) − ve

Φ̂0

.

Let us now explain the two notations introduced in the statement of the proposition. ξ(t, y)
corresponds to the foot of the characteristic curve passing at the point (t, y), i.e. ξ(t, y) =
χ(0; t, y). When ξ(t, y) ≤ 0, t∗(t, y) is the time at which the characteristic curve crosses the
boundary y = 0, i.e. the solution of the equation χ(t∗; t, y) = 0 (see Figure 4). For fixed t ≥ 0
and y ∈ (0, L), the requirement χ(τ ; t, y) ∈ (0, L) constrains the interval of existence

τ ∈
(

max {0; t∗(t, y)} , t+ 1
Φ̂0

ln
(
ve+Φ̂0L

ve+Φ̂0y

))
. (26)

For (τ, t, y) satisfying (26), we note

ĥ(τ ; t, y) def= h
(
τ ;χ(τ ; t, y)

)
. (27)
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We deduce from equation (20) that ĥ satisfies{
∂τ

[
ĥ(τ ; t, y)− qκ

]
= Φ̂0

[
ĥ(τ ; t, y)− qκ

]
,

ĥ(t; t, y) = h(t, y).

The solution of this linear first order ODE is

h(t, y)− qκ = ĥ(t; t, y)− qκ =
[
ĥ(τ ; t, y)− qκ

]
eΦ̂0(t−τ) =

[
h
(
τ ;χ(τ ; t, y)

)
− qκ

]
eΦ̂0(t−τ). (28)

Two cases must be investigated depending on the minimal time until which the characteristic
curve remains in the domain or equivalently depending on the sign of ξ (see (26) and Figure 4):

• if ξ(t, y) ≥ 0, then the characteristic curve does not cross the boundary y = 0, which means
that we can take τ = 0 in equation (28) and

h(t, y)− qκ =
[
h0

(
χ(0; t, y)

)
− qκ

]
eΦ̂0t =

[
h0

(
ξ(t, y)

)
− qκ

]
eΦ̂0t;

• if ξ(t, y) < 0, the backward characteristic curve reaches the boundary at time t∗(t, y) > 0
and

h(t, y)− qκ = (he(t
∗)− qκ)eΦ̂0(t−t∗) = (he(t

∗)− qκ)
(

1 + Φ̂0y
ve

)
.

Noticing that h− qκ = p0

βκ
1
ρ leads to

h(t, y) = qκ + (he(t
∗)− qκ) +

1

ρe(t∗)

Φ0

ve
y = he(t

∗) +
Φ0

De(t∗)
y.

Proof of Corollary 1. The exact dynamic pressure p can be computed by integrating the mo-
mentum equation (1c) which is equivalent to

∂yp = −∂t(ρv)− ∂y(ρv2) + ∂y(µ∂yv)− ρg.

Using the mass conservation law and observing that v given by (24) is independent of time, we
obtain

∂yp = −(Φ̂0v + g)ρ+ Φ̂0∂yµ

from which we deduce

∂yp = − p0

βκ

g + Φ̂0(ve + Φ̂0y)

h− qκ
+ Φ̂0∂yµ.

Integrating between y and L, we get

p(t, y) = p0 +
p0(g + Φ̂0ve)

βκ

∫ L

y

1

H(t, z)
dz +

p0Φ̂2
0

βκ

∫ L

y

z

H(t, z)
dz + Φ̂0[µ(y)− µ(L)]

where H def= h− qκ. Since h is defined piecewise by (22), we have to consider two cases:

• if ξ(t, y) ≥ 0, we have H(t, y) = H0

(
ξ(t, y)

)
eΦ̂0t so that by means of the change of variable

ζ = ξ(t, z) we can compute each integral∫ L

y

1

H(t, z)
dz =

∫ ξ(t,L)

ξ(t,y)

1

H0(ζ)
dζ =

[
H0(ζ)

]ξ(t,L)

ξ(t,y)
,
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∫ L

y

z

H(z)
dz =

∫ ξ(t,L)

ξ(t,y)

ξ−1(t, ζ)

H0(ζ)
dζ

= eΦ̂0t

∫ ξ(t,L)

ξ(t,y)

ζ

H0(ζ)
dζ + (eΦ̂0t − 1)

ve

Φ̂0

∫ ξ(t,L)

ξ(t,y)

1

H0(ζ)
dζ

= eΦ̂0t
[
H0(ζ)

]ξ(t,L)

ξ(t,y)
+ (eΦ̂0t − 1)

ve

Φ̂0

[
H0(ζ)

]ξ(t,L)

ξ(t,y)
.

Hence we deduce (23a).

• if ξ(t, y) < 0, we have H(t, y) =
(

1 + Φ̂0

ve
y
)
He

(
t∗(t, y)

)
. The integration domain is split

into two parts depending on the sign of ξ(t, z). More precisely∫ L

y

f(z) dz =

∫ L

y∗(t)

f(z) dz +

∫ y∗(t)

y

f(z) dz

for any function f and with y∗(t) def=(eΦ̂0t−1) ve
Φ̂0

(see Figure 4). For integrals between y∗(t)
and L, we apply the previous result with y = y∗(t). For integrals between y and y∗(t), we
use the change of variables ζ = t− 1

Φ̂0
ln
(

1 + Φ̂0

ve
z
)

∫ y∗(t)

y

1

H(t, z)
dz = −ve

∫ 0

t∗(t,y)

1

He(ζ)
dζ = ve

[
He(ζ)

]t∗(t,y)

0
,∫ y∗(t)

y

z

H(t, z)
dz =

v2
e

Φ̂0

∫ t∗(t,y)

0

eΦ̂0(t−ζ) − 1

He(ζ)
dζ =

v2
e

Φ̂0

[
(eΦ̂0t − 1)He(ζ) +He(ζ)

]t∗(t,y)

0
.

Summing all terms leads to (23b).

Remark 6. As it has been stated in [3], if the inlet enthalpy is also constant and if the inlet
velocity is nonzero, there is an asymptotic state which is reached in finite time. It is given by

v∞(y) = ve + Φ̂0y, h∞(y) = he +
Φ0

De
y.

However, if the inlet velocity is ve = 0, then ξ(t, y) is always positive and no asymptotic state
can be reached since the enthalpy increases continuously in time.

3.1.2 Varying power density (with t or y)

Proposition 4. Assume the power density Φ depends on space and the inlet velocity ve is
independent of time. Let us define

Θ(y) def=

∫ y

0

dz

v(z)
, ξ(t, y) def= Θ−1

(
Θ(y)− t

)
and t∗(t, y) def= t−Θ(y).

Then the solution h of equation (1b) is given by

h(t, y) =


qκ + v(y)

h0

(
ξ(t, y)

)
− qκ

v
(
ξ(t, y)

) ; if ξ(t, y) ≥ 0,

qκ + v(y)
he
(
t∗(t, y)

)
− qκ

ve
= he

(
t∗(t, y)

)
+

1

De

(
t∗(t, y)

) ∫ y

0

Φ(z) dz, if ξ(t, y) < 0.
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Proof. Since the inlet velocity ve is a positive constant, the velocity v(t, y) = v(y) is a positive
function and Θ is thus invertible. In a similar way as for the previous proposition, we solve the
characteristic ODE (25) which leads to Θ

(
χ(τ)

)
−Θ(y) = τ − t and

χ(τ ; t, y) = Θ−1
(
Θ(y) + τ − t

)
. (29)

We can ensure that χ(τ ; t, y) ∈ (0, L) provided τ ∈
(
max

{
0, t∗(t, y)

}
, t+ Θ(L)−Θ(y)

)
. Keeping

the same notation (27) for ĥ, equation (20) becomes∂τ
[
ĥ(τ ; t, y)− qκ

]
=
βκ
p0

[
ĥ(τ ; t, y)− qκ

]
Φ
(
χ(τ ; t, y)

)
,

ĥ(t; t, y) = h(t, y).

(30)

For the sake of simplicity, we set χ′ = dχ
dτ and χ′′ = d2χ

dτ2 . We differentiate ODE (25) to obtain

χ′′(τ ; t, y) = χ′(τ ; t, y)
dv

dy

(
χ(τ ; t, y)

)
= χ′(τ ; t, y)

βκ
p0

Φ
(
χ(τ ; t, y)

)
.

The positivity of v implies that χ′(τ ; t, y) > 0 and

βκ
p0

Φ
(
χ(τ ; t, y)

)
=
χ′′(τ ; t, y)

χ′(τ ; t, y)
=
[
ln
(
χ′(τ ; t, y)

)]′
=
[
ln v
(
χ(τ ; t, y)

)]′
.

Inserting this relation in equation (30), we have

∂τ (ĥ− qκ) = (ĥ− qκ)∂τ
[
ln v
(
χ(τ ; t, y)

)]
.

Hence

h(t, y)− qκ = v(y)
h
(
τ, χ(τ ; t, y)

)
− qκ

v
(
χ(τ ; t, y)

) .

Given expression (29) for χ, we finally obtain

h(t, y) = qκ +


v(y)

h0

(
ξ(t, y)

)
− qκ

v
(
ξ(t, y)

) , if ξ(t, y) ≥ 0,

v(y)
he
(
t∗(t, y)

)
− qκ

ve
, otherwise.

Proposition 5. Assume the power density Φ only depends on time. We define

Ψ(t) def=
βκ
p0

∫ t

0

Φ(s) ds and ξ(t, y) def= ye−Ψ(t) −
∫ t

0

ve(s)e
−Ψ(s)ds.

Let t∗(t, y) be the solution of the equation (in t) y =

∫ t

t∗
ve(s)e

Ψ(t)−Ψ(s)ds. Then the solution h

of equation (1b) is given by

h(t, y) = qκ +


[
h0

(
ξ(t, y)

)
− qκ

]
eΨ(t), if ξ(t, y) ≥ 0,[

he
(
t∗(t, y)

)
− qκ

]
eΨ(t)−Ψ(t∗), if ξ(t, y) < 0.
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Proof. As previously, the key point is the integration of the characteristic ODE (25) which reads

d

dτ

(
χ(τ)e−Ψ(τ)

)
= ve(τ)e−Ψ(τ).

This leads to
χ(τ ; t, y) = yeΨ(t)−Ψ(t) +

∫ τ

t

ve(s)e
Ψ(t)−Ψ(s) ds.

Consequently
h(t, y)− qκ =

[
h
(
τ, χ(τ ; t, y)

)
− qκ

]
eΨ(t)−Ψ(τ).

The main issue is then to determine the interval for τ such that χ(τ ; t, y) ∈ (0, L). The equality
χ(τ ; t, y) = 0 can be rewritten as

y =

∫ t

τ

ve(s)e
Ψ(t)−Ψ(s) ds.

As the right hand side vanishes for τ = t, two cases may occur: either y is greater than the right
hand side for τ = 0 (which would imply that the left bound of the interval is 0), or there exists
τ = t∗ > 0 such that the previous equality holds. In the former case, we obtain

h(t, y)− qκ =
[
h0

(
χ(0; t, y)

)
− qκ

]
eΨ(t),

while in the latter case

h(t, y)− qκ =
[
he
(
t∗(t, y)

)
− qκ

]
eΨ(t)−Ψ(t∗).

Remark 7. In the general case, i.e. with time dependence for he and De and time/space de-
pendence for Φ, it does not seem possible to compute an exact solution. However, if he(t), De(t)
and Φ(t, y) have a finite limit as t → +∞ denoted by h∞e , D∞e , Φ∞(y), then there exists an
asymptotic solution for the enthalpy

h∞(y) = h∞e +
1

D∞e

∫ y

0

Φ∞(z) dz

and all other quantities are deduced from h∞. We recover the results of [12].

3.2 Exact and asymptotic solutions for two-phase flow with phase
transition

In the case of a two-phase flow with phase transition and if we can determine the position of each
phase, we can deduce the exact solution using the single-phase flow results given in Section 3.1.
In the particular case where all parameters and boundary/initial data are constant, the result is
the following.

Proposition 6. Let us assume that the inlet enthalpy he, the inlet velocity ve, the power density
Φ0 and the initial enthalpy h0 are constant. Let Φ̂κ

def= βκΦ0/p0, where κ is respectively `, m, g
in the liquid, mixture and gas phase. We suppose that the initial and boundary data correspond
to the liquid phase, i.e. he = h0 < hs` . We set

ys`
def=
De

Φ0
(hs` − he), ts`

def=
1

Φ̂`
ln

(
hs` − q`
h0 − q`

)
,
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ts`

ys`

tsg

ysg y

t

L

M

G

(a) Liquid (L), mixture (M) and vapor (G) re-
gions of the spatiotemporal domain R+×R+

for the velocity.

ts`

ys`

tsg

ysg y

t

t`(
y)

t m
(y

)

tg(
y)

(b) Definition of four regions of the spatiotem-
poral domain R+ × R+ for the enthalpy .

Figure 5: Definition of regions for Proposition 6

ysg
def=
De

Φ0
(hsg − he), tsg

def= ts` +
1

Φ̂m
ln

(
hsg − qm
hs` − qm

)
.

Let us define three curves in R+ × R+ as pictured on Figure 5b

t`(y) def=
1

Φ̂`
ln

(
1 +

Φ̂`y

ve

)
, for 0 ≤ y ≤ ys` ,

tm(y) def=
1

Φ̂m
ln

(
ve + (Φ̂` − Φ̂m)ys` + Φ̂my

ve + Φ̂`ys`

)
+ t`(y

s
` ), for ys` < y < ysg,

tg(y) def=
1

Φ̂g
ln

(
ve + (Φ̂` − Φ̂m)ys` + (Φ̂m − Φ̂g)y

s
g + Φ̂gy

ve + (Φ̂` − Φ̂m)ys` + Φ̂mysg

)
+ tm(ysg), for y ≥ ysg.

Then the spatiotemporal domain R+×R+ consists of three regions corresponding to liquid, mixture
and vapor phases as follows (see Figure 5a):

L =
{

(t, y) ∈ R+ × R+
∣∣ t ≤ ts` or y ≤ ys`

}
,

M =
{

(t, y) ∈ (ts` ,+∞)× (ys` ,+∞)
∣∣ t ≤ tsg or y ≤ ysg

}
,

G =
{

(t, y) ∈ (tsg,+∞)× (ysg,+∞)
}

;

the solution v of equation (1a) is given by

v(t, y) =


ve + Φ̂`y, if (t, y) ∈ L,
ve + Φ̂`y

s
` + Φ̂m(y − ys` ), if (t, y) ∈M,

ve + Φ̂`y
s
` + Φ̂m(ysg − ys` ) + Φ̂g(y − ysg), if (t, y) ∈ G,
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and the solution h of equation (1b) is given by (see Figure 5b)

h(t, y) =


q` + (h0 − q`)eΦ̂`t, if (t, y) ∈ L and t < t`(y),

qm + (hs` − qm)eΦ̂m(t−ts`), if (t, y) ∈M and t < tm(y),

qg + (hsg − qg)eΦ̂g(t−tsg), if (t, y) ∈ G and t < tg(y),

he + Φ0

De
y, otherwise.

Proof. Since ρe, ve, h0 and Φ0 are constant and correspond to the liquid phase, equations (1a)-
(1b) are written over a time interval [0, T ) for some T > 0 to be specified later (which corresponds
to the first time another phase appears)

∂yv = Φ̂`,

∂th+ v∂yh = Φ̂`(h− q`),
v(t, 0) = ve,

h(t, 0) = he,

h(0, t) = h0 = he.

We can apply Proposition 3 to this system which leads to

v(y) = ve + Φ̂`y

and

h(t, y) =


q` + (h0 − q`)eΦ̂`t, if t < t`(y),

he +
Φ0

De
y, otherwise,

where the curve t = t`(y) corresponds to the characteristic curve coming from (t = 0, y = 0).
The enthalpy h(t, ·) is a monotone-increasing function consisting (spatially) of a linear part and
a constant part at each time. Two situations may occur:

• either he + Φ0

De
L ≤ hs` : the fluid remains liquid indefinitely (T = +∞) and the enthalpy is

equal to he + Φ0

De
y everywhere as soon as t ≥ t`(L);

• or he + Φ0

De
L < hs` : a mixture phase appears.

In the latter case, there exists t > 0 and y ∈ (0, L) such that h(t, y) = hs` . We then define T = ts`
as the solution of h(ts` , L) = hs` and ys` as the smallest y such that h(ts` , y) = hs` , i.e.

q` + (h0 − q`)eΦ̂`t
s
` = hs` , he +

Φ0

De
ys` = hs` .

We mention that ts` = t`(y
s
` ). For t > ts` , the fluid is in liquid phase for y < ys` and in mixture

phase for y ≥ ys` . Therefore, in the liquid region the previous solution is still valid, whereas in
the mixture region [ts` , T ′)× [ys` , L] equations (1a)-(1b) are written as

∂yv = Φ̂m,

∂th+ v∂yh = Φ̂m(h− qm),

v(t, ys` ) = ve + Φ̂`y
s
` ,

h(t, ys` ) = hs` ,

h(ts` , y) = hs` .
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We adapt Proposition 3 to the current spatiotemporal domain so that we obtain

v(y) = ve + Φ̂`y
s
` + Φ̂m(y − ys` )

and

h(t, y) =


qm + (hs` − qm)eΦ̂m(t−ts`), if t < tm(y),

he +
Φ

De
y, otherwise.

The curve t = tm(y) corresponds to the characteristic curve passing through (ts` , y
s
` ), i.e.

tm(y) =
1

Φ̂m
ln

(
ve + (Φ̂` − Φ̂m)ys` + Φ̂my

ve + Φ̂`ys`

)
+ ts` .

This can be rewritten in a simpler form. To this end, we use the definition of ys` , the relation
1
ρe

= β`
p0

(he− q`) and the continuity of ρ at ys` (implying βm(hs` − qm) = β`(h
s
` − q`)) which leads

to

tm(y) =
1

Φ̂m
ln

(
he − qm + Φ0y

De

hs` − qm

)
+ ts` .

Applying the same procedure we find (tsg, y
s
g) such that hsg is reached and the proof follows.

The assumptions of Proposition 6 may seem restrictive but it can be trivially extended to
several cases:

• to other constant initial and boundary conditions (i.e. mixture or vapor);

• if Φ = Φ0 < 0 but v remains positive since the enthalpy is still monotone.

If Φ and/or boundary-initial conditions are not constant anymore, the enthalpy is no longer
monotone. It is thus difficult to determine regions L,M and G. However, if this can be achieved,
we can similarly apply the monophasic results in each region to compute the exact solution. In
any case, the following result holds (similar to Remark 7):

Proposition 7. For any inlet velocity ve, inlet flow rate De and power density Φ which have
finite limits in time, let us denote

(
h∞e , D

∞
e ,Φ

∞(y)
)

= lim
t→+∞

(
he(t), De(t),Φ(t, y)

)
. Then, the

asymptotic solution
(
h∞(y), v∞(y), p∞(y)

)
is given by

h∞(y) = h∞e +
1

D∞e

∫ y

0

Φ∞(z) dz,

v∞(y) =
D∞e

ρ
(
h∞(y), p0

) ,
p∞(y) = p0 + g

∫ L

y

ρ
(
h∞(z), p0

)
dz −

[
µ
β
(
h∞(z), p0

)
Φ∞(z)

p0
− (D∞e )

2

ρ
(
h∞(z), p0

)]z=L
z=y

.

Remark 8. Under the assumptions of Proposition 7, coefficients ys` and ysg can always be com-
puted. It can thus be stated whether the fluid appears only as a liquid phase (if ys` > L) or also
as mixture (ys` ≤ L ≤ ysg) or vapor (ys` < ysg < L). In any case, we observe that a steady state is
reached. It is given by

h∞(y) = he +
Φ0

De
y
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y2 yN−1

hni
vni
pni

yi

0

y1

hn1 =he(t
n)

vn1 =ve(t
n)

L

yN

pnN = p0

Figure 6: Grid and boundary conditions.

and the velocity is piecewise linear. Moreover, we can determine the time t∞ at which the
asymptotic state is reached

t∞
def=


t`(L), if ys` > L,

tm(L), if ys` ≤ L ≤ ysg,
tg(L), if ysg < L.

4 Numerical scheme
The main advantage of dimension 1 is that equations in (1) are decoupled which means it suffices
to compute h from equation (20) to deduce all other variables. To solve the transport equation
with source term (20), the numerical method of characteristics (MOC) seems suitable insofar as
it enables to cope with the advection operator.

Given ∆y > 0 and ∆t > 0, we consider a uniform Cartesian grid { yi = i∆y }1≤i≤N such that
y1 = 0 and yN = L (see Figure 6) as well as a time discretization { tn = n∆t }n≥0. Unknowns
are collocated at the nodes of the mesh. We set the initial values v0

i = v0(yi) and h0
i = h0(yi)

for i = 1, . . . , N .

4.1 Key idea of the scheme
For details about numerical methods of characteristics, the reader may refer to [17, 29]. This
method amounts to tracking particles along the flow as it consists in building approximate
characteristic curves to locate accurately the position of particles and updating the unknown
according to the source term as described from a theoretical point of view in section 3.1. More
precisely, at time tn, we aim at approximating the solution of

d

dτ
h̃n+1
i (τ) =

β
(
h̃n+1
i (τ)

)
Φ
(
τ, χ(τ ; tn+1, yi)

)
p0

(
h̃n+1
i (τ)− q

(
h̃n+1
i (τ)

))
, (31a)

where τ 7→ h̃n+1
i (τ) def= h

(
τ, χ(τ ; tn+1, yi)

)
and the characteristic flow χ satisfies

d

dτ
χ(τ ; tn+1, yi) = v

(
τ, χ(τ ; tn+1, yi)

)
, τ ≤ tn+1,

χ(tn+1; tn+1, yi) = yi.

(31b)

The reader may refer to [29] for further details about the resolution of (31b). Let ξni be the
numerical approximation of χ(tn; tn+1, yi). As for ODE (31a), any direct numerical method (ex-
cept the explicit 1st-order Euler method) involves computations of the enthalpy at intermediate
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times in (tn, tn+1]. The classical Euler-type MOC method is thus written as

h(tn+1, yi) = h̃n+1
i (tn+1) ≈ h̃n+1

i (tn) + ∆t
β
(
h̃n+1
i (tn)

)
Φ
(
τ, ξni )

)
p0

(
h̃n+1
i (tn)− q

(
h̃n+1
i (tn)

))
.

(32)
The difficulty lies in interpolating the numerical solution at time tn (and located at nodes yj) to
compute h̃n+1

i (tn) = h
(
tn, χ(tn; tn+1, yi)

)
. This step will be detailed later on. Scheme (32) will

be referred to as the MOC scheme in the sequel.

To reach higher order, we rewrite ODE (31a) using the facts that β(h) and h− q(h) are positive.
Setting

R(h̃) def=

∫ h̃

0

dh

β(h) ·
(
h− q(h)

) ,
equation (31a) reads

R′
(
h̃n+1
i

) d

dτ
h̃n+1
i (τ) =

Φ
(
τ, χ(τ ; tn+1, yi)

)
p0

(33)

and thus can be integrated explicitly between tn and tn+1

R
(
h̃n+1
i (tn+1)

)
−R

(
h̃n+1
i (tn)

)
=

1

p0

∫ tn+1

tn
Φ
(
τ, χ(τ ; tn+1, yi)

)
dτ

so that

h̃n+1
i (tn+1) = R−1

(
R
(
h̃n+1
i (tn)

)
+

1

p0

∫ tn+1

tn
Φ
(
τ, χ(τ ; tn+1, yi)

)
dτ

)
. (34)

As Φ is a datum, the right hand side can be expanded at any order. Notice that we can give
explicit expressions for R and R−1:

R(h) =


1
β`

ln
(

1− h
q`

)
, if h ≤ hs` ,

Rs` + 1
βm

ln
(
h−qm
hs`−qm

)
, if hs` < h < hsg,

Rsg + 1
βg

ln
(
h−qg
hsg−qg

)
, if h ≥ hsg,

R−1(r) =


q` − q`eβ`r, if r ≤ Rs` ,
qm + (hs` − qm)eβm(r−Rs`), if Rs` < r < Rsg,

qg + (hsg − qg)eβg(r−Rsg), if r ≥ Rsg,

where

Rs`
def=

1

β`
ln

(
1− hs`

q`

)
, Rsg

def=Rs` +
1

βm
ln

(
hsg − qm
hs` − qm

)
.

Strategy (34) intrinsically ensures the positivity of hn+1
i − q(hn+1

i ) and is named INTMOC.

4.2 Description of the scheme
Given the numerical solutions (hni , v

n
i , p

n
i ), the overall process at step n+ 1 consists in computing

successively hn+1
i , vn+1

i and pn+1
i as follows.
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• Enthalpy. For the boundary condition (i = 1) we impose hn+1
1 = he(t

n+1). Then hn+1
i is

determined in two steps:

¬ Solve ODE (31b) over the interval [tn, tn+1]. The approximation ξni of χ(tn; tn+1, yi)
is computed either at order 1 or 2 (see [27–29] for more details):

(i) at order 1 in time, we have χ(tn; tnn+ 1, yi) ≈ yi −∆t · v(tn, yi) so that we set

ξni = yi −∆t · vni ;

(ii) at order 2 in time, we have

χ(tn; tn+1, yi) ≈ yi −∆t · v(tn, yi)−
1

2
∆t2

(
∂tv(tn, yi)− v(tn, yi)∂yv(tn, yi)

)
so that we set

ξni = yi −∆t

(
3

2
vni −

1

2
vn−1
i

)
+

∆t2

2

β(hni )

p0
vni Φ(tn, yi).

­ Update the enthalpy:

• if ξni > 0 (see Figure 7a), let j be the index such that ξni ∈ [yj , yj+1). Let us denote
θnij

def=
yj+1−ξni

∆x and ĥni the numerical approximation of h(tn, ξni ) (which approaches
h̃n+1
i (tn)) obtained by interpolation (ξni is generally not a mesh node):

(i) at order 1
ĥni = θnijh

n
j + (1− θnij)hnj+1; (35)

(ii) at higher order
ĥni = λni h

−
j + (1− λni )h+

j (36)

where

λni
def=


1+θnij

3 , if P+
j (θnij) ≥ 0 and P−j (θnij) ≥ 0,

0, if P+
j (θnij) ≥ 0 and P−j (θnij) < 0,

1, if P+
j (θnij) < 0 and P−j (θnij) ≥ 0,

θnij , otherwise,

h−j
def=


hnj , if P+

j (θnij) < 0 and P−j (θnij) < 0,

(θnij)
2

2

(
hnj−1 − 2hnj + hnj+1

)
−
θnij
2

(
hnj−1 − 4hnj + 3hnj+1

)
+ hnj+1,

otherwise,

h+
j

def=


hnj+1, if P+

j (θnij) < 0 and P−j (θnij) < 0,

(θnij)
2

2

(
hnj+2 − 2hnj+1 + hnj

)
−
θnij
2

(
hnj+2 − hnj

)
+ hnj+1,

otherwise,

and P±j (θ) def=(θ − δ±j )(θ − δ±j+1) with

δ−j
def=

2(hnj+1 − hnj )

hnj−1 − 2hnj + hnj+1

, δ+
j

def=
2(hnj+1 − hnj )

hnj − 2hnj+1 + hnj+2

,
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δ−j+1
def=
hnj−1 − 4hnj + 3hnj+1

hnj−1 − 2hnj + hnj+1

, δ+
j+1

def=
hnj+2 − hnj

hnj − 2hnj+1 + hnj+2

.

This procedure has been designed in [29] in order to ensure the maximum principle
by means of a variable stencil. Even if there is no maximum principle associated
to equation (20), this scheme preserves the property h̃ni − q(h̃ni ) > 0.

We then update hn+1
i by formulae (32) or (34):

(i) if we use the standard MOC scheme for ODE (31a) over [tn, tn+1], (32) reads

hn+1
i = ĥni + ∆t

β(ĥni )Φ(tn, ξni )

p0

(
ĥni − q(ĥni )

)
; (37a)

(ii) if we modify equation (31a) before integration, the trapezoidal formula ap-
plied to the right hand side in (34) yields

hn+1
i = R−1

(
R(ĥni ) +

∆t

p0

Φ(tn, ξni ) + Φ(tn+1, yi)

2

)
; (37b)

• if ξni ≤ 0 (see Figure 7b), we compute the time t∗i at which the characteristic curve
τ 7→ χ(τ ; tn+1, yi) crosses the inflow boundary. There we have h(t∗i , 0) = he(t

∗
i ).

Using a first order approximation in time, we set t∗i = tn+1 − yi/v
n
i and we

compute the updated enthalpy similarly to what is detailed above:

(i) by integrating ODE (31a) over [t∗i , t
n+1] (Euler scheme in time)

hn+1
i = he(t

∗
i ) + (tn+1 − t∗i )

β
(
he(t

∗
i )
)
Φ(t∗, 0)

p0

[
he(t

∗
i )− q

(
he(t

∗
i )
)]

; (38a)

(ii) by integrating ODE (33) over [t∗i , t
n+1] (trapezoidal formula)

hn+1
i = R−1

(
R
(
he(t

∗
i )
)

+
tn+1 − t∗i

p0

Φ(t∗i , 0) + Φ(tn+1, yi)

2

)
. (38b)

The boundary y = 0 is the only one we need to care about since characteristic curves
cannot exit from the domain at y = L (we assumed that ve > 0 and Φ ≥ 0 which implies
that v > 0).

• Velocity. For the boundary condition (i = 1), we set vn+1
1 = ve(t

n+1). Then, we integrate
equation (1a) over [yi, yi+1]. Depending on the ability to compute the primitive function
of Φ, the velocity field can be computed directly

vn+1
i = vn+1

i−1 +
1

p0

∫ yi

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz, for i = 2, . . . , N

or approximated by the following upwind approach (since vni ≥ 0 for all i and for all n)

vn+1
i = vn+1

i−1 +
∆y

p0
β(hn+1

i−1 )Φ(tn+1, yi−1).

However, since the coefficient β is discontinuous at phase change points (see Figure 3c),
we have to adapt the previous algorithm in cells where the fluid changes from a phase to
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Figure 7: Numerical method of characteristics.

another. It is reasonable to suppose that at most two phases are present within a single
cell. Then, if hsκ ∈ (hn+1

i−1 , h
n+1
i ), let y∗ be the linear approximation of ysκ, i.e.

y∗ def= yi−1 + ∆y
hsκ − hn+1

i−1

hn+1
i − hn+1

i−1

.

Hence∫ yi

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz

=

∫ y∗

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz +

∫ yi

y∗
β
(
h(tn+1, z)

)
Φ(tn+1, z) dz

≈ (y∗ − yi−1)β(hn+1
i−1 )Φ(tn+1, yi−1) + (yi − y∗)β(hn+1

i )Φ(tn+1, yi).

• Pressure. For the boundary condition (i = N), we set pnN = p0. Then we rewrite equa-
tion (1c) in the following equivalent form

−∂yp = ∂t(ρ(h)v) + ∂y(ρ(h)v2)− ∂y(µ∂yv) + ρ(h)g

= ρ(h)∂tv + ρ(h)v∂yv − ∂y(µ∂yv) + ρ(h)g.

Using (1a) it becomes

−∂yp = ρ(h)∂tv + ρ(h)v
β(h)Φ

p0
− ∂y

(
µ
β(h)Φ

p0

)
+ ρ(h)g.

Let us note ρn+1
i = ρ(hn+1

i ) and βn+1
i = β(hn+1

i ). Integrating this equation over [yi−1, yi],
we obtain

pn+1
i−1 = pn+1

i +
∆y

2

[(
ρn+1
i + ρn+1

i−1

)
g + ρn+1

i

vn+1
i − vni

∆t
+ ρn+1

i−1

vn+1
i−1 − vni−1

∆t

+ ρn+1
i vn+1

i

βn+1
i

p0
Φ(tn+1, yi) + ρn+1

i−1 v
n+1
i−1

βn+1
i−1

p0
Φ(tn+1, yi−1)

]
− µ

[
βn+1
i

p0
Φ(tn+1, yi)−

βn+1
i−1

p0
Φ(tn+1, yi−1)

]
, i ∈ {2, . . . , N}.

(39)
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Both schemes (MOC and INTMOC) are explicit and unconditionally stable which are standard fea-
tures for numerical methods of characteristics. The handling of boundary conditions is achieved
in the present study at order 1. Although the time step can be chosen independently from the
mesh size, it must be small enough to provide accurate results.

5 Numerical examples
In this section we focus on data sets for which phase transition occurs (for the simulations of
single-phase flows, we refer to [3]). To simulate some scenarii in a PWR, parameters are set as
follows:

• Geometry of the reactor: L = 4.2m.

• Discretization parameters: N = 100 mesh nodes (∆y ≈ 4.3 cm) and ∆t = 0.01 s.

• Parameters involved in EOS: cf. Table 1 at page 40.

• Reference value for the pressure, the power density and the velocity: p0 = 155× 105 Pa,
Φ0 = 170× 106 W ·m−3, ṽ = 0.5m · s−1.

• Initial data: h0(y) = he, v0(y) = ve +
∫ y

0
β(h0(z))Φ(0, z)/p0dz (well-prepared insofar as

they satisfy the divergence constraint (1a)).

• Constant viscosity: µ0 = 8.4 · 10−5 kg ·m−1 · s−1.

In Test 5.1 a two-phase flow with phase transition is considered and enables to compare the
numerical schemes presented in section 4, while all other tests only involve scheme (37b)&(38b)
with high order interpolation (36) (noted INTMOC_2) to assess the robustness of the scheme and
the relevance of the model.

5.1 Two-phase flow with phase transition
In the first test, we investigate the ability of our model to deal with two-phase flows with
phase transition. We consider the case when the inlet density ρe, the inlet velocity ve, the initial
condition h0 and the power density Φ are constant, so that we can apply Proposition 6 to compute
exact transient and asymptotic solutions. The boundary conditions are ρe(t) = 750 kg ·m−3 and
ve(t) = ṽ, thus h0(y) = he(t) = h`(ρe) ≈ 1.190× 106 J ·K−1. The power density is set constant
in space and time and equal to Φ0. With these parameters, the domain is initially filled with
liquid. Then at time t = 1.769 s mixture appears for y > ys` ' 0.964m and at time t = 2.929 s
pure vapor appears for y > ysg ' 4.002m. The asymptotic state is reached at t = 2.957 s.

Figure 8 displays numerical results for the enthalpy and the velocity at instants t = 2.1 s, t = 2.8 s
and t = 3.5 s. At this last time the solution has already reached the asymptotic regime. Figure 9
displays the mass fraction and the Mach number computed from the enthalpy and the velocity.
Figure 10 displays the density and the temperature computed from the enthalpy.

In those figures we compare the exact and asymptotic solutions to the different versions of the
numerical scheme, namely:

• by scheme (37a)&(38a) with linear interpolation (35) (called MOC_1),
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• by scheme (37a)&(38a) with high order interpolation (36) (called MOC_2),

• by scheme (37b)&(38b) with linear interpolation (35) (called INTMOC_1),

• by scheme (37b)&(38b) with high order interpolation (36) (called INTMOC_2).

We observe that all numerical results match the behaviour of the exact solution including phase
transition. Nevertheless as it can be noticed at time t = 2.8 s, there is some discrepancy close to
the singularity (interface between information coming from the boundary and the inner domain).
This can easily be accounted for. Indeed, the scheme relies on an interpolation process which
assumes some smoothness for the solution. As it is not smooth at the singularity, the scheme
provides a smoothened version of the exact solution. It must be underlined that the higher the
degree of interpolation, the most accurate the solution. Moreover, there is a clear advantage of
INTMOC versions of the scheme over MOC which is due to the better approximation of the right
hand side in the former case. For these reasons, from now on we will use only the INTMOC_2
scheme which is more accurate.

Figure 9 shows that the Mach number remains lower than 0.05 so that the low Mach number
hypothesis of the model is valid in this configuration. Observe that during the transient state,
the Mach number is greater than at the asymptotic state.

From a physical point of view, it is worth emphasizing that our model predicts the appearance
of some vapor at the top of the reactor for this data set. This is due to a too small inflow velocity.

5.2 Non monotone Φ

We perform a simulation for a steady power density piecewise constant in space

Φ(t, y) =

{
Φ0, if y ≤ L/2,
0, if y > L/2.

This power density models the situation where the control rods are blocked at the middle of the
reactor. The boundary conditions are ρe(t) = 750 kg ·m−3 and ve(t) = ṽ, thus h0(y) = he(t) =
h`(ρe) ≈ 1.190× 106 J ·K−1.

We plot on Figure 11 the asymptotic solution and the numerical one computed by means of
the INTMOC_2 scheme for the enthalpy, the mass fraction, the dynamical pressure, the density
and the temperature at the instants t = 0.0 s, t = 1.0 s, t = 2.0 s, t = 3.0 s and t = 4.0 s. The
velocity is given at instants t < ts` , t = 1.8 s and t = 2.0 s. The enthalpy evolves according to
Proposition 6 and is continuous: over [0, L/2] it is linearly monotone-increasing and over [L/2, L]
it evolves in time until the constant asymptotic state is reached. At the initial state the core
is filled with liquid, so that the void fraction is 0. At t = ts` ' 1.768 s mixture appears over
[ys` , L/2] where ys` ' 0.964m. This mixture is transported to fill the domain y ≥ ys` . As long as
the domain is filled with liquid, the velocity does not depend on time. When mixture appears,
β is piecewise constant in the domain so that, according to Proposition 6, the velocity increases
up to the asymptotic value. The dynamical pressure is computed by scheme (39) and decreases
until the asymptotic state.
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Figure 8: Numerical enthalpy (left) and velocity (right) for test 5.1: Two-phase flow with phase
transition. We compare the four numerical solutions to the analytical and asymptotic
ones. The horizontal dotted lines correspond to h = hs` and h = hsg.
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Figure 9: Numerical mass fraction (left) and speed of sound (right) of the test 5.1: Two-phase flow
with phase transition. We compare the four numerical solutions with the analytical
and asymptotic ones.
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Figure 10: Numerical density (left) and temperature (right) of the test 5.1: Two-phase flow with
phase transition. We compare the four numerical solutions with the analytical and
asymptotic ones. The horizontal dotted lines correspond to ρ = ρs` and ρ = ρsg.
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Figure 11: Numerical results of the test 5.2: Non monotone Φ.
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Figure 12: Power density and entrance velocity for the test 5.3: A simplified scenario for a Loss
of Flow Accident.

5.3 A simplified scenario for a Loss of Flow Accident
Our model is tested here on an accidental transient regime: a main coolant pump trip which
is a Loss Of Flow Accident (LOFA) as at the beginning of the Fukushima accident in reactors
1, 2 and 3. To simulate this scenario, the domain is filled at first with liquid water and we
have a normal behaviour of the reactor: the pumps work normally and control rods are in upper
position. We impose at the entrance the velocity ve = 10ṽ and the power density is equal to Φ0.
These constants are chosen so as to prevent the appearance of mixture. The asymptotic state is
reached at t ' 0.8 s.

At time t1 = 1.5 s most of the pumps stop, so that the entrance velocity decreases. At time t2
the security system makes control rods drop into the core decreasing abruptly the power density.
However, there is still some residual power density (about 7%Φ0). This instant t2 ' 2.85 s
corresponds to the moment of first appearance of mixture (t ' 2.55 s) plus some time for the
rods to be dropped (0.3 s). At time t3 the security pumps are turned on, thus the inflow is
re-established. We then compute the solution until the asymptotic state is reached. Functions
ve(t) and Φ(t) can be modelled as follows (see Figure 12):

ve(t) =


10ṽ if 0 ≤ t < t1,

0.2ṽ if t1 ≤ t < t3,

10ṽ if t ≥ t3,
Φ(t) =

{
Φ0 if 0 ≤ t < t2,

7%Φ0 if t ≥ t2.

In Figure 13 we report the behaviour of the mass fraction and temperature computed at
different instants. Thanks to our model we can predict the appearance of some steam in the core
depending of the value of t3:

Case A: for t3 = 40 s the asymptotic state corresponding to Φ = 7%Φ0 and ve = 0.2ṽ is estab-
lished. In this case, due to the residual power density the fluid is completely vaporized
at the top of the domain during the transition (see for example Figure 13a at time
t = 30 s) even though there are only liquid and mixture phases in the corresponding
asymptotic state.

Case B: for t3 = 20 s the pumps are re-started soon enough so that the appearance of pure steam
is avoided.

36



Case C: for t3 = 4 s, even though the pumps are re-started almost instantaneously, some mixture
appears in a large part of the domain.

In all cases, when the pumps are re-started the fluid comes back to the liquid phase. As expected,
the sooner the pumps are re-started, the safer the situation.

6 Conclusion & Perspectives
We proposed in this paper simulations of a low Mach number model – named Lmnc – for fluid
flows in nuclear reactor cores coupled to an adaptive stiffened gas equation of state (EOS) which
varies according to the phase of the coolant fluid (which can be pure liquid water, pure steam
or mixture of these two phases). The monodimensional (1D) numerical strategy we worked out
lead to accurate and relevant qualitative results in accordance with what was expected. These
results were obtained with an optimal computational cost since the velocity and the dynamic
pressure are directly integrated in the 1D case.

More precisely, compared to a previous study [3], the present work enables to deal with more re-
alistic situations insofar as the model allows for phase transition and, thus, for accidental scenarii
such as a Loss of Flow Accident (LOFA) induced by a coolant pump trip event. Nevertheless, the
method used to determine parameters involved in the stiffened gas EOS seems to be restrictive
given the range of temperature that must be considered. That is why another strategy will be
investigated in [14] using tabulated laws instead of the stiffened gas EOS.

From a numerical point of view, a variant of the classical method of characteristics was proposed.
It relies on the EOS and provided second-order accurate results. This algorithm was compared
to the unsteady analytical solutions derived in this study for different data sets including config-
urations where phase transition occurs.

Moreover, we recall that the thermodynamic pressure is constant in the Lmnc model. Hence,
whatever the EOS used to model each phase and no matter what the dimension of the domain
(1D, 2D or 3D), the computational cost related to the EOS will be much lower in the discretization
of the Lmnc model than in any strategy for the compressible model.

The adaptation of the proposed algorithm to dimensions 2 and 3 will be carried out in future
works as well as the study of finite-volume based algorithms such as the method detailed in [5]
which must be modified to match the low Mach number regime. However, it must be underlined
that although the Lmnc model may be a useful tool for safety studies, it is not designed to
handle all potential situations especially when the Mach number cannot be considered as small
anymore. This is why it is important to study the possibility to couple the Lmnc model to the
compressible system from which it is derived [13]. Likewise, couplings with systems dedicated to
other circuits in the reactor must be contemplated.

Appendix
In this appendix, we follow the method introduced in [23, 24] to choose parameters describing
each pure phase of water with a stiffened gas law to fit with saturated curves (see Figure 2a).
Then, we determine relevant values for liquid water and steam.
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Figure 13: Numerical mass fraction (left) and temperature (right) of the test 5.3: A simplified
scenario for a Loss of Flow Accident.
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More precisely, we suppose that each phase is described by its own stiffened gas EOS (18), so
that we have to compute five constants for each phase: the specific heat at constant volume cvκ ,
the adiabatic coefficient γκ, the reference pressure πκ, the binding energy qκ and the reference
entropy q′κ (κ = ` refers to the liquid phase and κ = g to the vapor one). These parameters will
be determined using experimental values at saturation.

The stiffened gas law consists of the following expressions for the density, the enthalpy and the
Gibbs potential as functions of the temperature T and the pressure p:

ρκ(T, p) =
p+ πκ

(γκ − 1)cvκT
, (40a)

hκ(T, p) = qκ + γκcvκT, (independent of p) (40b)

gκ(T, p) = qκ + T
(
cvκγκ − q′κ − cvκγκ lnT + cvκ(γκ − 1) ln(p+ πκ)

)
, (40c)

For a given temperature T , the experimental data needed for the computation are the pres-
sure at saturation psexp(T ), the enthalpies at saturation hsκ,exp(T ) and the densities at saturation
ρsκ,exp(T ). We can find these data in [25] for several fluids. Let T0 and T1 two reference temper-
atures (recorded in [25]) between the triple point and the critical point (see Figure 2b).

• Step I: computation of γκcvκ . From the analytical expression of the enthalpy (40b) we
have h′κ(T ) = γκcvκ . This yields an averaged value of the product cpκ

def= γκcvκ by means of
a linear approximation of the experimental enthalpies between reference states T0 and T1

as

cpκ =
hsκ,exp(T1)− hsκ,exp(T0)

T1 − T0
. (41)

• Step II: computation of qκ. Equation (40b) applied to the reference state T0 provides the
approximation of the binding energy qκ:

qκ = hsκ,exp(T0)− cpκT0.

• Step III: computation of πκ. At saturation, there is an algebraic relation between the tem-
perature and the pressure, e.g. we can write p = ps(T ). Thus, using (40a), the specific
densities at saturation are expressed as

ρsκ(T ) = ρκ
(
T, ps(T )

)
=

ps(T ) + πκ
(cpκ − cvκ)T

, (42)

which implies
ln ρsκ(T ) = ln

(
ps(T ) + πκ

)
− ln(cpκ − cvκ)− lnT.

Evaluating this equation at T0 and T1 yields

ln

(
ρsκ(T1)

ρsκ(T0)

)
= ln

(
ps(T1) + πκ
ps(T0) + πκ

)
− ln

(
T1

T0

)
,

or equivalently
ρsκ(T1)

ρsκ(T0)
=

(ps(T1) + πκ)T0

(ps(T0) + πκ)T1
,

so that we can determine an averaged value of the coefficient πκ using experimental values
of the density and the pressure at saturation

πκ =
T0ρ

s
κ,exp(T0)psexp(T1)− T1ρ

s
κ,exp(T1)psexp(T0)

T1ρsκ,exp(T1)− T0ρsκ,exp(T0)
.
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Phase cv [J ·K−1] γ π [Pa] q [J · kg−1] q′ [J ·K−1]
Liquid 1816.2 2.35 109 −1167.056×103 −0.0000028
Vapor 1040.14 1.43 0 2030.255×103 −23310.00000

Table 1: Liquid water and steam, parameters computed in [23,24].

• Step IV: computation of cvκ . Equation (42) applied to the reference state T0 provides the
approximation of cvκ

cvκ = cpκ −
psexp(T0) + πκ

T0ρsκ,exp(T0)
.

• Step V: computation of γκ. Using (41) we deduce the approximation of γκ

γκ =
cpκ
cvκ

.

• Step VI: computation of q′κ. At thermodynamic equilibrium, the two Gibbs potentials are
equal. Using (40c), this implies

A ln
(
ps(T ) + πg

)
−B ln

(
ps(T ) + π`

)
− C(lnT − 1) +

D

T
+ q′` − q′g = 0

with

A def= cpg − cvg , B def= cp` − cv` , C def= cpg − cp` , D def= qg − q`.

By convention, we take q′` = 0 J ·K−1 and determine the coefficient q′g using experimental
values of the pressure at saturation

q′g = A ln
(
psexp(T0) + πg

)
−B ln

(
psexp(T0) + π`

)
− C(lnT0 − 1) +

D

T0
.

Reference states T0 and T1 must now be specified. First, T0 is a reference state chosen in order
to have the best fit between the theoretical pressure ps(T ) and the experimental one psexp(T ).
Secondly, this strategy for the determination of parameters for a stiffened gas EOS is accurate
if the two reference states are sufficiently close. Practically (following [23, 24]), we took for the
liquid phase T0 = 298K and T1 = 473K (steps I and II) and T0 = 439K and T1 = 588K (steps
III to VI). As for the steam, we set T0 = 298K and T1 = 473K in any step.

The values for liquid water and steam are given in Table 1. These parameter values yield
reasonable approximations over a temperature range from 298K to 473K.

Nevertheless near the critical point, there are some restrictions due to the nonlinearity of the
enthalpy with respect to the temperature. To circumvent this limitation, we shall propose in [14]
a new strategy to better approximate the thermodynamic quantities involved in the Lmnc model.
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