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MARKOVIAN LOOP CLUSTERS ON GRAPHS
YVES LE JAN AND SOPHIE LEMAIRE

ABSTRACT. The loop clusters of Poissonian ensembles of Markov loops on a finite or countable
graph induce a coalescent process on the vertices of the graph. After a description of some
general properties of the coalescent process, we study the loop clusters defined by a simple
random walk killed at a constant rate on three different graphs: the integer number line Z,

the d-dimensional integer lattice Z% with d > 2 and the complete graph.

INTRODUCTION

The notion of Poissonian ensembles of Markov loops (loop soups) was introduced by Lawler
and Werner in [8] in the context of two dimensional Brownian motion (it already appeared
informally in [13]): the loops of a Brownian loop soup on a domain D € C are the points of a
Poisson point process with intensity au where « is a positive real and u is the Brownian loop
measure on D. Loop clusters induced by a Brownian loop soup were used to give a construction
of the conformal loop ensembles (CLE) in [14] and [12]. They are defined as follows: two loops
¢ and ¢’ are said to be in the same cluster if one can find a finite chain of loops £y, . .., ¢, such
that by = €, £, = 0" and for all i € {1,...,n} £;—1 N¥; # (. Poissonian ensembles of Markov
loops can also be defined on graphs. They were studied in details in [9] and [6]. In particular
Poissonian ensembles of loops on the integer lattice Z? induced by simple (nearest neighbor)

random walks give a discrete version of Brownian loop soup (see [7]).

The aim of this paper is to study loop clusters induced by Markov loop ensembles on graphs.
The facts presented here, which are built on the results presented in [9] are more elementary
than in the Brownian loop soup theory but point out that Poissonian ensembles of Markov loops
and related partitions are of more general interest. The examples we develop show relations

with several theories: coalescence, percolation and random graphs.

In section 1, we recall the different objects needed to define the Markovian loop clusters on
a graph and the coalescent process induced by the partition of vertices they define. In section
2, we state general properties of the clusters and establish some formulae useful to study the
semigroup of the coalescent process. In the last three sections we address several aspects of the
loop clusters induced by a simple random walk killed at a constant rate x on different graphs:

e On the integer number line Z, the loop cluster model reduces to a renewal process.
We establish a convergence result by rescaling space by /¢, killing rate by ¢ and let ¢
converge to 0.
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e The loop cluster model can be seen as a percolation model with two parameters o and
k. Bernoulli percolation appears as a limit if o and  tend to +oo so that % converges
to a positive real. We show that a non-trivial percolation threshold occurs for the loop
clusters model on the integer lattice Z¢ with d > 2.

e As a last example, we consider the complete graph. We give a simple construction
of the coalescent process on the complete graph and we deduce a construction of a
coalescent process on the interval [0, 1]. Letting the size of the graph increase to +o0,
we determine the asymptotic distribution of the coalescence time: it appears to be
essentially the same as in the Erdés-Rényi random graph model (see [4]) though the
lack of independence makes the proof significantly more difficult.

1. SETTING
We consider a finite or countable simple graph G = (X,€) endowed with positive con-
ductances C,, e € £ and a positive measure k = {k,, * € X} (called the killing mea-

sure). We denote by C,, the conductance of the edge between vertices z and y and set
Ay = Zye X {zy}es Cpy + kg for every x € X. The conductances and the killing measure x
induce a sub-stochastic matrix P: P, , = C/\Lzy (o yreey Yo,y € X. We assume that P is
irreducible.

1.1. Loop measure. A discrete based loop £ of length n € N* on G is defined as an element
of X™ which can be extended to an infinite periodic sequence. Two based loops of length n
are said equivalent if they only differ by a shift of their coefficients. A discrete loop is an
equivalent class of based loops for this equivalent relation (an example is drawn in Figure 1).
Let DL(X) (resp. DL(X)) denote the set of discrete loops (resp. discrete based loops) of
length at least 2 on X. We associate to each based loop ¢ = (z1,...,x,) of length n > 2 the
weight (1(¢) = 1Py, 2y Pryay - - - Pay oy This defines a measure o on DL(X) which is invariant
by the shift and therefore induces a measure p on DL(X).

Representation of a loop ¢ of length 4 on the com-
plete graph K, corresponding to the equivalence
class of the based loop ¢ = (4,1,2,1); the measure
of this loop is

p(l) = Py PraPo 1Py

FiGURE 1.

Remark 1.1 (Doob’s h-transform). If h is a positive function on X such that (P — I)h <0,
a new set of conductances C1"} and a new killing measure "} can be defined as follows:
ng} = h(z)h(y)Cyy for every {z,y} € € and ki = h(x)[(I — P)h](x)A\; for every x € X.
This modification corresponds to the Doob’s h-transform: the associated transition matrix P}

verifies P:(}{Z} = %Pw,y Vz,y € X. Itis aself-adjoint operator on L2(h?)) since P{"} = Th_lPTh
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L2(h2N) — L2())
f — hf

The loop measure can be defined without assuming that P is a substochastic matrix. A weaker

with 7T}, : . The loop measure p is invariant under Doob’s h-transform.

condition would be to assume that P is a positive and contractive matrix. Taking such matrices
does not extend the set of loop measures. Indeed, Perron-Frobenius theorem states that if @) is
a positive and irreductible matrix and if its spectral radius p(Q) is smaller or equal to 1, then
there exists a positive function h on X such that Ph = p(Q)h. The h-transform of @ is then
a substochastic matrix.

1.2. Poisson loop sets. Let DP be a Poisson point process with intensity Leb ®u defined
on Ry ®@DL(X). For a > 0, let DL, denote the projection of the set DP N ([0, a] x DL(X))
on DL(X); (DLy)a>0 is an increasing family of loop sets which has stationary independent
increments. It coincides with the family of non-trivial discrete loop sets induced by the Poisson
Point process of continuous-time loops defined in [9].

1.3. Coalescent process. An edge e € £ is said to be open at time « if e is traversed by at
least one loop of DL,. The set of open edges defines a subgraph G, with vertices X. The
connected components of G, define a partition of X denoted by C,. The elements of the
partition C, are the loop clusters defined by DL, (an example is drawn in Figure 2). This
paper is devoted to the study of C,,.

9. .12::: 11 12 X 10 11 12
. ; 8 i o : . C, is a partition with 4 blocks:
(' - — {1,2,5,6},{3.4,7},

) ) L . {8,10,11,12}, {9}.

DL, Ga

FiGURE 2. Example of a loop set DL, at time « on a finite graph G, the
subgraph G, defined by the open edges and the partition C, induced by its
loop clusters (the dotted-lines on the left figure represent the edges of G; DL,
consists of three loops of length 2, two loops of length 3 and two loops of
length 4.)

Remark 1.2. If A is a subset of X, let us define the DL,-neighborhood of A:
Ta(A) = AU{z € X, 3l € DL, visiting A and z}.

Given any (z,y) € X2, set  ~ g if and only if 3k € N* such that y € 77({z}) (in the
example drawn figure 2, 7,({10}) = {10,11} and for every k > 2, 7¥({10}) = 7,({10,11}) =
{8,10,11,12} for instance). This defines an equivalence relation and the associated partition

is Cq.
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2. GENERAL PROPERTIES OF DISCRETE LOOP CLUSTERS

2.1. The distribution of the set of primitive discrete loops. A discrete loop £ is said
to be primitive if it does not have a non-trivial period; Any discrete loop £ € DL(X) can be
represented as some multiple [7]™(©) of a primitive discrete loop 7 denoted by 7€. Let PL(X)
denote the set of primitive discrete loops X of length at least 2 and let PL,, denote the set of
primitive discrete loops defined by DL,. Clearly C, depends only on PL,.

Proposition 2.1. The distribution of PL, is a product measure v on {0, 1}7)£(X) defined by
v(w, wy=1)=1—(1—pu(n)"

Proof. If mq,...,n, are distinct primitive discrete loops, the sets L; = {¢ € DL(X), 7l =n;},
i = 1,...,r are disjoint, hence the r events F; = {3¢ € DL, such that 7 =n;}, i =1,...,r
are independent. Therefore, the law of PL,, is a product measure on {0, 1}7)E(X ) and for every

n e PL(X),

“+oo
P(n € PLa) =P € DLy, ml=n) =1—exp(—a »_ pu(l,l=[n"™)).
m=1

As p([n]™) = L pu(n)™ for every m € N*, we deduce that

P(n € PLy) =1 — exp(alog(l — u(n))).

O

It follows from Proposition 2.1 that Harris inequality (and also B-K inequality) holds on
increasing events (see e.g. [15]). In particular let us say that a subset A of X is connected at
time « if it is contained in a cluster of C,. Then by Harris inequality,

P(A and B are both connected at time «)

> P(A is connected at time «) P(B is connected at time «).

In a similar way, we say that a subgraph is open at time « if all its edges are traversed by jumps
of loops in DL,. Then the same inequality holds.
These inequalities can be extended to any number of increasing events. In particular,

e For every partition m = (B;);cr of X into non-empty blocks, the probability that C, is
a coarser partition than 7 satisfies:

P(Cq 2 7) > H]P’(BZ- is connected at time «).
il

o If 7 C &, then P(F is open at time «) > [] P(e is open at time «).
ecF
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2.2. The transition rate of the coalescent process. The evolution in « of C, defines a
partition-valued Markov chain. Let 7 be a partition of X into non-empty blocks {B;, i € I}.
From state 7, the only possible transitions are to a partition 7%/ obtained by merging blocks
indexed by some subset J of I to form one block B; = Ujc;B; and leaving all other blocks

unchanged. The transition rate from 7 to 77 is

Trpws = (€, V] € J, £ intersects B; and Yu ¢ J, £ does not intersect B,)

-y % 3 Puyas- Popwy (2.1)

k>2 ((El,...,wk)GWk(Bj,jEJ)

where Wy, (Bj, j € J) is the set of k-tuples of elements of B having at least one element that
belongs to each block B;, j € J:

Wi(Bj, jeJ)={(z1,...,2) € (UjeJBj)k such that Vj € J, z, € B; for some u}.

If the graph G is finite, these transition rates can be expressed with determinants of Green
functions of subgraphs. In order to describe the formula, let us introduce some notations; Let
G denote the Green function of G: G = (A —C)~! where A = (\;)zex, I is the identity matrix
and C' is the conductance matrix. For every subset F' of vertices, set F¢ = X \ F and let G*)
denote the Green function of the subgraph (F, & py ) of G: G®) is the inverse of the matrix

(M = C)pxr-
Proposition 2.2. Let us assume that G = (X, &) is a finite graph.
For every partition m = {B;, i € I} of X and every subset J of I with at least two elements:

Tr n®F = Z 1) og(det(GMPuentBuly), (2.2)
157

Proof. By the inclusion-exclusion principle,
Tra®d = u(@, ¢ does not intersect U Bj> — ,u<€, Ju € J, £ does not intersect U Bj>
’ J¢J jeJeu{u}
= Z (=)0, ¢ does not intersect U B,).

= ueJUK
KGJ

To conclude, we use that:

e For a subset F' of vertices,
(€, ¢ does not intersect F') = u(DL(F)) = log <det(G(FC)) H )\x).
zeFe¢

e For every family of reals (a,)ycs indexed by a finite subset J with at least two elements,
D =Y e, =0 (2.3)

157 u€J\I
O
Example 2.3. Let us consider the complete graph K, with unit conductances and a uniform

killing measure with intensity x. The transition matrix P verifies: P, , = n_—h_ﬁ Tiyzy) for ev-
ery vertices z and y. Thus for every subset F of vertices, det(GU)) = ((n + s)FI=Y(n 4+ x — |F|))~!
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(the computation of this determinant is detailed in Lemma A.3). Using (2.2) and (2.3), we

Tamns = (-0 og (1- —— 37 Bul). (2.4)

1SJ ueJ\I

obtain:

2.3. The semigroup of the coalescent process on a finite graph. In this section, we
assume that the graph G is finite. The probability that C, is finer than a given partition of X
has a simple expression:

Lemma 2.4. Let us assume that the graph G = (X, &) is finite. Given two partitions my and

7= (Bi)ier of X,
.- det G(BL) o
Pwo (Ca = 7T) = (HZEI ( )) ][{Wotﬂ} : (25)

det(G)

Proof. Let us assume that 7w is coarser than mg. The event ‘C, is finer than m’ means that
every loop of DL, is included in a block of 7. Therefore,
Pry(Ca = m) = exp (= a(u(DL(X)) — 3 w(DL(B))).
el
since the set of loops in each block B; of 7 at time « defines independent Poisson point processes
with intensity p(Z9) respectively. To conclude, we use that
w(DL(X)) = log(det(G H Az) and pu(DL(B;)) = log(det(G H Az)
zeX reB;
O

An explicit formula for P, (C, = m) can be derived from Lemma 2.4. Let us first introduce
some notations. For a partition 7, let |7| denote the number of non-empty blocks of 7. For a
subset A, let m 4 denote the restriction of 7 to A: m 4 is a partition of A, the blocks of which
are the intersection of the blocks of m with A.

Lemma 2.5. Let us consider a finite graph G = (X,E). Let my and 7 be two partitions of X.
If m has k non-empty blocks denoted by B ..., By, then

k
Pry(Ca =) = S (=D [[ (5, — 1! Bry (Co = 7). (26)
. i=1
Proof. Let us first assume that 7 = {X}. To obtain equation (2.6), it is sufficient to prove the
following identity:
| X]
L=y = 2 (D=1 3 Tiemny- (2.7)
=1 T EP(X)
where P,(X) denotes the set of partitions of X with ¢ non-empty blocks. Let us assume that
C, is a partition with j non-empty blocks. For ¢ < j, we can construct a partition coarser than
C, with ¢ non-empty blocks by choosing how to merge some blocks of C,, that is by choosing
a partition of {1,...,j} with £ blocks. Therefore

> Teasmy = 1Bl ) Ty
T €Pe(X)
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and the right-hand side of (2.7) is equal to » ) _ 1( D -8, ({1,...,5})|. By an identity
on the Stirling numbers of the second kind (see for example [11] equation (1.30) page 22), this
sum is equal to 1if j =1 and 0 if j > 2.

To prove (2.6) for a partition 7 with & non-empty blocks (B, ..., By), we consider C, as a
sequence of partitions on By, ..., By respectively and apply (2.7):

| B1] |Br| &

][{Ca (B1,..,Bk)} H ][{CQ‘B =B;} — Z Z HV;,Z

l1=1 lp=11=1

where ‘/;-74 = (_1)4—1(£ — 1)' ZﬁE‘Bz(Bi) ]I{Ca\Bitﬁ}' Therefore,

Bl |Byl
Lo By = D - (=D 075 — 1)1 (g — 1) > L, sy
h=1 =1 TE€Pey (B1)X...xPe, (Br)
k
= > DT, = D e, mry -
T i=1

O

Example 2.6. Let us consider the complete graph K,, endowed with unit conductances and a
uniform killing measure of intensity . If 7 is a partition of the set of vertices X with k blocks
By, ..., B then

]P)m)(ca t 77) = (L)a H(l - ﬂ)_a ][{7"0?”} :

K+n il n—+rx
and
k > —a
PaComm) = () X (O] (g e By e ) T (152)
T=(Bj)jes = I€

s.t. mogEAET

Let us note that (1— #'K)_o‘ is the j-th moment m; of the random variable Y = exp(n—iﬁ) where

Z denotes a Gamma(a, 1)-distributed random variable. Thus P, (Cy = 7) = # Liryr)-
i=1 " By

Let ¢, denote the n-th cumulant of Y. Formula (2.6) and the expression of cumulants in terms

of moments (see formula (1.30) in [11] for example) yield Pr,(Co = {X}) = ;=

2.4. Loop clusters included in a subset of X. For a subset D of X, let Dﬁ((f)) denote the
loops of DL, contained in D and CéD) the partition of D induced by Dﬁ,(lD). In general CéD)
is finer than the restriction of C, to D but coincides with it if D is a union of elements of C,.
For every partition m of X with & non-empty blocks By, ..., By, the loop sets Dﬁ&Bl), cees
Dﬁ(gB’“), DL, \ (UleDﬁgBi)) are independent. This yields the following equality:

k
P(Co =) =P(Co = m) [[PCP) = {Bi}).
=1

Let us note also that if U € D C X then

P(C, = {U,U}) =P(CP) = {U, D\ U})P(} € DL, visiting U and D°)
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(see [5] page 2 for a related result in Schramm-Loewner Evolution (SLE) context). The second
term on the right-hand side equals

¢~ (HDLOO) —p(PLW)~u(DL(D)) +u(DLID\D)))
If X is finite, it can be written as

(det(G(Uc)) det(GP))
det(G) det(G(P\V))

det(Gyxv) det(Gpex pe) > —a

)a or, with Jacobi’s identity, as (
det(G|(wupe)x(wuDe))

2.5. Computation of the semigroup using exit distributions. The probability that C, is
finer than a partition 7 can also be expressed using exit distributions. The formula obtained is
easier to use than (2.5) for graphs such as tori, trees ... Let us first introduce some notations.
For a subset D of X, let 9D denote the inner boundary of D:

0D ={x € D,C,, > 0 for some y € D}

and let HP) denote the exit distribution (or Poisson kernel) from D: for z € X and y € D,
H;EZ) is the probability that a Markov chain with transition matrix P starting from z exits
from D at y.

Lemma 2.7. Let 1 = (B;);=1, .k be a partition of X. Let B = UleaBj denote the union of
the boundary points of the blocks of w. Let H(™ denote the matriz indexed by B defined by:

{ ][{:c:y} if x,y € 0B;

%(ﬂ—) - B,
—Hg(c,yl) if x € 0B;,y € 0B; and i # j.

Y
If B is finite then P(Cq = m) = det(H (™).

Proof.

e First, let us assume that X is finite. Let K denote the product of the block diagonal
matrix diag(GP9) i € {1,... k}) by the matrix G~'. We can rewrite the expression of
P(C, = 7) given by Lemma 2.4 as P(C,, = 7) = det(K)“. The restriction of K to B;x B;
is the identity. The exit distribution from a subset D verifies: Hg(gg) =) 2eD chg) C.y
for every x € D and y € D¢. Therefore,

Ty, if v,y € B;
P(Cq = ) = det(K)* with K, = { { %} nx,y 28)

—Hg(w) iftxe B;, ye Bj and i # j.
Let (&,)n denote a Markov chain with transition matrix P. The trace of (&), on B
defines a Markov chain denoted by (én) on B and thus a Poisson point process DP on
Ry xDL(B) (see [9] chap. 7): the discrete loops set at time « is

DL = {5, L € DL, \DLLE}.

Let C, be the partition of B induced by DL,. The non-empty subsets dB;, i € {1,...,k}
define a partition of B denoted by dm. As {C, = 7} is the event Vi,j € {1,...,k}
such that i # j, Vo € 0B;, y € 0Bj, {z,y} is not crossed by a loop of DL, at time
o, it only depends on the restriction of the loops on B, hence P(C, = 7) = P(C, = d7).
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For a subset F of B, let HF) denote the exit distribution from F for (&,). It follows
from formula (2.8) applied to C,, that

]I{m:y} if x,y € 0B;

P(C, = 7) = det(K)® where K, , = (AR,
(Cazm) ()" w Y {—Hg(c,afl) if x € 0B;,y € 0B; and i # j.

To conclude, it remains to note that ﬁé?yB") = H:ng) for every z € 0B, and y € B\ 0B;.
e Let us now assume that X is a countable set. Let (Xj)r be an increasing sequence

of finite subsets of X such that X = UZ’;’ole. As B is assumed to be finite, there

exists an integer kg such that B is included in Xj,. For k > kg, a loop in DE&X’J that

passes through two different blocks of 7, passes through two different blocks of |y,

the restriction of m to Xj,. Therefore,

P(Cq = ) = 1 — sup P(I¢ € DL passing through two different blocks of )

k> ko
- kianfo P(CS™) = mx,).

By the first part of the proof, ]P’(C((XX’“) = Mx,) = det(H X)) It remains to

note that the matrix H(W‘Xk) coincides with H(™ for every k > kg to deduce that

P(C, = ) = det(H(™))e.

O

2.6. Closed edges in a finite graph. An edge is said to be closed at time « if it is not
crossed by a loop of DL,. More generally, a family of edges FE is said to be closed at time « if
every edge of F is closed at time a.

Let us assume that G is a finite graph. To compute the probability for a family of edges F
to be closed, we modify the conductances and the killing measure so that the conductance
of every edge in F is 0 and the measure A is unchanged: CN’Ly = Coy Ly y1em V{z,y} € €
and Ky = Kz + Z% (e.y}eE Cry Vr € X. Let Gg denote the Green function associated with
{Cee €&, Ry,z € X}.

Lemma 2.8. Let us assume that G = (X, &) is a finite graph. The probability for a family of

edges I to be closed at time o is <d§££%)>a

Proof. For a loop £ and an edge e, let N.(¢) denote the number of jumps of ¢ across e. Set
Ng(l) = X cep Ne(£).
P(FE is closed at time a)) = exp ( —au(DL(X)) + au(l, Ng(0) = 0))

Recall that u(DL(X)) = —log(det(I — P)). For s € [0,1], let Pr(s) denote a perturbation of
P defined by
Po(s),, = sP,, if{zx,y} €FE
oy P, if{z,y}¢FE.

Similarly, u(sV#) = —log(det(I — Pg(s))). In particular,

u(l; Np(f) =0) = —log(det(I — Pg(0))).
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Lemma 2.8 follows since P (0) is the transition matrix associated with the {C.,e € £, &,z € X}.
U

We can deduce from Lemmas 2.8 and 2.4 that if F is a set of edges of a finite graph with
extremities in different blocks of a partition 7 = {B;, i € I} then
[Lic; det(GB))
det(GEg)

P(Cy = 7 | E is closed at time «) = (

3. RENEWAL PROCESSES

On the graph Z, the clusters C, are intervals between closed edges at time « (namely edges
which are not crossed by any loop of DL,). The Poisson loop sets induced by a simple random
walk killed at constant rate x have the following properties:

Proposition 3.1. Let us consider the graph 7 endowed with unit conductances and a uniform
killing measure with intensity k. Set p*) = log(1 + 5+/K+ ’%2)

(i) The midpoints of the closed edges at time o form a remewal process. Moreover,
— the probability that {n,n+1} is closed at time « is equal to (1 —e‘zp(m))o‘ for every
ne€Z;
— given that {0,1} is closed at time «, the probability that {n,n + 1} is also closed

1—672’)(&)
1_6—2/)(”) (n+1)

(0%
1s equal to ( ) for every n € N.

(i) Assume that o €]0,1[. Let v\®) denote the law of this renewal process i.e. the law of
the distance between two consecutive closed edges at time . For e > 0 let (Yz;);en-
denote a sequence of independent random variables with distribution v,

Gt
For every t > 0, as € converges to 0, \/e Z Y. ; converges in law to the value at t
i=1

2VE ).

of a subordinator with potential density (1_67%#

Remark 3.2. This subordinator is associated with the Poisson covering (cf. [1], chapter 7)
drae2uVr

(1_6—2u\/ﬁ)2 .
These covering intervals can be viewed as images of the “loop soup” of intensity a associated

defined by the infinite measure on R™ with density u —ozdd—; log(1 — e‘zuﬁ) =

with the Brownain motion killed at constant rate k.

Proof of Proposition 3.1.

(i) An edge {z — 1,z} is closed at time « if and only if DL, = DL upe Y,
The next closed edge is the first edge which is not crossed by any loop of Dﬁ,(f+N),

(z—1—N) (z+N)

and previous closed edges are defined by DL which is independent of DLy .
Stationarity is obvious as Dﬁ&HN) — x is distributed like DE&N). For n € N, let

rﬁf) denote the probability that {n,n + 1} is closed at time a. By Lemma 2.7,
rﬁf) =(1- H,(lTiIJ N)Hr(:n_ Fl))o‘ where Hg(cg) denote the probability that a simple ran-
dom walk killed at constant rate x and starting at x exits D at point y. The functions

T H;EZ) can be computed from the solutions of equation

2+ k)u(z) —u(x+1) —ulx —1) =0,
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which are linear combinations of exp(p"z) and exp(—p*)z).

We obtain Hr(ﬁ:,;l;N) Hr(zr—Li-lN)k na1 = €Xp(— p"E) for every k € N.

For n € N*, let ¢)(n) denote the probability that {n,n + 1} is closed at time o given
that {0,1} is closed at time a. To compute ¢*)(n), we consider a simple random walk
on N killed at rate x and at point 0; we denote it ((x)g. As (DE&N))Q is the Poisson loop
sets associated with (), by Lemma 2.7 we obtain: ¢(*)(n) = (1 — hgl{o""’"})hggtHN))o‘

where h(P) is the exit distribution from a subset D of N for ()

] (k)
h](g{O,...,n}) = — sinh(p k) for1<k<n+1and h(n+1+N) e (k) for & > n.
sinh(p®) (n + 1))

_ sinh(p(")n) P\ 1—e—20(%)
Therefore ¢ (n) = (1 — oG )" = (Camem )™

(ii) Let I, denote the Laplace transform of the function u (%)a:

> 2\/E o _—SUu

L.;(S) = /0 (m) (& du for s > 0.

Let 17(;) denote the Laplace transform of v("). We shall prove that for every s > 0,

e log(v(%€)(s4/€)) converges towards 1/I,(s) as e tends to 0 which yields (ii).

As ¢ ( ) = Zk LWk (n) for every n € N*, we have the Laplace transforms iden-
q("i)

tity: ) = ek Therefore, it is sufficient to show that e(1=)/ 2q(“5 (sy/€) converges

to Ix(s) as e tends to 0. Let k1 and ko two positive reals such that 0 < k1 < kK < Ka.

For & small enough, \/er; < p(’“) < \/ekg and 2 /er] < 1 — e_2p(m) < 2./ery. For
a > 0let f, be the function defined by f,(z) = (1 — e~29%)=% for x > 0. Therefore, for
¢ small enough,

(20/271)% fry(VE(n 4 1)) < ¢ (n) < (2y/ER2)* fr, (VE(n + 1)) for every n € N.
By Lebesgue’s dominated convergence theorem applied to the function g, s defined by
Ja,s,e(x) = fa(\/E(%W)e_s\/gL%J Vaz > 0, we obtain:

—+00

\/_Z fa(VE(R 4 1))e8VEn - Ja(z)e™**dx

e—0 0

(for e < %, Ja,s,c is dominated by z +— (%)O‘ LI s ]I]% +00[(:17)). This
implies that for every s > 0

oo 2\/ K1 @ —su : 1—a)/2 /n\
/0 (W) e~ du < lim e(!7)/2¢(s9) (5/2)
— - oo 2\/Ka @
: (1-a)/2 , (k 2 ) —su
<lime q\59) (s4/€) S/O (1 — ) © du
These in/egualities hold for every 0 < k1 < Kk < kg. Therefore for every s > 0,
e(1=0)/2¢(re) (5,/) converges to I,(s) which ends the proof of (ii).

O
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Remark 3.3. In the case of the simple random walk on N killed at 0, a similar argument
(detailed in [10]) shows that:

e For 0 < a < 1, the midpoints of the closed edges at time a form a renewal process
with holding times (nga))nzl; The generating function of Yé“) is 1 — :’(s) where Li

denotes the polylogarithm: V |s| < 1, Lia(s) = Y75 z—z Set S = Yoy Yi(a) for

7

n>1. Ase tends to 0, (¢S fj‘i,l ‘] ,t > 0) converges in law towards a stable subordinator
(St(a), t > 0) with index 1 — «.. In the case of a finite interval [0, L], we obtain a renewal
process conditioned to jump at point L.

e For a > 1, there are only a finite number of clusters. In particular, P(Sfa) =00) = Ok

4. BERNOULLI PERCOLATION AND LOOP PERCOLATION

4.1. Bernoulli percolation. Let s = {s., e € £} be a family of coefficients in [0,1]. In
Bernoulli percolation model of parameter s on the graph G = (X, &), every edge e is, inde-
pendently of each other, called ‘open’ with probability s. and ‘closed’” with probability 1 — s..
Vertices connected by open paths define a partition of X denoted by P(s). We can compare
P(s) to the partition induced by the set of primitive discrete loops of length 2 for a finite graph
(X,€).

Lemma 4.1. Let us consider a finite graph (X,€). For o > 0 and e = {z,y} € &, set
Sae =1 — (1= Prylya).

The partition induced by the set of primitive discrete loops of length 2 at time « has the same
law as P({Sa., € € E}).

Proof. Let PA, denote the set of primitive discrete loops of length 2 at time «. The law PA,
for every « is a product measure v on {0,1}¢: for every edge {z,y} € &, let 7z, denote the
class of the based loop (z,y). The probability that a loop in DL, has {x,y} as support is

v(w, Wipyy =1) =1 —exp (= au(l, 7l =1.y)).

and
“+o0

,u(ﬁ, il = nm,y) = Z

k=1

(PoyPy)* = —log(l — Py yPy o).

ol e

O

Bernoulli percolation clusters on a graph appear to be a limiting case of partitions defined
by loop clusters in which only two points loops contribute asymptotically.

Proposition 4.2 ([10]). Let us consider a finite graph G = (X, ) endowed with unit conduc-
)

tances and a uniform killing measure with intensity xk > 0. Let céf be the partition induced by

the Poisson loop set on G at time «. Fiz u > 0.

If k and « tend to +00 such that a is equivalent to uk?, then Cg{) converges in law towards the

Bernoulli percolation of parameter 1 —e™".
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Proof. For a partition m = {B;, i € I} of X, let L(m) denote the set of edges of £ linking
different blocks of .

The law of Bernoulli percolation of parameter 1 — e~* denoted by P(1 — e™*) is characterized
by the identities:

P(P(1—e%) = m) = e "™ for every partition 7 of X.

To prove the convergence of IP’(C&K) = m), we apply Lemma 2.7: P(C&H) = ) = det(H (™)«

where H(™)) is defined as in Lemma 2.7. We note then that 7—[9(572 is equivalent to k=1 if {z,y}
belongs to L(m) and of order less or equal to k=2 otherwise. Indeed, if x € B; and y € 9B,
for i # j, HY =S cp P HE) + Pyy and Py < L for all (i,5) € X x X.

A second-order Taylor expansion shows that log(det(#(™)) = Tr(log(H™)) is equivalent to

—3Tr(Q%), with Quy = £~ Lz yyer(m)- .

4.2. Loop percolation on Z? with d > 2. Let us consider the Poisson loop process induced

by the simple random walk on Z%, d > 2, killed at a constant rate x > 0: Py yiu = for

1
2d+k
every z € Z% and u € {£1}%. Let 6(c, x) denote the probability of percolation at time c i.e.
the probability of any fixed point to be connected to infinity by an open path at time «. The

following Proposition presents some properties of the function (o, k) — 0(a, K):

Proposition 4.3. Let p, denote the critical probability for bond percolation on Z° (d>2).

(i) O(e, k) is an increasing function of a and a decreasing function of k.

(ii) 0(a, k) > 0 for every o > 0 and k > 0 such that (1 — m)a <1—pe.

(iii) For any a > 0, 0(a, k) vanishes for k large enough.

Proof.

(i) #(«, k) is an increasing function of « since a — DL is increasing.

To show that 6(«, k) is a decreasing function of k, we use an independent thinning

procedure. Let k1 > ko > 0. The corresponding measures on based loops satisfy:
/l(nj)(e = (@1,...,2) = %(2d—:il-nj )k ][{xi+1—xi€{il}d vie{l,...,k}} for j € {1,2}, k > 2 and

T1,...,T € Z% with the convention Trp+1 = 1. By erasing independently each based
loop ¢ € Dﬁ&m) of length k > 2 with probability 1 — (gﬁ—:i)k, we obtain a discrete loop

set having the same distribution as D.C((fl).

(ii) By Lemma 4.1, the partition induced by the set of primitive discrete loops of length 2 at

time a has the same law as the Bernoulli percolation with parameter 1 — (1 — m)a
It follows from Bernoulli percolation on Z¢ that if 1 — (1 — m)a > p. then

O(a, k) > 0.

(iii) To prove that 0(«, r) vanishes for x large enough, we show that there exists a finite
real C, > 0 such that any self-avoiding path x = (z1,x9,...,z1) of length L € 2N*
is open at time a with probability less than (%)L We can then conclude with the

usual path-counting argument: for every L € 2N*, 0(«, ) is bounded above by the

probability that there exists an open self-avoiding path of length L at time « starting
from the origin, hence 6(a, k) < lim SupL_>+Oo(2d)L(C—,§)L =0 for kK > 2dC,.

Let us first introduce some notations.
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— Let B(2,{1,...,L}) consist of partitions of {1,..., L} in which all blocks have at
least two elements (the number of blocks of such a partition 7 is denoted by |r|
and blocks are denoted by 71, 79, ...).

— For a vertex v and a loop £ € DL(ZY), let N,(¢) denote the number of times ¢
passes through v: N,(¢) = |{1 <1i <k, u; = v}| if £ is the class of the based loop
(’LL1, ce ,uk).

Let us consider a self-avoiding path of length L € 2N* denoted by x = (x1,x2,...,21)
and let £, denote 