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Study of a low Mach nuclear core model

for two-phase �ows with phase

transition I: sti�ened gas law

Manuel Bernard∗, Stéphane Dellacherie†,

Gloria Faccanoni‡, Bérénice Grec§ and Yohan Penel¶

April 15, 2014

In this paper, we are interested in modelling the �ow of the coolant (water) in a
nuclear reactor core. To this end, we use a monodimensional low Mach number model
coupled to the sti�ened gas law. We take into account potential phase transitions by
a single equation of state which describes both pure and mixture phases. In some
particular cases, we give analytical steady and/or unsteady solutions which provide
qualitative information about the �ow. In the second part of the paper, we introduce
two variants of a numerical scheme based on the method of characteristics to simulate
this model. We study and verify numerically the properties of these schemes. We
�nally present numerical simulations of a loss of �ow accident (LOFA) induced by a
coolant pump trip event.

AMS Classi�cations 35Q35, 35Q79, 65M25, 76T10.

Introduction

Several physical phenomena have to be taken into account when modelling a water nuclear
reactor such as PWRs1 or BWRs2 (see [12] for an introduction). In particular, the present work
deals with the handling of high thermal dilation of the coolant �uid induced by thermal transfers
in nuclear cores (see Figure 1 for schematic pictures of PWR and BWR reactors). A natural
approach is to represent the evolution of the �ow by means of a system of PDEs similar to the
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compressible Navier-Stokes equations coupled to the modelling of phase transition as it is the
case in classic industrial codes [1, 7, 24].

In nominal and incidental situations as well as in some accidental situations studied in safety
evaluations, the magnitude of the sound velocity is much higher than the one of the velocity of
the coolant �uid, which means that the Mach number of the �ow is small. The discretization
of compressible Navier-Stokes type systems at low Mach number may induce numerical issues
directly related to the existence of fast acoustic waves (see for example [15, 28, 42] when the
convective part of the compressible Navier-Stokes system is discretized by means of a Godunov
type scheme). Sereval numerical techniques based on the resolution of a Poisson equation have
been proposed in the literature to extend incompressible methods to the (compressible) low Mach
case. A pioneering work was that of Casulli & Greenspan [9] where a �nite-di�erence scheme over
a staggered grid is designed by impliciting terms involving the speed of sound in order to avoid
restrictive stability conditions. In [11], Colella & Pao made use of the Hodge decomposition to
single out the incompressible part of the velocity �eld.

Nevertheless, in a low Mach number regime, the acoustic phenomena can be neglected in energy
balances although the �ow is highly compressible because of the thermal dilation. Thus, to
overcome the numerical di�culties, S. Dellacherie proposed in [16] another model obtained by
�ltering out the acoustic waves in the compressible model. Let us underline that this approach
was �rst applied to model low Mach combustion phenomena [34,35,41], then astrophysical issues
[4, 5] and thermal dilation of the interface of bubbles at low Mach number [13]. This speci�c
kind of models have been studied from a theoretical point of view. We mention for instance [21]
for the well-posedness of a low Mach number system and [26, 34, 39, 41] for the derivation of
monodimensional explicit solutions.

From a numerical point of view, 2D simulations have been performed in [4, 5, 30] for astrophys-
ical and combustion applications while a numerical study of the model established in [13] was
proposed in [14]. As for the low Mach number model derived in [16] and called the Low Mach
Nuclear Core (Lmnc) model, it was discretized in [6] in the monodimensional (1D) case. More-
over, 1D unsteady analytical solutions were also given in [6] which allowed to assess the numerical
schemes. Notice that 2D numerical results will be presented in [17,18].

Despite relevant numerical results, the approach proposed in [6, 16] was not satisfying since it
was restricted to monophasic �ows. Thus, we extend in this study the results stated in [6,16] by
taking into account phase transition in the Lmnc model. If we neglect viscous e�ects, the Lmnc
model proposed in this paper may be seen as the low Mach number limit of the Homogeneous
Equilibrium Model (HEM) [10,25,29,37,43] with source terms. Let us recall that the HEM model
is the compressible Euler system in which the two phases are supposed to be at local kinematic,
mechanic and thermodynamic equilibria.

A crucial step in the process is the modelling of �uid properties through the equation of state
(EOS). It is important from a physical point of view to match experimental data and from a
mathematical point of view to close the system of PDEs. In the present work, this point is
achieved by using the sti�ened gas EOS. A major result in this paper is the exhibition of 1D
unsteady analytical solutions with phase transition (see Proposition 3.4). These solutions are
of great importance: on the one hand they provide accurate estimates of heat transfers in a
nuclear core in incidental and accidental situations, and on the other hand they enable to assess
the robustness of the monodimensional numerical schemes presented in this article. In addition,
regardless of the EOS used in the pure phases, when the thermodynamic pressure is constant
(which is the case in the Lmnc model) and when the phase change is modelled by assuming local
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Figure 1: Scheme of nuclear reactors whose coolant is water: the major di�erence between PWR
and BWR is the steam void formation in the core of the latter.

mechanic and thermodynamic equilibria, the mixture can always be considered a sti�ened gas
(this point will be clari�ed in the sequel): this important remark legitimates the study of the
Lmnc model together with the sti�ened gas EOS.

Compared to the numerous low Mach number combustion models derived in the literature, the
Lmnc model di�ers for several reasons. Some of them are due to the underlying �uids: indeed,
combustion issues are related to gas modelled by the ideal gas law and involved in miscible
mixtures whereas our modelling comprises a more general equation of state and mixtures of
immiscible �uids. We must also mention that the system of PDEs is set in a bounded domain with
nonperiodic boundary conditions whose in�uence upon theoretical and numerical investigations
is noticeable.

At last, we wish to underline that although this study is speci�c to dimension 1 (which is essential
to obtain in particular the unsteady analytical solutions with phase change), it remains useful
from an industrial point of view since many safety evaluations use a 1D modelling to describe
the �ow in each component of the nuclear reactor and thus within the nuclear core [7, 19].
Nevertheless, the extension of this work to dimensions 2 and 3 is a natural and important
perspective [17].

This paper is organized as follows. In Section 1, the Lmnc model is recalled together with
boundary/initial conditions and assumptions under which it is valid. We also study the existence
of (more or less) equivalent formulations of the model that can be used depending on the variables
we aim at focusing on. Section 2 is devoted to the modelling of phase transition and to the
EOS that is necessary to close the system. In Section 3, we prove some theoretical results
stated (without proof) in [6] and we extend them to the multiphasic case. Exact and asymptotic
solutions are thus exhibited. Numerical aspects are then investigated in Section 4. More precisely,
we present some numerical schemes based on the method of characteristics proposed in [38]. We
then prove that these schemes preserve the positivity of the density and of the temperature
for any time step. Finally, these schemes are applied in Section 5 to various situations with
occurrence of phase transition like a simpli�ed scenario for a Loss of Flow Accident (LOFA)
induced by a coolant pump trip event.
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1. The low Mach nuclear core model

The Low Mach Nuclear Core (Lmnc) model introduced in [16] is obtained by �ltering out the
acoustic waves in a compressible Navier-Stokes type system. This is achieved through an asymp-
totic expansion with respect to the Mach number assumed to be very small in this framework.
One of the major consequences is the modi�cation of the nature of the equations: the �ltering
out of the acoustic waves � which are solutions of a hyperbolic equation in the compressible
system � introduces a new unknown (namely the dynamic pressure) which is solution to an el-
liptic equation in the Lmnc model. Another consequence is that we are able to compute explicit
monodimensional unsteady solutions of the Lmnc model with or without phase transition3 (see
Section 3) and to construct 1D robust and accurate numerical schemes4 (see Section 4).

In this section, we recall the Lmnc model and we present equivalent formulations for smooth
solutions. Since we are interested in the 1D case in this paper, we do not extend results to
2D/3D. Nevertheless, this can easily be done (provided the boundary conditions are adapted).

1.1. Governing equations

The 1D nonconservative formulation of the Lmnc model [16] is written as
∂yv =

β(h, p0)

p0
Φ(t, y), (1.1a)

ρ(∂th+ v∂yh) = Φ(t, y), (t, y) ∈ R+ × [0, L] (1.1b)

∂t(ρv) + ∂y(ρv2 + p) = F(v)− ρg, (1.1c)

where v and h denote respectively the velocity and the (internal) enthalpy of the �uid. Pressure
p0 is a given constant � see below. The density ρ = ρ(h, p0) is related to the enthalpy by an
equation of state (EOS) � see Section 2. So does the dimensionless compressibility coe�cient
β(h, p0) which is de�ned by

β(h, p0) def=− p0

ρ2(h, p0)
· ∂ρ
∂h

(h, p0). (1.2)

The power density Φ(t, y) is a given function of time and space modelling the heating of the
coolant �uid due to the �ssion reactions in the nuclear core. Finally, g is the gravity �eld and
F(v) models viscous e�ects: the classic internal friction in the �uid, and also the friction on the
�uid due to technological devices in the nuclear core (e.g. the friction on the �uid due to the
fuel rods). In the sequel, we take

F(v) = ∂y(µ∂yv).

In this case, µ is a turbulent viscosity given by an homogenized turbulent model. Nevertheless,
we explain in the sequel that the exact choice of F(v) is not important in the 1D case (this is no
more the case in 2D/3D).

We must also emphasize that model (1.1) is characterized by two pressure �elds, which is classic
in low Mach number approaches:

3This is not the case for the 1D compressible system from which the Lmnc is derived.
4The existence of fast acoustic waves in the compressible system induces numerical di�culties � see [15, 28] for
example � which cannot arise in the Lmnc model since the acoustic waves have been �ltered out to obtain
this low Mach number model.
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� p0: this �eld is involved in the equation of state and is named the thermodynamic pressure.
It is assumed to be constant throughout the present study and corresponds to an average
pressure in the nuclear core;

� p(t, y): it appears in the momentum equation (1.1c) and is referred to as the dynamic
pressure. It is similar to the pressure �eld which appears in the incompressible Navier-
Stokes system.

Notice that p0 + p(t, y) is a 1st-order approximation of the classic compressible pressure in the
nuclear core: the pressure p(t, y) is indeed a perturbation around the average pressure p0 (this
is due to the low Mach number hypothesis [16]). In the 1D case, equation (1.1c) decouples from
the two other equations and may be considered a post-processing leading to the computation of
p (this is why the expression of F(v) is not essential in 1D). Thus, equation (1.1c) will often be
left apart in the sequel and equations (1.1a)-(1.1b) will often be referred to as the Lmnc model
for the sake of simplicity.

1.2. Supplements

From now on, we suppose that:

Hypothesis 1.1.

1. Φ(t, y) is nonnegative for all (t, y) ∈ R+ × [0, L].

2. p0 is a positive constant.

The �rst assumption characterizes the fact that we study a nuclear core where the coolant �uid
is heated. In the steam generator of a PWR type reactor (see Figure 1a) � which could also be
modelled by means of a Lmnc type model � the �uid of the primary circuit heats the �uid of
the secondary circuit by exchanging heat through a tube bundle: in that case, we would have
Φ(t, y) ≤ 0 in the primary circuit and Φ(t, y) ≥ 0 in the secondary circuit.

The second assumption corresponds to real physical conditions even if it is not required in the
setting of the equation of state (see Section 2.3).

Boundary conditions (BC) The �uid is injected at the bottom of the core at a given enthalpy
he and at a given �ow rate De. We also impose the dynamic pressure p at the exit of the core
(y = L). The inlet BC are {

h(t, 0) = he(t), (1.3a)

(ρv)(t, 0) = De(t), (1.3b)

while the outlet BC is
p(t, L) = 0. (1.3c)

The entrance velocity ve(t) to apply at y = 0 is deduced from the relation

ve(t)
def=
De(t)

ρe(t)
where ρe

def= ρ(he, p = p0). (1.4)

The fact that he andDe depend on time enables to model transient regimes induced by accidental
situations. For example, when De(t) tends to zero, it models a main coolant pump trip event
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which is a Loss Of Flow Accident (LOFA) as at the beginning of the Fukushima accident in the
reactors 1, 2 and 3.

We also assume in the sequel that:

Hypothesis 1.2.

1. De is nonnegative.

2. he is such that ρe is well-de�ned and positive.

The �rst assumption corresponds to a nuclear power plant of PWR or BWR type: the �ow
is upward5. The second assumption means that the EOS ρ(h, p) is such that ρ(he, p0) can be
computed. Moreover, we also suppose that ρ(he, p0) > 0 from a physical point of view.

We �nally make the following modelling hypothesis:

Hypothesis 1.3. β is nonnegative.

Positivity assumptions about Φ, De, β and ρ in Hypotheses 1.1, 1.2 and 1.3 ensure that the
velocity v(t, y) remains nonnegative at any time and anywhere in the core. Otherwise, the system
could become ill-posed (see Section 4.2 in [16] where this question is partially addressed).

Well-prepared initial conditions The model is �nally closed by means of the initial condition
h0(y) = h(0, y) satisfying the following hypothesis:

Hypothesis 1.4.

1. We impose the compatibility condition h0(y = 0) = he(t = 0).

2. h0 is such that ρ0 is well-de�ned and positive.

The initial density deduced from the EOS directly satis�es the equality ρ0(y = 0) = ρe(t = 0).
Secondly, as system (1.1) consists of steady and unsteady equations, the initial velocity v0 must
satisfy equation (1.1a) for t = 0, which means

v′0(y) =
β
(
h0(y), p0

)
p0

Φ(0, y).

Hence, h0 prescribes the initial velocity v0 through the previous di�erential equation together
with the condition v0(y = 0) = ve(t = 0). The initial �ow rate D0 is thus given by

D0(y) = ρ0(y)v0(y).

Such initial data h0 and D0 are said to be well-prepared. This will be implicitly assumed in the
sequel.

5 The �ow could be downward when the nuclear reactor is a material testing reactor.
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1.3. Origin and di�erent formulations of the model

The 1D Lmnc model (1.1) is written in [16] as ∂yv =
β(h, p0)

p0
Φ(t, y), (1.5a)

ρ(h, p0) · (∂th+ v∂yh) = Φ(t, y). (1.5b)

We recall that in the 1D case, equation (1.1c) is a post-processing of (1.5). It is important to
note that the low Mach number model (1.5) is justi�ed only under smoothness assumptions. To
study the existence of weak solutions, it might be better to use a conservative formulation which
is equivalent to (1.5) for smooth solutions. This conservative formulation is the following:

Proposition 1.1. Under smoothness assumptions, system (1.5) is equivalent to{
∂tρ+ ∂y(ρv) = 0, (1.6a)

∂t(ρh) + ∂y(ρhv) = Φ(t, y). (1.6b)

System (1.6) (coupled to equation (1.1c)) is the Lmnc model written in conservative variables.
Although (1.6) is more general than (1.5), system (1.5) is interesting as it emphasizes the fact
that the �ltering out of the acoustic waves turns the hyperbolic nature of the compressible
Navier-Stokes system (related to the acoustic waves) to an elliptic constraint (upon the velocity)
similar to the incompressible case.

Moreover, under smoothness assumptions and for a particular class of EOS, we can derive a
semi-conservative formulation equivalent to (1.5), and which may be useful to derive e�cient
numerical schemes. Indeed, we have the following proposition.

Proposition 1.2. Under smoothness assumptions:

1. System (1.5) implies  ∂yv =
β(h, p0)

p0
Φ(t, y), (1.7a)

∂t
(
ρ(h, p0)h

)
+ ∂y

(
ρ(h, p0)hv

)
= Φ(t, y). (1.7b)

2. For equations of state such that

∂ρ

∂h
(h, p0) 6= −ρ(h, p0)

h
, (1.8)

systems (1.5) and (1.7) are equivalent.

Condition (1.8) upon ρ seems to be quite restrictive insofar as it does not enable to handle ideal
gas (for which ∂ρ

∂h = − ρ
h ). In the latter case, equations (1.7a) and (1.7b) are nothing but the

same equation, which implies that we have to use formulations (1.5) or (1.6).

Remark 1.1. The equivalence between systems (1.5), (1.6) and (1.7) also holds in higher di-
mensions. Nevertheless, the momentum equation is strongly coupled to the other equations in
2D/3D and must be taken into account under conservative or nonconservative forms. Indeed,
these forms are equivalent (as soon as the unknowns are smooth).
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Proof of Proposition 1.1.

• ⇒ According to de�nition (1.2) of β, we have

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(∂th+ v∂yh)︸ ︷︷ ︸

(1.5b)
= Φ

ρ

+ρ ∂yv︸︷︷︸
(1.5a)

= βΦ
p0

= 0 (1.9)

which gives (1.6a). We also obtain

∂t(ρh) + ∂y(ρhv) = h
(
∂tρ+ ∂y(ρv)

)
+ ρ (∂th+ v∂yh) = Φ,

using (1.5b) and (1.6a). We recover (1.6b).

• ⇐ Because of (1.6a), we deduce (1.5b) from (1.6b). Moreover, we deduce from (1.6a) and
(1.5b) that

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(∂th+ v∂yh) + ρ∂yv =

∂ρ

∂h
· Φ

ρ
+ ρ∂yv = 0,

which gives (1.5a) thanks to de�nition (1.2) of β.

Proof of Proposition 1.2. The �rst point is a direct consequence of Proposition 1.1 since

∂t
(
ρ(h, p0)h

)
+ ∂y

(
ρ(h, p0)hv

)
= ρ(h, p0) · (∂th+ v∂yh)︸ ︷︷ ︸

(1.5b)
= Φ

+h
[
∂t
(
ρ(h, p0)

)
+ ∂y

(
ρ(h, p0)v

)]︸ ︷︷ ︸
(1.9)
= 0

.

To prove the second point, we just have to show that (1.7) implies (1.5) under condition (1.8).
On the one hand, since

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(h, p0)(∂th+ v∂yh) + ρ(h, p0)∂yv,

by using (1.2) and (1.7a), we obtain

∂tρ+ ∂y(ρv) =
∂ρ

∂h
(h, p0)

(
∂th+ v∂yh−

Φ

ρ(h, p0)

)
. (1.10)

On the other hand, (1.7b) leads to

ρ(h, p0) · (∂th+ v∂yh) + h
[
∂t
(
ρ(h, p0)

)
+ ∂y

(
ρ(h, p0)v

)]
= Φ(t, y)

that is to say

∂tρ+ ∂y(ρv) = −ρ(h, p0)

h

(
∂th+ v∂yh−

Φ

ρ(h, p0)

)
. (1.11)

Thus, by comparing (1.10) and (1.11), we obtain

∂th+ v∂yh−
Φ

ρ(h, p0)
= 0

under condition (1.8), which proves that (1.7) implies (1.5).
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2. Equation of state for two-phase �uids

For the system to be closed, an additional equation is required: the equation of state (EOS). It
corresponds to the modelling of thermodynamic properties and consists of an algebraic relation
between thermodynamic variables. Indeed, perturbations of the inlet velocity or of the power
density may strongly modify the temperature in the �uid and cause phase transition from liquid
phase to vapor phase. At this modelling scale, the �uid can thus be under liquid, vapor or
mixture phases. The issue is here to construct an EOS that models all phases of a �uid.

The model used in this study is based on the assumption of local mechanic and thermodynamic
equilibria between phases. This means that the phases are assumed to move at the same velocity
and that vaporisation, condensation and heat transfer processes are assumed to be instantaneous.
As a consequence, the two-phase �ow can be considered a single-phase problem provided the EOS
(h, p) 7→ ρ(h, p) (and thus the compressibility coe�cient β de�ned by (1.2)) takes phase transition
into account. With this modelling, the two-phase �ow evolution at low Mach number can be
described by means of the Lmnc model (1.1). In this case and when viscous e�ects modelled by
F(v) in (1.1c) are neglected, the Lmnc model (1.1) is the low Mach limit of the Homogeneous
Equilibrium Model (HEM) [10,25,29,37,43] with source terms.

2.1. General thermodynamics

In classic thermodynamics, two variables are su�cient to represent a thermodynamic state of
a pure single-phase �uid. This is done by means of an EOS which is a relation between the
internal energy, the density and the entropy. In the literature, there exist numerous EOS speci�c
to the �uid and to the model which are under consideration. In the case of liquid-vapor phase
transitions, the EOS must not only represent the behavior of each pure phase (liquid or vapor),
but also model the rate of the mass transfer between one phase to the other.

Phase diagram of Figure 2b represent the coexistence curve ps(T ) which relates the pressure to
the temperature when phase change occurs: the plane (T, p) is split by the coexistence curve
into two regions in which one phase or another is stable. At any point on such a curve the two
phases have equal Gibbs potentials and both phases can coexist.

In the (1/ρ, p) plane (see Figure 2a) this mixture where both phases coexist is called the saturation
zone. The designation �at saturation� means that the steam is in equilibrium with the liquid
phase. This region is bounded by two curves connected at the critical point (1/ρc, pc) which also
belongs to the critical isotherm T = Tc. Within the two-phase region, through any point passes
an isotherm which is a straight line.

These curves can be obtained experimentally (see [33] for instance) and correspond to thermo-
dynamic equilibria of temperature, pressure and Gibbs potential of the two phases. The Van der
Waals law associated to the Maxwell construction is the most common example of this kind of
EOS.

Nevertheless, it is very complicated to derive a unique EOS describing accurately both pure and
mixture phases. To better handle pure phases and saturation curves, an idea consists in using
two laws (one for each phase) so that each phase has its own thermodynamics. In the following
section, we detail the general construction of the EOS in the mixture region given one EOS for
each phase.
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2.2. Construction of the EOS in the mixture

In this section, we explain how to specify the EOS in the mixture given an EOS for each pure
phase.

Characterization of the two-phase media We consider each phase κ (κ = ` for the liquid phase
and κ = g for the vapor phase) as a compressible �uid governed by a given EOS: (ρ, ε) 7→ ηκ where
ρ, ε and ηκ denote respectively the speci�c density, the speci�c internal energy and the speci�c
entropy of the �uid. We assume that the function (τ, ε) 7→ ηκ(1/τ, ε) has a negative-de�nite
Hessian matrix where τ def= 1/ρ is the speci�c volume [8].

We then de�ne classically for any phase κ the temperature Tκ, the pressure pκ and the chemical
potential gκ respectively by

Tκ
def=

(
∂ηκ
∂ε

∣∣∣∣
ρ

)−1

, pκ
def=−ρ2Tκ

∂ηκ
∂ρ

∣∣∣∣
ε

, gκ
def= ε+

pκ
ρ
− Tκηκ.

Finally α denotes the volume fraction of vapor phase. This variable characterizes the volume of
vapor in each unit volume: α = 1 means that this volume is completely �lled by vapor; similarly,
a full liquid volume corresponds to α = 0. Liquid and vapor are thus characterized by their
thermodynamic properties.

The mixture density ρ and the mixture internal energy ε are de�ned by{
ρ def= αρg + (1− α)ρ`, (2.1a)

ρε def= αρgεg + (1− α)ρ`ε`, (2.1b)

where ρg, ρ`, εg and ε` denote respectively vapor/liquid densities and vapor/liquid internal
energies. Recalling that the internal energy is connected to the enthalpy by the relation ρh =
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ρε + p, we can compute the mixture enthalpy h when the pressure is the same in both phases
(which is the case in the Lmnc model where the thermodynamic pressure p is constant and equal
to p0). This leads to

ρh = αρghg + (1− α)ρ`h`, (2.2)

where hg, h` are respectively vapor/liquid enthalpies.

When taking phase transition into account, the two-phase mixture is constructed according to
the second principle of thermodynamics. The key idea is that, when phases coexist (i.e. when
0 < α < 1), they have the same pressure, the same temperature and their chemical potentials
are equal. The corresponding temperature, noted T s for temperature at saturation, is obtained
by expliciting the equality of chemical potentials g`(p, T s) = gg(p, T

s). This implies a relation
between T s and p (see for example [8, 22, 27] for more details). In the sequel we choose to
express the temperature in the mixture as a function of the pressure and we de�ne functions at
saturation ρsκ and hsκ by p 7→ ρsκ

def= ρκ
(
p, T s(p)

)
and p 7→ hsκ

def= hκ
(
p, T s(p)

)
. Consequently, all

thermodynamic quantities can be expressed as functions of the enthalpy and the pressure as it
will be seen below. The choice to focus on pressure relies on the fact that the pressure in the
Lmnc model is supposed to be constant and equal to p0.

Remark 2.1. Notice that for most �uids hs` < hsg and ρs` > ρsg. In fact, the di�erence of
enthalpies between the two phases in the saturated mixture is the latent heat of vaporisation

Ls`g(p)
def= hsg(p)− hs`(p)

and we have the Clapeyron's law linking the latent heat of vaporisation to the slope of the coex-
istence curve (see [8, 27] for more details):

Ls`g(p) =

(
1

ρsg(p) −
1

ρs`(p)

)
T s(p)

(T s)′(p)
.

Density of the two-phase media Given functions at saturation, we are now able to model
density in pure and mixture phases. Using equations (2.1a) and (2.2), the density is written as
a function of enthalpy h and pressure p as follows

ρ(h, p) =


ρ`(h, p), if h ≤ hs`(p),

ρm(h, p) =

[
ρsgρ

s
`(h

s
g − hs`)

]
(p)

[ρsgh
s
g − ρs`hs` ](p)− h · [ρsg − ρs` ](p)

, if hs`(p) < h < hsg(p),

ρg(h, p), if h ≥ hsg(p).

(2.3)

For the derivation of this formula, see Appendix A. Notice that we have

α(h, p) =


0, if h ≤ hs`(p),

ρs`(p)[h− hs`(p)]
[ρsgh

s
g − ρs`hs` ](p)− h · [ρsg − ρs` ](p)

, if hs`(p) < h < hsg(p),

1, if h ≥ hsg(p).

(2.4)
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Temperature of the two-phase media The temperature in the mixture T s is implicitly de�ned
by the equation g`(p, T

s) = gg(p, T
s) so that the temperature depends continuously on the

enthalpy and on the pressure and reads

T (h, p) =


T`(h, p), if h ≤ hs`(p),
T s(p), if hs`(p) < h < hsg(p),

Tg(h, p), if h ≥ hsg(p).
(2.5)

We must emphasize that the function h 7→ T (h, p = p0) cannot be inverted in the mixture zone
for a constant pressure (as it is the case in the Lmnc model). This remark prevents from working
with equations on T instead of equations on h.

Compressibility coe�cient of two-phase media Computing the derivative of the density (2.3),
we obtain the compressibility coe�cient β (previously de�ned by (1.2))

β(h, p) def=− p

ρ2
· ∂ρ
∂h

∣∣∣∣
p

=


β`(h, p), if h ≤ hs`(p),

βm(p) def= p ·
1
ρsg
− 1

ρs`

hsg − hs`
(p), if hs`(p) < h < hsg(p),

βg(h, p), if h ≥ hsg(p).

(2.6)

We notice that independently of the EOS in the pure phases, the compressibility coe�cient is
constant in the mixture (since the pressure is constant in the Lmnc model). Moreover, it is
generally discontinuous between pure and mixture phases.

2.3. The sti�ened gas EOS

Several EOS can be considered to describe thermodynamic properties of pure phases. In this
paper (like in [6, 16]) we use the sti�ened gas law. This EOS is the simplest prototype that
contains the main physical properties of pure �uids such as repulsive and attractive molecular
e�ects, thereby facilitating the handling of thermodynamics through a simple analytical formu-
lation. It is a generalization of the well-known ideal gas law (which is a commonly used EOS
to describe the vapor phase), and it is an acceptable model for the liquid phase which is nearly
incompressible (see Appendix C for water and steam parameters). Moreover, we will see that
the EOS which models the mixture is a sti�ened gas EOS regardless of the EOS modelling the
pure phases.

For a given pure phase, the sti�ened gas EOS is fully de�ned by the entropy η written as a
function of the density ρ and the internal energy ε:

(ρ, ε) 7→ η = cv [ln(ε− q − π/ρ)− (γ − 1) ln ρ] +m. (2.7)

The parameters cv > 0 (speci�c heat at constant volume), γ > 1 (adiabatic coe�cient), π
(constant reference pressure), q (binding energy) and m (reference entropy, relevant only when
phase transition is involved) are some constants describing thermodynamic properties of the
phase. Note that the case of an ideal gas is recovered by setting π and q to zero. We refer to [36]
for a more in-depth discussion on the physical basis for this EOS.

12



The classic de�nitions in thermodynamics provide the following expressions for the temperature
T , the pressure p, the enthalpy h and the Gibbs potential g as functions of the density ρ and the
internal energy ε:

p(ρ, ε) def=−Tρ2 ∂η

∂ρ

∣∣∣∣
ε

= (γ − 1)(ε− q − π/ρ)ρ− π = (γ − 1)(ε− q)ρ− γπ,

T (ρ, ε) def=

(
∂η

∂ε

∣∣∣∣
ρ

)−1

=
ε− q − π/ρ

cv
,

h(ρ, ε) def= ε+
p

ρ
= q + (ε− q − π/ρ)γ,

g(ρ, ε) def= ε− Tη +
p

ρ
= q + (ε− q − π/ρ)

(
γ − m

cv
− ln

(
(ε− q − π/ρ)ρ1−γ)) .

Physical considerations We underline that the various parameters of the sti�ened gas EOS
cannot be chosen freely if a physically correct thermodynamic behavior is expected. Throughout
this paper, we will consistently make the assumption that the parameters satisfy the following
standard restrictions, which follow from thermodynamic stability theory.

For η to be well-de�ned, it is necessary to have ε− q−π/ρ > 0 and ρ > 0. Since cv > 0, the �rst
inequality implies T > 0. Because of γ > 0, we get h− q > 0. Moreover, we also have to satisfy
ρ > 0: since γ > 1 and h− q > 0, this is satis�ed when p+ π > 0. We note that this hypothesis
does not generally guarantee positivity of the pressure. This is consistent with the view that a
sti�ened gas is obtained by shifting the zero point of an ideal gas pressure [36]. In particular,
all derived thermodynamic quantities are well de�ned as long as p+ π remains positive; see for
instance [23]. Hence there is no reason to discard negative-pressure solutions as unphysical. To
summarize, the modelling hypotheses upon the EOS are

cv > 0, γ > 1 and p+ π > 0. (2.8)

The term (γ − 1)(ε − q)ρ > 0 in the expression of p models repulsive e�ects that are present
for any state (gas, liquid or solid) and is due to molecular vibrations. π leads to the �sti�ened�
properties compared to an ideal gas: a large value of π implies near-incompressible behavior.
The product γπ > 0 represents the attractive molecular e�ect that guarantees the cohesion of
matter in liquid or solid phases (hence π = 0 for a gas).

Temperature and enthalpy at saturation We assume that each phase κ is described by its own
sti�ened gas EOS. To complete the results from Section 2.2, we have to express the temperature at
saturation. As the temperature is constant in the mixture, we make a change of thermodynamic
variables from (ρ, ε) to (p, T ) which can be made explicit for this kind of EOS. The variables are
now given by

ρκ(p, T ) =
p+ πκ

(γκ − 1)cvκT
,

εκ(p, T ) = cvκT
p+ πκγκ
p+ πκ

+ qκ,

hκ(p, T ) = qκ + γκcvκT,

gκ(p, T ) = qκ + T
(
cvκγκ − q′κ − cvκγκ lnT + cvκ(γκ − 1) ln(p+ πκ)

)
,
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where for the sake of simplicity we denoted

q′κ
def=mκ + cvκγκ ln cvκ + cvκ(γκ − 1) ln(γκ − 1) (2.9)

as in [31, 40]. We are now able to de�ne the temperature at saturation T s(p) of the mixture as
the solution of the equation g`(p, T s) = gg(p, T

s) which yields

(cvgγg−cv`γ`)
[
1−lnT s(p)

]
+cvg (γg−1) ln(p+πg)−cv`(γ`−1) ln(p+π`) =

q` − qg
T s(p)

+q′g−q′`. (2.10)

We suppose in the sequel that for κ ∈ {`, g}, cvκ , γκ and πκ satisfy the modelling hypothesis
(2.8), and that qκ and q′κ are such that T s(p) exists and is unique at least when p = p0 (this is
the case for the constants of Table 1 in Appendix C computed for liquid and steam water). Thus,
we have in particular T s(p0) > 0. We remark that if q` = qg or if cvgγg = cv`γ`, we can compute
T s analytically. Otherwise, a Newton algorithm can be used to solve this nonlinear equation for
any �xed p. We then deduce the enthalpy at saturation for each phase

hsκ(p) = qκ + γκcvκT
s(p). (2.11)

Density The density is linked to the enthalpy by relation (2.3) where

ρκ(h, p) =
γκ

γκ − 1

p+ πκ
h− qκ

, (2.12a)

ρsκ(p) =
p+ πκ

(γκ − 1)cvκT
s(p)

. (2.12b)

The density ρsκ(p) de�nes the density at saturation for each phase κ ∈ {`, g}.

Temperature The temperature satis�es relation (2.5) with

Tκ(h, p) =
h− qκ
γκcvκ

.

Compressibility coe�cient Relation (2.6) provides the expression of the compressibility coe�-
cient with

β(h, p) =



β`(p) =
γ` − 1

γ`

p

p+ π`
, if h ≤ hs`(p),

βm(p) = p ·
1
ρsg
− 1

ρs`

hsg − hs`
(p), if hs`(p) < h < hsg(p),

βg(p) =
γg − 1

γg

p

p+ πg
, if h ≥ hsg(p).

(2.13)

We notice that βκ is independent from h whereas β depends on h through the choice of the phase
κ ∈ {`,m, g}.
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Binding energy We set

q(h, p) def=


q`, if h ≤ hs`(p),

qm(p) def=

[
ρsgh

s
g − ρs`hs`
ρsg − ρs`

]
(p), if hs`(p) < h < hsg(p),

qg, if h ≥ hsg(p).

(2.14)

We notice that

hs`(p) > q`, hsg(p) > qg and hsg(p) > hs`(p) > qm(p). (2.15)

The two �rst estimates result from the de�nition (2.11) of hsκ while the last one is proved by a
straightforward calculation as (hsg − hs`)(ρsg − ρs`) < 0 (see Figure 3 and remark 2.1).

Graphs of density, temperature, compressibility coe�cient and speed of sound (whose expression
is detailed in Sect. B) for liquid water and steam at p = 155× 105 Pa with parameters of Table 1
(page 49) are pictured on Figure 3.

Conclusion: a uni�ed sti�ened gas EOS Given relation (2.3), the density can be expressed
by

ρ(h, p) =
p/β(h, p)

h− q(h, p)
(2.16)

where β(h, p) and q(h, p) are given by (2.13) and (2.14). It is important to note that for any
EOS de�ning the pure phases, ρ(h, p) in the mixture is always given by ρm(h, p) = p/βm(p)

h−qm(p) .
Thus, since p is constant in the Lmnc model, the mixture can always be considered a sti�ened
gas. Of course, this important property is mostly due to the local mechanic and thermodynamic
equilibria hypothesis which gives ρm(h, p) (see Appendix A).

Because of (2.16), PDE (1.1b) can be rewritten as

∂th+ v∂yh =
β(h, p0)

p0

(
h− q(h, p0)

)
Φ. (2.17)

This formulation is the key point of the present study and will be used in the sequel instead
of (1.1b).

3. Theoretical study

In this section we derive some analytical steady and unsteady solutions to system (1.1) together
with BC (1.3) with sti�ened gas law so that equation (1.1b) is replaced by (2.17). For a single
phase �ow we obtain exact and asymptotic solutions for di�erent power densities and inlet
velocities. We then extend these calculations to two-phase �ows with phase transition. We point
out that our results generalize earlier works from Gonzalez-Santalo and Lahey [26]. In the latter
paper, although the modelling of mixture is identical to what we present here, pure phases are
considered incompressible. On the contrary, our work does not rely on any restriction in pure
phases which allows for a physically more relevant modelling especially when pure gas phase
appears.
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(a) Density as a function of the enthalpy: the den-
sities of the liquid phase and the vapor phase
at saturation are ρs` ≈ 632.663 kg ·m−3 and
ρsg ≈ 52.937 kg ·m−3.
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(b) Temperature as a function of the enthalpy: the
temperature at saturation is T s ≈ 654 K.
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(c) Compressibility coe�cient as a function of the
enthalpy: the compressibility coe�cients of the
liquid phase, the mixture at saturation and the
vapor phase are β` ≈ 0.008768, βm ≈ 0.194852
and βg ≈ 0.300699.

h

c

cg(h
s
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hsg

cm(hsg)
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(d) Speed of sound as a function of the enthalpy: the
speed of sound of the liquid phase and the va-
por phase at saturation are c`(hs`) ≈ 1942 m · s−1

and cg(hsg) ≈ 647 m · s−1; in the mixture at
saturation the speed of sound is in the range
(187 m · s−1, 579 m · s−1).

Figure 3: EOS with phase transition for parameters of Table 1 at page 49 with p0 = 155× 105 Pa:
the enthalpies of the liquid and vapor phases at saturation are hs` ≈ 1.627× 106 J ·K−1

and hsg ≈ 3.004× 106 J ·K−1.
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3.1. Validity of the model

As stated in � 2.3, we must ensure of the positivity of h − q(h, p0) for h solution to (2.17). We
mention that in the framework of sti�ened gas satisfying (2.8), Hypotheses 1.2(2.) and 1.4(2.)
reduce to:

Hypothesis 3.1. Data he and h0 are such that

H def= min

{
inf
t≥0

he(t), min
y∈[0,L]

h0(y)

}
> q`.

Indeed, if at instant t the inlet �ow is in liquid phase (i.e. he(t) < hs`) and satis�es Hypothesis 3.1,
then he(t) − q(he(t), p0) = he(t) − q` > 0. If the inlet �ow is a mixture of liquid and steam
(i.e. he(t) ∈ [hs` , h

s
g]), then he(t) − q(he(t), p0) = he(t) − qm ≥ hs` − qm > 0 according to

(2.15). Likewise, if the inlet �ow is in vapor phase (i.e. he(t) > hsg), then he(t)− q(he(t), p0) =
he(t)− qg > hsg − qg > 0 according to (2.15). Thus, in each case, he(t)− q(he(t), p0) > 0 which
implies that ρe(t) is well-de�ned and positive through (2.8) and (2.12a). The same proof applies
to h0.

To go further, we need to de�ne some notations that will be useful for the whole section. To
solve the transport equation (2.17), we make use of the method of characteristics. This method
consists in constructing curves (called characteristic curves) along which PDE (2.17) reduces to
an ordinary di�erential equation (ODE). More precisely, let χ(τ ; t, y) be the position at time τ
of a particle located in y at time t in a �ow driven at velocity v. For t ≥ 0 and y ∈ (0, L), χ is
thus solution to the parametrized ODE

dχ

dτ
(τ ; t, y) = v

(
τ, χ(τ ; t, y)), (3.1a)

χ(t; t, y) = y. (3.1b)

The curve
(
τ, χ(τ ; t, y)

)
is the characteristic curve passing through the point (t, y). Properties

of χ depend on the smoothness of the velocity �eld v.

We denote in the sequel (see Figure 4) ξ(t, y) the foot of the characteristic curve, t∗(t, y) the
time at which the characteristic curve crosses the boundary y = 0 and y∗(t) the location at time
t of a particle initially placed at y = 0. In other words, ξ, t∗ and y∗ are de�ned by

ξ(t, y) def= χ(0; t, y), χ
(
t∗(t, y); t, y

)
= 0 and ξ

(
t, y∗(t)

)
= 0. (3.2)

We thus have the characterization

ξ(t, y) > 0 ⇐⇒ t∗(t, y) < 0 ⇐⇒ y > y∗(t).

This enables to prove the following result:

Lemma 3.1. When Hypothesis 3.1 is satis�ed, any smooth solution to PDE (2.17) with BC
(1.3a) and well-prepared initial conditions satis�es h− q(h, p0) > 0.

Proof of Lemma 3.1. We recall that q is de�ned through (2.14). For any t ≥ 0 and y ∈ (0, L),
there are three possible situations:

� If h(t, y) > hsg, then h(t, y)− q
(
h(t, y), p0

)
> hsg − qg > 0 because of (2.15);
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� If h(t, y) ∈ [hs` , h
s
g], then h(t, y)− q

(
h(t, y), p0

)
≥ hs` − qm > 0 because of (2.15);

� If h(t, y) < hs` , then equation (2.17) reads (at least locally by a smoothness argument)

∂t(h− q`) + v∂y(h− q`) =
β`Φ

p0
(h− q`).

We infer that ĥ : (τ ; t, y) 7→ h
(
τ, χ(τ ; t, y)

)
satis�es

∂τ

[
ĥ(τ ; t, y)− q`

]
=
[
ĥ(τ ; t, y)− q`

] β`
p0

Φ
(
τ, χ(τ ; t, y)

)
,

ĥ(t; t, y) = h(t, y).

Hence

h(t, y)− q` =
[
ĥ(τ ; t, y)− q`

]
exp

(
β`
p0

∫ t

τ

Φ
(
σ, χ(σ; t, y)

)
dσ

)
for any τ such that χ(τ ; t, y) ∈ (0, L).

This shows that h(t, y)− q` is continuous and has the same sign

? as he
(
t∗(t, y)

)
− q` (if ξ(t, y) ≤ 0),

? or as h0

(
ξ(t, y)

)
− q` (if ξ(t, y) ∈ [0, L]),

? or as hs` − q` (if ξ(t, y) > L or if ξ(t, y) does not exist, i.e. when phase change occurs
before and after).

All of them are positive thanks to Hypothesis 3.1 and (2.15).

3.2. Exact and asymptotic solutions for single-phase �ow

In this section, we compute some analytical solutions of (1.1) supplemented with the sti�ened
gas law for some particular cases (according to relevant values for Φ, he and De) when a single
phase κ ∈ {`,m, g} is present. The compressibility coe�cient β and the coe�cient q are thus
constant.

Since we focus on the 1D case and as βκ(h, p0) = βκ in the case of the sti�ened gas law, we can
compute the velocity v by a direct integration of equation (1.1a), which gives

v(t, y) = ve(t) +
βκ
p0

∫ y

0

Φ(t, z) dz, (3.3)

with ve de�ned by (1.4). This velocity is obviously nonnegative under Hypotheses 1.1, 1.2 and
1.3, so that it is compatible with the location of BC. As mentioned earlier, equation (1.1b) can
be rewritten as (2.17). To compute the enthalpy, we apply the method of characteristics (see
above) which gets simpler in the case of the sti�ened gas law.

The following results had �rst been stated in [6]. The proofs are detailed below.
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Figure 4: Sketch of the method of characteristics and de�nitions of ξ(t, y), t∗(t, y) and y∗(t).

3.2.1. Constant power density

Proposition 3.1. Let us assume that

� the power density Φ = Φ0 > 0 is constant in time and space;

� he and De satisfy Hypotheses 1.2 and 3.1 and are such that ve = De/ρ(he, p0) is indepen-
dent of time;

� h0 veri�es Hypotheses 1.4 and 3.1.

Let us denote Φ̂0
def= βκΦ0/p0. Then ξ(t, y) and t∗(t, y) de�ned by (3.2) are equal to

ξ(t, y) =

(
y +

ve

Φ̂0

)
e−Φ̂0t − ve

Φ̂0

,

t∗(t, y) = t− 1

Φ̂0

ln

(
1 +

Φ̂0

ve
y

)
= − 1

Φ̂0

ln

(
1 +

Φ̂0

ve
ξ(t, y)

)
,

and the solution h of equation (1.1b) supplemented with BC (1.3a) is given by

h(t, y) =


qκ +

[
h0

(
ξ(t, y)

)
− qκ

]
eΦ̂0t, if ξ(t, y) ≥ 0,

qκ +
[
he
(
t∗(t, y)

)
− qκ

](
1 +

Φ̂0y

ve

)
= he

(
t∗(t, y)

)
+

Φ0y

De

(
t∗(t, y)

) , if ξ(t, y) < 0.

(3.4)

Corollary 3.1. Under the hypotheses of Prop. 3.1, we have y∗(t) = (eΦ̂0t−1) ve
Φ̂0

and the solution

p of equation (1.1c) together with BC (1.3c) is given by

� if y∗(t) > L, then

p(t, y) = Φ̂0[µ(y)− µ(L)]+

vep0

βκ

{
g
[
He

(
t∗(t, y)

)
−He

(
t∗(t, L)

)]
+ Φ̂0vee

Φ̂0t
[
He

(
t∗(t, y)

)
−He

(
t∗(t, L)

)]}
; (3.5a)
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� if y∗(t) ≤ L and y ≥ y∗(t) then

p(t, y) = Φ̂0[µ(y)− µ(L)]+

p0

βκ

{(
g + Φ̂0vee

Φ̂0t
) [
H0

(
ξ(t, L)

)
−H0

(
ξ(t, y)

)]
+ Φ̂2

0e
Φ̂0t
[
H0

(
ξ(t, L)

)
−H0

(
ξ(t, y)

)]}
; (3.5b)

� otherwise

p(t, y) = Φ̂0[µ(y)− µ(L)]+

p0

βκ

{(
g + Φ̂0vee

Φ̂0t
) [
H0

(
ξ(t, L)

)
−H0(0)

]
+ Φ̂2

0e
Φ̂0t
[
H0

(
ξ(t, L)

)
−H0(0)

]
+ ve

{
g
[
He

(
t∗(t, y)

)
−He(0)

]
+ Φ̂0vee

Φ̂0t
[
He

(
t∗(t, y)

)
−He(0)

]}}
; (3.5c)

where H
′
0(y) = 1/(h0(y) − qκ), H

′
0(y) = y/(h0(y) − qκ), H

′
e(t) = 1/(he(t) − qκ) and H

′
e(t) =

e−Φ̂0t/(he(t)− qκ).

Notice that Equation (3.5c) is a correction of Equation (9b) in [6].

Remark 3.1. As it has been stated in [6], if the inlet enthalpy is also constant and if the inlet
velocity is nonzero, there is an asymptotic state which is reached in �nite time. This time is
equal to t∞ = 1

Φ̂0
ln(1 + Φ̂0L

ve
) and satis�es ξ(t∞, L) = 0 and y∗(t∞) = L. Hence, for t ≥ t∞, the

solution (h, v, p)(t, y) is given by

h∞(y) = he +
Φ0

De
y,

v∞(y) = ve + Φ̂0y,

p∞(y) = Φ̂0[µ(y)− µ(L)] +
gDe

Φ̂0

ln

1 + Φ̂0L
ve

1 + Φ̂0y
ve

+ Φ̂0De(L− y).

However, if the inlet velocity is ve = 0, then ξ(t, y) is always positive and no asymptotic state
can be reached since the enthalpy increases continuously in time.

Remark 3.2. Proposition 3.1 applies for nonzero Φ0. When Φ0 = 0, the same proof holds except
the resolution of ODE (3.1) whose solution becomes χ(τ ; t, y) = y + ve(τ − t). We remark that
solution (3.7) converges to this case when Φ̂0 → 0, which shows that the model is continuous with
respect to Φ0. In particular, the enthalpy reads

h(t, y) =

{
h0(y − vet), if y ≥ vet,
he(t− y/ve), otherwise,

which was expected as h is a solution to a simple linear transport equation.
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Proof of Proposition 3.1. Equation (3.3) becomes

v(t, y) = ve + Φ̂0y. (3.6)

Since v is linear, the Cauchy-Lipschitz theorem applied to ODE (3.1) ensures the existence of χ
over some interval (depending on t and y). Moreover, χ is continuous with respect to (τ, t, y).
We then solve ODE (3.1) using expression (3.6). We obtain

χ(τ ; t, y) =

(
y +

ve

Φ̂0

)
eΦ̂0(τ−t) − ve

Φ̂0

. (3.7)

For �xed t ≥ 0 and y ∈ (0, L), the requirement χ(τ ; t, y) ∈ (0, L) constrains the interval of
existence

τ ∈

max {0; t∗(t, y)} , t+
1

Φ̂0

ln

1 + Φ̂0L
ve

1 + Φ̂0y
ve

 . (3.8)

For (τ, t, y) satisfying (3.8), we note

ĥ(τ ; t, y) def= h
(
τ, χ(τ ; t, y)

)
. (3.9)

We deduce from equation (1.1b) rewritten under the form equation (2.17) that ĥ satis�es{
∂τ

[
ĥ(τ ; t, y)− qκ

]
= Φ̂0

[
ĥ(τ ; t, y)− qκ

]
,

ĥ(t; t, y) = h(t, y).

The solution of this linear �rst order ODE is

h(t, y)− qκ = ĥ(t; t, y)− qκ =
[
ĥ(τ ; t, y)− qκ

]
eΦ̂0(t−τ) =

[
h
(
τ, χ(τ ; t, y)

)
− qκ

]
eΦ̂0(t−τ). (3.10)

Two cases must be investigated depending on the minimal time until which the characteristic
curve remains in the domain or equivalently depending on the sign of ξ (see (3.8) and Figure 4):

� if ξ(t, y) ≥ 0, then the characteristic curve does not cross the boundary y = 0, which means
that we can take τ = 0 in equation (3.10) and

h(t, y)− qκ =
[
h0

(
χ(0; t, y)

)
− qκ

]
eΦ̂0t =

[
h0

(
ξ(t, y)

)
− qκ

]
eΦ̂0t;

� if ξ(t, y) < 0, the backward characteristic curve reaches the boundary at time t∗(t, y) > 0
and

h(t, y)− qκ = [he(t
∗)− qκ]eΦ̂0(t−t∗) = [he(t

∗)− qκ]

(
1 +

Φ̂0y

ve

)
.

Noticing that βκ
p0

(h− qκ) = 1
ρ leads to

h(t, y) = qκ + [he(t
∗)− qκ] +

1

ρe(t∗)

Φ0

ve
y = he(t

∗) +
Φ0

De(t∗)
y.
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Proof of Corollary 3.1. The exact dynamic pressure p can be computed by integrating the mo-
mentum equation (1.1c) which is equivalent to

∂yp = −∂t(ρv)− ∂y(ρv2) + ∂y(µ∂yv)− ρg.

Using the mass conservation law and observing that v given by (3.6) is independent of time, we
obtain

∂yp = −(Φ̂0v + g)ρ+ Φ̂0∂yµ

from which we deduce

∂yp = − p0

βκ

g + Φ̂0(ve + Φ̂0y)

h− qκ
+ Φ̂0∂yµ.

Integrating between y and L, we get due to BC (1.3c)

p(t, y) =
p0(g + Φ̂0ve)

βκ

∫ L

y

1

h(t, z)
dz +

p0Φ̂2
0

βκ

∫ L

y

z

h(t, z)
dz + Φ̂0[µ(y)− µ(L)] (3.11)

where h def= h− qκ. Since h is de�ned piecewise by (3.4), we have to consider three cases:

� If y∗(t) > L, the curve τ 7→ χ(τ ; t, y) lies in the green part of the graph on Figure 4, i.e.
above the curve τ 7→ χ

(
τ ; t, y∗(t)

)
. As y∗(t) > L =⇒ χ(t, y) < 0 for all (t, y) ∈ R+× (0, L),

we can select the relevant value for h in (3.4), i.e. h(t, y) = he
(
t∗(t, y)

) (
1 + Φ̂0y

ve

)
.

To compute each integral in (3.11), we use the change of variables τ = t∗(t, z), which yields∫ L

y

1

h(t, z)
dz = −ve

∫ t∗(t,L)

t∗(t,y)

1

he(τ)
dτ = ve

[
He(τ)

]t∗(t,y)

t∗(t,L)
,∫ L

y

z

h(t, z)
dz =

v2
e

Φ̂0

∫ t∗(t,y)

t∗(t,L)

eΦ̂0(t−τ) − 1

he(τ)
dτ =

v2
e

Φ̂0

[
eΦ̂0tHe(τ)−He(τ)

]t∗(t,y)

t∗(t,L)
.

We then infer (3.5a).

� If y∗(t) ≤ L and y ≥ y∗(t) (=⇒ ξ(t, y) ≥ 0), we have h(t, y) = h0

(
ξ(t, y)

)
eΦ̂0t so that by

means of the change of variable ζ = ξ(t, z) we specify the integrals in (3.11)∫ L

y

1

H(t, z)
dz =

∫ ξ(t,L)

ξ(t,y)

1

h0(ζ)
dζ =

[
H0(ζ)

]ξ(t,L)

ξ(t,y)
,∫ L

y

z

h(z)
dz = eΦ̂0t

∫ ξ(t,L)

ξ(t,y)

ζ

h0(ζ)
dζ + (eΦ̂0t − 1)

ve

Φ̂0

∫ ξ(t,L)

ξ(t,y)

1

h0(ζ)
dζ

= eΦ̂0t
[
H0(ζ)

]ξ(t,L)

ξ(t,y)
+ (eΦ̂0t − 1)

ve

Φ̂0

[
H0(ζ)

]ξ(t,L)

ξ(t,y)
.

Hence we deduce (3.5b).

� The last corresponds to y < y∗(t) ≤ L. The integration domain is split into two parts
depending on the sign of ξ(t, z). More precisely∫ L

y

f(z) dz =

∫ L

y∗(t)

f(z) dz +

∫ y∗(t)

y

f(z) dz

for any function f . For integrals between y∗(t) and L, we apply Formula (3.5b) with
y = y∗(t). For integrals between y and y∗(t), we apply Formula (3.5a) with L replaced by
y∗(t). Summing all terms leads to (3.5c).
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3.2.2. Varying power density (with y or t)

Let us generalize the results of Proposition 3.1 by taking Φ = Φ(y):

Proposition 3.2. Let us assume that

� the power density Φ depends only on space;

� he and De satisfy Hypotheses 1.2 and 3.1 and are such that ve = De/ρ(he, p0) is indepen-
dent of time;

� h0 veri�es Hypotheses 1.4 and 3.1.

Let us de�ne

Θ(y) def=

∫ y

0

dz

v(z)
with v(z) = ve +

βκ
p0

∫ z

0

Φ(y) dy.

Then ξ and t∗ de�ned by (3.2) are equal to

ξ(t, y) = Θ−1
(
Θ(y)− t

)
and t∗(t, y) = t−Θ(y).

The solution h of equation (1.1b) with BC (1.3a) is given by

h(t, y) =


qκ + v(y)

h0

(
ξ(t, y)

)
− qκ

v
(
ξ(t, y)

) , if ξ(t, y) ≥ 0,

qκ + v(y)
he
(
t∗(t, y)

)
− qκ

ve
= he

(
t∗(t, y)

)
+

1

De

(
t∗(t, y)

) ∫ y

0

Φ(z) dz, if ξ(t, y) < 0.

Let us note that v(y) = v0(y) since v(t, y) = v(y) and as v0 is well-prepared (see �1.2).

We can also extend the results of Proposition 3.1 by taking Φ = Φ(t):

Proposition 3.3. Let us assume that

� the power density Φ depends only on time;

� he and De satisfy Hypotheses 1.2 and 3.1;

� h0 veri�es Hypotheses 1.4 and 3.1.

Let us de�ne

Ψ(t) def=
βκ
p0

∫ t

0

Φ(s) ds.

We thus have

ξ(t, y) = ye−Ψ(t) −
∫ t

0

ve(s)e
−Ψ(s)ds

and t∗(t, y) is the solution of the equation (upon t) y =

∫ t

t∗
ve(s)e

Ψ(t)−Ψ(s)ds. Then the solution

h of equation (1.1b) with BC (1.3a) is given by

h(t, y) = qκ +


[
h0

(
ξ(t, y)

)
− qκ

]
eΨ(t), if ξ(t, y) ≥ 0,[

he
(
t∗(t, y)

)
− qκ

]
eΨ(t)−Ψ(t∗), if ξ(t, y) < 0.
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Remark 3.3. In the general case, i.e. with time dependence for he and De and time/space
dependence for Φ, it does not seem possible to compute an exact solution. However, if he(t),
De(t) and Φ(t, y) have a �nite limit as t → +∞ denoted by h∞e , D∞e , Φ∞(y), then there exists
a steady solution for the enthalpy

h∞(y) = h∞e +
1

D∞e

∫ y

0

Φ∞(z) dz

and all other quantities are deduced from h∞. We recover the result of [16].

Up to now, there is no theoretical result in the general case about the convergence of the unsteady
solution to this steady state. We just notice that solutions from Props. 3.2 and 3.3 actually do.

Proof of Proposition 3.2. Since the inlet velocity ve is a positive constant and as Φ does not
depend on t, the velocity v(t, y) = v(y) = v0(y) is a positive function independent of time due to
(3.3). Function Θ introduced in the statement of Proposition 3.2 is thus invertible. In a similar
way as for Proposition 3.1, we solve the characteristic ODE (3.1) which is equivalent to

1 =
χ′

v(χ)
= Θ′(χ)χ′ = [Θ(χ)]′.

For the sake of simplicity, we set χ′ = dχ
dτ and χ′′ = d2χ

dτ2 . This leads to Θ
(
χ(τ ; t, y)

)
− Θ(y) =

Θ
(
χ(τ ; t, y)

)
−Θ

(
χ(t; t, y)

)
= τ − t and

χ(τ ; t, y) = Θ−1
(
Θ(y) + τ − t

)
. (3.12)

We can ensure that χ(τ ; t, y) ∈ (0, L) provided τ ∈
(
max

{
0, t∗(t, y)

}
, t+ Θ(L)−Θ(y)

)
. Keeping

the same notation (3.9) for ĥ, equation (2.17) becomes∂τ
[
ĥ(τ ; t, y)− qκ

]
=
βκ
p0

[
ĥ(τ ; t, y)− qκ

]
Φ
(
χ(τ ; t, y)

)
,

ĥ(t; t, y) = h(t, y).

(3.13)

We di�erentiate ODE (3.1) to obtain

χ′′(τ ; t, y) = χ′(τ ; t, y)
dv

dy

(
χ(τ ; t, y)

)
= χ′(τ ; t, y)

βκ
p0

Φ
(
χ(τ ; t, y)

)
.

The positivity of v implies that χ′(τ ; t, y) > 0 and

βκ
p0

Φ
(
χ(τ ; t, y)

)
=
χ′′(τ ; t, y)

χ′(τ ; t, y)
=
[
ln
(
χ′(τ ; t, y)

)]′
=
[
ln v
(
χ(τ ; t, y)

)]′
.

Inserting this relation in equation (3.13), we have

∂τ (ĥ− qκ) = (ĥ− qκ)∂τ
[
ln v
(
χ(τ ; t, y)

)]
.

Hence

h(t, y)− qκ = v(y)
h
(
τ, χ(τ ; t, y)

)
− qκ

v
(
χ(τ ; t, y)

) .
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Given expression (3.12) for χ, we �nally obtain

h(t, y) = qκ +


v(y)

h0

(
ξ(t, y)

)
− qκ

v
(
ξ(t, y)

) , if ξ(t, y) ≥ 0,

v(y)
he
(
t∗(t, y)

)
− qκ

ve
, otherwise.

Proof of Proposition 3.3. As previously, the key point is the integration of the characteristic
ODE (3.1) which reads

d

dτ

(
χ(τ)e−Ψ(τ)

)
= ve(τ)e−Ψ(τ).

This leads to

χ(τ ; t, y) = yeΨ(τ)−Ψ(t) +

∫ τ

t

ve(s)e
Ψ(τ)−Ψ(s) ds.

Consequently
h(t, y)− qκ =

[
h
(
τ, χ(τ ; t, y)

)
− qκ

]
eΨ(t)−Ψ(τ).

The main issue is then to determine the interval for τ such that χ(τ ; t, y) ∈ (0, L). The equality
χ(τ ; t, y) = 0 can be rewritten as

y =

∫ t

τ

ve(s)e
Ψ(t)−Ψ(s) ds.

As the right hand side vanishes for τ = t, two cases may occur: either y is greater than the right
hand side for τ = 0 (which would imply that the left bound of the interval is 0), or there exists
τ = t∗ > 0 such that the previous equality holds. In the former case, we obtain

h(t, y)− qκ =
[
h0

(
χ(0; t, y)

)
− qκ

]
eΨ(t),

while in the latter case

h(t, y)− qκ =
[
he
(
t∗(t, y)

)
− qκ

]
eΨ(t)−Ψ(t∗).

3.3. Exact and asymptotic solutions for two-phase �ow with phase
transition

In the case of a two-phase �ow with phase transition and if we can determine the position of each
phase, we can deduce the exact solution using the single-phase �ow results given in Section 3.2.
In the particular case where all parameters and boundary/initial data are constant, the result is
the following.
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(a) Liquid (L), mixture (M) and vapor (G) re-
gions of the spatiotemporal domain R+×R+

for the velocity.
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(b) De�nition of four regions of the spatiotem-
poral domain R+ × R+ for the enthalpy.

Figure 5: De�nition of regions for Proposition 3.4

Proposition 3.4. Let us assume that he(t) ≡ he > q`, ve(t) ≡ ve > 0, Φ(t, y) ≡ Φ0 and
h0(y) ≡ h0 = he > q`. Let Φ̂κ

def= βκΦ0/p0, where κ is respectively `, m, g in the liquid, mixture
and gas phases. We suppose that the initial and boundary data correspond to the liquid phase,
i.e. he(= h0) < hs` . We set

ys`
def=
De

Φ0
(hs` − he), ysg

def=
De

Φ0
(hsg − he).

Let us de�ne three curves in R+ × R+ as pictured on Figure 5b

t`(y) def=
1

Φ̂`
ln

(
1 +

Φ̂`y

ve

)
, for 0 ≤ y ≤ ys` ,

tm(y) def=
1

Φ̂m
ln

(
ve + (Φ̂` − Φ̂m)ys` + Φ̂my

ve + Φ̂`ys`

)
+ t`(y

s
` ), for ys` < y < ysg,

tg(y) def=
1

Φ̂g
ln

(
ve + (Φ̂` − Φ̂m)ys` + (Φ̂m − Φ̂g)y

s
g + Φ̂gy

ve + (Φ̂` − Φ̂m)ys` + Φ̂mysg

)
+ tm(ysg), for y ≥ ysg.

Let us also de�ne

ts`
def= t`(y

s
` ) =

1

Φ̂`
ln

(
hs` − q`
h0 − q`

)
, tsg

def= tm(ysg) = ts` +
1

Φ̂m
ln

(
hsg − qm
hs` − qm

)
.

Then the spatiotemporal domain R+×R+ consists of three regions corresponding to liquid, mixture
and vapor phases as follows (see Figure 5a):

L =
{

(t, y) ∈ R+ × R+
∣∣ t ≤ ts` or y ≤ ys` } ,

M =
{

(t, y) ∈ (ts` ,+∞)× (ys` ,+∞)
∣∣ t ≤ tsg or y ≤ ysg

}
,

G =
{

(t, y) ∈ (tsg,+∞)× (ysg,+∞)
}

;
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the solution v of equation (1.1a) is given by

v(t, y) =


ve + Φ̂`y, if (t, y) ∈ L,
ve + Φ̂`y

s
` + Φ̂m(y − ys` ), if (t, y) ∈M,

ve + Φ̂`y
s
` + Φ̂m(ysg − ys` ) + Φ̂g(y − ysg), if (t, y) ∈ G,

and the solution h of equation (1.1b) is given by (see Figure 5b)

h(t, y) =


q` + (h0 − q`)eΦ̂`t, if (t, y) ∈ L and t < t`(y),

qm + (hs` − qm)eΦ̂m(t−ts`), if (t, y) ∈M and t < tm(y),

qg + (hsg − qg)eΦ̂g(t−tsg), if (t, y) ∈ G and t < tg(y),

he + Φ0

De
y, otherwise.

Remark 3.4. We notice that constant Φ̂m is the Zuber's characteristic reaction frequency de�ned
in [44] and used in [26]. Contrary to the latter paper, we do not assume the pure phases to be
incompressible. Thus we can extend the Zuber's frequency to liquid and gas phases as a piecewise
constant function.

Remark 3.5. In any case, we observe that a steady state is reached. It is given by

h∞(y) = he +
Φ0

De
y

and the velocity is piecewise linear. Moreover, we can determine the time t∞ at which the steady
state (it is thus an asymptotic state in that case) is reached

t∞ def=


t`(L), if ys` > L,

tm(L), if ys` ≤ L ≤ ysg,
tg(L), if ysg < L.

The assumptions of Proposition 3.4 may seem restrictive but it can be trivially extended to
several cases:

� to other constant initial and boundary conditions (i.e. mixture or vapor);

� if Φ = Φ0 < 0 such that v remains positive, the enthalpy is then still monotone.

If Φ and/or boundary-initial conditions are not constant anymore, the enthalpy is no longer
monotone. It is thus di�cult to determine regions L,M and G. However, if this can be achieved,
we can similarly apply the monophasic results in each region to compute the exact solution. In
any case, the following result holds (similar to Remark 3.3):

Remark 3.6. For any inlet velocity ve, inlet �ow rate De and power density Φ which have �nite
limits in time, let us denote

(
h∞e , D

∞
e ,Φ

∞(y)
)

= lim
t→+∞

(
he(t), De(t),Φ(t, y)

)
. Then, there exists

a steady solution
(
h∞(y), v∞(y), p∞(y)

)
given by

h∞(y) = h∞e +
1

D∞e

∫ y

0

Φ∞(z) dz,

v∞(y) =
D∞e

ρ
(
h∞(y), p0

) ,
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p∞(y) = g

∫ L

y

ρ
(
h∞(z), p0

)
dz −

[
µ
β
(
h∞(z), p0

)
Φ∞(z)

p0
− (D∞e )

2

ρ
(
h∞(z), p0

)]z=L
z=y

,

with ρ(h∞, p0) given by (2.3).

Proof of Proposition 3.4. Since ρe, ve, h0 and Φ0 are constant and correspond to the liquid phase,
equations (1.1a)-(2.17) are written over a time interval [0, T ) for some T > 0 to be speci�ed later
(which corresponds to the �rst time another phase appears)

∂yv = Φ̂`,

∂th+ v∂yh = Φ̂`(h− q`),
v(t, 0) = ve,

h(t, 0) = he,

h(0, x) = h0 = he.

We can apply Proposition 3.1 to this system which leads to

v(y) = ve + Φ̂`y

and

h(t, y) =


q` + (h0 − q`)eΦ̂`t, if t < t`(y),

he +
Φ0

De
y, otherwise,

where the curve t = t`(y) corresponds to the characteristic curve coming from (t = 0, y = 0), that
is ξ`(t, y) = 0 (see Proposition 3.1 for the de�nition of ξ`). The enthalpy h(t, ·) is a monotone-
increasing function consisting (spatially) of a linear part and a constant part at each time. Two
situations may occur:

� either he + Φ0

De
L ≤ hs` : the �uid remains liquid inde�nitely (T = +∞) and the enthalpy is

equal to he + Φ0

De
y everywhere as soon as t ≥ t`(L);

� or he + Φ0

De
L > hs` : a mixture phase appears.

In the latter case, there exists t > 0 and y ∈ (0, L) such that h(t, y) = hs` . We then de�ne T = ts`
as the solution of h(ts` , L) = hs` and y

s
` as the smallest y such that h(ts` , y) = hs` , i.e.

q` + (h0 − q`)eΦ̂`t
s
` = hs` , he +

Φ0

De
ys` = hs` .

For t > ts` , the �uid is in liquid phase for y < ys` and in mixture phase for y ≥ ys` and t small
enough, i.e. t ∈ [ts` , T ′). Therefore, in the liquid region the previous solution is still valid,
whereas in the mixture region [ts` , T ′)× [ys` , L] equations (1.1a)-(2.17) are written as

∂yv = Φ̂m,

∂th+ v∂yh = Φ̂m(h− qm),

v(t, ys` ) = ve + Φ̂`y
s
` ,

h(t, ys` ) = hs` ,

h(ts` , y) = hs` .
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Figure 6: Grid and boundary conditions.

We adapt Proposition 3.1 to the current spatiotemporal domain so that we obtain

v(y) = ve + Φ̂`y
s
` + Φ̂m(y − ys` )

and

h(t, y) =


qm + (hs` − qm)eΦ̂m(t−ts`), if t < tm(y),

he +
Φ

De
y, otherwise.

The curve t = tm(y) corresponds to the characteristic curve passing through (ts` , y
s
` ), i.e.

tm(y) =
1

Φ̂m
ln

(
ve + (Φ̂` − Φ̂m)ys` + Φ̂my

ve + Φ̂`ys`

)
+ ts` .

This can be rewritten in a simpler form. To this end, we use the de�nition of ys` , the relation
1
ρe

= β`
p0

(he− q`) and the continuity of ρ at ys` (implying βm(hs` − qm) = β`(h
s
` − q`)) which leads

to

tm(y) =
1

Φ̂m
ln

(
he − qm + Φ0y

De

hs` − qm

)
+ ts` .

If needed, we apply the same procedure to �nd (tsg, y
s
g) such that hsg is reached and the proof

follows.

4. Numerical scheme

The main advantage of dimension 1 is that equations in (1.1) can be decoupled in an explicit
numerical procedure which means that it su�ces to compute h from equation (1.1b) � i.e. (2.17)
for the sti�ened gas law � in order to deduce all other variables. To solve the transport equation
with source term (2.17), the numerical method of characteristics (MOC) seems suitable insofar
as this method was essential in the theoretical part of the study. Moreover, this method has
interesting properties such as unconditional stability and positivity-preserving for variable h− q
(see � 4.3). Accuracy can be improved using 2nd-order results from [38].

Given ∆y > 0 and ∆t > 0, we consider a uniform Cartesian grid { yi = i∆y }1≤i≤N such that
y1 = 0 and yN = L (see Figure 6) as well as a time discretization { tn = n∆t }n≥0. Unknowns
are collocated at the nodes of the mesh. We set the initial values v0

i = v0(yi) and h0
i = h0(yi)

for i = 1, . . . , N .
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We must emphasize that as the pressure variable p is supposed to be constant and equal to p0

in the Lmnc model, most parameters are constant throughout the study (such as T s, βκ or qκ).
That is why references to the dependence on the pressure may be dropped in the sequel for the
sake of simplicity.

4.1. Key idea of the scheme

For details about numerical methods of characteristics, the reader may refer to [2, 20, 38] and
references therein. This method amounts to tracking particles along the �ow and to solve ODEs
along the characteristic curves. More precisely, it consists in locating accurately the position of
particles and updating the unknown according to the source term as described from a theoretical
point of view in Section 3.2. Actually, at time tn, we aim at approximating the solution of

d

dτ
ĥn+1
i (τ) =

β
(
ĥn+1
i (τ)

)
Φ
(
τ, χ(τ ; tn+1, yi)

)
p0

(
ĥn+1
i (τ)− q

(
ĥn+1
i (τ)

))
, (4.1a)

where τ 7→ ĥn+1
i (τ) def= h

(
τ, χ(τ ; tn+1, yi)

)
and the characteristic �ow χ satis�es

d

dτ
χ(τ ; tn+1, yi) = v

(
τ, χ(τ ; tn+1, yi)

)
, τ ≤ tn+1,

χ(tn+1; tn+1, yi) = yi,

(4.1b)

with v an approximate solution to (1.1a). The reader may refer to [38] for further details about
the resolution of (4.1b).

The classic Euler-type MOC method applied to ODE (4.1a) over the interval [tn; tn+1] is writ-
ten

h(tn+1, yi) = ĥn+1
i (tn+1)

= ĥn+1
i (tn) + ∆t

β
(
ĥn+1
i (tn)

)
Φ
(
tn, χ(tn; tn+1, yi)

)
p0

(
ĥn+1
i (tn)− q

(
ĥn+1
i (tn)

))
+O(∆t2).

Hence the scheme can be written

hn+1
i = h̃n+1,n

i + ∆t
β
(
h̃n+1,n
i

)
Φ
(
tn, ξni

)
p0

(
h̃n+1,n
i − q

(
h̃n+1,n
i

))
, (4.2)

where ξni and h̃n+1,n
i are some approximations of χ(tn; tn+1, yi) and ĥn+1

i (tn) respectively. In
the sequel, scheme (4.2) will be referred to as the MOC scheme.

To reach higher order, we rewrite ODE (4.1a) using the facts that β(h) and h− q(h) are positive
under Hypotheses 1.3 and 3.1. We set

R(ĥ) def=

∫ ĥ

H

dh

β(h) ·
(
h− q(h)

) ,
where H is de�ned within Hypothesis 3.1. Then, equation (4.1a) reads

R′
(
ĥn+1
i

) d

dτ
ĥn+1
i (τ) =

Φ
(
τ, χ(τ ; tn+1, yi)

)
p0

(4.3)
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and thus can be integrated explicitly between tn and tn+1

R
(
ĥn+1
i (tn+1)

)
−R

(
ĥn+1
i (tn)

)
=

1

p0

∫ tn+1

tn
Φ
(
τ, χ(τ ; tn+1, yi)

)
dτ.

As Φ is a datum, the right hand side can be expanded at any order or exactly computed. Using
the trapezoidal rule, the scheme reads

hn+1
i = R−1

(
R
(
h̃n+1,n
i

)
+

∆t

p0

Φ(tn, ξni ) + Φ(tn+1, yi)

2

)
. (4.4)

Notice that we can give explicit expressions for R and R−1:

R(h) =


1
β`

ln
(
h−q`
H−q`

)
, if h ≤ hs` ,

Rs` + 1
βm

ln
(
h−qm
hs`−qm

)
, if hs` < h < hsg,

Rsg + 1
βg

ln
(
h−qg
hsg−qg

)
, if h ≥ hsg,

R−1(r) =


q` + (H− q`)eβ`r, if r ≤ Rs` ,
qm + (hs` − qm)eβm(r−Rs`), if Rs` < r < Rsg,

qg + (hsg − qg)eβg(r−Rsg), if r ≥ Rsg,

where

Rs`
def=

1

β`
ln

(
hs` − q`
H− q`

)
, Rsg

def=Rs` +
1

βm
ln

(
hsg − qm
hs` − qm

)
.

Strategy (4.4) is named INTMOC. We recall that hsκ > qκ and hsg > hs` > qm � see (2.15) � and
that H > q` under Hypothesis 3.1. Thus, Rs` and R

s
g are well-de�ned.

Strategies (4.2) and (4.4) being set up, it remains to specify how to compute ξni and h̃n+1,n
i .

These computations are the core of numerical methods of characteristics and are detailed in the
next section.

4.2. Description of the scheme

Given the numerical solutions (hni , v
n
i , p

n
i ), the overall process at step n+ 1 consists in computing

successively hn+1
i , vn+1

i and pn+1
i as follows.

• Enthalpy. For the boundary condition (i = 1) we impose hn+1
1 = he(t

n+1). Then hn+1
i is

determined in two steps:

¬ Solve ODE (4.1b) over the interval [tn, tn+1]. The approximation ξni of χ(tn; tn+1, yi)
is computed either at order 1 or 2:

(i) at order 1 in time, we have χ(tn; tn+1, yi) ≈ yi −∆t · v(tn, yi) so that we set

ξni = yi −∆t · vni ; (4.5)

31



(ii) at order 2 in time (see [38,39] for more details), we have

χ(tn; tn+1, yi) ≈ yi −∆t · v(tn, yi)−
1

2
∆t2

(
∂tv(tn, yi)− v(tn, yi)∂yv(tn, yi)

)
.

Due to (1.1a) and with a standard 1st-order �nite-di�erence discretization for
∂tv, we set

ξni = yi −∆t

(
3

2
vni −

1

2
vn−1
i

)
+

∆t2

2

β(hni )

p0
vni Φ(tn, yi). (4.6)

 Update the enthalpy:

� if ξni > 0 (see Figure 7a), let j be the index such that ξni ∈ [yj , yj+1) and
θnij

def=(yj+1 − ξni )/∆y. As ξni is generally not a mesh node, we use an interpo-

lation procedure to evaluate h̃n+1,n
i :

(i) at order 1
h̃n+1,n
i = θnijh

n
j + (1− θnij)hnj+1; (4.7)

(ii) at higher order (see [38] for more details)

h̃n+1,n
i = λni h

−
j + (1− λni )h+

j (4.8)

where

λni
def=


1+θnij

3 , if P+
j (θnij) ≥ 0 and P−j (θnij) ≥ 0,

0, if P+
j (θnij) ≥ 0 and P−j (θnij) < 0,

1, if P+
j (θnij) < 0 and P−j (θnij) ≥ 0,

θnij , otherwise,

h−j
def=


hnj , if P+

j (θnij) < 0 and P−j (θnij) < 0,

(θnij)
2

2

(
hnj−1 − 2hnj + hnj+1

)
−
θnij
2

(
hnj−1 − 4hnj + 3hnj+1

)
+ hnj+1,

otherwise,

h+
j

def=


hnj+1, if P+

j (θnij) < 0 and P−j (θnij) < 0,

(θnij)
2

2

(
hnj+2 − 2hnj+1 + hnj

)
−
θnij
2

(
hnj+2 − hnj

)
+ hnj+1,

otherwise,

and P±j (θ) def=(θ − δ±j )(θ − δ±j+1) with

δ−j
def=

2(hnj+1 − hnj )

hnj−1 − 2hnj + hnj+1

, δ+
j

def=
2(hnj+1 − hnj )

hnj − 2hnj+1 + hnj+2

,

δ−j+1
def=
hnj−1 − 4hnj + 3hnj+1

hnj−1 − 2hnj + hnj+1

, δ+
j+1

def=
hnj+2 − hnj

hnj − 2hnj+1 + hnj+2

.
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Figure 7: Numerical method of characteristics.

This procedure has been designed in [38] in order to ensure the maximum prin-
ciple by means of a variable stencil (and an adaptive order). Even if there is
no maximum principle associated to equation (2.17), this scheme preserves the
property h̃ni − q(h̃ni ) > 0 (see Proposition 4.1).

We then update hn+1
i by formulae (4.2) or (4.4).

� if ξni ≤ 0 (see Figure 7b), we compute the time t∗i at which the characteristic curve
τ 7→ χ(τ ; tn+1, yi) crosses the in�ow boundary. There we have h(t∗i , 0) = he(t

∗
i ).

Using a �rst order approximation in time, we set t∗i = tn+1 − yi/v
n
i and we

compute the updated enthalpy similarly to what is detailed above:

(i) by integrating ODE (4.1a) over [t∗i , t
n+1] (MOC strategy)

hn+1
i = he(t

∗
i ) + (tn+1 − t∗i )

β
(
he(t

∗
i )
)
Φ(t∗, 0)

p0

[
he(t

∗
i )− q

(
he(t

∗
i )
)]

; (4.9a)

(ii) by integrating ODE (4.3) over [t∗i , t
n+1] (INTMOC strategy)

hn+1
i = R−1

(
R
(
he(t

∗
i )
)

+
tn+1 − t∗i

p0

Φ(t∗i , 0) + Φ(tn+1, yi)

2

)
. (4.9b)

The boundary y = 0 is the only one we need to care about since characteristic curves
cannot exit from the domain at y = L (we assumed that ve > 0 and Φ ≥ 0 which implies
that v > 0).

• Velocity. For the boundary condition (i = 1), we set vn+1
1 = ve(t

n+1). Then, we integrate
equation (1.1a) over [yi, yi+1]. Depending on the ability to compute the primitive function
of Φ (and as β is piecewise constant), the velocity �eld can be computed directly

vn+1
i = vn+1

i−1 +
1

p0

∫ yi

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz, (4.10)

or approximated for example by the following upwind approach

vn+1
i = vn+1

i−1 +
∆y

p0
β(hn+1

i−1 )Φ(tn+1, yi−1) (4.11)
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since h is transported by vni ≥ 0. However, since the coe�cient β is discontinuous at phase
change points (see Figure 3c), we have to adapt the previous algorithm in cells where the
�uid changes from a phase to the mixture. It is reasonable to suppose that at most a
pure phase and a mixture are present within a single cell (never liquid, mixture and steam
simultaneously). Then, if hsκ ∈ (hn+1

i−1 , h
n+1
i ), let y∗ be the linear approximation of ysκ, i.e.

y∗ def= yi−1 + ∆y
hsκ − hn+1

i−1

hn+1
i − hn+1

i−1

.

Hence∫ yi

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz

=

∫ y∗

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz +

∫ yi

y∗
β
(
h(tn+1, z)

)
Φ(tn+1, z) dz (4.10')

or when the primitive function of Φ is not known∫ yi

yi−1

β
(
h(tn+1, z)

)
Φ(tn+1, z) dz

≈ (y∗ − yi−1)β(hn+1
i−1 )Φ(tn+1, yi−1) + (yi − y∗)β(hn+1

i )Φ(tn+1, yi). (4.11')

• Pressure. For the boundary condition (i = N), we set pnN = p0. Then we rewrite equa-
tion (1.1c) in the following equivalent form

−∂yp = ∂t(ρ(h)v) + ∂y(ρ(h)v2)− ∂y(µ∂yv) + ρ(h)g

= ρ(h)∂tv + ρ(h)v∂yv − ∂y(µ∂yv) + ρ(h)g.

Using (1.1a) it becomes

−∂yp = ρ(h)∂tv + ρ(h)v
β(h)Φ

p0
− ∂y

(
µ
β(h)Φ

p0

)
+ ρ(h)g.

Let us note ρn+1
i = ρ(hn+1

i ) and βn+1
i = β(hn+1

i ). Integrating this equation over [yi−1, yi],
we obtain

pn+1
i−1 = pn+1

i +
∆y

2

[(
ρn+1
i + ρn+1

i−1

)
g + ρn+1

i

vn+1
i − vni

∆t
+ ρn+1

i−1

vn+1
i−1 − vni−1

∆t

+ ρn+1
i vn+1

i

βn+1
i

p0
Φ(tn+1, yi) + ρn+1

i−1 v
n+1
i−1

βn+1
i−1

p0
Φ(tn+1, yi−1)

]
− µ

[
βn+1
i

p0
Φ(tn+1, yi)−

βn+1
i−1

p0
Φ(tn+1, yi−1)

]
, i ∈ {2, . . . , N}.

(4.12)

4.3. Positivity-preserving property

We have the following result which is the discrete version of Lemma 3.1:
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Proposition 4.1. When Hypothesis 3.1 is satis�ed, strategies (4.2)&(4.9a) and (4.4)&(4.9b)
with well-prepared initial conditions ensure the positivity of hni − q(hni ) for any ∆t > 0.

Proof. For the sake of clarity, we set κ(h) the phase corresponding to the value of h, namely
κ(h) = ` if h < hs` , m if h ∈ [hs` , h

s
g] and g if h > hsg. Let us show by induction the inequalities

hni ≥ H and hni > qκ(hni ). (4.13)

We recall that H is de�ned within Hyp. 3.1. Given the physical framework, we assume without
loss of generality that the �uid is under the liquid phase initially and at the entry, which means
he(t) < hs` and h0(y) < hs` for all t ≥ 0 and y ∈ (0, L). Estimates (4.13) is satis�ed for n = 0 by
hypothesis. If it is satis�ed at iteration n, then h̃n+1,n

i ≥ H according to the maximum principle
veri�ed by the interpolation processes (4.7) (by convexity) and (4.8) (by construction: see [38]).
Then, if κ(h̃n+1,n

i ) ∈ {m, g}, we directly have h̃n+1,n
i > qκ(h̃n+1,n

i ) due to (2.15). If κ(h̃n+1,n
i ) = `,

then h̃n+1,n
i ≥ H > q` due to Hyp. 3.1. To summarize, we have h̃n+1,n

i > qκ(h̃n+1,n
i ).

To complete the proof, we remark that no matter what scheme is used to compute hn+1
i from

h̃n+1,n
i , the cases κ(hn+1

i ) ∈ {m, g} are trivially handled due to (2.15). It thus remains to deal
with κ(hn+1

i ) = `. If hn+1
i is computed via the MOC scheme (4.2), as h̃n+1,n

i > qκ(h̃n+1,n
i ), we

remark that hn+1
i > h̃n+1,n

i , which implies that κ(h̃n+1,n
i ) = `. Thus, (4.2) yields

hn+1
i − q` = (h̃n+1,n

i − q`)
(

1 + ∆t
β`Φ(tn, ξni )

p0

)
> 0.

Likewise, if hn+1
i is computed via the INTMOC scheme (4.4), as R−1 is monotone-increasing

owing to (2.15) and Hyp. 3.1, we have hn+1
i > h̃n+1,n

i , which again implies that κ(h̃n+1,n
i ) = `.

Scheme (4.4) then reads

hn+1
i − q` = (h̃n+1,n

i − q`) exp

[
∆t

β`
(
Φ(tn, ξni ) + Φ(tn+1, yi)

)
2p0

]
.

Hence the conclusion, which also holds in the exiting characteristic curve case via schemes (4.9a)
and (4.9b). Both schemes are thus compatible with our modelling of thermodynamics.

Both schemes (MOC and INTMOC) are explicit and unconditionally stable which are standard fea-
tures for numerical methods of characteristics. The handling of boundary conditions is achieved
in the present study at order 1. Although the time step can be chosen independently from the
mesh size, it must be small enough to provide accurate transient results.

5. Numerical examples

In this section, we focus on data sets for which phase transition occurs (for the simulations of
single-phase �ows, we refer to [6]).

To simulate some scenarii in a PWR, parameters are set as follows:

� Geometry of the reactor: L = 4.2 m;
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� Discretization parameters: N = 100 mesh nodes (∆y ≈ 4.3 cm) and ∆t = 0.01 s;

� Reference value for the pressure, the power density and the velocity: p0 = 155× 105 Pa,
Φ0 = 170× 106 W ·m−3, ṽ = 0.5 m · s−1;

� Initial data: h0(y) = he, v0(y) = ve +
∫ y

0
β(h0(z))Φ(0, z)/p0dz (well-prepared insofar as

they satisfy the divergence constraint (1.1a));

� Constant viscosity: µ0 = 8.4 · 10−5 kg ·m−1 · s−1.

To perform simulations, we have to provide physical values for liquid and vapor sti�ened gas
parameters. This is achieved by using the tables of water and steam [33] as described in the
appendix C. Parameters involved in the sti�ened gas law for the following simulations are those
in Table 1, page 49. For this data set, variables at saturation are hs` ≈ 1.627× 106 J ·K−1,
hsg ≈ 3.004× 106 J ·K−1, ρs` ≈ 632.663 kg ·m−3 and ρsg ≈ 52.937 kg ·m−3.

In Test 5.1, a two-phase �ow with phase transition is considered and enables to compare the
numerical schemes presented in Section 4, while all other tests only involve scheme (4.4)&(4.9b)
with high order interpolation (4.8) (noted INTMOC_2) to assess the robustness of the scheme and
the relevance of the model.

5.1. Two-phase �ow with phase transition

In the �rst test, we investigate the ability of our model to deal with two-phase �ows with
phase transition. We consider the case when the inlet density ρe, the inlet velocity ve, the
initial condition h0 and the power density Φ are constant, so that we can apply Proposition 3.4
to compute exact transient and asymptotic solutions. The boundary conditions are ρe(t) =
750 kg ·m−3 and ve(t) = ṽ, thus h0(y) = he(t) = h`(ρe) ≈ 1.190× 106 J ·K−1. The power
density is set constant in space and time and equal to Φ0. With these parameters, the domain is
initially �lled with liquid. Then according to Proposition 3.4 mixture appears at time ts` ' 1.769 s
for y > ys` ' 0.964 m and pure vapor appears at time tsg ' 2.929 s for y > ysg ' 4.002 m. The
asymptotic state is reached at tg(L) ' 2.957 s.

Figure 8 displays numerical results for the enthalpy and the velocity at instants t = 2.1 s, t = 2.8 s
and t = 3.5 s. At this last time the solution has already reached the asymptotic regime. Figure 9
displays the mass fraction and the Mach number computed from the enthalpy and the velocity.
Figure 10 displays the density and the temperature computed from the enthalpy.

In those �gures we compare the exact and asymptotic solutions to the di�erent versions of the
numerical scheme, namely:

� by scheme (4.2)&(4.9a) with linear interpolation (4.7) for h̃n+1,n
i (called MOC_1),

� by scheme (4.2)&(4.9a) with high order interpolation (4.8) for h̃n+1,n
i (called MOC_2),

� by scheme (4.4)&(4.9b) with linear interpolation (4.7) for h̃n+1,n
i (called INTMOC_1),

� by scheme (4.4)&(4.9b) with high order interpolation (4.8) for h̃n+1,n
i (called INTMOC_2).

We mention that the foot of the characteristic curve ξni is always computed by means of the
2nd-order expression (4.6) and the velocity �eld by means of formulae (4.10) and (4.10').

We observe that all numerical results match the behaviour of the exact solution including phase
transition. Nevertheless as it can be noticed at time t = 2.8 s, there is some discrepancy close to
the singularity (interface between information coming from the boundary and the inner domain).
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This can easily be accounted for. Indeed, the scheme relies on an interpolation process which
assumes some smoothness for the solution. As it is not smooth at the singularity, the scheme
provides a smoothened version of the exact solution. It must be underlined that the higher the
degree of interpolation, the more accurate the solution. Moreover, there is a clear advantage of
INTMOC versions of the scheme over MOC which is due to the better approximation of the right
hand side in the former case. For these reasons, from now on, we will use only the INTMOC_2

scheme which is more accurate.

Figure 9 shows that the Mach number remains lower than 0.05 so that the low Mach number
hypothesis of the model is valid in this con�guration. Observe that during the transient state,
the Mach number is greater than at the asymptotic state.

From a physical point of view, it is worth emphasizing that our model predicts the appearance of
some vapor at the top of the reactor for this data set. This is due to a too small in�ow velocity.

5.2. Non monotone Φ

We perform a simulation for a steady power density piecewise constant in space

Φ(t, y) =

{
Φ0, if y ≤ L/2,
0, if y > L/2.

This power density models the situation where the control rods are blocked at the middle of the
reactor. The boundary conditions are ρe(t) = 750 kg ·m−3 and ve(t) = ṽ, thus h0(y) = he(t) =
h`(ρe) ≈ 1.190× 106 J ·K−1. At the initial state the core thus is �lled with liquid, so that the
void fraction is 0.

We emphasize that due to the steady boundary condition for the pressure and to the fact that
the dynamic pressure is decoupled from the other variables in 1D, the right part [L/2, L] of
the domain does not in�uence the left part [0, L/2]. This can also be seen in the statement of
Proposition 3.4 where the process (for h and v) evolves from y = 0 to y = L. Hence, we can
apply Proposition 3.4 over [0, L/2] since Φ is constant within. However, given the solution over
[0, L/2] (and more speci�cally at y = L/2), we cannot apply Proposition 3.4 over [L/2, L] with
these inlet boundary conditions at y = L/2 as they are unsteady until the asymptotic state is
reached. Besides, we know the global asymptotic solution which is given by Proposition 3.6.

We plot on Figure 11 the asymptotic solution from Proposition 3.6 and the numerical one com-
puted by means of the INTMOC_2 scheme for the enthalpy, the mass fraction, the dynamical
pressure, the density and the temperature at the instants t = 0.0 s, t = 1.0 s, t = 2.0 s, t = 3.0 s
and t = 4.0 s. The velocity is given at instants t < ts` , t = 1.8 s and t = 2.0 s. At t = ts` ' 1.768 s
mixture appears over [ys` , L/2] where ys` ' 0.964 m. This mixture is transported to �ll the do-
main y ≥ ys` . As long as the domain is �lled with liquid, the velocity does not depend on time.
When mixture appears, β is piecewise constant in the domain so that, according to Proposi-
tion 3.4, the velocity increases up to the asymptotic value. The dynamical pressure is computed
by scheme (4.12) and decreases towards the asymptotic state.

5.3. A simpli�ed scenario for a Loss of Flow Accident

Our model is tested here on an accidental transient regime: a main coolant pump trip which
is a Loss Of Flow Accident (LOFA) as at the beginning of the Fukushima accident in reactors
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Figure 8: Numerical enthalpy (left) and velocity (right) for test 5.1: Two-phase �ow with phase
transition. We compare the four numerical solutions to the analytical and asymptotic
ones. The horizontal dotted lines correspond to h = hs` and h = hsg.
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Figure 9: Numerical mass fraction (left) and Mach number (right) of the test 5.1: Two-phase �ow
with phase transition. We compare the four numerical solutions with the analytical
and asymptotic ones.
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Figure 10: Numerical density (left) and temperature (right) of the test 5.1: Two-phase �ow with
phase transition. We compare the four numerical solutions with the analytical and
asymptotic ones. The horizontal dotted lines correspond to ρ = ρs` and ρ = ρsg.
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Figure 11: Numerical results of the test 5.2: Non monotone Φ.
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Figure 12: Power density and entrance velocity for the test 5.3: A simpli�ed scenario for a Loss
of Flow Accident.

1, 2 and 3. To simulate this scenario, the domain is �lled at �rst with liquid water and we
have a normal behaviour of the reactor: the pumps work normally and control rods are in upper
position. We impose at the entrance the velocity ve = 10ṽ and the power density is equal to Φ0.
These constants are chosen so as to prevent the appearance of mixture. The asymptotic state is
reached at t ' 0.8 s.

At time t1 = 1.5 s most of the pumps stop, so that the entrance velocity decreases. At time t2
the security system makes control rods drop into the core decreasing abruptly the power density.
However, there is still some residual power density (here set to 7%Φ0). This instant t2 ' 2.85 s
corresponds to the reaction time (0.3 s) of the safety system (drop of the control rods) after
mixture appears (t ' 2.55 s) and is detected. At time t3 the security pumps are turned on, thus
the in�ow is re-established. We then compute the solution until the asymptotic state is reached.
Functions ve(t) and Φ(t) can be modelled as follows (see Figure 12):

ve(t) =


10ṽ, if 0 ≤ t < t1,

0.2ṽ, if t1 ≤ t < t3,

10ṽ, if t ≥ t3,
Φ(t) =

{
Φ0, if 0 ≤ t < t2,

7%Φ0, if t ≥ t2.

In Figure 13 we report the behaviour of the mass fraction and temperature computed at di�erent
instants. Thanks to our model we can predict the appearance of some steam in the core depending
of the value of t3:

Case A: for t3 = 40 s, the asymptotic state corresponding to Φ = 7%Φ0 and ve = 0.2ṽ is
established. In this case, due to the residual power density the �uid is completely
vaporized at the top of the domain during the transition (see for example Figure 13a at
time t = 30 s) even though there are only liquid and mixture phases in the corresponding
asymptotic state.

Case B: for t3 = 20 s, the pumps are re-started soon enough so that the appearance of pure
steam is avoided.

Case C: for t3 = 4 s, even though the pumps are re-started almost instantaneously, some mixture
appears in a large part of the domain.

In all cases when the pumps are re-started, the �uid comes back to the liquid phase. As expected,
the sooner the pumps are re-started, the safer the situation.
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Figure 13: Numerical mass fraction (left) and temperature (right) of the test 5.3: A simpli�ed
scenario for a Loss of Flow Accident.
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6. Conclusion & Perspectives

We proposed in this paper simulations of a low Mach number model � named Lmnc � for �uid
�ows in nuclear reactor cores coupled to an adaptive sti�ened gas equation of state (EOS) which
varies according to the phase of the coolant �uid (which can be pure liquid water, pure steam
or mixture of these two phases). The monodimensional (1D) numerical strategy we worked out
leads to accurate and relevant qualitative results in accordance with what was expected. These
results were obtained with an optimal computational cost since the velocity and the dynamic
pressure are directly integrated in the 1D case.

More precisely, compared to a previous study [6], the present work enables to deal with more re-
alistic situations insofar as the model allows for phase transition and, thus, for accidental scenarii
such as a Loss of Flow Accident (LOFA) induced by a coolant pump trip event. Nevertheless, the
method used to determine parameters involved in the sti�ened gas EOS seems to be restrictive
given the range of temperature that must be considered. That is why another strategy will be
investigated in [18] using tabulated laws instead of the sti�ened gas EOS.

From a numerical point of view, a variant of the classic method of characteristics was proposed.
It relies on the EOS and provided second-order accurate results. This algorithm was compared
to the unsteady analytical solutions derived in this study for di�erent data sets including con�g-
urations where phase transition occurs.

Moreover, we recall that the thermodynamic pressure is constant in the Lmnc model. Hence,
whatever the EOS used to model each phase and no matter what the dimension of the domain
(1D, 2D or 3D), the computational cost related to the EOS will be much lower in the discretization
of the Lmnc model than in any strategy for the compressible model.

The adaptation of the proposed algorithm to dimensions 2 and 3 will be carried out in future
works. However, it must be underlined that although the Lmnc model may be a useful tool
for safety studies, it is not designed to handle all potential situations especially when the Mach
number cannot be considered small anymore. This is why it is important to study the possibility
to couple the Lmnc model to the compressible system from which it is derived (this approach
will be investigated in future works). Likewise, couplings with systems dedicated to other circuits
in the reactor must be considered.

A. Derivation of the mixture density formula

The mechanic and thermodynamic equilibria hypothesis in the mixture at saturation implies
that the pressures are identical in each phase. This allows to obtain (2.2) by using (2.1b). This
results in the equality for the mixture density ρm

ρm =
αρsgh

s
g + (1− α)ρs`h

s
`

h
= αρsg + (1− α)ρs`

where ρsκ and hsκ are the density and the enthalpy of the phase κ ∈ {`, g} at saturation, i.e.
ρsκ = ρκ

(
p, T s(p)

)
and hsκ = hκ

(
p, T s(p)

)
where T s(p) is the temperature T solution of g`(p, T ) =

gg(p, T )). We deduce α is prescribed by

α(h, p) = ρs`
h− hs`

(ρsgh
s
g − ρs`hs`)− h · (ρsg − ρs`)

.
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Hence we obtain

ρm(h, p) = ρs` + α(h, p) · (ρsg − ρs`) =
ρsgρ

s
`(h

s
g − hs`)

ρsgh
s
g − ρs`hs` − h · (ρsg − ρs`)

,

which gives the expression (2.3) of ρm as a function of (h, p).

B. Computation of the speed of sound for two-phase media

We detail in this section how to express the speed of sound in the diphasic case. This enables in
particular to compute the Mach number in any case and to highlight that it remains small.

B.1. General case

In [3, 22, 23], it has been proved that the speed of sound of the mixture is always positive. To
compute explicitly the speed of sound as a function of the enthalpy and the pressure, we start
from the usual thermodynamic relation

Tdη = dε− p

ρ2
dρ.

On the one hand, the relation h = ε+ p
ρ coupled to the previous statement leads to

d(ρε) = (ρT )dη + hdρ.

On the other hand, we have

d(ρε) =
∂(ρε)

∂ρ

∣∣∣∣
p

dρ+
∂(ρε)

∂p

∣∣∣∣
ρ

dp.

Therefore, the comparison of the two previous equalities yields

dp =
h− ∂(ρε)

∂ρ

∣∣∣
p

∂(ρε)
∂p

∣∣∣
ρ

dρ+
ρT

∂(ρε)
∂p

∣∣∣
ρ

dη,

so that the speed of sound c is given by

c2 def=
∂p

∂ρ

∣∣∣∣
η

=
h− ∂(ρε)

∂ρ

∣∣∣
p

∂(ρε)
∂p

∣∣∣
ρ

=
h− ∂(ρh)

∂ρ

∣∣∣
p

∂(ρh)
∂p

∣∣∣
ρ
− 1

, (B.1)

since ρε = ρh− p.

� In the pure phase κ ∈ {`, g}, the volume fraction α is 0 (i.e. κ = `) or 1 (i.e. κ = g), so
that ρ = ρκ, h = hκ and equation (B.1) becomes

c2κ =
−ρκ ∂hκ

∂ρκ

∣∣∣
p

ρκ
∂hκ
∂p

∣∣∣
ρκ
− 1

. (B.2a)
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� In the mixture, using (2.2) and noticing that ρκhκ = ρsκh
s
κ (since T = T s(p) in the mixture),

which only depends on p, we can write

∂(ρh)

∂ρ

∣∣∣∣
p

=
∂α

∂ρ

∣∣∣∣
p

(ρsgh
s
g) + α

���
��∂(ρsgh
s
g)

∂ρ

∣∣∣∣
p

− ∂α

∂ρ

∣∣∣∣
p

(ρs`h
s
`) + (1− α)

��
���∂(ρs`h
s
`)

∂ρ

∣∣∣∣
p

,

∂(ρh)

∂p

∣∣∣∣
ρ

=
∂α

∂p

∣∣∣∣
ρ

(ρsgh
s
g) + α

∂(ρsgh
s
g)

∂p

∣∣∣∣
ρ

− ∂α

∂p

∣∣∣∣
ρ

(ρs`h
s
`) + (1− α)

∂(ρs`h
s
`)

∂p

∣∣∣∣
ρ

.

Because of (2.1a), we compute the partial derivatives of the volume fraction α

∂α

∂ρ

∣∣∣∣
p

=
1

ρsg − ρs`
,

∂α

∂p

∣∣∣∣
ρ

=
−(ρs`)

′(ρsg − ρs`)− (ρ− ρs`)((ρsg)′ − (ρs`)
′)

(ρsg − ρs`)2
= −

α(ρsg)
′ + (1− α)(ρs`)

′

ρsg − ρs`
,

where (ρsκ)′ is the derivative of p 7→ ρsκ(p). Hence

(
cm(h, p)

)2 def=
h− ρsgh

s
g−ρ

s
`h
s
`

ρsg−ρs`

−[α(ρsg)
′ + (1− α)(ρs`)

′]
ρsgh

s
g−ρs`h

s
`

ρsg−ρs`
+ α(ρsgh

s
g)
′ + (1− α)(ρs`h

s
`)
′ − 1

, (B.2b)

where (ρsκh
s
κ)′ denotes the derivative of the product p 7→ ρsκ(p)hsκ(p).

Finally, the speed of sound is given by

c(h, p) =


c`(h, p), if h ≤ hs`(p),

cm(h, p), if hs`(p) < h < hsg(p),

cg(h, p), if h ≥ hsg(p).

(B.3)

Remark B.1. The speed of sound is discontinuous across the saturation curve, and it is smaller
in the mixture than in any pure phase. The minimum value is reached for void ratios close to
zero (see [22] and Figure 3d).

B.2. Sti�ened gas EOS

To compute the speed of sound cκ in a pure phase (κ ∈ {`, g}) using (B.2a), we need to express
the enthalpy h as a function of the density ρκ and the pressure p. Inverting (2.12a), we obtain

hκ(ρ, p) = qκ +
γκ(p+ πκ)

ρ(γκ − 1)

so that (B.2a) becomes

cκ(ρ, p) =

√
γκ(p+ πκ)

ρ
.

In the mixture, the speed of sound cm satis�es equation (B.2b) which is written as(
cm(h, p)

)2
=

h− qm
−
[
α(ρsg)

′ + (1− α)(ρs`)
′
]
qm + α(ρsgh

s
g)
′ + (1− α)(ρs`h

s
`)
′ − 1

.
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In this expression, we introduced the following notations

(ρsκ)′(p) =
1

(γκ − 1)cvκT
s(p)

(
1− (p+ πκ)

(T s)′

T s
(p)

)
,

(ρsκh
s
κ)′(p) =

1

(γκ − 1)cvκT
s(p)

(
qκ + γκcvκT

s(p)− (p+ πκ)qκ
(T s)′

T s
(p)

)
,

(T s)′(p) =

(γg − 1)cvg
p+ πg

− (γ` − 1)cv`
p+ π`

(cvgγg − cv`γ`) +
qg − q`
T s(p)

T s(p) =

1

ρsg(p)
− 1

ρs`(p)

hsg(p)− hs`(p)
T s(p) =

T s(p)

p
βm(p).

C. Approximation of the water EOS with the sti�ened gas

law

In this appendix, we describe the method introduced in [31,32,40] to choose parameters describing
each pure phase of water with a sti�ened gas law to best �t with saturated curves (see Figure 2a).
Then, we determine relevant values for liquid water and steam.

More precisely, we suppose that each phase is described by its own sti�ened gas EOS (2.7), so
that we have to compute �ve constants for each phase: the speci�c heat at constant volume cvκ ,
the adiabatic coe�cient γκ, the reference pressure πκ, the binding energy qκ and the reference
entropy q′κ de�ned by (2.9). We recall that κ = ` refers to the liquid phase and κ = g to the
vapor one. These parameters will be determined using experimental values at saturation.

The sti�ened gas law consists of the following expressions for the density, the enthalpy and the
Gibbs potential as functions of the temperature T and the pressure p:

ρκ(T, p) =
p+ πκ

(γκ − 1)cvκT
, (C.1a)

hκ(T, p) = qκ + γκcvκT, (independent of p) (C.1b)

gκ(T, p) = qκ + T
[
cvκγκ − q′κ − cvκγκ lnT + cvκ(γκ − 1) ln(p+ πκ)

]
. (C.1c)

For a given temperature T , the experimental data needed for the computation are the pres-
sure at saturation psexp(T ), the enthalpies at saturation hsκ,exp(T ) and the densities at saturation
ρsκ,exp(T ). We can �nd these data in [33] for several �uids. Let T0 and T1 two reference temper-
atures (recorded in [33]) between the triple point and the critical point (see Figure 2b).

• Step I: computation of γκcvκ . From the analytical expression of the enthalpy (C.1b), we
have h′κ(T ) = γκcvκ . This yields an averaged value of the product cpκ

def= γκcvκ by means of
a linear approximation of the experimental enthalpies between reference states T0 and T1

as

cpκ =
hsκ,exp(T1)− hsκ,exp(T0)

T1 − T0
. (C.2)
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• Step II: computation of qκ. Equation (C.1b) applied to the reference state T0 provides the
approximation of the binding energy qκ:

qκ = hsκ,exp(T0)− cpκT0.

• Step III: computation of πκ. At saturation, there is an algebraic relation between the tem-
perature and the pressure, e.g. we can write p = ps(T ). Thus, using (C.1a), the speci�c
densities at saturation are expressed as

ρsκ(T ) = ρκ
(
T, ps(T )

)
=

ps(T ) + πκ
(cpκ − cvκ)T

, (C.3)

which evaluated at T0 and T1 yields

ρsκ(T1)

ρsκ(T0)
=

(ps(T1) + πκ)T0

(ps(T0) + πκ)T1
,

so that we can determine an averaged value of the coe�cient πκ using experimental values
of the density and the pressure at saturation

πκ =
T0ρ

s
κ,exp(T0)psexp(T1)− T1ρ

s
κ,exp(T1)psexp(T0)

T1ρsκ,exp(T1)− T0ρsκ,exp(T0)
.

• Step IV: computation of cvκ . Equation (C.3) applied to the reference state T0 provides
the approximation of cvκ

cvκ = cpκ −
psexp(T0) + πκ

T0ρsκ,exp(T0)
.

• Step V: computation of γκ. Using (C.2) we deduce the approximation of γκ

γκ =
cpκ
cvκ

.

• Step VI: computation of q′κ. At thermodynamic equilibrium, the two Gibbs potentials are
equal. Using (C.1c), this implies

A ln
(
ps(T ) + πg

)
−B ln

(
ps(T ) + π`

)
− C(lnT − 1) +

D

T
+ q′` − q′g = 0

with

A def= cpg − cvg , B def= cp` − cv` , C def= cpg − cp` , D def= qg − q`.

By convention, we take q′` = 0 J ·K−1 and determine the coe�cient q′g using experimental
values of the pressure at saturation

q′g = A ln
(
psexp(T0) + πg

)
−B ln

(
psexp(T0) + π`

)
− C(lnT0 − 1) +

D

T0
.
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Phase cv [J ·K−1] γ π [Pa] q [J · kg−1] q′ [J ·K−1]
Liquid 1816.2 2.35 109 −1167.056×103 0
Vapor 1040.14 1.43 0 2030.255×103 −23310

Table 1: Liquid water and steam, parameters computed in [31,32].

Reference states T0 and T1 must now be speci�ed. First, T0 is a reference state chosen in order
to have the best �t between the theoretical pressure ps(T ) and the experimental one psexp(T ).
Secondly, this strategy for the determination of parameters for a sti�ened gas EOS is accurate
if the two reference states are su�ciently close. Practically (following [31, 32]), we took for the
liquid phase T0 = 298 K and T1 = 473 K (steps I and II) and T0 = 439 K and T1 = 588 K (steps
III to VI). As for the steam, we set T0 = 298 K and T1 = 473 K in any step.

The values for liquid water and steam are given in Table 1. As underlined in [22, 31, 32], these
parameter values yield reasonable approximations over a temperature range from 298 K to 473 K.
Nevertheless near the critical point, there are some restrictions due to the nonlinearity of the
enthalpy with respect to the temperature. To circumvent this limitation, we shall propose in [18] a
new strategy to better approximate the thermodynamic quantities involved in the Lmncmodel.
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