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Introduction

The notion of Poissonian ensembles of Markov loops (loop soups) was introduced by Lawler and Werner in [START_REF] Lawler | The Brownian loop soup[END_REF] in the context of two dimensional Brownian motion (it already appeared informally in [START_REF] Symanzik | Euclidean quantum field theory[END_REF]): the loops of a Brownian loop soup on a domain D ⊂ C are the points of a Poisson point process with intensity αµ where α is a positive real and µ is the Brownian loop measure on D. Loop clusters induced by a Brownian loop soup were used to give a construction of the conformal loop ensembles (CLE) in [START_REF] Werner | SLEs as boundaries of clusters of Brownian loops[END_REF] and [START_REF] Sheffield | Conformal Loop Ensembles: the Markovian characterization and the loop-soup construction[END_REF]. They are defined as follows: two loops ℓ and ℓ ′ are said to be in the same cluster if one can find a finite chain of loops ℓ 0 , . . . , ℓ n such that ℓ 0 = ℓ, ℓ n = ℓ ′ and for all i ∈ {1, . . . , n}, ℓ i-1 ∩ ℓ i = ∅. Poissonian ensembles of Markov loops can also be defined on graphs. They were studied in details in [START_REF] Le | Markov paths, loops and fields[END_REF] and [START_REF] Lawler | Random walk: a modern introduction[END_REF]. In particular Poissonian ensembles of loops on the integer lattice Z 2 induced by simple (nearest neighbor) random walks give a discrete version of Brownian loop soup (see [START_REF] Lawler | Random walk loop soup[END_REF]).

The aim of this paper is to study loop clusters induced by Markov loop ensembles on graphs. The facts presented here, which are built on the results presented in [START_REF] Le | Markov paths, loops and fields[END_REF], are more elementary than in the Brownian loop soup theory, but they point out that Poissonian ensembles of Markov loops and related partitions are of more general interest. The examples we develop show relations with several theories: coalescence, percolation and random graphs.

In Section 1, we recall the different objects needed to define the Markovian loop clusters on a graph and the coalescent process induced by the partition of vertices they define. In Section 2, we state general properties of the clusters and establish some formulae useful to study the semigroup of the coalescent process. In the last three sections we address several aspects of the loop clusters induced by a simple random walk killed at a constant rate κ on different graphs:

• On Z, the loop cluster model reduces to a renewal process. We establish a convergence result by rescaling space by √ ε, killing rate by ε and let ε converge to 0.

• The loop cluster model can be seen as a percolation model with two parameters α and κ. Bernoulli percolation appears as a limit if α and κ tend to +∞ so that α κ 2 converges to a positive real. We show that a non-trivial percolation threshold occurs for the loop cluster model on the lattice Z d with d ≥ 2. • As a last example, we consider the complete graph. We give a simple construction of the coalescent process on the complete graph and we deduce a construction of a coalescent process on the interval [0, 1]. Letting the size of the graph increase to +∞, we determine the asymptotic distribution of the coalescence time: it appears to be essentially the same as in the Erdös-Rényi random graph model (see [START_REF] Erdős | On random graphs[END_REF]) though the lack of independence makes the proof significantly more difficult.

Setting

We consider a finite or countable simple graph G = (X, E) endowed with positive conductances C e , e ∈ E and a positive measure κ = {κ x , x ∈ X} (called the killing measure). We denote by C x,y the conductance of the edge between vertices x and y and set λ x = y∈X,{x,y}∈E C x,y + κ x for every x ∈ X. The conductances and the killing measure κ induce a sub-stochastic matrix P : P x,y = Cx,y λx 1I {{x,y}∈E} , ∀x, y ∈ X. We assume that P is irreducible.

1.1. Loop measure. A discrete based loop ℓ of length n ∈ N * on G is defined as an element of X n ; it can be extended to an infinite periodic sequence. Two based loops of length n are said equivalent if they only differ by a shift of their coefficients (i.e. the based loops of length n, (x 1 , . . . , x n ) is equivalent to the based loop of length n (x i , . . . , x n , x 1 , . . . , x i-1 ) for every i ∈ {2, . . . , n}). A discrete loop is an equivalent class of based loops for this equivalent relation (an example is drawn in Figure 1). Let DL(X) (resp. D L(X)) denote the set of discrete loops (resp. discrete based loops) of length at least 2 on X. We associate to each based loop ℓ = (x 1 , . . . , x n ) of length n ≥ 2 the weight μ(ℓ) = 1 n P x 1 ,x 2 P x 2 ,x 3 . . . P xn,x 1 . This defines a measure μ on DL(X) which is invariant by the shift and therefore induces a measure µ on DL(X). Representation of a loop ℓ of length 4 on the complete graph K 4 corresponding to the equivalence class of the based loop l = (4, 1, 2, 1); the measure of this loop is µ(ℓ) = P 4,1 P 1,2 P 2,1 P 1,4 .

Remark 1.1 (Doob's h-transform). If h is a positive function on X such that (P -I)h ≤ 0, a new set of conductances C {h} and a new killing measure κ {h} can be defined as follows: C {h} x,y = h(x)h(y)C x,y for every {x, y} ∈ E and κ {h} x = h(x)[(I -P )h](x)λ x for every x ∈ X. This modification corresponds to the Doob's h-transform: the associated transition matrix P {h} verifies P {h} x,y = h(y) h(x) P x,y , ∀x, y ∈ X. It is a self-adjoint operator on L 2 (h 2 λ) since

P {h} = T -1 h P T h with T h : L 2 (h 2 λ) → L 2 (λ) f → hf .
The loop measure µ is invariant under Doob's h-transform.

The loop measure can be defined without assuming that P is a substochastic matrix. A weaker condition would be to assume that P is a positive and contractive matrix. Taking such matrices does not extend the set of loop measures. Indeed, Perron-Frobenius theorem states that if Q is a positive and irreducible matrix and if its spectral radius ρ(Q) is smaller or equal to 1, then there exists a positive function h on X such that P h = ρ(Q)h. The h-transform of Q is then a substochastic matrix. 2). This paper is devoted to the study of C α . 2 is the discrete based loop (x 1 , . . . , x n , x 1 , . . . , x n ) and so on. As the m-th power of equivalent based loops are also equivalent, powers of discrete loops are well-defined. A discrete loop ξ is said to be primitive if there is no integer m ≥ 2 and no discrete based loop ℓ such that ξ is the equivalent class of [ℓ] m ; Any discrete loop ξ ∈ DL(X) can be represented as a power of a unique primitive discrete loop denoted by πξ. Let PL(X) denote the set of primitive discrete loops X of length at least 2 and let PL α denote the set of primitive discrete loops defined by DL α . Clearly C α depends only on PL α .

: if ℓ = (x 1 , . . . , x n ) is a based discrete loop of length n then [ℓ] 1 = ℓ, [ℓ]
Proposition 2.1. The probability distribution of PL α is a product measure ν on {0, 1} PL(X) defined by

ν(ω, ω η = 1) = 1 -(1 -µ(η)) α .
Proof. If η 1 , . . . , η r are distinct primitive discrete loops, the sets

L i = {ℓ ∈ DL(X), πℓ = η i }, i = 1, . . . , r
are disjoint, hence the r events E i = {∃ℓ ∈ DL α such that πℓ = η i } for i ∈ {1, . . . , r} are independent. Therefore, the law of PL α is a product measure on {0, 1} PL(X) and for every η ∈ PL(X),

P(η ∈ PL α ) = P(∃ℓ ∈ DL α , πℓ = η) = 1 -exp(-α +∞ m=1 µ(ℓ, ℓ = [η] m )). As µ([η] m ) = 1 m µ(η) m for every m ∈ N * , we deduce that P(η ∈ PL α ) = 1 -exp(α log(1 -µ(η))).
It follows from Proposition 2.1 that the Harris inequality (and also the B-K inequality) holds on increasing events (see e.g. [START_REF] Werner | Percolation et modèle d'Ising[END_REF]). In particular let us say that a subset A of X is connected at time α if it is contained in a cluster of C α . Then by the Harris inequality, P(A and B are both connected at time α) ≥ P(A is connected at time α) P(B is connected at time α).

In a similar way, we say that a subgraph is open at time α if all its edges are traversed by jumps of loops in DL α . Then the same inequality holds. These inequalities can be extended to any number of increasing events. In particular,

• For every partition π = (B i ) i∈I of X into non-empty blocks, the probability that C α is a coarser 1 partition than π satisfies: where W k (B j , j ∈ J) is the set of k-tuples of elements of B J having at least one element that belongs to each block B j , j ∈ J:

P(C α π) ≥ i∈I P(B i is connected at time α). • If F ⊂ E,
W k (B j , j ∈ J) = {(x 1 , . . . , x k ) ∈ (∪ j∈J B j ) k , ∀j ∈ J, x u ∈ B j for some u}.
If the graph G is finite, these transition rates can be expressed with determinants of Green's functions of subgraphs. In order to describe the formula, let us introduce some notations; Let G denote the Green's function of G: G = (λI -C) -1 where λ = (λ x ) x∈X , I is the identity matrix and C is the conductance matrix. For every subset F of vertices, set F c = X \ F and let G (F ) denote the Green's function of the subgraph (F, E |F ×F ) of G: G (F ) is the inverse of the matrix (λI -C) |F ×F .

Proposition 2.2. Let us assume that G = (X, E) is a finite graph. For every partition π = {B i , i ∈ I} of X and every subset J of I with at least two elements:

τ π,π ⊕J = I J (-1) |I| log(det(G (∪ u∈J \I Bu) )). (2.2)
Proof. By the inclusion-exclusion principle,

τ π,π ⊕J =µ ℓ, ℓ does not intersect ∪ j ∈J B j -µ ℓ, ∃u ∈ J, ℓ does not intersect ∪ j∈J c ∪{u} B j = K J (-1) |K| µ(ℓ, ℓ does not intersect ∪ u∈J c ∪K B u ).
To conclude, we use that:

1 Given two partitions σ and π of X, σ is said to be coarser than π (denoted by σ π) or π is said to be finer than σ (denoted by π σ) if every block of π is a subset of a block of σ.

• For a subset F of vertices,

µ(ℓ, ℓ does not intersect F ) = µ(DL(F c )) = log det(G (F c ) ) x∈F c λ x .
• For every family of reals (a u ) u∈J indexed by a finite subset J with at least two elements,

I J (-1) |I| u∈J\I a u = 0.
(2.3)

Example 2.3. Let us consider the complete graph K n with unit conductances and a uniform killing measure with intensity κ. The transition matrix P verifies: P x,y = 1 n-1+κ 1I {x =y} for every vertices x and y. Thus for every subset F of vertices, det(G

(F ) ) = ((n + κ) |F |-1 (n + κ -|F |)) -1
(the computation of this determinant is detailed in Lemma A.3). Using (2.2) and (2.3), we obtain:

τ π,π ⊕J = I J (-1) |I|+1 log 1 - 1 n + κ u∈J\I |B u | .
(2.4) 2.3. The semigroup of the coalescent process on a finite graph. In this section, we assume that the graph G is finite. For a partition π of X, let P π (•) denote the conditional probability P(• | C 0 = π). The probability that C α is finer than a given partition of X has a simple expression:

Lemma 2.4. Let us assume that the graph G = (X, E) is finite. Let π be a partition of X into non-empty blocks {B i , i ∈ I}. For every partition π 0 of X,

P π 0 (C α π) = i∈I det(G (B i ) ) det(G) α 1 I {π 0 π} . (2.5)
Proof. Let us assume that π is coarser than π 0 . The event 'C α is finer than π' means that every loop of DL α is included in a block of π. Therefore,

P π 0 (C α π) = exp -α µ(DL(X)) - i∈I µ(DL(B i ))
since the set of loops in each block B i of π at time α defines independent Poisson point processes.

To conclude, we use that

µ(DL(X)) = log det(G) x∈X λ x and µ(DL(B i )) = log det(G (B i ) ) x∈B i λ x .
An explicit formula for P π 0 (C α = π) can be derived from Lemma 2.4. Let us first introduce some notations. For a partition π, let |π| denote the number of non-empty blocks of π. For a subset A, let π |A denote the restriction of π to A: π |A is a partition of A, the blocks of which are the intersection of the blocks of π with A.

Lemma 2.5. Let us consider a finite graph G = (X, E). Let π 0 and π be two partitions of X. If π has k non-empty blocks denoted by B 1 . . . , B k then

P π 0 (C α = π) = π π (-1) |π|-k k i=1 (|π |B i | -1)! P π 0 (C α π).
(2.6)

Proof. Let us first assume that π = {X}. To obtain equation (2.6), it is sufficient to prove the following identity:

1I {Cα={X}} = |X| ℓ=1 (-1) ℓ-1 (ℓ -1)! π ℓ ∈P ℓ (X)
1I {Cα π ℓ } .

(2.7)

where P ℓ (X) denotes the set of partitions of X with ℓ non-empty blocks. Let us assume that C α is a partition with j non-empty blocks. For ℓ ≤ j, we can construct a partition coarser than C α with ℓ non-empty blocks by choosing how to merge some blocks of C α , that is by choosing a partition of {1, . . . , j} with ℓ blocks. Therefore 

π ℓ ∈P ℓ (X) 1I {Cα π ℓ } = |P ℓ ({1, . . . ,
1I {Cα=(B 1 ,...,B k )} = k i=1 1I {C α|B i =B i } = |B 1 | ℓ 1 =1 • • • |B k | ℓ k =1 k i=1 V i,ℓ i where V i,ℓ = (-1) ℓ-1 (ℓ -1)! π∈P ℓ (B i ) 1I {C α|B i π} . Therefore, 1I {Cα=(B 1 ,...,B k )} = |B 1 | ℓ 1 =1 • • • |B k | ℓ k =1 (-1) ℓ 1 +...+ℓ k -k k i=1 (ℓ i -1)! π∈P ℓ 1 (B 1 )ו••×P ℓ k (B k ) 1I {Cα π} = π π (-1) |π|-k k i=1 (|π |B i | -1)! 1I {Cα π} .
Example 2.6. Let us consider the complete graph K n endowed with unit conductances and a uniform killing measure of intensity κ. If π is a partition of the set of vertices X with k blocks B 1 , . . . , B k then

P π 0 (C α π) = ( κ κ + n ) α i∈I (1 - |B i | n + κ ) -α 1I {π 0 π} and P π 0 (C α = π) = κ κ + n α π=( Bj ) j∈J s.t. π 0 π π (-1) |J|-k k i=1 card({j ∈ J, Bj ⊂ B i })-1 ! j∈J 1- | Bj | n + κ -α
.

Let us note that (1-j n+κ ) -α is the j-th moment m j of the random variable Y = exp( Z n+κ ) where Z denotes a Gamma(α, 1)-distributed random variable. Thus

P π 0 (C α π) = m n k i=1 m |B i | 1I {π 0 π} .
Let c n denote the n-th cumulant of Y . Formula (2.6) and the expression of cumulants in terms of moments (see formula (1.30) in [START_REF] Pitman | Combinatorial stochastic processes[END_REF] for example) yield

P π 0 (C α = {X}) = cn mn . 2.4. Loop clusters included in a subset of X. For a subset D of X, let DL (D) α denote the loops of DL α contained in D and C (D) α the partition of D induced by DL (D) α . In general C (D) α is finer than the restriction of C α to D but coincides with it if D is a union of elements of C α .
For every partition π of X with k non-empty blocks B 1 , . . . , B k , the loop sets DL

(B 1 ) α , . . . , DL (B k ) α , DL α \ (∪ k i=1 DL (B i )
α ) are independent. This yields the following equality:

P(C α = π) = P(C α π) k i=1 P(C (B i ) α = {B i }).
Let us note also that if U ⊂ D ⊂ X then

P(C α {U, U c }) = P(C (D) α {U, D \ U }) P(∄ℓ ∈ DL α visiting U and D c )
(see [START_REF] Gregory | Defining SLE in multiply connected domains with the Brownian loop measure[END_REF] page 2 for a related result in Schramm-Loewner Evolution (SLE) context). The second term on the right-hand side equals e -α µ(DL(X))-µ(DL(U c ))-µ(DL(D))+µ(DL(D\U )) ;

If X is finite, it can be written as

det(G (U c ) ) det(G (D) ) det(G) det(G (D\U ) ) α or, with Jacobi's identity, as det(G |U ×U ) det(G |D c ×D c ) det(G |(U ∪D c )×(U ∪D c ) ) -α . 
2.5. Computation of the semigroup using exit distributions. The probability that C α is finer than a partition π can also be expressed using exit distributions. The formula obtained is easier to use than (2.5) for graphs such as tori, trees . . . Let us first introduce some notations. For a subset D of X, let ∂D denote the inner boundary of D:

∂D = {x ∈ D, C x,y > 0 for some y ∈ D c }
and let H (D) denote the exit distribution (or Poisson kernel) from D: for x ∈ X and y ∈ D c , H

(D)
x,y is the probability that a Markov chain with transition matrix P starting from x exits from D at y. Lemma 2.7. Let π = (B i ) i=1,...,k be a partition of X. Let B = ∪ k j=1 ∂B j denote the union of the boundary points of the blocks of π. Let H (π) denote the matrix indexed by B defined by:

H (π) x,y = 1 I {x=y} if x, y ∈ ∂B i -H (B i ) x,y if x ∈ ∂B i , y ∈ ∂B j and i = j.
If B is finite then the probability for C α to be finer than π is

P(C α π) = det(H (π) ) α .
Proof.

• First, let us assume that X is finite. Let K denote the product of the block diagonal matrix diag(G (B i ) , i ∈ {1, . . . , k}) by the matrix G -1 . We can rewrite the expression of P(C α π) given by Lemma 2.4 as

P(C α π) = det(K) α . The restriction of K to B i ×B i
is the identity. The exit distribution from a subset D verifies:

H (D) x,y = z∈D G (D)
x,z C z,y for every x ∈ D and y ∈ D c . Therefore,

P(C α π) = det(K) α (2.8)
where

K x,y = 1I {x=y} if x, y ∈ B i -H (B i ) x,y if x ∈ B i , y ∈ B j and i = j.
Let (ξ n ) n denote a Markov chain with transition matrix P . The trace of (ξ n ) n on B defines a Markov chain denoted by ( ξn ) on B and thus a Poisson point process D P on R + ×DL(B) (see [START_REF] Le | Markov paths, loops and fields[END_REF] chap. 7): the discrete loops set at time α is

D Lα := {ℓ |B , ℓ ∈ DL α \ DL (B c ) α }.
Let Cα be the partition of B induced by D Lα . The non-empty subsets ∂B i , i ∈ {1, . . . , k} define a partition of B denoted by ∂π. As {C α π} is the event '∀i, j ∈ {1, . . . , k} such that i = j, ∀x ∈ ∂B i , y ∈ ∂B j , {x, y} is not crossed by a loop of DL α at time α', it only depends on the restriction of the loops on B, hence P(C α π) = P( Cα ∂π).

For a subset F of B, let H(F ) denote the exit distribution from F for ( ξn ). It follows from formula (2.8) applied to Cα that

P(C α π) = det( K) α where Kx,y = 1I {x=y} if x, y ∈ ∂B i - H(∂B i ) x,y if x ∈ ∂B i , y ∈ ∂B j and i = j.
To conclude, it remains to note that H(∂B i )

x,y = H

(B i )
x,y for every x ∈ ∂B i and y ∈ B \ ∂B i . • Let us now assume that X is a countable set. Let (X k ) k be an increasing sequence of finite subsets of X such that X = ∪ +∞ k=1 X k . As B is assumed to be finite, there exists an integer k 0 such that B is included in

X k 0 . For k ≥ k 0 , a loop in DL (X k ) α
that passes through two different blocks of π, passes through two different blocks of π |X k the restriction of π to X k . Therefore, the probability that C α is finer than π is:

1 -sup k≥k 0 P(∃ℓ ∈ DL (X k ) α passing through two different blocks of π) = inf k≥k 0 P(C (X k ) α π |X k ).
By the first part of the proof, P(C

(X k ) α π |X k ) = det(H (π |X k ) ) α . It remains to note that the matrix H (π |X k ) coincides with H (π) for every k ≥ k 0 to deduce that P(C α π) = det(H (π) ) α .
2.6. Closed edges in a finite graph. An edge is said to be closed at time α if it is not crossed by a loop of DL α . More generally, a family of edges E is said to be closed at time α if every edge of E is closed at time α. Let us assume that G is a finite graph. To compute the probability for a family of edges E to be closed, we modify the conductances and the killing measure so that the conductance of every edge in E is 0 and the measure λ is unchanged: Cx,y = C x,y 1I {{x,y} ∈E} ∀{x, y} ∈ E and κx = κ x + y, {x,y}∈E C x,y ∀x ∈ X. Let G E denote the Green function associated with { Ce , e ∈ E, κx , x ∈ X}. Lemma 2.8. Let us assume that G = (X, E) is a finite graph. The probability for a family of edges E to be closed at time

α is det(G E ) det(G) α .
Proof. For a loop ℓ and an edge e, let N e (ℓ) denote the number of jumps of ℓ across e. Set N E (ℓ) = e∈E N e (ℓ).

P(E is closed at time α) = exp -αµ(DL(X)) + αµ(ℓ, N E (ℓ) = 0) .
Recall that µ(DL(X)) =log(det(I -P )). For s ∈ [0, 1], let P E (s) denote a perturbation of P defined by

[P E (s)] x,y = sP x,y if {x, y} ∈ E P x,y if {x, y} ∈ E.
Similarly, µ(s N E ) =log(det(I -P E (s))). In particular, µ(ℓ, N E (ℓ) = 0) =log(det(I -P E (0))).

Lemma 2.8 follows since P E (0) is the transition matrix associated with { Ce , e ∈ E, κx , x ∈ X}.

We can deduce from Lemmas 2.8 and 2.4 that if E is a set of edges of a finite graph with extremities in different blocks of a partition π = {B i , i ∈ I} then

P(C α π | E is closed at time α) = i∈I det(G (B i ) ) det(G E ) α .

Renewal processes

On the graph Z, the clusters C α are intervals between closed edges at time α (namely edges which are not crossed by any loop of DL α ). The Poisson loop sets induced by a simple random walk killed at constant rate κ have the following properties: Proposition 3.1. Let us consider the graph Z endowed with unit conductances and a uniform killing measure with intensity κ. Set

ρ (κ) = log 1 + κ 2 + κ + κ 2 4 .
(i) The midpoints of the closed edges at time α form a renewal process. Moreover, -the probability that {n, n + 1} is closed at time α is equal to (1e -2ρ (κ) ) α for every n ∈ Z; -given that {0, 1} is closed at time α, the probability that {n, n + 1} is also closed is equal to

1-e -2ρ (κ) 1-e -2ρ (κ) (n+1)
α for every n ∈ N.

(ii) Assume that α ∈]0, 1[. Let ν (κ) denote the law of this renewal process i.e. the law of the distance between two consecutive closed edges at time α. For ε > 0 let (Y ε,i ) i∈N * denote a sequence of independent random variables with distribution ν (κε) .

For every t > 0, as ε converges to 0, √ ε

[ε -1-α 2 t] i=1
Y ε,i converges in law to the value at t of a subordinator with potential density

2 √ κ 1-e -2u √ κ α . Remark 3.2.
This subordinator is associated with the Poisson covering (cf. [START_REF] Bertoin | Subordinators: examples and applications[END_REF], chapter 7) defined by the infinite measure on R + with density

u → -α d 2 du 2 log(1 -e -2u √ κ ) = 4καe -2u √ κ (1 -e -2u √ κ ) 2 .
These covering intervals can be viewed as images of the "loop soup" of intensity α associated with the Brownain motion killed at constant rate κ.

Proof of Proposition 3.1.

(i) An edge {x -1, x} is closed at time α if and only if DL α = DL (x+N) α ∪ DL (x-1-N) α
. The next closed edge is the first edge which is not crossed by any loop of DL denote the probability that {n, n + 1} is closed at time α. By Lemma 2.7, r

(κ) n = (1 -H (n+1+N) n+1,n H (n-N) n,n+1 ) α where H (D)
x,y denote the probability that a simple random walk killed at constant rate κ and starting at x exits D at point y. The functions x → H (D)

x,y can be computed from the solutions of equation

(2 + κ)u(x) -u(x + 1) -u(x -1) = 0,
which are linear combinations of exp(ρ (κ) x) and exp(-ρ (κ) x). We obtain

H (n+1+N) n+k,n = H (n-N) n+1-k,n+1 = exp(-ρ (κ) k) for every k ∈ N.
For n ∈ N * , let q (κ) (n) denote the probability that {n, n + 1} is closed at time α given that {0, 1} is closed at time α. To compute q (κ) (n), we consider a simple random walk on N killed at rate κ and at point 0; we denote it (ζ k ) k . As (DL

(N) α ) α is the Poisson loop sets associated with (ζ k ) k , by Lemma 2.7 we obtain: q (κ) (n) = (1 -h ({0,...,n}) n h (n+1+N) n+1 ) α where h (D) is the exit distribution from a subset D of N for (ζ k ) k : h ({0,...,n}) k = sinh(ρ (κ) k) sinh(ρ (κ) (n + 1)) for 1 ≤ k ≤ n + 1 and h (n+1+N) k = e ρ (κ) (n-k) for k ≥ n. Therefore q (κ) (n) = 1 - sinh(ρ (κ) n) sinh(ρ (κ) (n + 1)) e -ρ (κ) α = 1 -e -2ρ (κ) 1 -e -2ρ (κ) (n+1) α . (ii) Let I κ denote the Laplace transform of the function u → 2 √ κ 1-e -2 √ κu α : I κ (s) = ∞ 0 2 √ κ 1 -e -2
√ κu α e -su du for s > 0.

Let ν (κ) denote the Laplace transform of ν (κ) . We shall prove that for every s > 0, -ε α-1 2 log ν (κε) (s ε) converges towards 1/I κ (s) as ε tends to 0 which yields (ii). As q (κ) (n) = ∞ k=1 (ν (κ) ) * k (n) for every n ∈ N * , we have the Laplace transforms identity: ν (κ) = q (κ)

1+ q (κ) . Therefore, it is sufficient to show that ε (1-α)/2 q (κε) (s √ ε) converges to I κ (s) as ε tends to 0. Let κ 1 and κ 2 be two positive reals such that 0 < κ 1 < κ < κ 2 .

For ε small enough,

√ εκ 1 ≤ ρ (κε) ≤ √ εκ 2 and 2 √ εκ 1 ≤ 1 -e -2ρ (κε) ≤ 2 √ εκ 2 .
For a > 0 let f a be the function defined by f a (x) = (1e -2ax ) -α for x > 0. Therefore, for ε small enough,

(2 √ εκ 1 ) α f κ 2 ( √ ε(n + 1)) ≤ q (κε) (n) ≤ (2 √ εκ 2 ) α f κ 1 ( √ ε(n + 1))
for every n ∈ N. By Lebesgue's dominated convergence theorem applied to the function g a,s,ε defined by

g a,s,ε (x) = f a ( √ ε⌈ x √ ε ⌉)e -s √ ε⌊ x √ ε ⌋ ∀x > 0,
we obtain:

√ ε +∞ n=0 f a ( √ ε(n + 1))e -s √ εn → ε→0 +∞ 0 f a (x)e -sx dx (for ε < 1 2a , g a,s,ε is dominated by x → ( 2 ax ) α 1I ]0, 1 2a ] (x) + e -sx
(1-e -1/2 ) α 1I ] 1 2a ,+∞[ (x)). This implies that for every s > 0

lim ε (1-α)/2 q (κε) (s √ ε) ≥ +∞ 0 2 √ κ 1 1 -e -2 √ κ 2 u α e -su du and lim ε (1-α)/2 q (κε) (s √ ε) ≤ +∞ 0 2 √ κ 2
1e -2 √ κ 1 u α e -su du.

These inequalities hold for every 0 < κ 1 < κ < κ 2 . Therefore for every s > 0, ε (1-α)/2 q (κε) (s √ ε) converges to I κ (s) which ends the proof of (ii).

Remark 3.3. In the case of the simple random walk on N killed at 0, a similar argument (detailed in [START_REF] Le | Amas de lacets markoviens[END_REF]) shows that:

• For 0 < α < 1, the midpoints of the closed edges at time α form a renewal process with holding times (Y

(α) n ) n≥1 ; The generating function of Y (α) n is 1 -s Liα(s)
where Li denotes the polylogarithm:

∀ |s| < 1, Li α (s) = +∞ k=1 s k k α . Set S (α) n = n i=1 Y (α) i for n ≥ 1.
As ε tends to 0, (εS

(α)
⌊ε α-1 t⌋ , t ≥ 0) converges in law towards a stable subordinator (S (α) t , t ≥ 0) with index 1α. In the case of a finite interval [0, L], we obtain a renewal process conditioned to jump at point L.

• For α > 1, there are only a finite number of clusters. In particular, P(S Proof. Let PA α denote the set of primitive discrete loops of length 2 at time α. The law PA α for every α is a product measure ν on {0, 1} E : for every edge {x, y} ∈ E, let η x,y denote the class of the based loop (x, y). The probability that a loop in DL α has {x, y} as support is

(α) 1 = ∞) = 1 ζ(α) .
ν(ω, ω {x,y} = 1) = 1 -exp -αµ(ℓ, πℓ = η x,y ) and µ(ℓ, πℓ = η x,y ) = +∞ k=1 1 k (P x,y P y,x ) k = -log(1 -P x,y P y,x ).
Bernoulli percolation clusters on a graph appear to be a limiting case of partitions defined by loop clusters in which only two points loops contribute asymptotically. Proof. For a partition π = {B i , i ∈ I} of X, let L(π) denote the set of edges of E linking different blocks of π. The law of the Bernoulli percolation of parameter 1e -u denoted by P(1e -u ) is characterized by the identities:

P(P(1 -e -u ) π) = e -u|L(π)| for every partition π of X.
To prove the convergence of P(C (κ) α π), we apply Lemma 2.7:

P(C (κ) α π) = det(H (π) ) α
where H (π) is defined as in Lemma 2.7. We note then that H (π)

x,y is equivalent to κ -1 if {x, y} belongs to L(π) and of order less or equal to κ -2 otherwise. Indeed, if x ∈ ∂B i and y ∈ ∂B j for i = j, H

(B i ) x,y = z∈B i P x,z H (B i )
z,y + P x,y and P i,j ≤ 1 κ for all (i, j) ∈ X × X. A second-order Taylor expansion shows that log(det( (i) θ(α, κ) is an increasing function of α and a decreasing function of κ. (ii) θ(α, κ) > 0 for every α > 0 and κ > 0 such that (1 -

H (π) )) = T r(log(H (π) )) is equivalent to -1 2 T r(Q 2 ), with Q x,y = κ -1 1I {{x,y}∈L(π)} .
1 (2d+κ) 2 ) α < 1 -p c .
(iii) For any α > 0, θ(α, κ) vanishes for κ large enough.

Proof.

(i) θ(α, κ) is an increasing function of α since α → DL (κ)
α is increasing. To show that θ(α, κ) is a decreasing function of κ, we use an independent thinning procedure. Let κ 1 > κ 2 > 0. The corresponding measures on based loops satisfy: (iii) To prove that θ(α, κ) vanishes for κ large enough, we show that there exists a finite real C α > 0 such that any self-avoiding path x = (x 1 , x 2 , . . . , x L ) of length L ∈ 2 N * is open at time α with probability less than ( Cα κ ) L . We can then conclude with the usual path-counting argument: for every L ∈ 2 N * , θ(α, κ) is bounded above by the probability that there exists an open self-avoiding path of length L at time α starting from the origin, hence

μ(κ j ) (ℓ = (x 1 , . . . , x k )) = 1 k 1 2d + κ j k 1I {x i+1 -x i ∈{±1} d ∀i∈{1
θ(α, κ) ≤ lim sup L→+∞ (2d) L ( C α κ ) L = 0 for κ > 2dC α .
Let us first introduce some notations.

-Let P(2, {1, . . . , L}) consist of partitions of {1, . . . , L} in which all blocks have at least two elements (the number of blocks of such a partition π is denoted by |π| and blocks are denoted by π 1 , π 2 , ...). -For a vertex v and a loop ℓ ∈ DL(Z d ), let N v (ℓ) denote the number of times ℓ passes through v: N v (ℓ) = k i=1 1I {u i =v} if ℓ is the class of the based loop (u 1 , . . . , u k ). Let us consider a self-avoiding path of length L ∈ 2 N * denoted by x = (x 1 , x 2 , . . . , x L ) and let E x denote the set of edges {x 2i-1 , x 2i },

1 ≤ i ≤ L/2.
To be open, the edges of x have to be covered by the edges of N ≤ L loops of DL α . Among these loops, those that cover at least one edge e ∈ E x can be used to define a partition π ∈ P(2, {1, . . . , L}) as follows: let ℓ 1 be a loop in DL α covering edge {x 1 , x 2 }. The first block π 1 of π consists of the indices of the endpoints of e ∈ E x covered by ℓ 1 . If π 1 = {1, . . . , L}, let j be the smallest integer i such that x i is not in π 1 and let ℓ 2 be a loop covering {x j , x j+1 }. The second block π 2 of π is defined as the set of indices of endpoints of e ∈ E x covered by ℓ 2 that are not in π 1 , and so on until all elements of {1, . . . , L} belong to a block written down (an example is presented in Figure 3 Example of an open path x = (1, 2, 3, 4, 5, 6, 7, 8) with five loops covering its edges. Three of them (drawn in solid lines) cover the set of edges E x ; we associate to these three loops, the partition π ∈ P(2, {1, . . . , 8}) with three blocks π 1 = {1, 2}, π 2 = {3, 4, 7, 8} and π 3 = {5, 6}. By Campbell's formula (equation (4.2) page 36 in [START_REF] Le | Markov paths, loops and fields[END_REF]), for every k ∈ N * and for every positive functions F 1 , . . . ,

F k E ℓ 1 ,...,ℓ k ∈DLα, pairwise distinct k i=1 F i (ℓ i ) = k i=1 F i (ℓ)αdµ(ℓ) . Therefore, P(x is open at time α) ≤ π∈P(2,{1,...,L}) |π| j=1 i∈π j N x i (ℓ) αµ(dℓ).
For a finite set A, let S A denote the set of permutations of elements of A. By Proposition 5 page 20 in [START_REF] Le | Markov paths, loops and fields[END_REF], for every k ≥ 2 and for every vertices y 1 , . . . , y k ,

k i=1 N y i (ℓ)dµ(ℓ) = 1 k k i=1 λ y i σ∈S {1,...,k} G y σ(1) ,y σ(2) G y σ(2) ,y σ(3) . . . G y σ(k) ,y σ(1) Therefore, P(x is open at time α) ≤ L i=1 λ x i S α (x)
where

S α (x) = π∈P(2,{1,...,L}) α |π| |π| j=1 1 |π j | σ∈Sπ j G x σ(1) ,x σ(2) G x σ(2) ,x σ(3) . . . G x σ(|π j |) ,x σ(1) . (4.1)
The blocks of a partition π ∈ P(2, {1, . . . , L}) in (4.1) can be seen as the orbits of a permutation without fixed point. Since a circular order on k integers corresponds to k different permutations of these integers, S α (x) can be rewritten as follows:

S α (x) = σ∈S 0 {1,...,L} α m(σ) G x 1 ,x σ(1) . . . G x L ,x σ(L) . (4.2)
where m(σ) denotes the number of cycles in a permutation σ, -S 0 {1,...,L} denotes the set of permutations of {1, . . . , L} without fixed point (such a permutation corresponds to a configuration without isolated points). (See Lemma A.1 in the appendix for details.) The right-hand side of equality (4.2) is nothing but Per 0 α (G x i ,x j , 1 ≤ i, j ≤ L) defined in [START_REF] Le | Markov paths, loops and fields[END_REF] page 41. To conclude we use that

Per 0 1 (G x i ,x j , 1 ≤ i, j ≤ L) ≤ L i=1 1≤j≤L, j =i G x i ,x j ≤ y∈Z d \{0}
G 0,y L since the vertices x i are pairwise distinct. As (P 1) u = 2d 2d+κ for every u ∈ Z d ,

y∈Z d \{0} λ y G 0,y = +∞ k=1 (P k 1) 0 = 2d κ .
Thus P(x is open at time α) ≤ ( 2d κ max(α, 1)) L which ends the proof.

Remark 4.4.

(i) It follows from Proposition 4.3 that for every α > 0, there is a finite value of κ, which we denote by κ c (α), above which θ(α, κ) vanishes; Morever κ c is an increasing function that converges to +∞ as α → ∞. (ii) As the simple random walk on Z 2 is recurrent, for d = 2 the probability that a fixed edge is open at time α > 0 converges to 1 as κ tends to 0. Indeed, let us first note that P(N

(α) x = 0) = 1 λxGx,x α
for every x ∈ Z 2 (this equality has been proven for a finite graph 2 , so we apply it to the restriction of the random walk to Z 2 ∩[-M, M ] 2 and let M tend to +∞). Therefore P(N (α) x > 0) converges to 1 as κ tends to 0. Fix x ∈ Z 2 and u ∈ {±1} 2 . By symmetry,

P(N (α) x > 0) = v∈{±1} 2 P(N (α) x,x+v > 0) = 4 P(N (α)
x,x+u > 0). Since α → DL α has independent stationary increments,

P(N (α) x,x+u = 0) = P(N (α/n)
x,x+u = 0) n for every n > 0.

2 For a finite graph G = (X, E ), P(N

(α) x = 0) is equal to exp -α µ(DL(X)) -µ(DL(X \ {x})) = det(G (X\{x}) ) det(G)λx α = (λxGx,x) -α .
Therefore,

P(N (α) x,x+u > 0) = 1 -P(N (α/n) x,x+u = 0) n ≥ 1 -(1 - 1 4 P(N (α/n) x > 0)) n . (4.3)
For a fixed ε > 0, let us choose n such that (1 -1 8 ) n ≤ ε. There exists κ ε such that for κ ≤ κ ε , P(N

(α/n) x = 0) ≤ 1 2 . It follows from (4.3) that P(N (α)
x,x+u > 0) ≥ 1ε.

Complete graph

This section is devoted to the study of Poisson loop sets on the complete graph K n endowed with unit conductances and a uniform killing measure. The set of vertices is identified with {1, . . . , n} and the set of partitions of {1, . . . , n} is denoted by P({1, . . . , n}). The intensity of the killing measure is denoted by κ n = nε n with ε n > 0, hence the coefficients of the transition matrix P are: P x,y = 1 I {x =y} λ (n) with λ (n) = n -1 + nε n for every x, y ∈ {1, . . . , n}. As n will vary, the loop set and the partition defined by the loop clusters at time α will be denoted by DL 

τ (n) π,π ⊕J = k≥L 1 kn k (ε n + 1) k (i 1 ,...,i k )∈W k (J) k u=1 |B iu | (5.1) = k≥L 1 kn k (ε n + 1) k (k 1 ,...,k L )∈(N * ) L , k 1 +...+k L =k k k 1 , . . . , k L L u=1 |B ju | ku (5.2)
where W k (J) is the set of k-tuples of J in which each element of J appears.

Proof of Proposition 5.1. Let us recall the expression of τ

(n) π,π ⊕J obtained in Example 2.3: τ (n) π,π ⊕J = I J (-1) |I|+1 log 1 - 1 λ (n) + 1 u∈J\I |B u | .
By expanding the logarithm, we obtain:

τ (n) π,π ⊕J = k≥1 1 k(λ (n) + 1) k I J (-1) |I| u∈J\I |B u | k .
To establish

I,I J (-1) |I| u∈J\I |B u | k = (i 1 ,...,i k )∈W k (J) k u=1 |B iu | (5.3)
which ends the proof of (5.1), we make use of the inclusion-exclusion principle. Let us consider the following random experiment: 'we choose uniformly at random k points in the set B := ∪ j∈J B j ' and for j ∈ J, let E j denote the event 'at least one of the k points falls into B j '. By the inclusion-exclusion principle, the coefficient

I J (-1) |I| u∈J\I |B u | k di-
vided by |B| k is equal to P(∩ j∈J E j ). The probability P(∩ j∈J E j ) can also be decomposed by introducing the events A i,j 'the i-th point falls into B j ' for every i ∈ {1, . . . , k} and j ∈ J:

P(∩ j∈J E j ) = (i 1 ,...,i k )∈W k (J) P(∩ k u=1 A u,iu
). This corresponds to the right-hand side of (5.3) divided by |B| k . Equation (5.2) is obtained by rearranging the terms of the product

k u=1 |B iu |.
Formula (5.1) of the transition rate has a simple interpretation: if we choose R points uniformly at random in {1, . . . , n} where R has the logarithmic series distribution 3 with parameter 1 εn+1 , the probability that at least one point falls into each block {B i , i ∈ J} and none outside of ∪ j∈J B j is equal to (-log(1

-1 εn+1 )) -1 τ (n)
π,π ⊕J . From this remark, we derive a simpler construction of (C

(n) α ) α≥0 : Proposition 5.2.
Let us define a P({1, . . . , n})-valued sequence (Y k ) k iteratively as follows:

• Y 0 is a random variable with values in P({1, . . . , n});

• Let k ∈ N. Given Y k ,
we choose an integer R ≥ 2 independent of Y 0 , . . . , Y n , following the probability distribution

ν = 1 β εn k≥2 1 k(ε n + 1) k δ k where β εn = -log(1 - 1 ε n + 1 ) - 1 ε n + 1 ;
we choose R points U 1 , . . . , U R uniformly at random on {1, . . . , n} and independently of Y 0 , . . . , Y k , R; -Y k+1 is obtained from Y k by merging blocks of Y k that contain at least one of the R points U 1 , . . . , U R .

Let (Z t ) t≥0 be a Poisson process with intensity β εn and independent of (Y k ) k . The process (Π

(n) t ) t≥0 defined by Π (n) t = Y Zt for every t ≥ 0 is a continuous Markov chain:
• The only possible transitions from state π = (B i ) i∈I are to partitions π ⊕J where J is a subset of I with at least two elements and its transition rate from π to π ⊕J is τ

(n) π,π ⊕J defined in Proposition 5.1. • If π is a partition of {1, . . . , n} with k non-empty blocks (B 1 , . . . , B k ) then P π 0 (Π (n) t π) = ( ε n ε n + 1 ) t k i=1 (1 - |B i | n(1 + ε n ) ) -t 1 I {π 0 π} .
3 The logarithmic series distribution with parameter 0 < a < 1 is defined as the measure

νn = 1 -log(1-a) +∞ k=1 a k k δ k .

5.2.

A similar coalescent process on the interval [0, 1]. The algorithm described in Proposition 5.2 can be adapted to define a coalescent process (Π t ) t≥0 on the interval [0, 1] such that for every partition π of [0, 1] and every t ≥ 0, P(Π (n) t π (n) ) converges to P(Π t π) if ε n converges to ε > 0 and the partition π (n) of {1, . . . , n} converges to π as n tends to +∞. Proposition 5.3. For k ∈ N * , let P k ([0, 1]) denote the set of partitions of [0, 1] with k blocks having a positive Lebesgue measure and let P([0, 1]) denote

k∈N * P k ([0, 1]). For a partition π = (b i ) i∈I ∈ P([0, 1]
) and a subset J of I, let π ⊕J denote the partition obtained from π by merging blocks b i for i ∈ J. Let ε be a positive real. Let us define a P([0, 1])-valued sequence (Y n ) n iteratively as follows:

• Y 0 is a random variable with values in P([0, 1]); • Let n ∈ N. Given Y n ,
we choose an integer R ≥ 2 independent of Y 0 , . . . , Y n following the probability distribution

ν = 1 β ε k≥2 1 k(ε + 1) k δ k where β ε = -log(1 - 1 ε + 1 ) - 1 ε + 1 ; -we choose R points U 1 , . . . , U R uniformly at random in the interval [0, 1] and in- dependently of Y 0 , . . . , Y n , R; -Y n+1 is obtained from Y n by merging blocks of Y n that contain at least one of the R points U 1 , . . . , U R .
Let (Z t ) t≥0 be a Poisson process with intensity β ε and independent of (Y n ) n . The process (Π t ) t≥0 defined by Π t = Y Zt for every t ≥ 0 is a continuous Markov chain:

• its positive transition rates are from a partition π = (b i ) i∈I to a partition π ⊕J with J ⊂ I having at least two elements; the value of such a transition rate is 

τ π,π ⊕J := k≥|J| 1 k(ε + 1) k (k 1 ,...,k |J | )∈(N * ) |J | , k 1 +...+k |J | =k k k 1 , . . . , k |J| |J| u=1 Leb(b u ) ku ; • if π is a partition of [0, 1] with k non-empty blocks (b 1 , . . . , b k ) then P π 0 (Π t π) = ( ε ε + 1 ) t k i=1 (1 - Leb(b i ) 1 + ε ) -t 1 I {π 0 π} . Proof. By construction (Y n ) n is a P([0, 1])-valued Markov chain such that for every n ∈ N, Y n+1 = Y n or Y n+1
(Y n+1 = π ⊕J |Y n = π) is equal to +∞ k≥|J| ν({k}) (i 1 ,...,i k )∈W k (J) k u=1 Leb(b iu ) = 1 β ε +∞ k≥|J| 1 k(ε + 1) k (k 1 ,...,k |J | )∈(N * ) |J | , i k i =k k k 1 , . . . , k |J| i∈J Leb(b i ) k i .
Given the event {Y n = π}, Y n+1 is equal to π if U 1 , . . . , U R fall in one block of the partition π. Therefore,

P (Y n+1 = π|Y n = π) = +∞ k=2 ν({k}) i∈I Leb(b i ) k = - 1 β ε 1 ε + 1 + i∈I log(1 - Leb(b i ) ε + 1
) .

The generator of (Π t ) t≥0 is then A = β ε (Q -I) where Q is the transition matrix of (Y n ) n .

Let us now compute P π 0 (Π t π) where π is a partition of [0, 1] with k non-empty blocks (b 1 , . . . , b k ) coarser than or equal to π 0 . {Π t π} means that all points that are chosen simultaneously in the interval [0, 1] before time t belong to the same block of π. Therefore, by decomposing {Π t π} according to the value of Z t and the number of points falling at the same time, we obtain that P π 0 (Π t π) is equal to

e -βεt 1 + +∞ n=1 (β ε t) n n! r 1 ≥2,...,rn≥2 n i=1 ν({r i })(Leb(b 1 ) r i + . . . + Leb(b k ) r i ) .
We expand the product 

u ) r = 1 β ε -log(1 - Leb(b u ) ε + 1 ) - Leb(b u ) ε + 1 to obtain that P π 0 (Π t π) is equal to e -βεt 1 + +∞ n=1 t n n! (u 1 ,...,un)∈{1,...,k} n n i=1 -log(1 - Leb(b u i ) ε + 1 ) - Leb(b u i ) ε + 1 .
The second sum is also equal to:

(n 1 ,...,n k )∈N k n 1 +...+n k =n n n 1 , . . . , n k k i=1 -log(1 - Leb(b i ) ε + 1 ) - Leb(b i ) ε + 1 n i .
Therefore, P π 0 (Π t π) is equal to

e -βεt 1 + +∞ n=1 (n 1 ,...,n k )∈N k n 1 +...+n k =n k i=1 t n i n i ! -log(1 - Leb(b i ) ε + 1 ) - Leb(b i ) ε + 1 n i
The expression inside the braces is equal to

exp t k i=1 -log(1 - Leb(b i ) ε + 1 ) - Leb(b i ) ε + 1 .
This yields

P π 0 (Π t π) = exp t log(1 - 1 ε + 1 ) -t k i=1 log(1 - Leb(b i ) ε + 1
) .

Asymptotics for cover time.

A vertex x is said to be isolated at time α if no loop ℓ ∈ DL

(n)

α passes through x. We call 'cover time' the smallest α such that K n has no isolated vertex at time α and we denote it T n . Let us assume that the intensity of the killing measure is proportional to the size of the graph: κ n = nε with ε > 0. If we use the algorithm described in Proposition 5.2 to define C (n) α , then we need to choose uniformly at random an average of αβ ε E(R) = α ε(ε+1) points in {1, . . . , n}. If the points are drawn one by one and not by packs of random sizes, then the solution of the classical coupon collector's problem provides that the values of T n is around ε(1 + ε)n log(n) for large n. This analogy holds: Proposition 5.4. Let us assume that the intensity of the killing measure on K n is κ n = nε with ε > 0. For every a ∈ R, the number of isolated vertices at time α n = ε(1+ε)n(log(n)+a+o( 1)) converges in law to the Poisson distribution with parameter e -a . In particular, Tn nε(1+ε)log(n) converges in law to the Gumbel distribution 4 .

Proof. For each vertex x, let I n,x denote the indicator of the event 'x is isolated at time α n '. The number of isolated vertices at time α n is S n = n x=1 I n,x . For every k ∈ N * , let E(S n ) k := E(S n (S n -1) . . . (S nk + 1)) denote its k-th factorial moment; E(S n ) k is the sum of P(I n,x 1 = . . . = I n,x k = 1) over all (ordered) k-tuples of distinct vertices (x 1 , . . . , x k ). As P(I n,x 1 = . . . = I n,x k = 1) is the probability that no loop in DL αn intersects the subset F = {x 1 , . . . , x k },

P(I n,x 1 = . . . = I n,x k = 1) = exp -α n µ(ℓ, ℓ intersects F ) and µ(ℓ, ℓ intersects F ) = µ(DL(X)) -µ(DL(F c )) = log det(G) x∈{1,...,n} λ x -log det(G (F c ) ) x∈F c λ x . Therefore, E(S n ) k = k! F ∈P k ({1,...,n}) det(G (F c ) ) det(G) x∈F λ x αn .
In our setting, for every x ∈ {1, . . . , n}, λ x = λ (n) = n(ε + 1) -1 and for every D ⊂ {1, . . . , n}, 1)), we deduce that E(S n ) k converges to exp(-ka) for every k ∈ N * . The convergence to the Poisson distribution with parameter e -a follows from the theory of moments.

det(G (D) ) -1 = (λ (n) + 1) |D|-1 (λ (n) + 1 -|D|). Thus E(S n ) k = n(n -1) . . . (n -k + 1) 1 - 1 n(1 + ε) -kαn 1 + k nε -αn . = k i=1 (1 - i n ) exp k(log(n) - α n nε(1 + ε) ) + k α n 2n 2 ( 1 (1 + ε) 2 + k ε 2 ) + α n O( 1 n 3 ε 3 ) . As α n = nε(1 + ε)(log(n) + a + o(
Remark 5.5.

(i) The distribution of the number of isolated vertices at a time α can also be obtained by the inclusion-exclusion principle; the probability that there exists r isolated vertices at time α is

n-r j=0 (-1) j n! r!j!(n -r -j)! 1 - 1 n(1 + ε) -α(r+j) 1 + r + j nε -α
.

(ii) In the statement of Proposition 5.4, we assume that the intensity of the killing measure κ n is proportional to the number of vertices n: κ n = nε. In fact the same proof shows that Proposition 5.4 also holds if we only assume that κn log(n) converges to +∞ and replace ε with ε n = κn n in the statement. Let us note that if κn log(n) converges to a constant c > 0 then E(S n ) k converges to m k = exp(-ka + (iii) Let us note that the ratio µ(ℓ, ℓ passes through exactly two vertices) µ(DL({1, . . . , n})) converges to

-1 2 ε + 1 + (ε + 1) 2 log(1 -1 ε+1 ) -1
as n tends to +∞. The limit is an increasing function of ε that converges to 1 as ε tends to +∞. Therefore, it is not surprising to obtain properties similar to the Erdös-Rényi model for large ε.

In fact, we can show using the same proof that Theorem 5.6 holds if we replace ε with a positive sequence (ε n ) n such that lim inf

n→+∞ log(n)ε n > 0.
By contrast, if we let ε converge to 0 as n tends to +∞, the loop sets can have very large loops: a result of Y. Chang in [START_REF] Chang | Phase transition for loop covering probabilities[END_REF] 1) .

implies that if ε ∼ n→+∞ n -d with d > 1 then P ∃ℓ ∈ DL (n) 1/ log(n) covering {1, . . . , n} → n→+∞ 1 -e -(d - 
The rest of the section is devoted to the proof of Theorem 5.6. Let A n,k denote the event 'DL

αn consists only of a component of size greater or equal to 2 and k isolated points', let V n be the number of isolated vertices in DL 

P(A n,k ) = P(V n = k) -P({V n = k} ∩ B n ).
By Proposition 5.4, P(V n = k) converges to e -e -a e -ka k! . We shall prove that P(B n ) converges to 0. For a subset F , let q F,n denote the probability that F is a block at time α n .

P(B n ) ≤ ⌊n/2⌋ r=2 F ∈Pr({1,...,n}) q F,n . As DL (n,F ) αn is independent of DL (n) α \ DL (n,F ) αn , we have q F,n = P(DL (n,F ) αn is connected) P(no loop in DL (n)
αn intersects F and F c ).

For a sufficiently large set F , we shall simply bound q F,n from above by P(no loop in DL (n) αn intersects F and F c ).

For small F , the probability P(DL (n,F ) αn is connected) is small. Instead of computing it, we shall consider its upper bound by the probability that the total length of non-trivial loops on DL Therefore f n ( 1 n δ ) is equivalent to 1-δ n δ log(n). We deduce that for sufficiently large values of n and for every

x ∈ [ 1 n δ , 1/2], f n (x) ≥ f n ( 1 n δ ) ≥ 1-δ 2n δ log(n) which ends the proof.
Lemma 5.9. Let δ and δ be two positive reals such that 0 < δ < δ < 1. Assume that κ n = nε with ε > 0 and set

α n = ε(1 + ε)n(log(n) + a + o(1)
) with a ∈ R for every n ∈ N.

There exists n δ, δ > 0 such that for every n ≥ n δ, δ, and

F ∈ P(n) with 2 ≤ |F | ≤ n 1-δ , P x∈F N (αn,F ) x ≥ |F | ≤ n -δ 2 |F | .
Proof. To prove Lemma 5.9, we shall apply Markov's inequality to the random variable exp(θ x∈F N (αn,F ) x

) for a well-chosen positive real θ.

The generating function of the vector (N

(α,F ) x , x ∈ F ) has been computed for any finite graph G = (V, E) in [9] 5 , page 37: ∀ (s x ) x∈V ∈]0, 1] V , E x∈F s N (α,F ) x x = det s x δ x,y + λ x (1 -s x )G (F )
x,y x,y∈F -α .

In our setting, the generating function of x∈F N (α,F ) x satisfies:

E s x∈F N (α,F ) x = det(sI |F | + λ (n) (1 -s)G (F ) ) -α ∀ 0 < s ≤ 1 where λ (n) = n(ε + 1) -1 and G (F ) x,y = 1 λ (n) +1 1I {x=y} + 1 λ (n) +1-|F | for x, y ∈ F .
The computation of that determinant is detailed in the Appendix (Lemma A.3). We obtain: and θ r,n = log(β r,n ) for every integer 2 ≤ r ≤ n. We shall use inequality (5.5) for θ = θ r,n . Before, let us note that min(β r,n , r ∈ {2, . . . , n 1-δ }) converges to +∞ and max( βr,n(r-1) λ (n) , r ∈ {2, . . . , n 1-δ }) converges to 0. Therefore, for sufficiently large values of n 5 Formula (4.3) page 37 in [START_REF] Le | Markov paths, loops and fields[END_REF] contains a misprint: the exponent 1 in the left-hand side term of the equation has to be replaced by α.

det(sI |F | + λ (n) (1 -s)G (F ) ) = 1 - 1 -s λ (n) + 1 |F |-1 1 + (1 -s) |F | -1 λ (n) + 1 -|F | . ( 5 
and r ∈ {2, . . . , n 1-δ }, the two conditions θ r,n > 0 and exp(θ r,n ) ≤ λ (n) r-1 are satisfied. It remains to bound from below ψ r,n (θ r,n ). ψ r,n (θ r,n ) = r log(λ (n) + 1) -1 2 log(α n ) -1 2 log(r -1)

+ α n (r -1) log(1 + β r,n -1 λ (n) + 1 ) + log(1 -(r -1) β r,n -1 λ (n) + 1r

) .

Using the classical lower bounds log(1t) ≥ -tt 2 for 0 < t < 1/2 and log(1 + t) > t -t 2 2 for t > 0 along with max (r -1) In particular for 2 ≤ r ≤ n 1-δ , ψ r,n (θ r,n ) ≥ δ r 2 log(n) -2 log(log(n)) -M . This shows that for every 0 < δ < δ and sufficiently large values of n, min r∈{2,...,n 1-δ } ψ r,n (θ r,n ) ≥ δ 2 r log(n) which ends the proof. Let us note that a study of ψ r,n shows that for every r ∈ {2, . . . , n 1-δ }, and sufficiently large values of n, ψ r,n has a maximum at a point which is equivalent to θ r,n as n tends to +∞.

We can now complete the proof of Theorem 5.6. Set S r,n = F ∈Pr(n) q F,n . We shall prove that the upper bound of P(B n ), ⌊n/2⌋ r=2 S r,n converges to 0 as n tends to +∞. By Lemma 5.8,

n 2 r=n 1-δ S r,n ≤ n exp - 1 -δ 2 n 1-δ log(n) .
Let us consider the case of subsets F with r ≤ n 1-δ elements. Using the notations introduced in Lemmas 5.8 and 5.9, we have By taking δ = 3/4 and δ = 2/3 for instance we obtain that for sufficiently large values of n, P (B n ) ≤ ne -1 8 n 1/4 log(n) + n -1/12 . This ends the proof of Theorem 5.6.

Appendix A. by setting

F (ν)(u) = ν(1) if ν -1 (u) = k ν(ν -1 (u) + 1) if ν -1 (u) ≤ k -1.

  a partition with 4 blocks: {1, 2, 5, 6}, {3, 4, 7}, {8, 10, 11, 12}, {9}.

Figure 2 . 2 . 1 .

 221 Figure 2. Example of a loop set DL α at time α on a finite graph G, the subgraph G α defined by the open edges and the partition C α induced by its loop clusters (the dotted-lines on the left figure represent the edges of G; DL α consists of three loops of length 2, two loops of length 3 and two loops of length 4.)

  edges are defined by DL (x-1-N) α which is independent of DL (x+N) α . Stationarity is obvious as DL (x+N) α x is distributed like DL (N) α . For n ∈ N, let r (κ) n

4. Bernoulli percolation and loop percolation 4 . 1 .Lemma 4 . 1 .

 4141 Bernoulli percolation. Let s = {s e , e ∈ E} be a family of coefficients in [0, 1]. In the Bernoulli percolation model of parameter s on the graph G = (X, E), every edge e is, independently of each other, called 'open' with probability s e and 'closed' with probability 1s e . Vertices connected by open paths define a partition of X denoted by P(s). We can compare P(s) to the partition induced by the set of primitive discrete loops of length 2 for a finite graph (X, E). Let us consider a finite graph (X, E). For α > 0 and e = {x, y} ∈ E, set s α,e = 1 -(1 -P x,y P y,x ) α . The partition induced by the set of primitive discrete loops of length 2 at time α has the same law as P({s α,e , e ∈ E}).

Proposition 4 . 2 (

 42 [START_REF] Le | Amas de lacets markoviens[END_REF]). Let us consider a finite graph G = (X, E) endowed with unit conductances and a uniform killing measure with intensity κ > 0. Let C (κ) α be the partition induced by the Poisson loop set on G at time α. Fix u > 0. If κ and α tend to +∞ such that α κ 2 converges to u, then C (κ) α converges in law towards the Bernoulli percolation of parameter 1e -u .

4. 2 .Proposition 4 . 3 .

 243 Loop percolation on Z d with d ≥ 2. Let us consider the Poisson loop process induced by the simple random walk on Z d , d ≥ 2, killed at a constant rate κ > 0: P x,x+u = 1 2d+κ for every x ∈ Z d and u ∈ {±1} d . Let θ(α, κ) denote the probability of percolation at time α i.e. the probability of any fixed point to be connected to infinity by an open path at time α. The following Proposition presents some properties of the function (α, κ) → θ(α, κ): Let p c denote the critical probability for bond percolation on Z d (d ≥ 2).

1 ( 1 (

 11 ,...,k}} for j ∈ {1, 2}, k ≥ 2 and x 1 , . . . , x k ∈ Z d with the convention x k+1 = x 1 . By erasing independently each based loop ℓ ∈ D L(κ 2 ) α of length k ≥ 2 with probability 1-( 2d+κ 2 2d+κ 1 ) k , we obtain a discrete loop set having the same distribution as DL (κ 1 ) α . (ii) By Lemma 4.1, the partition induced by the set of primitive discrete loops of length 2 at time α has the same law as the Bernoulli percolation with parameter 1 -(1 -2d+κ) 2 ) α . It follows from Bernoulli percolation on Z d that if 1 -(1 -2d+κ) 2 ) α > p c then θ(α, κ) > 0.

Figure 3 .

 3 Figure 3.

5 . 1 .

 51 α respectively. In the first part, n is fixed; We present another construction of the coalesecent process (C (n) α ) α≥0 and use this construction to define a similar coalescent process on the interval [0, 1]. In the second part, we let n tend to +∞ and describe the distribution of the first time when C (n) α has no block of size one (cover time) and the first time when (C (n) α ) α has only one block (coalescent time). Another construction of the coalescent process. Proposition 5.1. From state π = {B i , i ∈ I} ∈ P({1, . . . , n}), the only possible transitions of (C (n) α ) α≥0 are to partitions π ⊕J where J = {j 1 , . . . , j L } is a subset of I with L ≥ 2 elements. Its transition rate from π to π ⊕J is equal to:

  is a coarser partition of [0, 1] than Y n obtained by merging several blocks of Y n in one block. Let π = (b i ) i∈I be a partition of [0, 1] and let J be a subset of I with at least two elements. Set b J =:i∈J b i . Given the event {Y n = π}, Y n+1 is equal to π ⊕J if among the R points U 1 , . . . , U Runiformly distributed in the interval [0, 1] at least one point falls in every block b i for i ∈ J and none falls in [0, 1] \ b J . Therefore, P

(

  Leb(b 1 ) r i + . . . + Leb(b k ) r i ) = (u 1 ,...,un)∈{1,...,k} n Leb(b u 1 ) r 1 . . . Leb(b un ) rn and use that r≥2 ν({r}) Leb(b

5 . 4 .Theorem 5 . 6 .

 5456 k 2 2c ) for every k ∈ N * and t k m k k! tends to +∞ for any t > 0. Asymptotics for coalescence time. Let τ n denote the coalescence time, i.e. the first time at which C (n) α has only one block. The following theorem shows that the cover time and the coalescent time have the same asymptotic distribution: Let us assume that κ n = nε for every n ∈ N * with ε > 0. For every n ∈ N * , setα n = ε(1 + ε)n(log(n) + a + o(1)) where a is a fixed real. For every k ∈ N, the probability that DL (n) αn consists only of a component of size greater or equal to 2 and k isolated points converges to exp(-e -a ) e -ak k! as n tends to +∞.In particular,τ n nε(1 + ε)log(n) converges in law to the Gumbel distribution.Remark 5.7.(i) Theorem 5.6 shows that ε(ε + 1)n log(n) is a sharp threshold function for the connectedness of the random graph process (G(n)α ) α≥0 defined by the loop sets (DL (n) α ) α . (ii) Such properties have been proven for the first time by Erdös and Rényi in[START_REF] Erdős | On random graphs[END_REF] for the random graph model they have introduced. To facilitate comparison, the following theorem states some of their results in a slightly different way from that used in[START_REF] Erdős | On random graphs[END_REF]:Theorem (Erdös and Rényi,[START_REF] Erdős | On random graphs[END_REF]). Let G(n, N ) denote a random graph obtained by forming N links between n labelled vertices, each of the N n 2 graphs being equally likely.For every c ∈ R and every k ∈ N, the probability that G(n, ⌊ n 2 (log(n) + c)⌋) contains a connected component of size nk and k isolated points converges to exp(-e -c ) e -ck k! as n tends to +∞.

  αn and let B n be the event 'DL (n) αn has at least two components of size greater or equal to 2'. For n ≥ k + 2,

  (n,F ) αn is greater or equal to |F |, that is P( x∈F N (αn,F ) x ≥ |F |) where N (α,F ) x denotes the number of crossings of a vertex x by the set of non-trivial loops included in F at time α. Therefore for a small set F , we shall use that q F,n ≤ P( x∈F N (αn,F ) x ≥ |F |) P(no loop in DL αn intersects F and F c ).

. 4 )

 4 Equality(5.4) can be extended to s ∈ R and the determinant is positive for every 0 ≤ s < λ (n)|F |-1 . By Markov's inequality, for every θ > 0,P x∈F N (αn,F ) x ≥ |F | ≤ exp(-ψ F,n (θ)) (5.5) where ψ F,n (θ) =log E exp(-θ|F | + θ x∈F N (αn,F ) x) . The expression of the generatingfunction of x∈F N (αn,F ) xshows that the value of ψ F,n (θ) depends on F only via|F |; we denote it ψ |F |,n (θ). The value of ψ r,n (θ) is ψ r,n (θ) = θr + α n (r -1) log 1 + e θ -1 λ (n) + 1 + log 1 -(e θ -1) r -1 λ (n) + 1rfor every θ > 0 such that e θ ≤ λ (n) r-1 . Set β r,n = λ (n) +1 √ αn(r-1)

1 2

 1 ) +1 , r ∈ {2, . . . , n 1-δ } → n→+∞ 0, we obtainψ r,n (θ r,n ) ≥ r 2 (log(n)log(r -1) -I n,1 ) -I n,2 -I n,3where, for sufficiently large values of n• I n,1 = log(1 + ε 1-ε ) + log(log(n) + a + o(1)) ≤ 2 log(log(n)); • I n,2 = α n (r -1)r βr,n-1 (λ (n) +1)(λ (n) +1-r) ≤ 2r r-1 n (log(n) + a + o(1)); • I n,3 = α n (r -1)(β r,n -1) 2 (λ (n) +1) 2 + r-1 (λ (n) +1-r) 2 ≤ 1 2 + 2(r -1). Therefore there exists a constant M such that for sufficiently large values of n and for every 2 ≤ r ≤ n 2 , ψ r,n (θ r,n ) ≥ r 2 log(n)log(r) -2 log(log(n)) -M .

S r,n ≤ 1 1 √ r n -δ 2 and thus n 1 -δ r=2 S

 111r=2 √ r expnf n ( r n )ψ r,n (θ r,n ) .By Lemma 5.9, for every δ ∈]0, δ[, sufficiently large n and r ∈ {2, . . . , n 1-δ },S r,n ≤ 1 √ r expn f n (Let us study the function fn (x) = f n (x) + δ 2 x log(n). By computations we obtain that fn (2/n) is equivalent to δ 2n log(n) as n tends to +∞. The study of f n made in the proof of Lemma 5.8 shows that, for sufficiently large values of n, fn is greater than fn (2/n) in [2/n, 1/2]. Let us introduce a real δ such that 0 < δ < δ. We have shown that for n large enough and every r ∈ {2, . . . , n 1-δ }, S r,n ≤ r,n ≤ n 1-δ-δ/2 .

Lemma A. 1 .(π 1

 11 For a finite set E, let S E denote the set of permutations of E and let S 0 E consist of permutations of E without fixed point. For two integers r ≥ 2 and 1 ≤ k ≤ r/2, let P k (2, r) denote the partitions of {1, . . . , r} with k blocks, each of them having at least two elements. For a r × r matrix A and a real α, setPer 0 α (A) = σ∈S 0 {1,...,r} α m(σ) A 1,σ(1) • • • A r,σ(r)where m(σ) denotes the number of cycles in a permutation σ (Per 0 α (A) introduced in[START_REF] Le | Markov paths, loops and fields[END_REF] page 41, can also be defined as the α-permanent of A with the diagonal elements of the matrix set to zero).Another expression of Per0 r (A) is ,...,π k )∈P k (2,r) k j=1 1 |π j | σ∈Sπ j A σ(1),σ(2) A σ(2),σ(3) • • • A σ(|π j |),σ(1).Proof. For a finite set B, let S c B be the subset of S B which consists of cycles of length |B|. The decomposition of permutations into disjoint cycles entails thatPer 0 r (A) = 1 ,...,π k )∈P k (2,r) k j=1 σ j ∈S c π j u∈π j A u,σ j (u) .Therefore, it remains to prove that for every k ≥ 2σ∈S c {1,...,k} k u=1 A u,σ(u) = 1 k ν∈S {1,...,k} A ν(1),ν(2) A ν(2),ν(3) . . . A ν(k),ν(1) . (A.1) Starting from a permutation ν ∈ S {1,...,k} , we define a cycle of length k, F (ν) such that k i=1 A i,F (ν)(i) = A ν(1),ν(2) A ν(2),ν(3) . . . A ν(k),ν(1)

  The transition rate of the coalescent process. The evolution in α of C α defines a partition-valued Markov chain. Let π be a partition of X into non-empty blocks {B i , i ∈ I}. From state π, the only possible transitions are to a partition π ⊕J obtained by merging blocks indexed by some subset J of I to form one block B J = ∪ j∈J B j and leaving all other blocks unchanged. The transition rate from π to π ⊕J is τ π,π ⊕J =µ(ℓ, ∀j ∈ J, ℓ intersects B j and ∀u ∈ J, ℓ does not intersect B

					u )	(2.1)
	=	k≥2	1 k	(x 1 ,...,x k )∈W k (B j , j∈J)	P x 1 ,x 2 . . . P x k ,x 1

then P(F is open at time α) ≥ e∈F P(e is open at time α).

2.2.

The cumulative distribution function of the Gumbel distribution is x → e -e -x .

We start by stating two lemmas: Lemma 5.8 provides an upper bound for the probability that no loop in DL (n) αn intersects F and F c . Lemma 5.9 gives an exponential inequality for P( x∈F N (αn,F ) x ≥ |F |) based on Markov's inequality. To shorten the notations let P(n) denote the power set of {1, . . . , n} and let P r (n) consist of subsets of {1, . . . , n} of cardinality r. Lemma 5.8. For every nonempty proper subset F of {1, . . . , n}, let A n,F denote the event 'no loop in DL (n) αn passes through both F and F c ' where α n = ε(ε + 1)n(log(n) + a + o(1)). For every δ ∈]0, 1[ there exists n δ > 0 such that for every n > n δ and for every n

Proof. Let r ∈ {1, . . . , n/2} and let F be a subset of {1, . . . , n} with r elements.

In our setting, det(G

for every subset D. Therefore, [START_REF] Bollobás | Random graphs[END_REF], formula 1.5 page 4), we obtain:

where f n is the function on ]0, 1/2] defined by:

The function f n is of class C 2 in the interval ]0, 1/2] and the first two derivatives of f n are: 2 where Q n is the polynomial function of second order defined, for every y, by:

Thus f n has the following properties:

that verifies conditions (i), (ii), (iii) has the following property: for every c ∈]0, 1/2] such that f n (c) is positive, the minimum of f n on the interval [c, 1/2] lies on c or 1 2 (see Lemma A.2 in the appendix). In fact, (f n (1/2)) n converges to +∞, whence for sufficiently large n,

To conclude, let us consider f n at point 1 n δ for some δ ∈]0, 1[.

Conversely, starting from a cycle σ of length k, we can construct exactly k different permutations ν 1 , . . . , ν k such that F (ν 1 ) = . . . = F (ν k ) = σ by setting

This shows equality (A.1), completing the proof. Assume that: The expression of det(M n ) follows by induction on n.