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ABSTRACT

In the context of signal analysis and transformation

in the time-frequency (TF) domain, controlling the

shape of a waveform in this domain is an important

issue. Depending on the application, a notion of opti-

mal function may be defined through the properties of

the ambiguity function. We present an iterative method

for providing such optimal functions under a general

concentration constraint of the the ambiguity function.

At each iteration, it follows a variational approach

which maximizes the ambiguity localization via a user-

defined weight function F . Under certain assumptions

on this latter function, it converges to a waveform

which is optimal according to the localization criterion

defined by F .

1. INTRODUCTION

In the context of time-frequency analysis (such as short

time Fourier analysis or Gabor analysis), it is com-

monly agreed that best results are obtained when one

uses window functions that are well localized in the

time-frequency domain. In the mathematically ideal-

ized setting of continuous time, infinite support signals,

i.e. functions on the whole real line R, the optimally

localized waveforms in the TF domain are well known

to be Gaussians [1]. The latter are the minimizers of

the variance uncertainty inequality (Heisenberg un-

certainty principle) as well as the Hirschman entropic

inequality and the Lieb time-frequency inequalities [2].

However, in other contexts, of importance for partic-

ular applications, the optimal function is not known;

the localization criterion does not rely on such mea-

sures and the definition of optimality can be different.

For example, in the discrete, finite time setting, the

variance is not defined and the entropy point of view

gives a “picket fence” signal as a minimizer. The latter

is indeed optimally concentrated, has smaller entropy

than the periodized discrete Gaussian for example, but

is definitely not well localized. In addition, according

to the components/information one wants to retrieve
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or visualize inside a signal, there exist more appro-

priate families of windows (Hann, Hamming, prolate

spheroidal, etc...), optimal in a different sense.

In the framework of the short time Fourier trans-

form (STFT), the ambiguity function (which also char-

acterizes the reproducing kernel of the STFT), provides

a sensible measure of the spreading of the analysis win-

dow in the time-frequency domain. This function plays

an important role in the estimation of optimal localiza-

tion properties in many different areas e.g. for operator

approximation by Gabor multipliers [3] or for RADAR

and coding applications [4, 5, 6]. Depending on the

application, the search for an optimal function empha-

sizes some particular property, e.g. support properties,

peakiness, fast decay away from some reference point.

Hence the ambiguity function must satisfy a set of con-

straints being stated by the user as well as its own in-

herent constraints.

We present here a method for designing optimally

localized windows in the TF plane, based on the max-

imization of some measure of the ambiguity function

concentration. Under general hypotheses and shape

constraints, the proposed algorithm is able to provide

an optimal function as the solution of a variational

problem.

2. TIME-FREQUENCY CONCENTRATION:

CONTINUOUS TIME

2.1. The ambiguity function

We first consider the case of continuous time, infinitely

supported signals, and denote by 〈·, ·〉 the L2 inner

product. Let ψ ∈ L2(R) be a finite energy waveform,

and denote by ψz , with z = (τ, ξ) a time-frequency

shifted copy of ψ with time and frequency shifts τ and

ξ:

ψz(t) = e2iπξtψ(t− τ) .
The ψz will be termed Gabor atoms. Let us introduce

the STFT Vψf of f ∈ L2(R), and the ambiguity func-

tion Aψ of ψ:

Vψf(z) = 〈f, ψz〉 , Aψ(z) = Vψψ(z) . (1)

The ambiguity function for an arbitrary ψ ∈ L2(R)
is bounded, continuous, decays at infinity, satisfies



‖Aψ‖2 = ‖ψ‖22 and is the kernel of a positive semi-

definite operator. Furthermore its modulus satisfies

the symmetry relation |A(z)| = |A(−z)|, attains its

maximum value at the origin and satisfies specific con-

centration constraint [7]. This shows that not every

function defined on the TF plane is the ambiguity func-

tion of a window. Therefore the design of windows

such that their TF picture satisfies arbitrary properties

is in general impossible. Still, one can try to find wave-

forms whose ambiguity function matches as closely

as possible such prescribed localization properties (see

e.g. [8], [9]). The current paper considers a new local-

ization criterion in the ambiguity domain, and proposes

corresponding new optimization algorithms.

2.2. Concentration measures

Classical families of concentration measures are pro-

vided by Lp-(quasi)-norms, for p ≥ 0

Iψ(p) = ‖Aψ‖pp =
∫
R2

|〈ψ, ψz〉|pdz, (2)

which are closely related to Rényi entropies (for details

see e.g. [10]), and the Shannon entropy measure:

S(Aψ) = −
∫
R2

|Aψ(z)|2 log(|Aψ(z)|2) dz = I ′ψ(2) .

(3)

For p < 2, maximizing the Lp-norm (under unit L2

norm constraint) favors spreading while for p > 2
this increases sparsity. Small values for the Shannon

entropy is a sign of sparsity. In the continuous case,

Lieb [2] gives the following bounds on the Lp-norm of

the ambiguity function:

‖Aψ‖pp ≤ (2/p)‖ψ‖2p2 , p > 2 (4)

with a reversed inequality for p < 2. These bounds are

sharp and all yield Gaussian functions (up to transla-

tions, dilations and rotations in the TF plane) as min-

imizers. Lieb also provides a lower bound for the en-

tropy, with again the same family of Gaussians as min-

imizers

S(Aψ) ≥ 1 , (5)

These cases are examples of a family of problems for

which our method provides optimizers.

2.3. Optimization principle

We describe a general scheme for optimizing pre-

scribed time-frequency localization properties. The

rationale is to set the problem as a variational problem,

and optimize a weighted L2-norm of the ambiguity

function. The problem to solve reads

ψopt = arg max
ψ:‖ψ‖=1

∫
F (|Aψ(z)|, z) |Aψ(z)|2 dz , (6)

where the density function F : R+×R
2 → R

+ is cho-

sen so as to enforce some specific localization proper-

ties. We shall consider here the two following specific

cases, but the approach is not limited to these.

1. Find a ψ which optimizes the sparsity ofAψ , we

choose F of the form

F (|Aψ(z)|, z) = |Aψ(z)|p−2 (p > 2)

and (6) becomes equivalent to finding the func-

tion which maximize ‖Aψ‖pp. This will lead to

the Gaussian here but our method clearly extends

to more general settings than L2(R). We shall

see in the next section that this also leads to dis-

crete versions of the Gaussian function.

2. The other extreme case is to choose weight func-

tion of the form

F (u, z) = F (0, z) ,

i.e. a fixed weight in the ambiguity plane. In

this case, the optimization (6) is expected to

produce waveforms ψ whose ambiguity func-

tion is concentrated in TF regions where F takes

large values. Given the constraints on ambiguity

functions, we limit ourselves to weight functions

concentrated around the origin and satisfying the

symmetry property F (−z) = F (z). When F is

an indicator of a ball the solution of the problem

is the Gaussian function [11].

Optimizing Eq. (6) does not lead to a closed-form

solution. Alternatively, we shall search for approxi-

mate solutions, by recursive quadratizations.

Suppose a guess φ is available (fixed function in

L2(R)), then we can maximize the following quantity

(cost function) with respect to ψ:

Γλ[ψ|φ]=
∫
F (|Aφ(z)|, z)|Vφψ(z)|2dz−λ(‖ψ‖2−1) (7)

where the constraint of unit norm was added via a La-

grange multiplier λ. This is equivalent to constraining

the STFT of ψ (with window φ) to be localized in re-

gions where F (|Aφ(·)|, ·) is concentrated. Let us de-

note by ψ1 the function maximizing (7) and Γ
(1)
λ the

maximum. The next step is to replace φ by ψ1 and

solve the variational problem again. This yields a new

optimal function ψ2, with maximum Γ
(2)
λ . Iterating this

procedure leads to a (possibly local) maximum for Γλ.

For special weight functions we have the following re-

sult:

Proposition 1. For any function F bounded, positive

and even with respect to z, maximizing (7) is equivalent

to solving the following eigenvalue problem∫
R2

F (|Aφ(z)|, z)Vφψ(z)φz dz = λψ , (8)



where λ is the largest eigenvalue. Furthermore, the se-

quence Γ
(n)
λ converges to a (local) maximum for weight

functions F independent of φ.

Sketch of proof: Using the classical method for the

calculus of variations, i.e. equating the functional

derivative of Γλ with respect to ψ to zero yields the

linear equation (8). The cost function Γλ converges for

F real, positive, even, bounded and independent of φ
since Γλ is bounded, and at rank n

Γλ[ψn|ψn−1] = Γλ[ψn−1|ψn] ≤ Γλ[ψn+1|ψn].�

Remark 1. a). The convergence of Γ
(n)
λ does not nec-

essarily imply the convergence of the sequence ψ(n).

Conditions on F for the convergence of ψ(n) to ψopt

can be derived; this is the object of current research

and will be developed elsewhere. b). When it ex-

ists, the limiting function ψopt satisfies Eq. (8), with

φ = ψopt and hence maximizes Γλ with maximal value

Γλ[ψopt|ψopt]. This turns out to match the expression

of Eq. (6), and hence it is at least a local solution of

the initial optimization problem.

Remark 2. a). When φ is the standard Gaussian and

F (|Aφ(τ, ξ)|, (τ, ξ)) = F (0, τ2 + ξ2) is radially sym-

metric, Daubechies showed in [12] that the solution of

(8) is φ. Hence it is a function which gives a (local)

maximum for (6). Moreover, she showed that the eigen-

vectors of the STFT-multiplier are the Hermite func-

tions. b). In our iterative process, the diagonalization

of the operator obtained in the last iteration yields an

orthonormal basis which can be seen as a set of gener-

alized Hermite functions.

3. ALGORITHM IN DISCRETE TIME

3.1. Discrete time considerations

In terms of localization, the finite discrete case is not

just a discretization of the continuous one. Replacing

integrals by finite sums yields a completely different

world. For example, for signals of length N analogues

of the Lieb inequalities can be obtained.

Proposition 2. Assume ψ ∈ C
N is such that ‖ψ‖2 =

1. Then, assuming p < 2,

‖Aψ‖p ≥ N
1
p
− 1

2 , (9)

S(Aψ) ≥ log(N) . (10)

The family of “picket fence” signals, translated and

modulated copies of the following periodic series of

Kronecker deltas:

ω(t) =
1√
b

b∑
n=1

δ(t− an), ab = N ,

saturates the inequality.

Sketch of the proof: The proof is directly adapted

from the proof of Lieb’s inequality for the continuous

case [2]. The ambiguity function is expressed as a finite

Fourier transform, its Lp-norm can be bounded using

the Hausdorff-Young inequality. The resulting bound

takes the form of a finite periodic convolution product

which is itself bounded using Young’s convolution in-

equality. Finally, the entropic inequality is obtained by

a standard limiting argument. �

Note that the minimizer is not unique. Picket fence

signals turn out to optimize many finite domain uncer-

tainty principles (see e.g. [1]). This is quite different to

the continuous case described in Sec. 2.2. In particular,

picket fences are concentrated but not localized: they

are not the most relevant windows for applications.

In this discrete setting, it is interesting to find an

equivalent of the Gaussian function. One may define

it as the optimal function of the following discretized

version of (6):

ψopt = arg max
ψ:‖ψ‖=1

∑
z

F (|Aψ(z)|, z) |Vψψ(z)|2 , (11)

where F (|Aψ(z)|, z) = |Vψψ(z)|p−2
for any p > 2.

This is made possible by the proposed algorithm.

3.2. Algorithm

As in the continuous case recursive quadratization, as

described in Eq. (7) and below can be used to make the

problem treatable. It leads to diagonalizing the STFT

multiplier matrix:
∑
z F (|Aφ(z)|, z)〈φz, ·〉φz . All the

given arguments for convergence apply in the discrete

case also. Given any density function F , an initial win-

dow φ has to be specified to start with at the beginning.

The steps are summarised in Algorithm 1. The stop-

ping criterion is based on the L2-norm difference be-

tween functions issued from two successive iterations.

Algorithm 1 compute the optimal window ψopt

Input: φ - initial window, F - weight, eps.
Individual Steps:

1: ψ0 = 0, ψ1 = φ
2: while ‖ψ1 − ψ0‖ > eps do

3: ψ0 ← ψ1

4: Compute the STFT-multiplier with weight F
and window ψ0

5: Compute ψ1 as the eigenvector to the largest

eigenvalue

6: Update F if necessary

7: end while

8: ψopt = ψ1

3.3. Results and convergence issues

Fixed weight (F (0, z)): For a radial symmetric weight

function F as stated in Remark 2.a), the iterative proce-



dure presented in Algorithm 1 converges to a Gaussian-

like function. In Fig. 1 a plot of F (top right) and of the

convergence rate (top left) is presented. Notice that it

linearly decreases in log scale. The optimal function is

plotted (middle) together with an example of another

eigenvector of the operator given at the last iteration

(bottom). We may define the discrete Hermite func-

tions to be the eigenfunctions of such an operator, as

pointed out in Remark 2.
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Fig. 1. Results in the case of a radial TF mask:

F (|Aψ(z)|, z) = F (0, z). Top left: ‖ψn+1−ψn‖2, log

scale. Top right: TF mask. Middle: optimal function

in time (left) and in the TF plane through its ambigu-

ity function (right). Bottom: an eigenvector of the last

STFT-multiplier, the “generalized“ Hermite function

H20 in time (left) and in the TF plane through its am-

biguity function (right). The signal length is N = 420.

Weight functions which are constant along squares

centered at the origin are another interesting example,

see Fig. 2. Algorithm 1 leads to a square-shaped opti-

mal function. Notice the generalized Hermite function

which forms a square ring in the TF plane.

As stated in Remark 1.a), the sequence of ψ(n) may

not converge although Γ does; this is the case when F
has the shape of a cross in the TF plane for example.

The algorithm is ”hesitating“ between convergence to

one of the cross branch or the other.

Weight depending on |Aψ| (F (|Aψ(z)|)): The main

difference to the previous case is that the weight func-

tion evolves at each iteration and that the result depends

on the initial window. The maximum of the objective

function Γλ is very degenerate (there are at least 2N
solutions: N Kronecker deltas and N sine waves) and
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Fig. 2. Results in the case of a square-shaped TF mask:

F (|Aψ(z)|, z) = F (0, z). Top left: ‖ψn+1−ψn‖2, log

scale. Top right: TF mask. Middle: optimal function

in time (left) and in the TF plane through its ambigu-

ity function (right). Bottom: an eigenvector of the last

STFT-multiplier, the “generalized“ Hermite function

H20 in time (left) and in the TF plane through its am-

biguity function (right). The signal length is N = 420.

there are many local minima. The algorithm seems

to converge to the maximum closest to the initializa-

tion. For example, starting with a widespread signal

(e.g. white noise) generally leads to a picket fence, or

more simply a constant function (a Kronecker delta in

the Fourier domain). The solution for a mildly local-

ized starting window is a Gaussian. In Fig. 3 we dis-

play two examples corresponding to these two situa-

tions. The value of both cost functions at each iteration

has been plotted on the top graph: it shows that the

Gaussian-like solution gives only a local maximum for

Γλ. For these two examples, the respective relative en-

tropy S = S(Aψopt
)/ log(N) yields: S = 1 for the

picket fence and S = 1.16 for the Gaussian like func-

tion, showing again that the Gaussian is only a local

maximum for (11), while the picket fence signals are

global minimizers. Last remark: the convergence speed

increases with the value of p, up to a certain level; be-

yond that the algorithm starts to behave unstable.

4. CONCLUSION

We have proposed a novel approach for designing

waveforms with controlled localization in the ambi-

guity plane. Our algorithm is able to provide op-

timally concentrated functions for a wide range of
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Fig. 3. Results for the optimization of the Lp norm

of the ambiguity function (p = 3). Top: Cost func-

tion leading to the picket fence (dashed) and to the

Gaussian-like function (crossed). Middle: initial de-

localized function (left) and final function, i.e. two-

picket fence (right). Bottom: initial localized function

and final one, the Gaussian-like function.

constraints/applications via a flexible weight function.

It covers the intuitive spreading measure associated to

Lp-norms as well as the design of concentration masks

in the TF plane. We recover the optimal functions

given in the literature for particular choices of weight

functions. Furthermore, by choosing a weight function

F , one can define an application-tailored measure of

localization and obtain the optimal window accord-

ingly. For example a square-shaped window in the

TF plane may be an interesting window for tiling the

TF domain, when using a square lattice for the Ga-

bor transform. It should be less redundant than the

round-shaped Gaussian atoms.

The investigation of conditions of F which guaran-

tee convergence is the object of ongoing work, together

with the analysis of more general expressions for F .

This procedure may also be of interest for other

problems. Firstly, when diagonalizing the STFT-

multiplier matrix with respect to the limiting window

and the chosen weight F , one obtains a whole orthog-

onal basis, one of them being the optimal function.

The other vectors have original shapes in the TF plane,

looking like deformed rings around the origin. This

could be seen as a generalization of the Hermite func-

tions basis.
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