
HAL Id: hal-00747575
https://hal.science/hal-00747575v3

Submitted on 16 Sep 2013 (v3), last revised 4 Feb 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Bandits to Monte-Carlo Tree Search: The
Optimistic Principle Applied to Optimization and

Planning
Rémi Munos

To cite this version:
Rémi Munos. From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Opti-
mization and Planning. 2013. �hal-00747575v3�

https://hal.science/hal-00747575v3
https://hal.archives-ouvertes.fr

Foundations and TrendsR⃝ in
sample
Vol. xx, No xx (xxxx) 1–120
c⃝ xxxx xxxxxxxxx

DOI: xxxxxx

From Bandits to Monte-Carlo Tree Search:
The Optimistic Principle Applied to

Optimization and Planning

Rémi Munos1

1 INRIA Lille – Nord Europe, remi.munos@inria.fr

Abstract

This work covers several aspects of the optimism in the face of un-

certainty principle applied to large scale optimization problems under

finite numerical budget. The initial motivation for the research reported

here originated from the empirical success of the so-called Monte-Carlo

Tree Search method popularized in Computer Go and further extended

to many other games as well as optimization and planning problems.

Our objective is to contribute to the development of theoretical foun-

dations of the field by characterizing the complexity of the underlying

optimization problems and designing efficient algorithms with perfor-

mance guarantees.

The main idea presented here is that it is possible to decompose a

complex decision making problem (such as an optimization problem in

a large search space) into a sequence of elementary decisions, where

each decision of the sequence is solved using a (stochastic) multi-armed

bandit (simple mathematical model for decision making in stochastic

environments). This so-called hierarchical bandit approach (where the

reward observed by a bandit in the hierarchy is itself the return of an-

other bandit at a deeper level) possesses the nice feature of starting the

exploration by a quasi-uniform sampling of the space and then focusing

progressively on the most promising area, at different scales, according

to the evaluations observed so far, until eventually performing a lo-

cal search around the global optima of the function. The performance

of the method is assessed in terms of the optimality of the returned

solution as a function of the number of function evaluations.

Our main contribution to the field of function optimization is a class

of hierarchical optimistic algorithms designed for general search spaces

(such as metric spaces, trees, graphs, Euclidean spaces) with different

algorithmic instantiations depending on whether the evaluations are

noisy or noiseless and whether some measure of the “smoothness” of

the function is known or unknown. The performance of the algorithms

depends on a “local” behavior of the function around its global optima

expressed in terms of the quantity of near-optimal states measured with

some metric. If this local smoothness of the function is known then one

can design very efficient optimization algorithms (with convergence rate

independent of the space dimension), and when it is not known, we can

build adaptive techniques that can, in some cases, perform almost as

well as when it is known.

In order to be self-contained, we start with a brief introduction to the

stochastic multi-armed bandit problem in Chapter 1 and describe the

UCB (Upper Confidence Bound) strategy and several extensions. In

Chapter 2 we present the Monte-Carlo Tree Search method applied to

Computer Go and show the limitations of previous algorithms such

as UCT (UCB applied to Trees). This provides motivation for de-

signing theoretically well-founded optimistic optimization algorithms.

The main contributions on hierarchical optimistic optimization are de-

scribed in Chapters 3 and 4 where the general setting of a semi-metric

space is introduced and algorithms designed for optimizing a function

assumed to be locally smooth (around its maxima) with respect to a

semi-metric are presented and analyzed. Chapter 3 considers the case

when the semi-metric is known and can be used by the algorithm,

whereas Chapter 4 considers the case when it is not known and de-

scribes an adaptive technique that does almost as well as when it is

known. Finally in Chapter 5 we describe optimistic strategies for a

specific structured problem, namely the planning problem in Markov

decision processes with infinite horizon discounted rewards.

Contents

1 The stochastic multi-armed bandit problem 2

1.1 The K-armed bandit 3

1.2 Extensions to many arms 11

1.3 Conclusions 15

2 Monte-Carlo Tree Search 16

2.1 Historical motivation: Computer Go 17

2.2 Upper Confidence Bounds in Trees 18

2.3 Poor finite-time performance guarantee 20

2.4 Conclusion 22

3 Optimistic optimization with known smoothness 23

3.1 Illustrative example 25

3.2 General setting 30

3.3 Deterministic Optimistic Optimization 32

3.4 X -armed bandits 41

3.5 Conclusions 55

i

ii Contents

4 Optimistic Optimization with unknown smoothness 57

4.1 Simultaneous Optimistic Optimization 58

4.2 Extensions to the stochastic case 73

4.3 Conclusions 81

5 Optimistic planning 83

5.1 Deterministic dynamics and rewards 85

5.2 Deterministic dynamics, stochastic rewards 92

5.3 Markov decision processes 97

5.4 Conclusions and extensions 106

Final conclusions 110

References 112

Acknowledgements 120

Optimism

Optimists and pessimists inhabit different worlds, reacting to the same

circumstances in completely different ways.

Learning to Hope, Daisaku Ikeda.

Habits of thinking need not be forever. One of the most significant

findings in psychology in the last twenty years is that individuals can

choose the way they think.

Learned Optimism, Martin Seligman.

Humans do not hold a positivity bias on account of having read

too many self-help books. Rather, optimism may be so essential to our

survival that it is hardwired into our most complex organ, the brain.

The Optimism Bias:

A Tour of the Irrationally Positive Brain, Tali Sharot.

1

1

The stochastic multi-armed bandit problem

We start with a brief introduction to the stochastic multi-armed ban-

dit setting. This is a simple mathematical model for sequential decision

making in unknown random environments that illustrates the so-called

exploration-exploitation trade-off. Initial motivation in the context of

clinical trials dates back to the works of Thompson [113, 114] and

Robbins [101]. In this chapter we consider the optimism in the face of

uncertainty principle, which recommends following the optimal policy

in the most favorable environment compatible with the observations.

In a multi-armed bandit the set of “compatible environments” is the

set of possible distributions of the arms that are likely to have gen-

erated the observed rewards. More precisely we investigate a specific

strategy, called UCB (where UCB stands for upper confidence bound)

introduced by Auer, Cesa-Bianchi, and Fischer in [15], that uses simple

high-probability confidence intervals (one for each arm) for the set of

possible “compatible environments”. The strategy consists in selecting

the arm with highest upper-confidence-bound (the optimal strategy for

the most favorable environment).

We introduce the setting of the multi-armed bandit problem in Sec-

tion 1.1.1, then present the UCB algorithm in Section 1.1.2 and existing

2

1.1. The K-armed bandit 3

lower bounds in Section 1.1.3. In Section 1.2 we describe extensions of

the optimistic approach to the case of an infinite set of arms, either

when the set is denumerable (in which case a stochastic assumption is

made) or where it is continuous but the reward function has a known

structure (e.g. linear, Lipschitz).

1.1 The K-armed bandit

1.1.1 Setting

Consider K arms (actions, choices) defined by some distributions

(νk)1≤k≤K with bounded support (here we will assume that the support

lies in [0, 1]) that are initially unknown to the player. At each round

t = 1, . . . , n, the player selects an arm It ∈ {1, . . . ,K} and obtains a

reward Xt ∼ νIt , which is a random sample drawn from the distribu-

tion νIt corresponding to the selected arm It, and is assumed to be

independent of previous rewards. The goal of the player is to maximize

the sum of obtained rewards in expectation.

Define µk = EX∼νk [X] as the mean values of each arm, and µ∗ =

maxk µk = µk∗ as the mean value of one best arm k∗ (there may exist

several).

If the arm distributions were known, the agent would select the arm

with the highest mean at each round and obtain an expected cumulative

reward of nµ∗. However, since the distributions of the arms are initially

unknown, he needs to pull each arm several times in order to acquire

information about the arms (this is called the exploration) and while

his knowledge about the arms improves, he should pull increasingly

often the apparently best ones (this is called the exploitation). This

illustrates the so-called exploration-exploitation trade-off.

In order to assess the performance of any strategy, we compare its

performance to an oracle strategy that would know the distributions

in advance (and would thus play the optimal arm). For that purpose

we define the notion of cumulative regret: at round n,

Rn
def
= nµ∗ −

n∑
t=1

Xt. (1.1)

This defines a loss incurred, in terms of cumulative rewards, result-

4 The stochastic multi-armed bandit problem

ing from not knowing from the beginning the reward distributions. We

are thus interested in designing strategies that have a low cumulative

regret. Notice that using the tower rule, the expected regret can be

written:

ERn = nµ∗ − E
[n∑
t=1

µIt

]
= E

[K∑
k=1

Tk(n)(µ
∗ − µk)

]
=

K∑
k=1

E[Tk(n)]∆k,

(1.2)

where ∆k
def
= µ∗ − µk is the gap in terms of expected rewards, between

the optimal arm and arm k, and Tk(n)
def
=
∑n

t=1 1{It = k} is the

number of pulls of arm k up to time n.

Thus a good algorithm should not pull sub-optimal arms too many

times. Of course, in order to acquire information about the arms, one

needs to explore all the arms and thus pull sub-optimal arms. The re-

gret measures how fast one can learn relevant quantities about its un-

known environment for the purpose of optimizing some criterion. This

combined learning-optimizing objective is central to the exploration-

exploitation trade-off.

Proposed solutions Since initially formulated by [101], several ap-

proaches have addressed this exploration-exploitation problem, includ-

ing:

• Bayesian exploration: A prior is assigned to the arm distri-

butions and an arm is selected as a function of the posterior

(such as the Thompson strategy [113, 114] which has been an-

alyzed recently [8, 77, 9, 78], the Gittins indexes, see [64, 65],

and optimistic Bayesian algorithms such as [109, 76]).
• ϵ-greedy exploration: The empirical best arm is played with

probability 1−ϵ and a random arm is chosen with probability

ϵ (see e.g. [15] for an analysis),
• Soft-max exploration: An arm is selected with a probability

that depends on the (estimated) performance of this arm

given previous reward samples (such as the EXP3 algorithm

introduced in [16], see also the learning-from-expert setting

[46]).

1.1. The K-armed bandit 5

• Follow the perturbed leader: The empirical mean reward of

each arm is perturbed by a random quantity and the best

perturbed arm is selected (see e.g. [75, 86]).
• Optimistic exploration: Select the arm with the largest high-

probability upper-confidence-bound (initiated by [88, 7, 41]),

an example of which is the UCB algorithm [15] described in

the next section.

1.1.2 The Upper Confidence Bounds (UCB) algorithm

The Upper Confidence Bounds (UCB) strategy [15] consists in selecting

at each time step t an arm with largest B-values:

It ∈ arg max
k∈{1,...,K}

Bt,Tk(t−1)(k),

where the B-value of an arm k is defined as:

Bt,s(k)
def
= µ̂k,s +

√
3 log t

2s
, (1.3)

where µ̂k,s
def
= 1

s

∑s
i=1Xk,i is the empirical mean of the s first rewards

received from arm k, and Xk,i denotes the reward received when pulling

arms k for the i-th time (i.e., by defining the random time τk,i to be the

instant when we pull arm k for the i-th time, we have Xk,i = Xτk,i). We

described here a slightly modified version where the constant defining

the confidence interval is 3/2 instead of 2 for the original version UCB1

described in [15].

This strategy follows the so-called optimism in the face of uncer-

tainty principle since it selects the optimal arm in the most favor-

able environments that are (in high probability) compatible with the

observations. Indeed the B-values Bt,s(k) are high-probability upper-

confidence-bounds on the mean-value of the arms µk. More precisely

for any 1 ≤ s ≤ t, we have P(Bt,s(k) ≥ µk) ≤ 1−t−3. This bound comes

from the Chernoff-Hoeffding inequality which is described below. Let

Yi ∈ [0, 1] be independent copies of a random variable of mean µ. Then

P
(1
s

s∑
i=1

Yi − µ ≥ ϵ
)
≤ e−2sϵ2 and P

(1
s

s∑
i=1

Yi − µ ≤ −ϵ
)
≤ e−2sϵ2 .

(1.4)

6 The stochastic multi-armed bandit problem

Thus for any fixed 1 ≤ s ≤ t,

P
(
µ̂k,s +

√
3 log t

2s
≤ µk

)
≤ e−3 log(t) = t−3, (1.5)

and

P
(
µ̂k,s −

√
3 log t

2s
≥ µk

)
≤ e−3 log(t) = t−3. (1.6)

We now deduce a bound on the expected number of plays of sub-

optimal arms by noticing that with high probability, the sub-optimal

arms are not played whenever their UCB is below µ∗.

Proposition 1.1. Each sub-optimal arm k is played in expectation at

most

ETk(n) ≤ 6
log n

∆2
k

+
π2

3
+ 1

time. Thus the cumulative regret of UCB is bounded as

ERn =
∑
k

∆kETk(n) ≤ 6
∑

k:∆k>0

log n

∆k
+K

(π2

3
+ 1
)
.

First notice that the dependence in n is logarithmic. This says that

out of n pulls, the sub-optimal arms are played only O(log n) times, and

thus the optimal arm (assuming there is only one) is played n−O(log n)

times. Now, the constant factor in the logarithmic term is 6
∑

k:∆k>0
1
∆k

which deteriorates when some sub-optimal arms are very close to the

optimal one (i.e., when ∆k is small). This may seem counter-intuitive,

in the sense that for any fixed value of n, if all the arms have a very

small ∆k, then the regret should be small as well (and this is indeed

true since the regret is trivially bounded by nmaxk ∆k whatever the

algorithm). So this result should be understood (and is meaningful)

for a fixed problem (i.e., fixed ∆k) and for n sufficiently large (i.e.,

n > mink 1/∆
2
k).

Proof. Assume that a sub-optimal arm k is pulled at time t. This means

that its B-value is larger than the B-values of the other arms, in par-

ticular that of the optimal arm k∗:

µ̂k,Tk(t−1) +

√
3 log t

2Tk(t− 1)
≥ µ̂k∗,Tk∗ (t−1) +

√
3 log t

2Tk∗(t− 1)
. (1.7)

1.1. The K-armed bandit 7

Now, either one of the two following inequalities hold:

• The empirical mean of the optimal arm is not within its

confidence interval:

µ̂k∗,Tk∗ (t−1) +

√
3 log t

2Tk∗(t− 1)
< µ∗, (1.8)

• The empirical mean of the arm k is not within its confidence

interval:

µk,Tk(t−1) > µk +

√
3 log t

2Tk(t− 1)
, (1.9)

or (when both previous inequalities (1.8) and (1.9) do not hold), then

we deduce from (1.7) that

µk + 2

√
3 log t

2Tk(t− 1)
≥ µ∗,

which is equivalent to Tk(t− 1) ≤ 6 log t
∆2

k
.

This says that whenever Tk(t − 1) ≥ 6 log t
∆2

k
+ 1, either arm k is not

pulled at time t, or one of the two small probability events (1.8) or

(1.9) holds. Thus writing u
def
= 6 log t

∆2
k

+ 1, we have:

Tk(n) ≤ u+
n∑

t=u+1

1{It = k;Tk(t) > u}

≤ u+
n∑

t=u+1

1{(1.8) or (1.9) holds}. (1.10)

Now, the probability that (1.8) holds is bounded by

P
(
∃1 ≤ s ≤ t, µ̂k∗,s +

√
3 log t

2s
< µ∗

)
≤

t∑
s=1

1

t3
=

1

t2
,

using Chernoff-Hoeffding inequality (1.5). Similarly the probability

that (1.9) holds is bounded by 1/t2, thus by taking the expectation

8 The stochastic multi-armed bandit problem

in (1.10) we deduce that

E[Tk(n)] ≤ 6 log(n)

∆2
k

+ 1 + 2
n∑

t=u+1

1

t2

≤ 6 log(n)

∆2
k

+
π2

3
+ 1 (1.11)

The previous bound depends on some properties of the distribu-

tions: the gaps ∆k. The next result states a problem-independent

bound.

Corollary 1.1. The expected regret of UCB is bounded as:

ERn ≤
√

Kn
(
6 log n+

π2

3
+ 1
)

(1.12)

Proof. Using Cauchy-Schwarz inequality and the bound on the ex-

pected number of pulls of the arms (1.11),

Rn =
∑
k

∆k

√
ETk(n)

√
ETk(n)

≤
√∑

k

∆2
kETk(n)

∑
k

ETk(n)

≤
√

Kn
(
6 log n+

π2

3
+ 1
)
.

1.1.3 Lower bounds

There are two types of lower bounds: (1) The problem-dependent

bounds [88, 42] say that any algorithm that for any problem in a given

class, an “admissible” algorithm will suffer -asymptotically- a logarith-

mic regret with a constant factor that depends on the arm distributions,

(2) The problem-independent bounds [46, 29] states that for any algo-

rithm and any time-horizon n, there exists an environment on which

this algorithm will have a regret at least of order
√
Kn.

1.1. The K-armed bandit 9

Problem-dependent lower bounds: Lai and Robbins [88] consid-

ered a class of one-dimensional parametric distributions and showed

that any admissible strategy (i.e. such that the algorithm pulls each

sub-optimal arm k a sub-polynomial number of times: ∀α > 0,

ETk(n) = o(nα)) will asymptotically pull in expectation any sub-

optimal arm k a number of times such that:

lim inf
n→∞

ETk(n)

log n
≥ 1

K(νk, νk∗)
(1.13)

(which, from (1.2), enables the deduction of a lower bound on the re-

gret), where K(νk, νk∗) is the Kullback-Leibler (KL) divergence between

νk and νk∗ (i.e., K(ν, κ)
def
=
∫ 1
0

dν
dκ log dν

dκdκ if ν is dominated by κ, and

+∞ otherwise).

Burnetas and Katehakis [42] extended this result to several classes

P of multi-dimensional parametric distributions. By writing

Kinf(ν, µ)
def
= inf

κ∈P:E(κ)>µ
K(ν, κ),

(where µ is a real number such that E(ν) < µ), they showed the im-

proved lower bound on the number of pulls of sub-optimal arms:

lim inf
n→∞

ETk(n)

logn
≥ 1

Kinf(νk, µ∗)
. (1.14)

Those bounds consider a fixed problem and show that any algorithm

that is reasonably good on a class of problems (i.e. what we called an

admissible strategy) cannot be extremely good on any specific instance,

and thus needs to suffer some incompressible regret. Note also that

these problem-independent lower-bounds are of an asymptotic nature

and do not say anything about the regret at any finite time n.

A problem independent lower-bound: In contrast to the previ-

ous bounds, we can also derive finite-time bounds that do not depend

on the arm distributions: For any algorithm and any time horizon n,

there exists an environment (arm distributions) such that this algo-

rithm will suffer some incompressible regret on this environment. We

deduce the minimax lower-bounds (see e.g. [46, 29]):

inf supERn ≥ 1

20

√
nK,

10 The stochastic multi-armed bandit problem

where the inf is taken over all possible algorithms and the sup over all

possible reward distributions of the arms.

1.1.4 Recent improvements

Notice that in the problem-dependent lower-bounds (1.13) and (1.14),

the rate is logarithmic, like for the upper bound of UCB, however the

constant factor is not the same. In the lower bound it uses KL di-

vergences whereas in the upper bounds the constant is expressed in

terms of the difference between the means. From Pinsker’s inequality

(see e.g. [46]) we have: K(ν, κ) ≥ (E[ν] − E[κ])2 and the discrepancy

between K(ν, κ) and (E[ν]−E[κ])2 can be very large (e.g. for Bernoulli

distributions with parameters close to 0 or 1). It follows that there is

a potentially large gap between the lower and upper bounds, which

motivated several recent attempts to reduce this gap. The main line of

research consisted in tightening the concentration inequalities defining

the upper confidence bounds.

A first improvement was made in [13] which introduced UCB-V

(UCB with variance estimate) that uses a variant of Bernstein’s in-

equality to take into account the empirical variance of the rewards (in

addition to their empirical mean) to define tighter UCB on the mean

reward of the arms:

Bt,s(k)
def
= µ̂k,s +

√
2
Vk,s log(1.2t)

s
+

3 log(1.2t)

s
, (1.15)

where Vk,s is the empirical variance of the rewards received from arm

k. They proved that the regret is bounded as follows:

ERn ≤ 10
(∑

k:∆k>0

σ2
k

∆k
+ 2
)
log(n),

which scales with the actual variance σ2
k of the arms.

Then [69, 70] proposed the DMED algorithm and proved an asymp-

totic bound that achieves the asymptotic lower-bound of [42]. Notice

that [88] and [42] also provided an algorithm with asymptotic guaran-

tees (under more restrictive conditions). It is only in [60, 92, 44] that

a finite-time analysis was derived for KL-based UCB algorithms, KL-

UCB and Kinf -UCB, that achieve the asymptotic lower bounds of [88]

1.2. Extensions to many arms 11

and [42] respectively. Those algorithms make use of KL divergences

in the definition of the UCBs and use the full empirical reward dis-

tribution (and not only the two first moments). In addition to their

improved analysis in comparison to regular UCB algorithms, several

experimental studies showed their improved numerical performance.

Finally let us also mention that the logarithmic gap between the

upper and lower problem-independent bounds (see (1.12) and (1.14))

has also been closed (up to a constant factor) by the MOSS algorithm

of [11], which achieves a minimax regret bound of order
√
Kn.

1.2 Extensions to many arms

The principle of optimism in the face of uncertainty has been success-

fully extended to several variants of the multi-armed stochastic bandit

problem, notably when the number of arms is large (possibly infinite)

compared to the number of rounds. In those situations one cannot even

pull each arm once and thus in order to achieve meaningful results we

need to make some assumptions about the unobserved arms. There are

two possible situations:

• When the previously observed arms do not give us any infor-

mation about unobserved arms. This is the case when there

is no structure in the rewards. In those situations, we may

rely on a probabilistic assumption on the mean value of any

unobserved arm.
• When the previously observed arms can give us some infor-

mation about unobserved arms: this is the case of structured

rewards, for example when the mean reward function is a

linear, convex, or Lipschitz function of the arm position, or

also when the rewards depend on some tree, graph, or com-

binatorial structure.

1.2.1 Unstructured rewards

The so-calledmany-armed bandit problem considers a countably infinite

number of arms where there is no structure among arms. Thus at any

round t the rewards obtained by pulling previously observed arms do

12 The stochastic multi-armed bandit problem

not give us information about unobserved arms.

To illustrate, think of the problem of selecting a restaurant for din-

ner in a big city like Paris. Each day you go to a restaurant and receive

a reward indicating how much you enjoyed the food you were served.

You may decide to go back to one of the restaurants you have already

visited either because the food there was good (exploitation) or be-

cause you have not been there many times and want to try another

dish (exploration). However you may also want to try a new restaurant

(discovery) chosen randomly (maybe according to some prior informa-

tion). Of course there are many other applications of this exploration-

exploitation-discovery trade-off, such as in marketing (e.g. you want to

send catalogs to good customers, uncertain customers, or random peo-

ple), in mining for valuable resources (such as gold or oil) where you

want to exploit good wells, explore unknown wells, or start digging at

a new location.

A strong probabilistic assumption that has been made in [20, 22] to

model such situations is that the mean-value of any unobserved arm is

a random variable that follows some known distribution. More recently

this assumption has been weakened in [118] with an assumption focus-

ing on this distribution upper tail only. More precisely, they assume

that there exists β > 0 such that the probability that the mean-reward

µ of a new randomly chosen arm is ϵ-optimal, is of order ϵβ:

P(µ(new arm) > µ∗ − ϵ) = Θ(ϵβ), 1 (1.16)

where µ∗ = supk≥1 µk is the supremum of the mean-reward of the arms.

Thus the parameter β characterizes the probability of selecting a

near-optimal arm. A large value of β indicates that there is a small

chance that a new random arm will be good, thus an algorithm trying

to achieve a low regret (defined as in (1.1) with respect to µ∗) would

have to pull many new arms. Conversely, if β is small, then there is a

reasonably large probability that a very good arm will be obtained by

pulling a small number of new arms.

The UCB-AIR (UCB with Arm Increasing Rule) strategy intro-

duced in [118] consists in playing a UCB-V strategy [13] (see (1.15)) on

1We write f(ϵ) = Θ(g(ϵ)) if ∃c1, c2, ϵ0,∀ϵ ≤ ϵ0, c1g(ϵ) ≤ f(ϵ) ≤ c2g(ϵ).

1.2. Extensions to many arms 13

K(t) played arms Arms not played yet

Fig. 1.1 The UCB-AIR strategy: UCB-V algorithm is played on an increasing number K(t)
or arms

a set of current arms, whose number is increasing with time. At each

round, either an arm already played is chosen according to the UCB-V

strategy, or a new random arm is selected. Theorem 4 of [118] states

that by selecting at each round t a number of active arms defined by

K(t) =

{
⌊t

β
2 ⌋ if β < 1 and µ∗ < 1

⌊t
β

β+1 ⌋ if β ≥ 1 or µ∗ = 1

then the regret of UCB-AIR is upper-bounded as:

Rn ≤

{
C
(
log n

)2√
n if β < 1 and µ∗ < 1

C
(
log n

)2
n

β
1+β if µ∗ = 1 or β ≥ 1

,

where C is a (numerical) constant.

This setting illustrates the exploration-exploitation-discovery trade-

off where exploitation means pulling an apparently good arm (based

on previous observations), exploration means pulling an uncertain arm

(already pulled), and discovery means trying a new arm.

An important aspect of this model is that the coefficient β charac-

terizes the probability of choosing randomly a near-optimal arm (thus

the proportion of near-optimal arms), and the UCB-AIR algorithm re-

quires the knowledge of this coefficient (since β is used for the choice of

K(t)). An open question is whether it is possible to design an adaptive

strategy that could show similar performance even when β is unknown.

Here we see an important characteristic of the performance of the

optimistic strategy in a stochastic bandit setting, that will appear sev-

eral times in different settings in the next chapters: The performance

of a sequential decision making problem in a stochastic environment

depends on a measure of the quantity of near-optimal solutions,

and on our knowledge about this measure.

14 The stochastic multi-armed bandit problem

1.2.2 Structured bandit problems

In structured bandit problems we assume that the mean-reward of an

arm is a function of some arm parameters, where the function belongs

to some known class. This includes situations where “arms” denote

paths in a tree or a graph (and the reward of a path being the sum

of rewards obtained along the edges), or points in some metric space

where the mean-reward function possesses a specific structure.

A well-studied case is the linear bandit problem where the set of

arms X lies in a Euclidean space Rd and the mean-reward function

is linear with respect to (w.r.t.) the arm position x ∈ X : at time t,

one selects an arm xt ∈ X and receives a reward rt
def
= µ(xt) + ϵt,

where the mean-reward is µ(x)
def
= x · θ with θ ∈ Rd is some (unknown)

parameter, and ϵt is a (centered, independent) observation noise. The

regret is defined w.r.t. the best possible arm x∗
def
= argmaxx∈X µ(x):

Rn
def
= nµ(x∗)− E

[n∑
t=1

rt
]
.

Several optimistic algorithms have been introduced and analyzed,

such as the confidence ball algorithms in [51], as well as refined vari-

ants in [104, 2]. See also [14] for a pioneering work on this topic. The

main bounds on the regret are either problem-dependent, of the order

O
(
logn
∆

)
(where ∆ is the mean-reward difference between the best and

second best extremal points), or problem-independent of the order2

Õ(d
√
n). Several extensions to the linear setting have been considered,

such as Generalized Linear models [54] and sparse linear bandits [45, 3].

Another popular setting is when the mean-reward function x 7→
µ(x) is convex [56, 5] in which case regret bounds of order

O(poly(d)
√
n) can be achieved3. Other weaker assumptions on the

mean-reward function have been considered, such as Lipschitz condi-

tion [83, 6, 17, 84] or even weaker local assumptions in [34, 115]. This

setting of bandits in metric spaces as well as more general spaces will

be investigated in depth in Chapters 3 and 4.

2where Õ stands for a O notation up to a polylogarithmic factor
3where poly(d) refers to a polynomial in d

1.3. Conclusions 15

1.3 Conclusions

It is worth mentioning that there have been a huge development of

the field of Bandit Theory over the last few years which have produced

emerging fields such as contextual bandits (where the rewards depend on

some observed contextual information), adversarial bandits (where the

rewards are chosen by an adversary instead of being stochastic), and

has drawn strong links with other fields such as online-learning (where a

statistical learning task is performed online given limited feedback) and

learning from experts (where one uses a set of recommendations given

by experts). The interested reader may find additional references and

developments in the following books and PhD theses [46, 29, 91, 30].

This chapter presented a brief overview of the multi-armed bandit

problem which can be seen as a tool for rapidly selecting the best

action among a set of possible ones, under the assumption that each

reward sample provides information about the value (mean-reward) of

the selected action. In the next chapters we will use this tool as a

building block for solving more complicated problems where the action

space is structured (for example when it is a sequence of actions, or

a path in a tree) with a particular interest for combining bandits in a

hierarchy. The next chapter introduces the historical motivation for our

interest in this problem while the other chapters provide algorithmic

and theoretical materials.

2

Monte-Carlo Tree Search

This chapter presents the historical motivation for our involvement

in the topic of hierarchical bandits. It starts with an experimental

success: UCB-based bandits (see previous Chapter) used in a hierar-

chy demonstrated impressive performance for performing tree search

in the field of Computer Go, such as in the Go programs Crazy-Stone

[50] and MoGo [119, 63]. This impacted the field of Monte-Carlo-Tree-

Search (MCTS) [48, 27] which provided a simulation-based approach to

game programming and has also been used in other sequential decision

making problems. However, the analysis of the popular UCT (Upper

Confidence Bounds applied to Trees) algorithm [85] have been a the-

oretical failure: the algorithm may perform very poorly (much worse

than a uniform search) on toy problems and does not possess tight

finite-time performance guarantees (see [49]).

In this chapter we briefly review the initial idea of performing effi-

cient tree search by assigning a bandit algorithm to each node of the

search tree and following an optimistic search strategy that explores

in priority the most promising branches (according to previous reward

samples). We then mention the theoretical difficulties and illustrate

the possible failure of such approaches. This was the starting point for

16

2.1. Historical motivation: Computer Go 17

Fig. 2.1 Illustration of the Monte-Carlo Tree Search approach (Courtesy of Rémi Coulom
from his talk The Monte-Carlo revolution in Go). Left: Monte-Carlo evaluation of a position

in Computer Go. Middle: each initial move is sampled several times. Right: The apparently
best moves are sampled more often and the tree structure grows.

designing alternative algorithms (described in later chapters) with the-

oretical performance guarantees which will be analyzed in terms of a

new measure of complexity.

2.1 Historical motivation: Computer Go

The use of Monte-Carlo simulations in Computer Go started with the

pioneering work of Brügmann [28] followed by Bouzy, Cazenave and

Helmstetter [25, 26]. Note that a similar idea was introduced by Abram-

son in [4] for other games such as Othello. A position is evaluated by

running many “playouts” (simulations of a sequence of random moves

generated alternatively from the player and the adversary) starting

from this position until a terminal configuration is reached. This en-

ables to score each playout (where the winner is decided from a single

count of the respective territories), and the empirical average of the

scores provides an estimation of the position value. See the illustration

in Figure 2.1. This method approximates the value of a Go position

(which is actually the solution of a max-min problem) by an average.

Notice that even when the number of runs goes to infinity, this average

does not necessarily converge to the max-min value.

An important step was achieved by Coulom [50] in his Crazy-Stone

program. In this program, instead of selecting the moves according to

18 Monte-Carlo Tree Search

a uniform distribution, the probability distribution over possible moves

was updated after each simulation so that more weight is assigned to

moves that achieved better scores in previous runs (see Figure 2.1,

right). In addition, an incremental tree representation adding a leaf to

the current tree representation at each playout enables the construction

of an asymmetric tree where the most promising branches (according

to the previously observed rewards) are explored to a greater depth.

This was the starting point of the so-called Monte-Carlo tree search

(MCTS) (see e.g. [48, 27]) that aims at approximating the solution of

a max-min problems by a weighted average.

This idea of starting with a uniform sampling over a set of avail-

able moves (or actions) and progressively focusing on the best actions

according to previously observed rewards is reminiscent of the bandit

strategy discussed in the previous chapter. The MoGo program initi-

ated by Yizao Wang, Sylvain Gelly, Olivier Teytaud, Pierre-Arnaud

Coquelin and myself [63] started from this simple observation and the

idea of performing a tree search by assigning a bandit algorithm to each

node of the tree. We started with the UCB algorithm and this lead to

the so-called UCT (Upper Confidence Bounds applied to Trees) al-

gorithm, which was independently developed and analyzed by Csaba

Szepesvári and Levente Kocsis [85]. Several major improvements (such

as the use of features in the random playouts, the Rapid Action Value

Estimation (RAVE), the parallelization of the algorithm, and the in-

troduction of opening books) [61, 100, 24, 106, 48, 62] enabled the

MoGo program to rank among the best Computer Go programs (see

e.g. [89, 1]) until 2012.

2.2 Upper Confidence Bounds in Trees

In order to illustrate the UCT algorithm [85], consider a tree search

optimization problem on a uniform tree of depth D where each node

has K children. A reward distribution νi is assigned to each leaf i (there

are KD such leaves) and the goal is to find the path (sequence of nodes

from the root) to a leaf with highest mean-value µi
def
= E[νi]. Define

the value of any node k as µk
def
= maxi∈L(k) µi, where L(k) denotes the

set of leaves that belong to the branch originating from k.

2.2. Upper Confidence Bounds in Trees 19

At any round t, the UCT algorithm selects a leaf It of the tree and

receives a reward rt ∼ νIt which enables it to update the B-values of

all nodes in the tree. The way the leaf is selected is by following a

path starting from the root and such that from each node j along the

path, the next selected node is the one with highest B-value among the

children nodes, where the B-value of any child k of node j is defined

as:

Bt(k)
def
= µ̂k,t + c

√
log Tj(t)

Tk(t)
, (2.1)

where c is a numerical constant, Tk(t)
def
=
∑t

s=1 1{Is ∈ L(k)} is the

number of paths that went through node k up to time t (and similarly

for Tj(t)), and µ̂k,t is the empirical average of rewards obtained from

leaves originating from node k, i.e.,

µ̂k,t
def
=

1

Tk(t)

t∑
s=1

rs1{Is ∈ L(k)}.

The intuition for the UCT algorithm is that at the level of a given

node j, there are K possible choices, i.e. arms, corresponding to the

children nodes, and the use of a UCB-type of bandit algorithm should

enable the selection of the best arm given noisy rewards samples.

Now, when the number of simulations goes to infinity, since UCB

selects all arms infinitely often (indeed, thanks to the log term in the

definition of the B-values (2.1), when a children node k is not chosen,

its B-value increases and thus it will eventually be selected, as long as

its parent j is), we deduce that UCT selects all leaves infinitely often.

Thus from an immediate backward induction from the leaves to the

root of the tree we deduce that UCT is consistent, i.e. for any node k,

limt→∞ µ̂t(k) = µ(k), almost surely.

The main reason why this algorithm demonstrated very interesting

experimental performance in several large tree search problems is that

it explores in priority the most promising branches according to previ-

ously observed sample rewards. This is very useful in situations where

the reward function possesses some smoothness property (so that ini-

tial random reward samples provide information about where the search

should focus) or when no other technique can be applied (e.g. in Com-

20 Monte-Carlo Tree Search

puter Go where the branching factor is so large that regular minimax

or alpha-beta methods fail). See [47, 106, 48, 27] and the references

therein for different variants of MCTS and applications to games and

other search, optimization, and control problems. These types of algo-

rithms appear as possible alternatives to usual depth-first or breadth-

first search techniques and apparently implement an optimistic explo-

ration of the search space. Unfortunately in the next Section we show

that this algorithm does not enjoy tight finite-time performance guar-

antee and may perform very poorly even on some toy problems.

2.3 Poor finite-time performance guarantee

The main problem comes from the fact that the reward samples rt ob-

tained from any node k are not independent and identically distributed

(i.i.d.). Indeed, such a reward rt ∼ νIt depends on the selected leaf

It ∈ L(k), which itself depends on the arm selection process along the

path from node k to the leaf It, thus potentially on all previously ob-

served rewards. Thus the B-values Bt(k) defined by (2.1) do not define

high-probability upper-confidence-bounds on the value µk of the arm

(i.e. we cannot apply Chernoff-Hoeffding inequality). Thus the analysis

of the UCB algorithm seen in Section 1.1.2 does not apply.

The potential risk of UCT is to stop exploring the optimal branch

too early because the current B-value of that branch is under-estimated.

It is true that the algorithm is consistent (as discussed previously) and

the optimal path will eventually be discovered but the time it takes for

the algorithm to do so can be desperately long.

This point is described in [49] with an illustrative example repro-

duced in Figure 2.2. This is a binary tree of depth D. The rewards

are deterministic and defined as follows: For any node of depth d < D

in the optimal branch (rightmost one), if Left action is chosen, then

a reward of D−d
D is received (all leaves in this branch have the same

reward). If Right action is chosen, then this moves to the next node in

the optimal branch. At depth D − 1, Left action yields reward 0 and

Right action reward 1.

For this problem, as long as the optimal reward has not been ob-

served, from any node along the optimal path, the left branches seem

2.3. Poor finite-time performance guarantee 21

1

D

D−1

D

D−2

D

D−3

D
10

depth D

Fig. 2.2 An example of tree for which UCT performs very poorly.

better than the right ones and are thus explored exponentially more of-

ten (since out of n samples, UCB pulls only O(log n) times sub-optimal

arms, as seen in previous chapter). Therefore, the time required before

the optimal leaf is eventually reached is huge and we can deduce the

following lower-bound on the regret of UCT:

Rn = c exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . .)) + Ω(log(n)),

for some constant c. The first term of this bound is a constant inde-

pendent of n (thus the regret is asymptotically of order log n as proven

in (2.1)) but this constant is “D-uply” exponential. In particular this

is much worse than a uniform sampling of all the leaves which will be

“only” exponential in D.

The reason why this is a particularly hard problem for UCT is that

the initial rewards collected by the algorithm are very misleading at

each level since they force the algorithm to explore for a very long time

the left branches of the tree before going deeper along the optimal

branch. But more deeply, the main reason for this failure is that the

22 Monte-Carlo Tree Search

B-values computed by UCT do not represent high-probability upper-

confidence-bounds on the true value of the nodes (since the rewards

collected at any node are not i.i.d.), thus UCT does not implement

the optimism in the face of uncertainty principle.

2.4 Conclusion

The previous observation represents our initial motivation for the re-

search described in the following chapters. We have seen that UCT is

very efficient in some well-structured problems and very inefficient in

other, tricky problems (the vast majority...). Our objective is now to

recover the optimism in the face of uncertainty principle and for that

purpose we need to define a problem-dependent complexity measure

of optimization. We will do so by defining a notion of local smooth-

ness property of the mean-reward function. This will be used to derive

optimistic algorithms, which build correct high-probability UCBs, and

enjoy tight finite-time performance guarantees that can be expressed

in terms of this complexity measure in situations where this measure

is known, and when it is not.

3

Optimistic optimization with known smoothness

In this chapter we consider the optimism in the face of uncertainty

principle applied to the problem of black-box optimization of a function

f given (deterministic or stochastic) evaluations of the function.

We search for a good approximation of the maximum of a func-

tion f : X → R using a finite number n (i.e. the numerical budget) of

function evaluations. More precisely, we want to design a sequential ex-

ploration strategy A of the search space X , i.e. a sequence x1, x2, . . . , xn
of states of X , where each xt may depend on previously observed val-

ues f(x1), . . . , f(xt−1), such that at round n (which may or may not be

known in advance), the algorithm A recommends a state x(n) with the

highest possible value. The performance of the algorithm is assessed by

the loss (or simple regret):

rn = sup
x∈X

f(x)− f(x(n)). (3.1)

Here the performance criterion is the closeness to optimality of the

recommendation made after n evaluations to the function. This crite-

rion is different from the cumulative regret previously defined in the

23

24 Optimistic optimization with known smoothness

multi-armed bandit setting (see Chapter 1):

Rn
def
= sup

x∈X
f(x)−

n∑
t=1

f(xt), (3.2)

which measures how well the algorithm succeeds in selecting states

with good values while exploring the search space (notice that we write

x1, . . . , xn as the states selected for evaluation, whereas x(n) refers to

the recommendation made by the algorithm after n observations, and

may differ from xn). The two settings provide different exploration-

exploitation tradeoffs in the multi-armed bandit setting (see [32, 12]

for a thorough comparison between the settings).

In this chapter we prefer to consider the loss criterion (3.1), which

induces a so-called numerical exploration-exploitation trade-off,

since it more naturally relates to the problem of function optimization

given a finite numerical budget (whereas the cumulative regret (3.2)

mainly applies to the problem of optimizing while learning an unknown

environment).

Since the literature on global optimization is very important, we

only mention the works that are closely related to the optimistic strat-

egy described here. A large body of algorithmic work has been devel-

oped using branch-and-bound techniques [94, 67, 79, 71, 98, 57, 110]

such as Lipschitz optimization where the function is assumed to be

globally Lipschitz. For illustration purpose, Section 3.1 provides an in-

tuitive introduction to the optimistic optimization strategy in the case

where the function is assumed to be Lipschitz. The next sample is

chosen to be the maximum of an upper-bounding function which is

built from previously observed values and knowledge of the function

smoothness. This enables the algorithm to achieve a good numerical

exploration-exploitation trade-off that makes an efficient use of the

available numerical resources in order to rapidly estimate the maxi-

mum of f .

However the main contribution of this chapter (starting from Sec-

tion 3.2 where the general setting is introduced) is to considerably

weaken the assumptions made in most of the previous literature since

we do not require the space X to be a metric space but only to be

equipped with a semi-metric ℓ, and we relax the assumption that f

3.1. Illustrative example 25

is globally Lipschitz into a much weaker assumption that f is locally

smooth w.r.t. ℓ (this definition is made precise in Section 3.2.2). In

this chapter we assume that the semi-metric ℓ (under which f is

smooth) is known. The next chapter will consider the case when it

is not.

The case of deterministic evaluations is presented in Section 3.3

where a first algorithm, Deterministic Optimistic Optimization (DOO)

is introduced and analyzed. In Section 3.4, the same ideas are extended

to the case of stochastic evaluations of the function, which corresponds

to the so-called X -armed bandit, and two algorithms, Stochastic Op-

timistic Optimization (StoOO) and Hierarchical Optimistic Optimiza-

tion (HOO) are described and analyzed.

The main contribution of this chapter is a characterization of the

complexity of these optimistic optimization algorithms by means of a

quantity of near-optimal states of the mean-rewards function f mea-

sured by some semi-metric ℓ, which is called the near-optimality di-

mension of f under ℓ. We show that if the behavior, or local smooth-

ness, of the function around its (global) maxima is known, then one can

select the semi-metric ℓ such that the corresponding near-optimality

dimension is 0, implying very efficient optimization algorithms (whose

loss rate does not depend on the space dimension). However their per-

formance deteriorates when this smoothness is not known or incorrectly

estimated.

3.1 Illustrative example

In order to illustrate the approach, we consider the simple case where

the space X is metric (let ℓ denote the metric) and the function f :

X → R is assumed to be Lipschitz continuous under ℓ, i.e., for all

x, y ∈ X ,

|f(x)− f(y)| ≤ ℓ(x, y). (3.3)

Define the numerical budget n as the total number of calls to the

function. At each round for t = 1 to n, the algorithm selects a state

xt ∈ X , then either (in the deterministic case) observes the exact

value of the function f(xt), or (in the stochastic case) observes a

noisy estimate rt of f(xt), such that E[rt|xt] = f(xt).

26 Optimistic optimization with known smoothness

This chapter is informal and all theoretical results are deferred to

the next chapters (which describe a much broader setting where the

function does not need to be Lipschitz and the space does not need

to be metric). The purpose of this chapter is simply to provide some

intuition of the optimistic approach for the optimization problem.

3.1.1 Deterministic setting

In this setting, the evaluations are deterministic, thus exploration does

not refer to improving our knowledge about some stochastic environ-

ment but consists in evaluating the function at unknown but possibly

important areas of the search space, in order to estimate the global

maximum of the function.

Given that the function is Lipschitz continuous and that we know ℓ,

an evaluation of the function at any point xt enables to define an upper

bound for f : for all x ∈ X , f(x) ≤ f(xt)+l(x, xt). This upper bounding

function can be refined after each evaluation of f by taking the mini-

mum of the previous upper-bounds (see illustration on Figure 3.1): for

all x ∈ X ,

f(x) ≤ Bt(x)
def
= min

1≤s≤t
[f(xs) + l(x, xs)] . (3.4)

Now, the optimistic approach consists in selecting the next state

xt+1 as the point with highest upper bound:

xt+1 = argmax
x∈X

Bt(x). (3.5)

We can say that this strategy follows an “optimism in the face

of computational uncertainty” principle. The uncertainty does not

come from the stochasticity of some unknown environment (as it was

the case in the stochastic bandit setting), but from the uncertainty

about the function given that the search space may be infinite and we

possess a finite computational budget only.

Remark 3.1. Notice that we only need the property that Bt(x) is

an upper-bound on f(x) at the (global) maxima x∗ of f . Indeed, the

algorithm selecting at each round a state argmaxx∈X Bt(x) will not

be affected by having a Bt(x) function under-evaluating f(x) at sub-

optimal points x ̸= x∗. Thus in order to apply this optimistic sampling

3.1. Illustrative example 27

f(x)t

xt

f

f *

Fig. 3.1 Left: The function f (dotted line) is evaluated at a point xt, which provides a
first upper bound on f (given the Lipschitz assumption). Right: several evaluations of f
enable the refinement of its upper-bound. The optimistic strategy samples the function at
the point with highest upper-bound.

strategy, one really needs (3.4) to hold for x∗ only (instead of requiring

it for all x ∈ X). Thus we see that the global Lipschitz assumption

(3.3) may be replaced by the much weaker assumption that for all

x ∈ X , f(x∗)−f(x) ≤ ℓ(x, x∗). This important extension will be further

detailed in Section 3.2.

Several issues remain to be addressed: (1) How do we generalize

this approach to the case of stochastic rewards? (2) How do we deal

with the computational problem of computing the maximum of the

upper-bounding function in (3.5)? Question 1 is the object of the next

subsection, and Question 2 will be addressed by considering a hierar-

chical partitioning of the space that will be discussed in Section 3.2.

3.1.2 Stochastic setting

Now consider the stochastic case, where the evaluations to the function

are perturbed by noise (see Figure 3.2). More precisely, an evaluation

of f at xt returns a noisy estimate rt of f(xt) where we assume that

E[rt|xt] = f(xt).

In order to follow the optimism in the face of uncertainty principle,

one would like to define a high probability upper bounding function

Bt(x) on f(x) at any state x ∈ X and select the point with highest

value argmaxx∈X Bt(x). So the question is how to define this UCB

28 Optimistic optimization with known smoothness

xt

f(xt)

rt

x

Fig. 3.2 The evaluation of the function is perturbed by a centered noise: E[rt|xt] = f(xt).
How should we define a high-probability upper-confidence-bound on f at any state x in
order to implement the optimism in the face of uncertainty principle?

function.

A possible answer to this question is to consider a given subset

Xi ⊂ X containing x and define a UCB on f over Xi. This can be done

by averaging the rewards observed by points sampled in Xi and using

the Lipschitz assumption on f .

More precisely, let Ti(t)
def
=
∑t

u=1 1{xu ∈ Xi} be the number of

points sampled in Xi at time t and let τs be the absolute time instant

when Xi was sampled for the s-th time, i.e. τs = min{u : Ti(u) = s}.
Notice that

∑t
u=1(ru − f(xu))1{xu ∈ Xi} =

∑Ti(t)
s=1 (rτs − f(xτs)) is a

Martingale (w.r.t. the filtration generated by the sequence {(rτs , xτs)}s)
and we have

P
(1

Ti(t)

Ti(t)∑
s=1

[
rτs − f(sτs)

]
≤ −ϵt,Ti(t)

)
≤ P

(
∃1 ≤ u ≤ t,

1

u

u∑
s=1

[
rτs − f(sτs)

]
≤ −ϵt,u

)
≤

t∑
u=1

P
(1
u

u∑
s=1

[
rτs − f(sτs)

]
≤ −ϵt,u

)
≤

t∑
u=1

e−2uϵ2t,u ,

where we used a union bound in the third line and Hoeffding-Azuma

inequality [19] in the last derivation. For any δ > 0, setting ϵt,u =

3.1. Illustrative example 29

x
x
τs

r
τs

f(x
τs
)

diam(Xi)

Upper-bound

x

√

log t/δ
2Ti(t)

1
Ti(t)

∑Ti(t)
s=1 rτs

Fig. 3.3 A possible way to define a high-probability bound on f at any x ∈ X is to consider

a subset Xi ∋ x and average the Ti(t) rewards obtained in this subset
∑Ti(t)

s=1 rτs , then add

a confidence interval term
√

log(t/δ)
2Ti(t)

, and add the diameter diam(Xi). This defines an UCB

(with probability 1− δ) on f at any x ∈ Xi.

√
log(t/δ)

2u we deduce that with probability 1− δ, we have

1

Ti(t)

Ti(t)∑
s=1

rτs +

√
log(t/δ)

2Ti(t)
≥ 1

Ti(t)

Ti(t)∑
s=1

f(sτs). (3.6)

Now we can use the Lipschitz property of f to define a high prob-

ability UCB on supx∈Xi
f(x). Indeed each element of the sum in the

r.h.s. of (3.6) is bounded as f(xτs) ≥ maxx∈Xi f(x)− diam(Xi), where

the diameter of Xi is defined as diam(Xi)
def
= maxx,y∈Xi ℓ(x, y). We

deduce that with probability 1− δ, we have

Bt,Ti(t)(Xi)
def
=

1

Ti(t)

Ti(t)∑
s=1

rτs +

√
log t/δ

2Ti(t)
+diam(Xi) ≥ max

x∈Xi

f(x). (3.7)

The UCB Bt,Ti(t)(Xi) is illustrated in Figure 3.3.

Remark 3.2. We see a trade-off in the choice of the size of Xi: The

bound (3.7) is poor either (1) when diam(Xi) is large, or (2) when Xi

contains so few samples (i.e. Ti(t) is small) that the confidence interval

width is large. Ideally we would like to consider several possible subsets

Xi (of different size) containing a given x ∈ X and define several UCBs

on f(x) and select the tightest one: Bt(x)
def
= mini;x∈Xi Bt,Ti(t)(Xi).

30 Optimistic optimization with known smoothness

Now, an optimistic strategy would simply compute the tightest

UCB at each state x ∈ X according to the rewards already observed,

and choose the next state to sample as the one with highest UCB,

like in (3.5). However this poses several problems: (1) One cannot con-

sider concentration inequalities on an arbitrarily large number of sub-

sets (since we would need a union bound over a too large number of

events), (2) From a computational point of view, it may not be easy to

compute the maximum point of the bounds if the shapes of the subsets

are arbitrary.

In order to provide a simple answer to those two issues we consider

a hierarchical partitioning of the space. This is the approach fol-

lowed in the next section, which introduces the general setting.

3.2 General setting

3.2.1 Hierarchical partitioning

In order to address the computational problem of computing the op-

timum of the upper-bound (3.5) described above, our algorithms will

make use of a hierarchical partitioning of the space X .

More precisely, we consider a set of partitions of X at all scales

h ≥ 0: For any integer h, X is partitioned into a set of Kh subsets

Xh,i (called cells), where 0 ≤ i ≤ Kh − 1. This partitioning may be

represented by a K-ary tree where the root corresponds to the whole

domain X (cell X0,0) and each cell Xh,i corresponds to a node (h, i)

of the tree (indexed by its depth h and index i), and each node (h, i)

possesses K children nodes {(h+1, ik)}1≤k≤K such that the associated

cells {Xh+1,ik , 1 ≤ k ≤ K} form a partition of the parent’s cell Xh,i.

See Figure 3.4.

In addition, to each cell Xh,i is assigned a specific state xh,i ∈ Xh,i,

that we call the center of Xh,i where f may be evaluated.

3.2.2 Assumptions

We now make 4 assumptions: Assumption 1 is about the semi-metric ℓ,

Assumption 2 is about the smoothness of the function w.r.t. ℓ, and As-

sumptions 3 and 4 are about the shape of the hierarchical partitioning

3.2. General setting 31

h=0

h=2

h=1

h=3

Partition:

Fig. 3.4 Hierarchical partitioning of the space X equivalently represented by a K-ary tree
(here K = 3). The set of leaves of any subtree corresponds to a partition of X .

w.r.t. ℓ.

Assumption 1 (Semi-metric). We assume that X is equipped with

a semi-metric ℓ : X × X → R+. We recall that this means that for all

x, y ∈ X , we have ℓ(x, y) = ℓ(y, x) and ℓ(x, y) = 0 if and only if x = y.

Note that we do not require that ℓ satisfies the triangle inequality

(in which case, ℓ would be a metric). An example of a metric space is

the Euclidean space Rd with the metric ℓ(x, y) = ∥x − y∥ (Euclidean

norm). Now consider Rd with ℓ(x, y) = ∥x−y∥α, for some α > 0. When

α ≤ 1, then ℓ is also a metric, but whenever α > 1 then ℓ does not

satisfy the triangle inequality anymore, and is thus a semi-metric only.

Now we state our assumption about the function f .

Assumption 2 (Local smoothness of f). There exists at least one

global optimizer x∗ ∈ X of f (i.e., f(x∗) = supx∈X f(x)) and for all

x ∈ X ,

f(x∗)− f(x) ≤ ℓ(x, x∗). (3.8)

This condition guarantees that f does not decrease too fast around

(at least) one global optimum x∗ (this is a sort of a locally one-

sided Lipschitz assumption). Note that although it is required that

(3.8) be satisfied for all x ∈ X , this assumption essentially sets con-

straints to the function f locally around x∗ (since at x such that

32 Optimistic optimization with known smoothness

x∗ X

f(x∗) f

f(x∗)− ℓ(x, x∗)

Fig. 3.5 Illustration of the local smoothness property of f around x∗ w.r.t. the semi-metric ℓ:
the function f(x) is lower-bounded by f(x∗)−ℓ(x, x∗). This essentially constrains f around
x∗ since for x away from x∗ the function can be arbitrarily non-smooth (e.g., discontinuous).

ℓ(x, x∗) > range(f)
def
= sup f − inf f the assumption is void). When this

property holds, we say that f is locally smooth w.r.t. ℓ around its

maximum. See an illustration in Figure 3.5.

Now we state the assumptions about the hierarchical partitioning.

Assumption 3 (Decreasing diameters). There exists a decreasing

sequence δ(h) > 0, such that for any depth h ≥ 0 and for any cell Xh,i

of depth h, we have supx∈Xh,i
ℓ(xh,i, x) ≤ δ(h).

Assumption 4 (Well-shaped cells). There exists ν > 0 such that

for any depth h ≥ 0, any cell Xh,i contains a ℓ-ball of radius νδ(h)

centered in xh,i.

In this chapter, we consider the setting where Assumptions 1-4 hold

for a specific semi-metric ℓ, and that the semi-metric ℓ is known to

the algorithm.

3.3 Deterministic Optimistic Optimization

The Deterministic Optimistic Optimization (DOO) algorithm de-

scribed in Figure 3.6 uses the knowledge of ℓ through the use of δ(h).

3.3. Deterministic Optimistic Optimization 33

Initialization: T1 = {(0, 0)} (root node)
for t = 1 to n do

Select the leaf (h, j) ∈ Lt with maximum bh,j
def
= f(xh,j) + δ(h) value.

Expand this node: add to Tt the K children of (h, j) and evaluate the
function at the points {xh+1,j1 , . . . , xh+1,jK}

end for
Return x(n) = argmax(h,i)∈Tn f(xh,i)

Fig. 3.6 Deterministic Optimistic Optimization (DOO) algorithm.

DOO builds incrementally a tree Tt for t = 1 . . . n, starting with

the root node T1 = {(0, 0)}, and by selecting at each round t a leaf

of the current tree Tt to expand. Expanding a leaf means adding its

K children to the current tree (this corresponds to splitting the cell

Xh,j into K children-cells {Xh+1,j1 , . . . , Xh+1,jK}) and evaluating the

function at the centers {xh+1,j1 , . . . , xh+1,jK} of the children cells. We

write Lt the leaves of Tt (set of nodes whose children are not in Tt),
which are the set of nodes that can be expanded at round t.

The algorithm computes a b-value bh,j
def
= f(xh,j) + δ(h) for each

leaf (h, j) ∈ Lt of the current tree Tt and selects the leaf with highest b-

value to expand next. Once the numerical budget is over (here, n node

expansions corresponds to nK function evaluations), DOO returns the

evaluated state x(n) ∈ {xh,i, (h, i) ∈ Tn} with highest value.

This algorithm follows an optimistic principle because it expands

at each round a cell that may contain the optimum of f , based on the

information about (i) the previously observed evaluations of f , and (ii)

the knowledge of the local smoothness property (3.8) of f (since ℓ is

known).

Thus the use of the hierarchical partitioning provides a computa-

tionally efficient implementation of the optimistic sampling strategy

described in Section 3.1 and illustrated in Figure 3.1, where the (pos-

sibly complicated) problem of selecting the state with highest upper-

bound (3.5) is replaced by the (easy) selection process of the leaf with

highest b-value.

34 Optimistic optimization with known smoothness

3.3.1 Analysis of DOO

Notice that Assumption 2 implies that the b-value of any cell containing

x∗ upper bounds f∗, i.e., for any cell Xh,i such that x∗ ∈ Xh,i,

bh,i = f(xh,i) + δ(h) ≥ f(xh,i) + ℓ(xh,i, x
∗) ≥ f∗.

As a consequence, a leaf (h, i) such that f(xh,i) + δ(h) < f∗ will

never be expanded (since at any time t, the b-value of such a leaf will

be dominated by the b-value of the leaf containing x∗). We deduce that

DOO only expands nodes in the set I
def
= ∪h≥0Ih, where

Ih
def
= {nodes (h, i) such that f(xh,i) + δ(h) ≥ f∗}.

In order to derive a loss bound we now define a measure of the

quantity of near-optimal states, called near-optimality dimension. This

measure is closely related to similar measures introduced in [84, 33].

For any ϵ > 0, let us write

Xϵ
def
= {x ∈ X , f(x) ≥ f∗ − ϵ}

the set of ϵ-optimal states.

Definition 3.1. The η-near-optimality dimension is the smallest

d ≥ 0 such that there exists C > 0, for all ϵ > 0, the maximal number

of disjoint ℓ-balls of radius ηϵ with center in Xϵ is less than Cϵ−d.

Note that d is not an intrinsic property of f : it characterizes both f

and ℓ (since we use ℓ-balls in the packing of near-optimal states), and

also depends on the constant η. However it does not depend on the hi-

erarchical partitioning of the space. Thus it is a measure of the function

and the semi-metric space only, but not of any specific algorithm. Now,

in order to relate this measure to the specificities of the algorithm (in

order to bound the cardinality of the sets Ih, see Lemma 3.1), we will

need to relate it to the properties of the partitioning, in particular the

shape of the cells, which is the reason why d depends on the constant

η, which will be chosen according to ν, as defined in Assumption 4.

3.3. Deterministic Optimistic Optimization 35

Remark 3.3. Notice that in the definition of the near-optimality di-

mension, we require the packing property to hold for all ϵ > 0. We

can relax this assumption and define a local near-optimality dimen-

sion by requiring this packing property to hold only for all ϵ ≤ ϵ0, for

some ϵ0 ≥ 0. If the space X is bounded and has finite packing dimen-

sion (i.e. X can be packed by C ′ϵ−D ℓ-balls of size ϵ, for any ϵ > 0),

then the near-optimality and local near-optimality dimensions coincide.

Only the constant C in their definition may change.

Indeed, let d be the near-optimality dimension and C the corre-

sponding constant where the packing property is required for all ϵ > 0

(as defined in Assumption 3.1). Thus by setting C0 = max(C,C ′ϵ−D
0)

we have that the local near-optimality dimension (where the packing

property is required to hold for ϵ ≤ ϵ0 only) is the same d with C0

being the corresponding constant.

Thus we see that the near-optimality dimension d captures a lo-

cal property of f near x∗ whereas the corresponding constant C may

depend on the global shape of f .

We now bound the number of nodes in Ih using the near-optimality

dimension.

Lemma 3.1. Let d be the ν-near-optimality dimension (where ν is

defined in Assumption 4), and C the corresponding constant. Then

|Ih| ≤ Cδ(h)−d.

Proof. From Assumption 4, each cell (h, i) contains a ball of radius

νδ(h) centered in xh,i, thus if |Ih| = |{xh,i ∈ Xδ(h)}| exceeded Cδ(h)−d,

this would mean that there exists more than Cδ(h)−d disjoint ℓ-balls of

radius νδ(h) with center in Xδ(h), which would contradict the definition

of d.

We now provide our loss bound for DOO.

36 Optimistic optimization with known smoothness

Theorem 3.1. Let us write h(n) the smallest integer h such that

C
∑h

l=0 δ(l)
−d ≥ n. Then the loss of DOO is bounded as rn ≤ δ(h(n)).

Proof. Let (hmax, jmax) be the deepest node that has been expanded

by the algorithm up to round n. We known that DOO only expands

nodes in the set I. Thus the number of expanded nodes n is such that

n =

hmax∑
l=0

Kl−1∑
j=0

1{(h, j) has been expanded}

≤
hmax∑
l=0

|Il| ≤ C

hmax∑
l=0

δ(l)−d,

from Lemma 3.1. Now from the definition of h(n) we have hmax ≥
h(n). Finally, since node (hmax, jmax) has been expanded, we have that

(hmax, jmax) ∈ I, thus

f(x(n)) ≥ f(xhmax,jmax) ≥ f∗ − δ(hmax) ≥ f∗ − δ(h(n)).

Now, let us make the bound more explicit when the diameter δ(h)

of the cells decreases exponentially fast with their depth (this case is

rather general as illustrated in the examples described next, as well as

in the discussion in [34]).

Corollary 3.1. Assume that δ(h) = cγh for some constants c > 0 and

γ < 1.

• If d > 0, then the loss decreases polynomially fast:

rn ≤
(C

1− γd

)1/d
n−1/d.

• If d = 0, then the loss decreases exponentially fast:

rn ≤ cγ(n/C)−1.

3.3. Deterministic Optimistic Optimization 37

Proof. From Theorem 3.1, whenever d > 0 we have

n ≤ C

h(n)∑
l=0

δ(l)−d = Cc−dγ
−d(h(n)+1) − 1

γ−d − 1
,

thus γ−dh(n) ≥ n
Cc−d

(
1− γd

)
, from which we deduce that

rn ≤ δ(h(n)) ≤ cγh(n) ≤
(C

1− γd
)1/d

n−1/d.

Now, if d = 0 then n ≤ C
∑h(n)

l=0 δ(l)−d = C(h(n) + 1), and we

deduce that the loss is bounded as rn ≤ δ(h(n)) = cγ(n/C)−1.

Remark 3.4. Notice that in Theorem 3.1 and Corollary 3.1 the loss

bound is expressed in terms of the number of node expansions n. The

corresponding number of function evaluations is Kn (since each node

expansion generates K children where the function is evaluated).

3.3.2 Examples

Example 1: Let X = [−1, 1]D and f be the function f(x) = 1−∥x∥α∞,

for some α ≥ 0. Consider a K = 2D-ary tree of partitions with (hyper)-

squares. Expanding a node means splitting the corresponding square

in 2D squares of half length. Let xh,i be the center of any cell Xh,i.

Consider the following choice of the semi metric: ℓ(x, y) = ∥x−y∥β∞,

with β ≤ α. We have δ(h) = 2−hβ (recall that δ(h) is defined in terms

of ℓ), and ν = 1. The optimum of f is x∗ = 0 and f satisfies the

local smoothness property (3.8). Now let us compute its near-optimality

dimension. For any ϵ > 0, Xϵ is the L∞-ball of radius ϵ1/α centered in

0, which can be packed by
(
ϵ1/α

ϵ1/β

)D
L∞-balls of diameter ϵ (since a

L∞-balls of diameter ϵ is a ℓ-ball of diameter ϵ1/β). Thus the near-

optimality dimension is d = D(1/β − 1/α) (and the constant C = 1).

From Corollary 3.1 we deduce that (i) when α > β, then d > 0 and in

this case, rn = O
(
n
− 1

D
αβ
α−β
)
, and (ii) when α = β, then d = 0 and the

loss decreases exponentially fast: rn ≤ 21−n.

It is interesting to compare this result to a uniform sampling strat-

egy (i.e., the function is evaluated at the set of points on a uniform grid),

38 Optimistic optimization with known smoothness

which would provide a loss of order n−α/D. We observe that DOO is

better than uniform whenever α < 2β and worse when α > 2β.

This result provides some indication on how to choose the semi-

metric ℓ (thus β), which is a key ingredient of the DOO algorithm

(since δ(h) = 2−hβ appears in the b-values): β should be as close as

possible to the true α (which can be seen as a local smoothness order

of f around its maximum), but never larger than α (otherwise f does

not satisfy the local smoothness property (3.8) any more).

Example 2: The previous analysis generalizes to any function that is

locally equivalent to ∥x−x∗∥α, for some α > 0 (where ∥·∥ is any norm,

e.g., Euclidean, L∞, or L1), around a global maximum x∗ (among a set

of global optima assumed to be finite). More precisely, we assume that

there exists constants c1 > 0, c2 > 0, c > 0, such that

f(x∗)− f(x) ≤ c1∥x− x∗∥α, for all x ∈ X ,

f(x∗)− f(x) ≥ c2min(c, ∥x− x∗∥)α, for all x ∈ X .

Let X = [0, 1]D. Again, consider a K = 2D-ary tree of partitions with

(hyper)-squares. Let ℓ(x, y) = c∥x − y∥β with c1 ≤ c and β ≤ α (so

that f satisfies (3.8)). For simplicity we do not make explicit all the

constants using the O notation for convenience (the actual constants

depend on the choice of the norm ∥ · ∥). We have δ(h) = O(2−hβ).

Now, let us compute the local near-optimality dimension. For any small

enough ϵ > 0, Xϵ is included in a ball of radius (ϵ/c2)
1/α centered in

x∗, which can be packed by O
(
ϵ1/α

ϵ1/β

)D
ℓ-balls of diameter ϵ. Thus the

local near-optimality dimension (thus the near-optimality dimension

in light of Remark 3.3) is d = D(1/β − 1/α), and the results of the

previous example apply (up to constants), i.e. for α > β, then d > 0

and rn = O
(
n
− 1

D
αβ
α−β
)
. And when α = β, then d = 0 and one obtains

the exponential rate rn = O(2−α(n/C−1)).

Thus we see that the behavior of the algorithm depends on our

knowledge of the local smoothness (i.e. α and c1) of the function

around its maximum. Indeed, if this smoothness information is avail-

able, then one should define the semi-metric ℓ (which impacts the algo-

rithm through the definition of δ(h)) to match this smoothness (i.e. set

3.3. Deterministic Optimistic Optimization 39

β = α) and derive an exponential loss rate. Now if this information is

unknown, then one should underestimate the true smoothness (i.e. by

choosing β ≤ α) and suffer a loss rn = O
(
n
− 1

D
αβ
α−β
)
, rather than over-

estimating it (β > α) since in this case, (3.8) may not hold anymore

and there is a risk that the algorithm converges to a local optimum

(thus suffering a constant loss).

3.3.3 Illustration

We consider the optimization of the function f(x) =[
sin(13x) sin(27x) + 1

]
/2 in the interval X = [0, 1] (plotted in

Figure 3.7). The global optimum is x∗ ≈ 0.86442 and f∗ ≈ 0.975599.

Figure 3.7 shows two simulations of DOO, both using a numerical

budget of n = 150 evaluations to the function, but with two different

metrics ℓ.

Fig. 3.7 The trees Tn built by DOO after n = 150 rounds with the choice of ℓ(x, y) =
14|x − y| (left) and ℓ(x, y) = 222|x − y|2 (right). The upper parts of the figure shows the
binary trees built by DOO. Note that both trees are extensively refined where the function
is near-optimal, while it is much less developed in other regions. Using a metric that reflects

the quadratic local regularity of f around its maximum (right figure) enables a much more
precise refinement to the discretization around x∗ than using the metric under which the
function is globally Lipschitz (left).

In the first case (left figure), we used the property that f is globally

Lipschitz and its maximum derivative is maxx∈[0,1] |f ′(x)| ≈ 13.407.

40 Optimistic optimization with known smoothness

Thus with the metric ℓ1(x, y)
def
= 14|x− y|, f is Lipschitz w.r.t. ℓ1 and

(3.8) holds. We remind that DOO algorithm requires the knowledge of

the metric since the diameters δ(h) are defined in terms of this metric.

Thus since we considered a dyadic partitioning of the space (i.e.K = 2),

we used δ(h) = 14× 2−h in the algorithm.

In the second case (right figure), we used the property that f ′(x∗) =

0, thus f is locally quadratic around x∗. Since f ′′(x∗) ≈ 443.7, us-

ing a Taylor expansion of order 2 we deduce that f is locally smooth

(i.e. satisfies (3.8)) w.r.t. ℓ2(x, y)
def
= 222|x− y|2. Thus here we defined

δ(h) = 222× 2−2h.

Table 3.8 reports the numerical loss of DOO with these two metrics.

As mentioned in previous subsection, the behavior of the algorithm

heavily depends on the choice of metric. Although f is locally smooth

(i.e. satisfies (3.8)) w.r.t. both metrics, the near-optimality of f w.r.t. ℓ1
is d = 1/2 (as discussed in Example 2 above) whereas it is d = 0

w.r.t. ℓ2. Thus ℓ2 is better suited for optimizing this function since

in that case, the loss decreases exponentially fast with the number

of evaluations (instead of polynomially when using ℓ1). The choice of

the constants in the definition of the metric is also important. If we

were to use a larger constant in the definition of the metric, the effect

would be a more uniform exploration of the space at the beginning.

This will impact the constant factor in the loss bound but not the rate

(since the rate only depends on the near-optimality dimension d which

characterizes a local behavior of f around x∗ whereas the corresponding

constant C depends on the global shape of f).

Now, we should be careful of not selecting a metric (such as

ℓ3(x, y)
def
= |x − y|3) which would overestimate the true smoothness

of f around its optimum since in this case (3.8) would not hold any-

more and the algorithm might not converge to the global optimum at

all (it can be stuck in a local maximum).

Thus we see that the main technical difficulty when applying this

optimistic optimization methods is the possible lack of knowledge about

the smoothness of the function around its maximum (or equivalently

the metric under which the function is locally smooth). In Chapter 4 we

will consider adaptive techniques that apply even when this smoothness

3.4. X -armed bandits 41

is unknown. But before this, let us discuss the stochastic case in the

next section.

n uniform grid DOO with ℓ1 DOO with ℓ2
50 1.25× 10−2 2.53× 10−5 1.20× 10−2

100 8.31× 10−3 2.53× 10−5 1.67× 10−7

150 9.72× 10−3 4.93× 10−6 4.44× 10−16

Fig. 3.8 Loss rn for different values of n for a uniform grid and DOO with the two semi-
metric ℓ1 and ℓ2.

3.4 X -armed bandits

We now consider the case of noisy evaluations of the function, as in

Subsection 3.1.2: At round t, the observed value (reward) is rt = f(xt)+

ϵt, where ϵt is an independent sample of a random variable (whose law

may depend on xt) such that E[ϵt|xt] = 0. We also assume that the

rewards rt are bounded in [0, 1]. Thus the setting is a stochastic multi-

armed bandit with the set of arms being X . There are several ways to

extend the deterministic case described in the previous section to this

stochastic setting:

The simplest way consists in sampling several times each point in

order to build an accurate estimate of the value at that point, be-

fore deciding to expand the corresponding node. This leads to a direct

extension of DOO where an additional term in the definition of the

b-values accounts for a high-probability estimation interval. The cor-

responding algorithm is called Stochastic DOO (StoOO) and is close

in spirit to the Zooming algorithm of [84]. The analysis is simple but

the time horizon n needs to be known in advance (thus this is not an

anytime algorithm). This algorithm is described in Subsection 3.4.1.

Now, another way consists in expanding the selected node each time

we collect a sample. Thus the sampled points may always be different.

In that case we can use the approach illustrated in Subsection 3.1.2 to

generate high-probability upper bounds on the function in each cell of

the tree in order to define a procedure to select in an optimistic way a

leaf to expand at each round. The corresponding algorithm, Hierarchi-

42 Optimistic optimization with known smoothness

Parameters: error probability δ > 0, time horizon n
Initialization: T1 = {(0, 0)} (root node)
for t = 1 to n do

For each leaf (h, j) ∈ Lt, compute the b-values bh,j(t) according to (3.9).
Select (ht, jt) = argmax(h,j)∈Lt bh,j(t)

Sample state xt
def
= xht,jt and collect reward rt = f(xt) + ϵt.

If Th,j(t) ≥ log(n2/δ)

2δ(h)2
, expand this node: add to Tt the K children of (h, j)

end for
Return the deepest node among those that have been expanded:

x(n) = arg max
xh,j :(h,j)∈Tn\Ln

h.

Fig. 3.9 Stochastic Optimistic Optimization (StoOO) algorithm

cal Optimistic Optimization (HOO) is described in Subsection 3.4.2.

The benefit is that HOO does not require the knowledge of the time

horizon n (thus is anytime) and is more efficient in practice than StoOO

(although this improvement is not reflected in the loss bounds). How-

ever it requires a slightly stronger assumption on the smoothness of the

function.

3.4.1 Stochastic Optimistic Optimization (StoOO)

In the stochastic version of DOO the algorithm computes the b-

values of all the leaves (h, j) ∈ Lt of the current tree as

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)
+ δ(h), (3.9)

where µ̂h,j(t)
def
= 1

Th,j(t)

∑t
s=1 rs1{xs ∈ Xh,j} is the empirical average

of the rewards received in Xh,j , and Th,j(t)
def
=
∑t

s=1 1{xs ∈ Xh,j} is

the number of times (h, j) has been selected up to time t. We use the

convention that if a node (h, j) has not been sampled at time t then

Th,j(t) = 0 and its b-value is +∞.

The algorithm is similar to DOO, see Figure 3.9, except that a

node (h, j) is expanded only if xh,j has been sampled at least a certain

number of times. Another noticeable difference is that the algorithm

3.4. X -armed bandits 43

returns a state x(n) which is the deepest among all nodes that have

been expanded up to round n.

Analysis of StoOO: For any δ > 0, define the following event

ξ
def
=
{
∀h ≥ 0, ∀0 ≤ i < Kh, ∀1 ≤ t ≤ n,

∣∣µ̂h,j(t)− f(xh,j)
∣∣ ≤√ log(n2/δ)

Th,j(t)

}
. (3.10)

We now prove that this event holds with high probability:

Lemma 3.2. We have P(ξ) ≥ 1− δ.

Proof. Letm ≤ n be the (random) number of nodes expanded through-

out the algorithm. For 1 ≤ i ≤ m, write ti as the time when the i-th

node is expanded, and (h̃i, j̃i) = (hti , jti) the corresponding node. Us-

ing “local clocks”, denote by τ si the time when the node (h̃i, j̃i) has

been selected for the s-th time and write r̃si = rτsi the reward obtained

at that time. Note that (hτsi , jτsi) = (h̃i, j̃i). Using these notations, the

event ξ rewrites

ξ =
{
∀1 ≤ i ≤ m,∀1 ≤ u ≤ Th̃i,j̃i

(n),

∣∣1
u

u∑
s=1

r̃si − f(xh̃i,j̃i
)
∣∣ ≤√ log(n2/δ)

u

}
.

Since we have E[rsi |xh̃i,j̃i
] = f(xh̃i,j̃i

), then
∑t

s=1 r̃
s
i − f(xh̃i,j̃i

) is

a Martingale (w.r.t. the filtration generated by the samples collected

at xh̃i,j̃i
), and Azuma’s inequality [19] applies. Taking a union bound

over the number of samples u ≤ n and the number m ≤ n of expanded

nodes, we deduce the result.

We now show that in this event of high probability StoOO only

expands nodes that are near-optimal. Indeed, similarly to the analysis

of DOO, define the sets

Ih
def
= {nodes (h, i) such that f(xh,i) + 3δ(h) ≥ f∗}.

44 Optimistic optimization with known smoothness

Lemma 3.3. In the event ξ, StoOO only expands nodes that belong

to the set I
def
= ∪h≥0Ih.

Proof. Let (ht, jt) be the node expanded at time t. From the definition

of the algorithm, since this node is selected we have that its b-value is

larger than the b-value of the cell (h∗t , j
∗
t) containing x∗. And since this

node is expanded, we have
√

log(n2/δ)
2Tht,jt

(t) ≤ δ(ht). Thus,

f(xht,jt) ≥ µ̂ht,jt(t)− δ(ht) under ξ

≥ bht,jt(t)− 3δ(ht) since the node is expanded

≥ bh∗
t ,j

∗
t
(t)− 3δ(ht) since the node is selected

≥ f(xh∗
t ,j

∗
t
) + δ(h∗t)− 3δ(ht) under ξ

≥ f∗ − 3δ(ht) from Assumption (2)

which ends the proof.

We now relate the number of nodes in Ih to the near-optimality

dimension.

Lemma 3.4. Let d be the ν
3 -near-optimality dimension, and C the

corresponding constant. Then

|Ih| ≤ C[3δ(h)]−d.

Proof. From Assumption 4, each cell (h, i) contains a ball of radius

νδ(h) centered in xh,i, thus if |Ih| = |{xh,i ∈ X3δ(h)}| exceeded

C[3δ(h)]−d, this would mean that there exists more than C[3δ(h)]−d

disjoint ℓ-balls of radius νδ(h) with center in X3δ(h), which contradicts

the definition of d (by taking ϵ = 3δ(h)).

We now provide a loss bound for StoOO.

Theorem 3.2. Let δ > 0. Let us define h(n) to be the smallest integer

h such that

2CK3−d
h∑

l=0

δ(l)−(d+2) ≥ n

log(n2/δ)
.

3.4. X -armed bandits 45

Then with probability 1− δ, the loss of StoOO is bounded as

rn ≤ δ(h(n)).

Proof. Let (hmax, jmax) be the deepest node that has been expanded by

the algorithm up to round n. At round n there are two types of nodes:

the leaves Ln (nodes that have not been expanded) and the nodes that

have been expanded Tn\Ln, which from Lemma 3.3, belong to I on the

event ξ. Each leaf j ∈ Ln of depth h has been pulled at most log(n2/δ)
2δ(h)

times (since it has not been expanded) and its parent (denoted by

(h− 1, j′) below) belongs to Ih−1. Thus the total number of expanded

nodes n is such that

n =

hmax∑
l=0

Kl−1∑
j=0

Tl,j(n)1{(h, j) ∈ Ih}

+

hmax+1∑
l=1

Kl−1∑
j=0

Tl,j(n)1{(h− 1, j′) ∈ Ih−1}

≤
hmax∑
l=0

|Il|
log(n2/δ)

2δ(l)
+ (K − 1)

hmax+1∑
l=1

|Il−1|
log(n2/δ)

2δ(l − 1)

= K

hmax∑
l=0

C[3δ(l)]−d log(n
2/δ)

2δ(l)

where we used Lemma 3.4 to bound the number of nodes in Il. Now

from the definition of h(n) we have hmax ≥ h(n). And since node

(hmax, jmax) has been expanded, we have that (hmax, jmax) ∈ I on ξ

and

f(x(n)) = f(xhmax,jmax) ≥ f∗ − 3δ(hmax) ≥ f∗ − 3δ(h(n))

happens with probability 1− δ from Lemma 3.2.

Now, in the case of exponential diameters we have the following

corollary.

46 Optimistic optimization with known smoothness

Corollary 3.2. Assume that δ(h) = cγh for some constants c > 0

and γ < 1. For any δ > 0 the loss of StoOO run with parameter δ is

bounded with probability 1− δ as

rn ≤ c1

[log(n2/δ)

n

] 1
d+2

.

with c1
def
=
[
2CK3−d

1−γd+2

] 1
d+2

. Now, setting the parameter δ as a function of

the time horizon n enables the derivation of the expected loss bound.

For example with the choice δ = 1/n we have Ern = O
([logn

n

] 1
d+2

)
.

Proof. From the definition of h(n) in Theorem 3.2, we have

n

log(n2/δ)
≤ 2CK3−d

h(n)∑
l=0

[cγl]−(d+2)

≤ 2CK3−dc−(d+2) γ
−(h(n)+1)(d+2) − 1

γ−(d+2) − 1

≤ cd+2
1 δ(h(n))−(d+2).

Now from Theorem 3.2, rn ≤ δ(h(n)) with probability 1−δ from which

we deduce the result in high probability. The result in expectation

immediately follows from

Ern ≤ (1− δ)δ(h(n)) + δ = O
([log n

n

] 1
d+2

)
,

for the choice δ = 1/n as the loss is trivially bounded by 1 (since the

rewards are in [0, 1]).

Notice that this algorithm is not an anytime algorithm, in con-

trary to the DOO algorithm. StoOO is close in spirit to the Zooming

algorithm [84], and both algorithm can be made anytime in a some-

how artificial way by resorting to the so-called doubling-trick technique,

which consists in running the algorithm for a given time horizon n0,

and once finished (if n > n0), starting it again with a double time

horizon n1 = 2n0 and repeating this process until the (unknown) hori-

zon n is reached. One can show that the performance of the resulting

3.4. X -armed bandits 47

algorithm is bounded by a quantity similar to the performance of the

algorithm that would know n, up to a constant factor. The main dif-

ference between StoOO and Zooming algorithm is that StoOO is given

a hierarchical partitioning which constrains the computation of the

upper-confidence bounds but as a consequence simplifies the complex-

ity of the sampling strategy, whereas Zooming requires a sampling or-

acle that can identify states that do not belong to the current covering

centered at the set of active states.

In the next subsection we present a modification of the StoOO al-

gorithm, called HOO -which is anytime- but which requires a slightly

stronger assumption on f , called weak Lipschitz assumption.

3.4.2 Hierarchical Optimistic Optimization (HOO)

We make the following assumption on the function f :

Assumption 5 (weak Lipschitz). The function f is such that for

all x, y ∈ X ,

f∗ − f(y) ≤ f∗ − f(x) + max
{
f∗ − f(x), ℓ(x, y)

}
. (3.11)

Intuitively, this says that around an optimum x∗ the values f(y)

should be above f∗− ℓ(x∗, y), like the local smoothness property (3.8).

But in addition, in the vicinity of other arms x, the constraint is milder

as the arm x gets worse: around any ϵ–optimal point x the values f(y)

should be larger than f∗−2ϵ for ℓ(x, y) ≤ ϵ and larger than f(x)−ℓ(x, y)

elsewhere. In other words, there is no sudden and large drop in the

mean-payoff function around states with values close to the optimum

(note that this property can be satisfied even for discontinuous func-

tions).

The HOO algorithm is described in Figure 3.10. The notation C(h, i)
refers to the set of children of (h, i).

At each round t, the algorithm assigns b-values to all nodes of the

current tree Tt, defined as bh,j = +∞ for any leaf (h, j) ∈ Lt (from

which no sample has been observed yet), and for any node (h, i) ∈

48 Optimistic optimization with known smoothness

Parameter: δ > 0
Initialization: T1 = {(0, 0)} (root node)
for t = 1 to n do

Compute the b-values of all nodes in Tt according to (3.12),
Select a leaf (ht, jt) ∈ Lt by following an “optimistic path”:
Let (h, i)← (0, 0) (start from the root)
While (h, i) ∈ Tt \ Lt do

(h, i)← arg max
(h+1,j)∈C(h,i)

bh+1,j(t) (Ties broken arbitrarily)

The selected leaf is (ht, jt) = (h, i)
Sample a state xt arbitrarily in Xht,jt (for example xt = xht,jt) and
collect the reward rt = f(xt) + ϵt.
Expand node (ht, jt): Tt+1 ← Tt∪C(ht, jt) (add theK children of (ht, jt))

end for
Return x(n)

def
= xT , where T ∼ U({1, 2, . . . , n}).

Fig. 3.10 Hierarchical Optimistic Optimization (HOO) applied to the problem of minimiz-
ing the loss rn.

Tt \ Lt,

bh,i(t)
def
= min

{
µ̂h,i(t)+

√
2 log t

Th,i(t)
+δ(h), max

(h+1,j)∈C(h,i)
bh+1,j(t)

}
. (3.12)

Their computation can be done by backward induction, starting from

the leaves, up to the root node.

The algorithm works as follows: At each round t a leaf (ht, jt) ∈ Lt of

the current tree is selected. The way this leaf is chosen is by following an

“optimistic path” from the root to a leaf where at each node along this

path, the child node is the one with the highest b-value (Figure 3.11

illustrates the leaf selection procedure). Then a point xt is selected

arbitrarily in the corresponding domain Xht,jt (for example xht,jt but

it can be any other point, possibly chosen randomly) and the random

reward rt = f(xt) + ϵt is observed. Then the b-values of all nodes are

updated and the process repeats.

Finally, at round n, the algorithm returns one of the previously

sampled states chosen (uniformly) randomly.

An optimistic sampling strategy: By defining the bmin-value of

any leaf (h, j) ∈ Lt as the minimum of the b-values of all its ancestor

3.4. X -armed bandits 49

Optimistic path

h,i
b

b b
h+1,i1 h+1,i2

Sampled point xt

Selected leaf

Fig. 3.11 Illustration of the leaf selection procedure in round t. The tree represents Tt. In
the illustration, Bh+1,i1 (t) > Bh+1,i2 (t), therefore, the selected path traverses the node
(h+ 1, i1). The point xt is chosen in the selected leaf (ht, jt).

nodes, i.e.,

bmin
h,j (t)

def
= min

(l,i) ancestor of (h,j)
µ̂l,i(t) +

√
2 log t

Tl,i(t)
+ δ(l),

we have that bmin
h,j (t) is a refined high-probability upper-confidence

bound on supx∈Xh,j
f(x) (since each term of the min is). This is a

way to implement the idea of improving the UCB using a hierarchy of

domains mentioned in Remark 3.2.

Actually from the definition of the optimistic path chosen by the

HOO algorithm, we have the property that the selected leaf (ht, jt) is

a leaf with highest bmin value among all leaves in Lt:

(ht, jt) ∈ arg max
(h,j)∈Lt

bmin
h,j (t).

This is exactly the optimistic methodology introduced in Sec-

tion 3.1.2, especially described in Remark 3.2.

50 Optimistic optimization with known smoothness

Analysis of HOO The bound reported in [34] is in terms of the

cumulative regret Rn
def
= nf∗ −

∑n
t=1 rt, i.e. the difference between the

sum of rewards collected by the algorithm up to time n compared to n

times the best possible expected reward f∗.

However, from an algorithm achieving a cumulative regret Rn one

can design an algorithm that achieves a loss rn in expectation of

Ern = ERn/n. This loss bound is not optimal for finitely many

armed bandits (since there exists strategies that achieve exponential

loss bounds as discussed in [32, 12]), but in the case of X -armed ban-

dits (where the set of arms is larger than the number of rounds n),

this may be unimprovable. The version presented in Figure 3.10 is an

adaptation of the HOO algorithm where the state x(n) returned at the

end of the algorithm is chosen uniformly randomly among the states

{xt}1≤t≤n sampled by the algorithm up to round n:

x(n)
def
= xT , where T ∼ U({1, 2, . . . , n}). (3.13)

Thus we immediately deduce that

Ern = ET [f
∗ − f(xT)] =

1

n

n∑
t=1

[f∗ − f(xt)] =
1

n
ERn. (3.14)

Theorem 3.3 (Regret bound for HOO [34]). Under Assumption

5 on f . Let d be the ν
3 -near-optimality dimension of f w.r.t. ℓ. Then

the loss of HOO is upper-bounded as

Ern = O
([n

log n

]− 1
d+2

)
.

Proof. From [34] (proof not reproduced here) we have that the ex-

pected cumulative regret of HOO is O
([

logn
] 1
d+2n

d+1
d+2

)
. Using (3.14)

we deduce the result for the expected loss.

3.4. X -armed bandits 51

Remark 3.5. Since the state x(n) returned by the algorithm follows

(3.13), the loss rn of HOO is directly related to the cumulative regret

Rn via (3.14). However for the problem of minimizing the loss rn (that

we consider in this paper), it may be possible to define other choices for

the recommended state x(n) such that the loss rn may not be related

to the cumulative regret Rn. Such a possible choice would be to return

any point in the deepest leaf argmax(h,j)∈Ln
h of the final tree Tn built

from HOO. Actually, numerical experiments indicate that this strategy

provides better performance than the one defined by (3.13). However,

there is currently no theoretical guarantee for it.

Remark 3.6. HOO requires that f satisfies (3.11) which is slightly

stronger than (3.8). The reason is that since HOO expands a leaf at

each round, it builds a high-probability UCB on supx∈Xh,i
f(x) at a

given node (h, i) based on different points in the cell Xh,i (in contrary

to StoOO that samples several times the same point in order to build

an accurate estimate of the value before expanding the node). As a con-

sequence, the rewards collected in sub-optimal cells may significantly

impact the cumulative regret. Indeed, consider a sub-optimal cell Xh,i

(thus x∗ /∈ Xh,i) such that f(xh,i) ≥ f∗ − δ(h). Assuming that f satis-

fies (3.8) only, then sampling arbitrarily at x ∈ Xh,i may cause a large

cumulative regret (since the function may be arbitrarily low at points

x ̸= xh,i). In contrast, assuming that f satisfies (3.11), one deduce that

any sample x in the cell Xh,i contributes to the cumulative regret by

f∗ − f(x) ≤ f∗ − f(xh,i) + max{f∗ − f(xh,i), ℓ(xh,i, x)} ≤ 2δ(h) only.

The loss bounds of HOO and StoOO are of the same order. The

benefit of HOO over StoOO is that it is anytime (i.e. n does not need

to be known in advance) and it is usually numerically more efficient

since it does not wait until a cell has been sampled enough times to

start refining the corresponding node. Thus inside a given cell Xh,i the

sampling is adaptive even when the number of samples is small, which

enables HOO to localize more rapidly the maximum of f within the

cell (contrary to StoOO which samples the same state O(log(n)/δ(h)2)

52 Optimistic optimization with known smoothness

times before refining it). Those improvements come at the cost of a

slightly more constraining assumption on the function f as explained

in the previous remark.

Finally, we provide some numerical experiments on the same one-

dimensional problem as described in Subsection 3.3.3. The mean-

reward function is f(x)
def
=
(
sin(13x) sin(27x)+1

)
/2 and the reward col-

lected at a state xt follows a Bernoulli distribution with parameter f(xt)

(i.e. rt = 1 with probability f(xt) and rt = 0 with probability 1−f(xt)).

Figure 3.12 shows the trees built by HOO after n = 102, 103, 104, and

n = 105 calls to the function using the ℓ2-metric. Here the hierarchical

partitioning is formed by dyadic intervals, δ(h) = 2−h, and the points

xt are uniformly randomly chosen in the selected cells Xht,jt .

A first observation is that tree is more uniformly balanced here

than in the deterministic case. The reason is that the loss obtained in

this stochastic case (both for StoOO and HOO) is of the order n− 1
d+2 ,

where d is the near-optimality dimension, whereas in the deterministic

setting, DOO achieves the improved rate n−1/d when d > 0, and even

an exponential rate when d = 0 (see Corollary 3.1).

A second remark is that, similarly to the deterministic case, the tree

is more deeply refined where the mean-payoff function is near-optimal,

and the heterogeneous aspect of the tree increases with n: The algo-

rithm starts with a quasi-uniform initial exploration, then rapidly focus

on the main peaks, and eventually performs a local search around the

global optimum. We can intuitively grasp the advantages of such hier-

archical optimistic optimization methods in the fact that they perform

an efficient exploration of the search space for any possible numerical

budget n (using the knowledge of the smoothness of f).

Comparison with UCB-AIR algorithm One can think of apply-

ing the UCB-AIR algorithm [118] introduced in Subsection 1.2.1 in this

X -armed bandit setting, where new arms would be chosen uniformly

at random over the space X .

For illustration, let us compare UCB-AIR with StoOO/HOO on

Example 2 described in Section 3.3.2 where X = [0, 1]D and the mean-

reward function f is locally equivalent to ∥x − x∗∥α, for some α > 0,

3.4. X -armed bandits 53

Fig. 3.12 The trees Tn built by HOO after n = 102, 103, 105 and 105 noisy function
evaluations. The mean-payoff function (shown in the top part of the figures) is x ∈ [0, 1] 7−→
f(x) =

(
sin(13x) sin(27x) + 1

)
/2 and the corresponding rewards are Bernoulli-distributed.

around a global maximum x∗.

UCB-AIR would pull randomly a new arm X according to the

Lebesgue measure on [0, 1]D. We have P(µ(X) > µ∗ − ε) = Θ(P(||X −
x∗||α < ε)) = Θ(εD/α), for ε → 0.

Thus Assumption (1.16) holds with β = D/α, and UCB-AIR pro-

vides an expected cumulative regret bounded as (in the case f∗ < 1)

ERn = Õ(
√
n) when D < α, and ERn = Õ(nD/(α+D)) when D ≥ α.

54 Optimistic optimization with known smoothness

Using the recommendation strategy of x(n) defined as in (3.13), the

expected loss of UCB-AIR is thus:

Ern =

{
Õ
(
n−1/2

)
for D < α

Õ
(
n− α

α+D
)

for D ≥ α

Thus the loss is small when the smoothness order α is large, since

there is a reasonable chance to find a near-optimal point among a small

number of samples chosen uniformly a random. Notice that in order to

apply UCB-AIR, the coefficient α should be known.

Now using StoOO or HOO with the semi-metric ℓ(x, y) = ∥x− y∥β
with β ≤ α implies that the near-optimality dimension is d = D(1/β−
1/α) (see Subsection 1.2.1), thus the expected loss of StoOO or HOO

is

Ern =

{
Õ
(
n−1/2

)
for α = β

Õ
(
n
− 1

D(1/β−1/α)+2
)

for α > β
, (3.15)

So the important measure of the quality of this strategy is the dis-

crepancy between the actual smoothness order α of f and the “be-

lieved“ smoothness order β which is used in the algorithm. The closer

β is from α, the better (since the near-optimality dimension depends

on this discrepancy).

Thus if the local smoothness order α is known, then it is always

better to apply StoOO or HOO with β = α than UCB-AIR since the

loss is then Õ(n−1/2). If α is not known, then both UCB-AIR and

StoOO/HOO would have to guess (or estimate) the smoothness order,

resulting in a loss of the actual performance. For StoOO/HOO the

guessed value β should be as close to α as possible while satisfying

β ≤ α, since otherwise the smoothness property (3.8) or (3.11) would

not hold, and the algorithms StoOO and HOO may not converge to

the global optimum (i.e. the loss may not converge to 0).

Comparison with UCT Actually, one can see the UCT algorithm

[85] exposed in Section 2.2 as a version of HOO where δ(h) is set to

0 in the definition of the upper-confidence-bounds (3.12) (since when

δ(h) = 0 the minimum of the two terms defining the bound is always

the first one), which reduces to the UCT bound (2.1). Thus UCT can

3.5. Conclusions 55

be seen as a version of HOO where the smoothness of the function is

assumed to be infinite (i.e. β is set to ∞), and the local smoothness

property (3.8) does not hold for such a metric. Thus in light of the

previous comment, this algorithm may be stuck in local optima for a

very long period of time (as illustrated in Chapter 2).

Monte-Carlo Tree Search HOO can be seen as a Monte-Carlo Tree

Search (MCTS) algorithm as illustrated in Figure 2.1. If we consider

choosing the point xt uniformly at random over the selected cell Xht,jt

then this is equivalent to performing an (infinite) rollout where uni-

formly random moves are chosen from nodeXht,jt . Thus the results pre-

sented in this chapter can be seen as preliminary foundations for MCTS

in the sense that finite-time performance guarantees are obtained for

the problem of function optimization in general spaces (i.e. semi-metric)

under the assumption that the mean-reward function satisfies a local

smoothness property w.r.t. a known semi-metric.

3.5 Conclusions

The performance of the algorithms DOO, StoOO, HOO described in

this chapter depends on the near-optimality dimension d, which charac-

terizes the quantity of near-optimal states of f measured with the semi-

metric ℓ. Actually d can be seen as a discrepancy between the actual

smoothness order of the function around its maximum and the believed

smoothness order that is used in the algorithm (through the choice of

ℓ), as illustrated in the previous example where d = D(1/β − 1/α).

Thus when the local smoothness of f around x∗ is known, it can be

used for defining ℓ such that the near-optimality dimension is d = 0,

which leads to a loss bound rn = Õ(n−1/2) in the stochastic case. Thus

we obtain the nice property that the rate n−1/2 is independent of

the space dimension, thus those techniques do not suffer from the

so-called ”the curse of dimensionality“.

However it is important to notice that the constant factor hidden

in the O notation may be exponential in the dimension of the space.

This is of course unavoidable when we consider a global optimization

problem under such a weak and local assumption on the possible func-

56 Optimistic optimization with known smoothness

tions. The performance is somehow similar to a Monte-Carlo integra-

tion method where the standard deviation of the Monte-Carlo estimate

using n random samples is σ(f)n−1/2. The rate n−1/2 is independent

of the space dimension, but the constant factor (the standard devia-

tion of f) is usually exponential in the dimension. Thus, in terms of

convergence rate, when the local smoothness of the function around

its global optima is known, optimizing a function is not more difficult

than estimating its integral!

Now, when the local smoothness of f is not known, or when there

is no semi-metric such that d = 0 then the loss bound deteriorates and

the dimension of the space appears in the rate.

Thus, like in Chapter 1, we see that the performance of the opti-

mistic strategy depends on the smoothness of f around the global

optimum (expressed in terms of a measure of the quantity of near-

optimal states) and on our knowledge about this smoothness.

The next chapter presents adaptive techniques that may apply when

the smoothness of the function is unknown.

4

Optimistic Optimization with unknown
smoothness

We now consider the setting where previous Assumptions 1, 2, 3, 4 hold

for some semi-metric ℓ, but now, the semi-metric ℓ is unknown

from the algorithm.

The hierarchical partitioning of the space is still given to the algo-

rithm, but since ℓ is unknown, one cannot use the diameter δ(h) of the

cells to design upper-bounds, like in DOO, StoOO, or HOO.

Alternatively, we can think of this setting as a lack of knowledge

about the local smoothness of f around its maximum. For example,

in the Examples 1 and 2 described in Section 3.3.2 the choice of β

(defining the semi-metric ℓ) is difficult when the smoothness order α of

f is unknown, but this choice is critical since β should always be less

than α (in order to guarantee the convergence of the algorithm) while

as close to α as possible in order to optimize the performance.

The question we wish to address here is: If ℓ is unknown, is it possi-

ble to implement an optimistic optimization strategy with performance

guarantees?

We provide a positive answer to this question and in addition we

show that we can do almost as well as if ℓ were known, for the

best possible valid ℓ (i.e., satisfying Assumptions 1, 2, 3, 4).

57

58 Optimistic Optimization with unknown smoothness

Section 4.1 considers the deterministic case while Section 4.2 deals

with the stochastic case.

4.1 Simultaneous Optimistic Optimization

In this section we consider the deterministic setting and use the same

notations as in Section 3.3.

The idea introduced in [93] is to expand at each round simulta-

neously all the leaves (h, j) of the current tree for which there exists

a semi-metric ℓ such that the corresponding upper-bound f(xh,j) +

supx∈Xh,j
ℓ(xh,j , x) of the leaf (h, j) could be the highest. In other

words, we select all cells that are potentially optimal for any valid

metric. This is implemented by expanding at each round at most a

leaf per depth, and a leaf is expanded only if it has the highest value

among all leaves of same or lower depths. The Simultaneous Optimistic

Optimization (SOO) algorithm is described in Figure 4.1.

The SOO algorithm takes as input parameter a function t → hmax(t)

which limits the tree to a maximal depth of hmax(t) after t node ex-

pansions. Again, Lt refers to the set of leaves of Tt.

4.1.1 Analysis of SOO

All previously defined quantities such as the diameters δ(h) of the cells,

the sets Ih, and the ν-near-optimality dimension d depend on the (un-

known) semi-metric ℓ (which is such that Assumptions 1, 2, 3, 4 are

satisfied) and are defined as in Section 3.3.

At time t, let us define h∗t to be the depth of the deepest expanded

node in the branch containing x∗ (an optimal branch).

The next lemma provides a lower bound on t 7→ h∗t as a function

of the size of the sets Ih. The intuition for this result is that from

the time when the optimal node of depth h is expanded, any node of

depth h + 1 that is expanded before the optimal node of depth h + 1

is expanded, must be in Ih. We deduce that once an optimal node of

depth h is expanded, it takes at most |Ih+1| node expansions at depth

h+ 1 before the optimal node of depth h+ 1 is expanded.

4.1. Simultaneous Optimistic Optimization 59

The maximum depth function t 7→ hmax(t) is a parameter of the algorithm.
Initialization: T1 = {(0, 0)} (root node). Set t = 1.
while True do

Set vmax = −∞.
for h = 0 to min(depth(Tt), hmax(t)) do

Among all leaves (h, j) ∈ Lt of depth h, select

(h, i) ∈ arg max
(h,j)∈Lt

f(xh,j)

if f(xh,i) ≥ vmax then
Expand this node: add to Tt the K children {(h + 1, i1), . . . , (h +
1, iK)} and evaluate the function at the corresponding centers
{xh+1,i1 , . . . , xh+1,iK}
Set vmax = f(xh,i), Set t = t+ 1
if t = n then Return

x(n)
def
= arg max

(h,i)∈Tn

f(xh,i)

end if
end for

end while.

Fig. 4.1 Simultaneous Optimistic Optimization (SOO) algorithm.

Lemma 4.1. At any time t, and for any depth 0 ≤ h ≤ hmax(t),

whenever t ≥ (|I0|+ |I1|+ · · ·+ |Ih|)hmax(t), we have h∗t ≥ h.

Proof. 1 The algorithm does not expand nodes with a strictly larger

depth than hmax(t), thus either h
∗
t = hmax(t) or h

∗
t < hmax(t). If h

∗
t =

hmax(t) then the statement holds trivially.

Now assume that h∗t < hmax(t). Let τh denote the time when the

optimal node (h, i∗h) (i.e. the one containing x∗) of depth h is expanded.

We have the property that any node of depth h+1 ≤ hmax(t) which

is expanded at a time s ∈ ∆h
def
= [τh, τh+1 − 1] belongs to Ih+1. Indeed,

for any s ∈ ∆h the optimal node (h + 1, i∗h+1) of depth h + 1 is a leaf

of the current tree Ts and has not been expanded yet. Thus, if SOO

expands a node (h + 1, i) of depth h + 1 during ∆h this means that

its value f(xh+1,i) is at least as good as the value f(xh+1,i∗h+1
) of the

1This is a correction to the initial proof in [93]

60 Optimistic Optimization with unknown smoothness

optimal node of depth h+ 1 (by definition of the algorithm), which is

δ(h+ 1)-optimal (from Assumption 2).

Now it could be that during a crossing of the tree, no node of depth

h + 1 is expanded because the currently best node of depth h + 1 is

dominated by another node (l, i) of lower depth l ≤ h. In that case we

have (l, i) ∈ Il since

f(xl,i) ≥ f(xh+1,i∗h+1
) ≥ f∗ − δ(h+ 1) ≥ f∗ − δ(l).

Since each crossing of the tree may result in at most hmax(t) node

expansions, we deduce that for any 0 ≤ h < hmax(t),

τh+1 − τh ≤
[∑
(h+1,i)∈Ih+1

1{(h+ 1, i) is expanded during Th}

+

h∑
l=1

∑
(l,i)∈Il

1{(l, i) is expanded during Th}
]
hmax(t)

=
[h+1∑

l=1

∑
(l,i)∈Il

1{(l, i) is expanded during Th}
]
hmax(t)

Now since h∗t < hmax(t) we have

h∗
t∑

h=0

τh+1 − τh ≤
h∗
t∑

h=0

h+1∑
l=1

∑
(l,i)∈Il

1{(l, i) is expanded during Th}hmax(t)

=

h∗
t+1∑
l=1

h∗
t∑

h=l−1

∑
(l,i)∈Il

1{(l, i) is expanded during Th}hmax(t)

≤
h∗
t+1∑
l=1

∑
(l,i)∈Il

1{(l, i) is expanded at any time}hmax(t)

≤
h∗
t+1∑
l=1

|Il|hmax(t)

Since by definition, τh∗
t+1 > t and τ0 = 1, we deduce that

t < 1 +

h∗
t+1∑
l=1

|Il|hmax(t) ≤
h∗
t+1∑
l=0

|Il|hmax(t).

4.1. Simultaneous Optimistic Optimization 61

Thus for any h ≤ hmax(t) such that t ≥ (|I0|+|I1|+· · ·+|Ih|)hmax(t),

we have h ≤ h∗t .

We deduce the following bound on the loss of SOO.

Theorem 4.1. Let ℓ be a semi-metric such that Assumptions 1, 2, 3,

4 are satisfied. Let us write h(n) the smallest integer h such that

Chmax(n)

h∑
l=0

δ(l)−d ≥ n, (4.1)

(where we remind that δ(l) and d depend on ℓ), then the loss of SOO

is bounded as

rn ≤ δ
(
min(h(n)− 1, hmax(n))

)
. (4.2)

Proof. From Lemma 3.1 and the definition of h(n) we have

hmax(n)

h(n)−1∑
l=0

|Il| ≤ Chmax(n)

h(n)−1∑
l=0

δ(l)−d < n,

thus from Lemma 4.1, when h(n)−1 ≤ hmax(n) we have h
∗
n ≥ h(n)−1.

Now in the case h(n)−1 > hmax(n), since the SOO algorithm does not

expand nodes beyond depth hmax(n), we have h∗n = hmax(n). Thus in

any case, h∗n ≥ min(h(n)− 1, hmax(n)).

Define (h∗n, i
∗) to be the deepest expanded node containing x∗. Using

the local smoothness assumption (3.8), we deduce that:

f(x(n)) ≥ f(xh∗
n,i

∗) ≥ f∗ − δ(h∗n) ≥ f∗ − δ(min(h(n)− 1, hmax(n))).

This result may seem surprising: although the semi-metric ℓ is not

known, the performance is almost as good as for DOO (see Theo-

rem 3.1) which uses the knowledge of ℓ. The main difference is that

the maximal depth hmax(n) appears both as a multiplicative factor in

the definition of h(n) in (4.1) and as a threshold in the loss bound

(4.2). Those two appearances of hmax(n) define a trade-off between

deep (large hmax) versus broad (small hmax) types of exploration. We

now illustrate the case of exponentially decreasing diameters.

62 Optimistic Optimization with unknown smoothness

Corollary 4.1. Let ℓ be a semi-metric such that Assumptions 1, 2, 3,

4 are satisfied. Assume that δ(h) = cγh for some c > 0 and γ < 1.

• If the near-optimality d > 0, the loss of SOO is bounded as

rn ≤ max
((C

1− γd
)1/d

γ−1
(n

hmax(n)

)−1/d
, cγhmax(n)

)
.

Thus, for a choice of the depth-function hmax(n) =

Θ((log n)a), for some a > 1, the regret is rn = Õ(n−1/d).
• If the near-optimality d = 0, the loss of SOO run with the

depth function hmax(t) =
√
t, is bounded for all n, as

rn ≤ cγ
√
nmin(1/C,1)−2.

(where we remind that d,C, c, γ depend on ℓ).

Proof. Using the notations of Theorem 4.1, when d > 0 we have

n ≤ Chmax(n)

h(n)∑
l=0

δ(l)−d = Cc−dhmax(n)
γ−d(h(n)+1) − 1

γ−d − 1
.

Thus

(cγh(n))−d ≥ n

hmax(n)

1− γd

C
.

We deduce from Theorem 4.1 that

rn ≤ δ
(
min(h(n)− 1, hmax(n))

)
= max

(
cγh(n)−1, cγhmax(n)

)
≤ max

((C

1− γd
)1/d

γ−1
(n

hmax(n)

)−1/d
, cγhmax(n)

)
.

Now, for hmax(n) = Θ((log n)a), for large enough n, the second element

in the previous max is dominated by the first one, which is of the order

Õ(n−1/d).

Now, if d = 0 then n ≤ Chmax(n)
∑h(n)

l=0 δ(l)−d = Chmax(n)(h(n) +

1), thus for the choice hmax(n) =
√
n we deduce that the loss decreases

as:

rn ≤ δ
(
min(h(n)− 1, hmax(n))

)
≤ cγ

√
nmin(1/C,1)−2.

4.1. Simultaneous Optimistic Optimization 63

Since our algorithm does not depend on ℓ, the analysis is actually

true for any semi-metric ℓ that satisfies Assumptions 1, 2, 3,

4 thus Theorem 4.1 and Corollary 4.1 hold for the best possible choice

of such a ℓ (which may depend on f itself!). In particular, we can

think of problems for which there exists a semi-metric ℓ such that the

corresponding near-optimality dimension d is 0. Actually, we will see

in Section 4.2.2, as well as in the examples described in the next sub-

section, that the case d = 0 is already very general and covers a large

class of functions, called the 0-smooth functions.

Remark 4.1. The maximal depth function hmax(t) is still a parameter

of the algorithm, which somehow influences the behavior of the algo-

rithm (deep versus broad exploration of the tree). However, for the case

d = 0 that we illustrate next, one may choose a generic hmax(t) =
√
t

for which a stretch exponential bound on the loss is guaranteed. In

addition, even when d > 0, we see that the choice hmax(t) = (log t)a,

for a > 1, provides an asymptotic loss of the order n−1/d (up to a

poly-logarithmic factor).

4.1.2 Examples

Example 1: Consider Example 1 described in Section 3.3.2 where

X = [−1, 1]D and f(x) = 1 − ∥x∥α∞, where α ≥ 1 is unknown. We

have seen that DOO using the metric ℓ(x, y) = ∥x − y∥β∞ provides a

polynomial loss rn = O
(
n
− 1

D
αβ
α−β
)
whenever β < α, and an exponential

loss rn ≤ 21−n when β = α.

Consider the case when the smoothness order α is unknown and

apply SOO with the maximum depth function hmax(t) =
√
t. As men-

tioned before, SOO does not require the knowledge of ℓ, thus we can

apply the analysis for any ℓ that satisfies Assumptions 1, 2, 3, 4. So

let us consider ℓ(x, y) = ∥x − y∥α∞. Then δ(h) = 2−hα, ν = 1, and

the near-optimality dimension of f under ℓ is d = 0 (and C = 1). We

deduce that the loss of SOO is rn ≤ 2(2−
√
n)α. Thus SOO provides a

stretched-exponential loss without requiring the knowledge of α.

Note that a uniform grid provides the loss n−α/D, which is polyno-

mially decreasing only (and subject to the curse of dimensionality since

64 Optimistic Optimization with unknown smoothness

the exponent of the rate depends on D). Thus, in this example SOO

is always better than both Uniform and DOO, except if one knows

perfectly α and applies DOO with β = α (in which case we obtain

an exponential loss). The fact that SOO is not as good as DOO op-

timally fitted comes from the truncation of SOO at a maximal depth

hmax(n) =
√
n (whereas DOO optimally fitted would explore the tree

up to a depth linear in n).

Example 2: The same conclusion holds for Example 2, where we

considered a function f defined on [0, 1]D that is locally equivalent to

∥x − x∗∥α, for some unknown α > 0 (see the precise assumptions in

Section 3.3.2). We have seen that DOO using ℓ(x, y) = c∥x− y∥β with

β < α has a loss rn = O
(
n
− 1

D
αβ
α−β
)
, and when α = β, then d = 0 and

the loss is rn = O(2−α(n/C−1)).

Now by using SOO (which does not require the knowledge of α)

with hmax(t) =
√
t we deduce the stretched-exponential loss rn =

O(2−
√
nα/C) (by using ℓ(x, y) = ∥x − y∥α in the analysis, which gives

δ(h) = 2−hα and d = 0).

Remark 4.2. All functions considered in the two previous examples

are such that there exists a semi-metric ℓ such that the near-optimality

of f w.r.t. ℓ is d = 0.

4.1.3 Illustrations

Figure 4.3 shows the first iterations of SOO on the function f(x) =

1/2
(
sin(13x) sin(27x) + 1

)
already considered in Section 3.3.3. At each

round several cells (indicated by the circled dots and the bold segments)

are simultaneously split. Here we used a branching factor K = 3 and

the maximal depth function hmax(t) =
√
t.

Table 4.2 reports the loss of SOO for different numerical budgets.

In comparison to Table 3.8 the loss of SOO is better than DOO using

the sub-optimal semi-metric ℓ1 and is almost as good as DOO with the

optimal semi-metric ℓ2. This corroborates the theoretical guarantees

stated in Subsection 4.1.1. Indeed, in this example the near-optimality

dimension of f w.r.t. the semi-metric ℓ2 is d = 0, as illustrated in

4.1. Simultaneous Optimistic Optimization 65

n loss of SOO

50 rn = 3.56× 10−4

100 rn = 5.90× 10−7

150 rn = 1.92× 10−10

Fig. 4.2 Numerical performance of SOO for the function f(x) = 1/2
(
sin(13x) sin(27x)+ 1

)

Example 2 in Subsection 4.1.2, thus the loss of SOO is a stretched-

exponential.

Figure 4.4 also shows the first iterations of the SOO algorithm for

the (garland) function f(x) = x(1−x)
(
4−
√

| sin(60x)|
)
. We also used

K = 3 and hmax(t) =
√
t. This function f has a local behavior (around

its maximum) f(x) ≈ f(x∗)− c|x− x∗|α, for some constant c > 0 and

α = 1/2. One can easily check that the near-optimality dimension of f

w.r.t. the metric ℓ(x, y)
def
= c|x− y|1/2 is d = 0, thus the loss of SOO is

also stretched-exponentially decreasing to 0. Notice that SOO neither

requires the knowledge of c nor α (in contrast to DOO).

Figure 4.5 illustrates the SOO algorithm for the optimization of a

Brownian motion (i.e. f is a function sample of a Gaussian process).

We can prove that with high-probability (w.r.t. the random choice of

f), f is lower-bounded as f(x) ≥ f(x∗)− c|x− x∗|α, for some constant

c > 0 (which depends on the failure probability) and α = 1/2. An

open question is whether the near-optimality dimension of f w.r.t. the

metric ℓ(x, y)
def
= c|x−y|1/2 is (in high probability) d = 0, in which case

SOO would have a stretched-exponential loss, or d > 0 for which SOO

would have a polynomial loss.

Finally, Figure 4.6 shows a 2-dimensional problem with the function

f(x1, x2) = f(x1)f(x2) where f(x) =
(
sin(13x) sin(27x) + 1

)
/2. Again

we used hmax(t) =
√
t and K = 3 (where a cell is spit in 3 along the

longest direction). In this situation again, the near-optimality dimen-

sion of f w.r.t. the semi-metric l(x, y) = c|x1 − y1|2|x2 − y2|2 (for some

constant c > 0) is d = 0.

66 Optimistic Optimization with unknown smoothness

Fig. 4.3 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here f(x) =

(
sin(13x) sin(27x) + 1

)
/2 and K = 3. The blue dots

represent the evaluations of the function at the center of the cells. The circle around the
dots and the bold segments shows the nodes that are expanded at each iteration.

4.1. Simultaneous Optimistic Optimization 67

Fig. 4.4 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations for the garland function f(x) = x(1− x)

(
4−

√
| sin(60x)|

)
.

68 Optimistic Optimization with unknown smoothness

Fig. 4.5 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here f(x) is a Brownian motion sample and K = 3.

4.1. Simultaneous Optimistic Optimization 69

Fig. 4.6 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here we considered the 2-dimensional function f(x1, x2) = f(x1)f(x2)

where f(x) =
(
sin(13x) sin(27x) + 1

)
/2 and K = 3. When a node is expanded, its corre-

sponding cell is split in the widest direction in 3 subsets of same size.

70 Optimistic Optimization with unknown smoothness

Fig. 4.7 The 3 first iterations of the SOO algorithm and after n = 17, 53 and 54 function
evaluations on the function built from the example illustrated in Figure 2.2.

4.1. Simultaneous Optimistic Optimization 71

4.1.4 Discussions

Comparison with the DIRECT algorithm: The DIRECT (DI-

viding RECTangles) algorithm [73, 55, 59] is a Lipschitz optimization

algorithm that applies when the Lipschitz constant L of f is unknown.

It uses an optimistic splitting technique similar to ours where at each

round, it expands the set of nodes that have the highest upper-bound

(such as defined in DOO) for at least some value of L.

Our approach may be considered as a generalization of DIRECT

in the facts that (1) it simultaneously expands all the most promising

nodes under any possible semi-metric (whereas DIRECT considers any

possible Lipschitz constant for a fixed metric only), and (2) we only

require the local smoothness assumption on the function (3.8), whereas

DIRECT requires f to be (globally) Lipschitz.

Thus we are able to derive finite-time loss bounds in a much broader

setting than the setting of DIRECT, for which, and to the best of

our knowledge, there is no finite-time analysis (only the consistency

property limn→∞ rn = 0 is proven in [55]).

We are not aware of other finite-time analyses of similar global opti-

mization algorithms that do not require the knowledge of the smooth-

ness of the function.

SOO is a rank-based algorithm: The algorithm only requires the

knowledge of the rank of the function evaluations (or even pairwise

comparisons) and not their specific values. Indeed the decision to ex-

pand a node only depends on whether the value at this node is larger

than the values of other nodes of the same or lower depth. The spe-

cific values are not important as long as their pairwise comparison is

possible. This is also a property shared by the CMA-ES optimization

algorithm (see e.g. Figure 10.4 in [18]). Thus if g : R 7→ R is strictly

increasing, SOO will perform identically on f and g ◦ f . For example

SOO will perform identically on x 7→ ∥x − x∗∥ and x 7→ g(∥x − x∗∥).
And our analysis of the loss of SOO actually reflect this property since

we can choose to define the semi-metric as ℓ(x, y) = g(∥x − y∥), as
illustrated in subsection 4.1.2 for the case g(z) = zα.

72 Optimistic Optimization with unknown smoothness

SOO for the hard function illustrated in Figure 2.2 Finally

we report in Figure 4.7 the result of SOO applied to the function built

from the example illustrated in Figure 2.2 (where we used D = 6). This

function served as an illustration of the particularly bad behavior of

UCT. If one looks at this function at a high level scale, this function

does not possess any smoothness around its maximum. Actually, for

this type of functions, the best algorithm would be a uniform search,

since no information from higher level can be used to guide the search.

In addition, any optimistic algorithm will be fooled here since, in

any cell (not containing the optimum), the function has higher values

on the left than on the right. Thus, as long as the optimum is not

reached, the search will be focusing more on left branches than on right

ones, at all levels, leading to a particularly misleading behavior. This

is all the more true for UCT since the B-values computed by UCT are

not true high probability upper-confidence-bounds, and we saw that

the number of samples required by UCT to find the optimum can be

as bad as Ω(exp(exp(. . . exp(1) . . .))), where the number of intricated

exponentials is D.

In contrast, SOO (fitted with hmax(t) =
√
t) requires “only”

Ω(K2D) samples to find the optimum. This is because at each crossing

of the tree, SOO expands a node with lowest depth. Thus after n node

expansions, the n/hmax(n) =
√
n nodes of lowest depth have all been

expanded.

Now if the actual “smoothness” of the function were known (we

can show that here d = 0 and C = 2D) one could use it to define

true upper-confidence-bounds and use it in the DOO algorithm. Such

a DOO optimally fitted would expand first the nodes with lowest depth

(since the diameter term δ(h) would dominate the evaluations f(xh,j)

in the computation of the b-value bh,j , see Algorithm 3.6), thus reducing

to a uniform search, which is the best thing to do here. The resulting

number of samples required to find the optimum would be KD (only).

Thus in this hard instance of function optimization, the best pos-

sible search is the uniform search (achieved by DOO optimally fitted)

and the cost is exponential in D. Now SOO is exponential in 2D which

is much better than UCT which is “D-uply“ exponential. This example

illustrates the fact that any optimistic algorithm that does not know

4.2. Extensions to the stochastic case 73

the smoothness of the function may be poorer than a uniform search

on particularly unsmooth functions. But this is the price to pay in or-

der to be able to do much better than uniform as soon as the function

possesses some smoothness (even if it is unknown).

4.2 Extensions to the stochastic case

We now consider the case when an evaluation of f at a point xt ∈ X
returns a noisy estimate rt of f(xt) such that E[rt|xt] = f(xt).

In this X -armed bandit setting, several results have already been

obtained for the cumulative regret. [35] derived minimax regret bounds

when the mean-reward function f is assumed to be Lipschitz continuous

with an unknown Lipschitz constant. However, f is assumed to be

twice differentiable with a known bound on the second order derivative.

Then [108] considers a Lipschitz assumption on f in an ”implicit metric

space“ (i.e. the metric ℓ is unknown) and derives a regret bound similar

to that of the zooming algorithm (as well as HOO or StoOO seen in

previous sections) run with the correct metric, under an assumption

that ”quality“ of the taxonomy is lower-bounded. Finally, [40] extends

the previous work, and derive a Õ(
√
n) bound on the cumulative regret

Rn for a large class of functions, called zooming continuous functions.

Their result is stronger in the sense that their bound on the cumulative

regret implies a bound on the loss rn of order Õ(n−1/2). However the

class of zooming continuous functions is not at general as the set of

functions f that we study in sub-section 4.2.2 (for which there exists a

semi-metric ℓ under which the near-optimality dimension of f is d = 0)

for which we obtain a Õ(n−1/2) loss bound. Thus their results are

complementary to ours.

The direction followed here consists in extending SOO to the

stochastic case in a similar way DOO has been extended to StoOO

(see Section 3.4.1). The idea is to sample each state xh,j several times

in order to build an accurate estimate of f(xh,j) before expanding the

corresponding node (h, j).

The corresponding algorithm, called StoSOO (for Stochastic and

Simultaneous Optimistic Optimization), has been introduced in [115]

and is described in Figure 4.8.

74 Optimistic Optimization with unknown smoothness

Parameters: δ > 0, the max number of samples per node k > 0, and the
maximum depth function t 7→ hmax(t).
Initialization: T1 = {(0, 0)} (root node). Set t = 1 (round number)
while t ≤ n do

Set vmax = 0.
For each leaf (h, j) ∈ Lt, compute the b-values bh,j(t) according to (4.3).
for h = 0 to min(depth(Tt), hmax(t)) do

if t ≤ n then
Among all leaves of depth h, select (h, i) ∈ argmax(h,j)∈Lt bh,j(t)
if bh,i(t) ≥ vmax then

if Th,i(t) < k then
Sample state xt = xh,i and collect reward rt
t← t+ 1

else
Add the K children of (h, i) to Tt (we expand this node)
Set vmax = bh,i(t).

end if
end if

end if
end for

end while.
Return the state with highest empirical mean whose node has been expanded:

x(n) = arg max
xh,j∈Tn\Ln

µ̂h,j(n).

Fig. 4.8 The Stochastic Simultaneous Optimistic Optimization (StoSOO) algorithm

StoSOO defines the b-values bh,j(t) of any node at round t, by

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)
, (4.3)

where Th,j(t)
def
=
∑t

s=1 1{xs = xh,j} is the number of times the state

xh,j has been selected up to time t, and µ̂h,j(t)
def
= 1

Th,j(t)

∑t
s=1 rs1{xs =

xh,j} is the empirical average of the rewards received in xh,j . In the case

Th,j(t) = 0 we set bh,j(t) = ∞.

Now, like for StoOO, instead of selecting the most promising nodes

according of their value f(xh,j) we select them according to their

b−value bh,j . The parameter k used in the algorithm is the number of

samples that need to be collected from a state before the corresponding

4.2. Extensions to the stochastic case 75

node is expanded. Finally, StoSOO returns the state x(n) with highest

empirical value among the set of nodes that have been expanded (thus

which have been sampled k times).

4.2.1 Analysis of StoSOO

We have the property that for any δ > 0, defining the event ξ as in

(3.10), Lemma 3.2 implies that P(ξ) ≥ 1− δ. Notice that the b-values

bh,j(t) define high-probability upper-confidence-bounds on the values

f(xh,j) (and not on supx∈Xh,j
f(x) as it was the case for the b-values

defined by StoOO in (3.9)).

Thus the intuition of the algorithm is that in the event ξ, the b-

value bh,j(t) of a node Xh,j that has been expanded (thus sampled k

times) is an ϵ-upper-bound on the true value f(xh,j), i.e. bh,j(t)− ϵ ≤

f(xh,j) ≤ bh,j(t), where ϵ = 2

√
log(n2/δ)

2k . Thus, in the event ξ, StoSOO

works in a very similar way as algorithm SOO does, except that:

• The sampling budget (the number of nodes that are ex-

panded) is now at least m = n/k (instead of n for SOO),

since each node may be sampled up to k times,
• We rely on ϵ-upper bounds bh,j of the nodes, instead of the

exact values f(xh,j), to decide which nodes to expand.

Thus the analysis of StoSOO (in the event ξ) reduces to the analysis

of the so-called “ϵ-optimistic” SOO algorithm, which is defined ex-

actly as the SOO algorithm except that each evaluation to the function

is perturbed positively by at most ϵ (i.e., when sampling a state xh,j
one observes bh,j , which is such that f(xh,i) ∈ [bh,j − ϵ, bh,j]).

Let us now analyze this ϵ-optimistic SOO using a similar proof to

that of SOO. Define the sets

Iϵh
def
= {nodes (h, i) such that f(xh,i) + δ(h) + ϵ ≥ f∗}.

After t (perturbed) function evaluations, let us write h∗t the depth

of the deepest expanded node containing x∗. Let (h∗t + 1, i∗) be the

optimal node of depth h∗t + 1 (i.e., such that x∗ ∈ Xh∗
t+1,i∗). As long

as this node has not been expanded, any expanded node (h∗t + 1, i) of

76 Optimistic Optimization with unknown smoothness

depth h∗t + 1 is [δ(h∗t + 1) + ϵ]-optimal. Indeed,

f(xh∗
t+1,i) ≥ bh∗

t+1,i − ϵ ≥ bh∗
t+1,i∗ − ϵ

≥ f(xh∗
t+1,i∗)− ϵ ≥ f∗ −

[
δ(h∗t + 1) + ϵ

]
.

We deduce a lower bound on the depth h∗t as a function of the size of

the sets |Iϵh| in a same way as in Lemma 4.1:

Lemma 4.2. For any depth 0 ≤ h ≤ hmax(t), whenever t ≥
hmax(t)(|Iϵ0|+ |Iϵ1|+ · · ·+ |Iϵh|), we have h∗t ≥ h.

Then the next results bounds the number of nodes in the sets |Iϵh|
for any depth h ≤ hϵ

def
= min{h ≥ 0, s.t. δ(h+ 1) < ϵ}:

Lemma 4.3. Let d be the ν/2-near-optimality dimension (where ν is

defined in Assumption 4), and C be the corresponding constant. Then

for any h ≤ hϵ, we have

|Iϵh| ≤ C
[
δ(h) + ϵ

]−d
.

Proof. The proof is similar to that of Lemma 3.1. By contradiction: for

h ≤ hϵ, if |Iϵh| > C[δ(h) + ϵ]−d we would have |Iϵh| > C[2δ(h)]−d, which

would mean that there exists more than C[2δ(h)]−d disjoint ℓ-balls of

radius νδ(h) with center in Xδ(h). This contradicts the fact that d is

the ν/2-near-optimality dimension.

Now we can state our main result for ϵ-optimistic SOO using a

budget of m ϵ-positively perturbed evaluations of f .

Theorem 4.2. Let d be the ν/2-near-optimality dimension and h(m)

be the smallest integer h such that

Chmax(m)

h∑
l=0

[
δ(l) + ϵ

]−d ≥ m. (4.4)

Then the loss of ϵ-optimistic SOO is bounded as

rm ≤ ϵ+ δ
(
min(h(m)− 1, hmax(m), hϵ)

)
. (4.5)

4.2. Extensions to the stochastic case 77

Proof. Consider first the case when h(m)−1 ≤ hϵ. Then using a similar

argument as in the proof of Theorem 4.1 we deduce that after m node

expansions, the depth h∗m of the deepest expanded node in the branch

containing x∗ satisfies h∗m ≥ min(h(m)−1, hmax(m)). Now if h(m)−1 >

hϵ, we can use Lemma 4.3 up to depth hϵ to deduce similarly that h∗m ≥
min(hϵ, hmax(m)). Thus altogether h∗m ≥ min(h(m)− 1, hϵ, hmax(m)).

Now define (h∗m, i∗) as the optimal node of depth h∗m (i.e., containing

x∗). Let xh,j be the state returned by the algorithm. Thus bh,j ≥ b̂h∗
m,i∗

and we deduce that

f(xh,j) ≥ bxh,j − ϵ ≥ bh∗
n,i

∗ − ϵ

≥ f(xh∗
n,i

∗)− ϵ ≥ f∗ − δ(h∗m)− ϵ

≥ f∗ − δ(min(h(m)− 1, hmax(m), hϵ))− ϵ.

We now state our main result for StoSOO in the case when the

near-optimality dimension for the best valid semi-metric ℓ is d = 0.

Theorem 4.3. Assume there exists a semi-metric ℓ such that Assump-

tions 1, 2, 3, 4 hold. Assume that the diameters (measured with ℓ) of

the cells decrease exponentially fast, i.e. δ(h) = cγh for some c > 0 and

γ < 1. Assume that the ν/2-near-optimality dimension is d = 0 (and

write C the corresponding constant). Then the expected loss of StoSOO

run with parameters k, hmax(t) =
√

t/k, and δ > 0, is bounded as:

E[rn] ≤ (2 + 1/γ)

√
log(n2/δ)

2k
+ cγ

√
n/kmin(1/C,1)−1 + δ. (4.6)

In particular, for the choice k = n
(logn)3

and δ = 1/
√
n, we have

E[rn] = O
((log n)2√

n

)
.

Proof. We have seen that in the event ξ, the StoSOO algorithm behaves

like the ϵ-optimistic SOO with ϵ =

√
2 log(n2/δ)

k run for at leastm = n/k

rounds (node expansions).

78 Optimistic Optimization with unknown smoothness

When d = 0, from Theorem 4.2, we have that m ≤
Chmax(m)

∑h(m)
l=0

[
δ(l) + ϵ

]−d
= Chmax(m)(h(m) + 1), thus for

hmax(m) =
√
m we deduce that the loss of ϵ-optimistic SOO (thus

the loss of StoSOO in the event ξ) is at most:

rn ≤ ϵ+ δ
(
min(h(m)− 1, hmax(m), hϵ)

)
≤ ϵ+ δ(hϵ) + δ

(
min(h(m)− 1, hmax(m))

)
≤ (1 + 1/γ)ϵ+ cγ

√
mmin(1/C,1)−2.

The bound on the expected loss of StoSOO follows from the fact

that ξ holds with probability 1− δ.

Finally, for the specific choice k = n
(logn)3

we notice that the second

term in the bound (4.6) is a o(1/
√
n).

Thus in the case the near-optimality dimension for the best valid

semi-metric is d = 0 and the diameters are exponentially decreasing,

StoSOO achieves the same rate Õ(n−1/2) as StoOO and HOO (which

required the knowledge of the semi-metric ℓ). In the next subsection

we discuss this important case d = 0.

4.2.2 The important case d = 0

Notice that SOO and StoSOO algorithms do not require the knowledge

of the semi-metric ℓ; the semi-metric is only used in the analysis of

the algorithm. Thus one can choose the best possible semi-metric ℓ,

possibly according to the function f itself, as long as it satisfies

the following properties:

• f is locally smooth w.r.t. ℓ around a global optimum x∗

(i.e. such that (3.8) holds)
• The cells are well-shaped (Assumption 4) and their diameter

(measured with ℓ) decreases exponentially fast
• There exists C > 0 such that for any ϵ > 0, the maximal

number of disjoint ℓ-balls of radius νϵ centered in Xϵ is less

than C (i.e. the near-optimality dimension d is 0).

In Examples 1 and 2 we illustrated the case of functions f defined on

[0, 1]D that are locally equivalent to a polynomial of degree α around

4.2. Extensions to the stochastic case 79

their maximum, i.e., f(x) − f(x∗) = Θ(∥x − x∗∥α) for some α > 0,

where ∥ · ∥ is any norm. The precise definition is given in Example 2

of Subsection 3.3.2. In light of the discussion in Subsection 4.1.2, the

choice of semi-metric ℓ(x, y)
def
= ∥x − y∥α implies that the previous

properties are satisfied and the near-optimality dimension d = 0. This

extends to the case when the function has different smoothness orders

in different directions, even when they are those directions are not

aligned with the axis of the hierarchical partitioning.

More generally, this result extends to any function whose upper-

and lower envelopes around x∗ are of the same order, as expressed in

the next lemma.

Lemma 4.4. Consider a finite dimensional and bounded space, i.e.,

such that X can be packed by C ′ϵ−D ℓ-balls with radius ϵ, for any

ϵ > 0, and such that X has a finite doubling constant (defined as the

minimum value q such that every ball in X can be packed by at most q

balls of half the radius). If there exists constants c > 0 and η > 0 such

that

min(η, cℓ(x, x∗)) ≤ f(x∗)− f(x) ≤ ℓ(x, x∗), for all x ∈ X , (4.7)

then the near-optimality of f w.r.t. ℓ is d = 0.

Proof. For ϵ < η the left inequality in (4.7) implies that the set of ϵ-

optimal states Xϵ is included in a ℓ-ball of radius ϵ/c centered in x∗.

Since X has a finite doubling constant, this ball can be packed by no

more than a constant number of ℓ-balls of radius ϵ. This proves that the

local near-optimality of f w.r.t. ℓ is d = 0, and in light of Remark 3.3

we also deduce that the near-optimality dimension is d = 0 (since X is

a finite dimensional and bounded space).

Figure 4.9 provides an illustration of this condition when the en-

velope has a quadratic shape. The functions considered in Figures 4.3

and 4.4 also satisfy this property.

Now, one can define a tight semi-metric ℓ according to the local

behavior of f around x∗ in order that (3.8) holds (thus the right in-

equality in (4.7)). For example if the space X is a normed space (with

80 Optimistic Optimization with unknown smoothness

x∗

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

Fig. 4.9 Any function satisfying (4.7) (i.e., lying in the gray area) has a near-optimality
dimension d = 0 since it possesses a lower- and upper-envelopes that are of same order
around x∗.

norm ∥ · ∥), one can define ℓ(x, y)
def
= ℓ̃(∥x− y∥) with

ℓ̃(r)
def
= sup

x:∥x∗−x∥≤r

[
f(x∗)− f(x)

]
. (4.8)

Thus f(x∗) − ℓ(x, x∗) naturally forms a lower-envelope of f . Thus

assuming that the left inequality of (4.7) (upper-envelope) holds, then

the near-optimality dimension is d = 0 again.

However, although the case d = 0 is quite general, it does not hold in

situations where there is a discrepancy between the upper- and lower-

envelopes of f around x∗, as illustrated in Figure 4.10.

Finally, as discussed in Remark 3.3, the near-optimality dimension

d is a local property of f near x∗ since it coincides with the local

near-optimality dimension. However the corresponding constant C in

the definition 3.1 depends on the global shape of f . For instance, let

f be a function with near-optimality dimension d around x∗ with a

corresponding constant C. Now consider the function f̃ defined as

f̃(x)
def
= max1≤i≤k f(x

∗ − x+ xi), where {x1, . . . , xk} are k points in X
(i.e. f̃ is the maximum of k translated copies of f). Thus f̃ possesses

k global optima {x1, . . . , xk} and the near-optimality dimension of f̃

4.3. Conclusions 81

Fig. 4.10 We illustrate the case of a function with different order in the upper and lower
envelopes. Here f(x) = 1 −

√
x + (−x2 +

√
x) · (sin(1/x2) + 1)/2. The best possible semi-

metric of the form ℓ(x, y) = c|x − y|α is such that α ≤ 1/2 in order to satisfy (3.8).
However, since the upper-envelope of f has a square order, the maximum number of ℓ-balls

with radius ϵ that can pack Xϵ (i.e., Euclidean balls with radius ϵ1/α) is at most of order
ϵ1/2/ϵ1/α ≤ ϵ−3/2 since α ≤ 1/2. Thus there is no metric of the form ℓ(x, y) = c|x − y|α
for with d < 3/2.

is still d but the corresponding constant can be as large as kC (this is

simply because one may pack k times more balls in the set of ϵ-optimal

states of f̃ , than in the set of epsilon-optimal states of f).

4.3 Conclusions

Assuming that the function f is locally smooth w.r.t. some semi-metric

ℓ enables the design of optimistic exploration strategies, even when ℓ

is unknown. Since the algorithm does not depend on ℓ, the loss anal-

ysis can be undertaken using the best possible valid (i.e. such that

82 Optimistic Optimization with unknown smoothness

Assumptions 1, 2, 3, 4 hold) semi-metric.

In the deterministic case, the SOO algorithm performs almost as

well as DOO optimally-fitted, and achieves an stretch exponential loss

in the case when the near-optimality dimension d = 0 for any valid

semi-metric.

In the stochastic case, the StoSOO algorithm performs almost as

well as StoOO or HOO in the case when there exists a valid semi-

metric such that the corresponding near-optimality dimension d is 0.

We showed that the case d = 0 covers already a large class of functions.

Now, when there is no valid semi-metric such that d = 0 (as illustrated

in Figure 4.10) the problem of designing an algorithm that would do

almost as well as StoOO or HOO for a valid semi-metric with the lowest

d > 0, is open.

Notice that StoSOO can be seen as a Monte Carlo Tree Search

algorithm that strongly resembles the UCT algorithm. Indeed the nodes

selected for sampling are based on a similar upper-confidence-bound

(4.3) which does not contain the diameter of the cells, in contrary to

the StoOO or HOO algorithms. The main differences with UCT are that

(1) StoSOO selects several nodes simultaneously at different depths of

the tree, and (2) samples the same state several times before deciding

to expand the corresponding node.

However StoSOO is not anytime in the sense that it requires the

knowledge of the time horizon n in order to set the value of k (maximum

number of samples per state). Designing an anytime version of StoSOO

may require collecting a different number of samples per node (as a

function of their depth), and is left for future work.

The main message of this chapter is to illustrate that the simple

knowledge that the function possesses some smoothness, even though,

this smoothness is unknown, may be sufficient to design optimistic

optimization strategies with performance guarantees. The performance

of such algorithms are expressed in terms of the best valid semi-metric

under which the function is smooth, and we have seen that for a large

class of functions, they perform almost as well as optimistic algorithms

that would known (and use) the best semi-metric.

5

Optimistic planning

In this chapter we consider the optimistic approach for solving planning

problems. In comparison to the previous chapters on optimization, the

planning problem introduces some structure in the search space and the

function to be optimized. Here, the search space is the set of available

policies (where a policy may be a mapping from states to actions), and

the function to be optimized (the so-called value function) is defined as

the (possibly expected) sum of rewards collected along the trajectories

resulting from following a policy.

In this chapter, we assume that a full model of the dynamics and

the reward function is available but each call to the model result in

some numerical cost. Thus our goal is to return the best possible plan

given a finite numerical budget.

We consider the sequential planning setting where at each time

step, the planning algorithm uses the available numerical budget (e.g.,

number of calls to the model, CPU time, ...) to perform a simulated

search in the space of policies starting from the current state, and

returns a recommended action, which is then applied in the real world.

This results in a new state and the entire cycle then repeats.

Such algorithms belong to the planning class [87] and are known as

83

84 Optimistic planning

online planning [80, 96] or lazy planning [52] in the Computer Science

literature, and as model-predictive or receding-horizon control [90, 43]

in the Systems and Control literature. In the AI community, related

works are the classical A* heuristic search [95] and the AO* variant

from [68].

More precisely, we consider the following setting: at time k, the

system is in some state xk, and our is to select an action ak to follow.

In order to do so, we perform a simulated search (planning) in the set

of all possible policies starting from the current state xk and using a

finite number n of calls to the model (our numerical budget). When the

budget is exhausted, we return a recommended action ak to follow. This

action is executed in the real environment, which generates a transition

to a next state xk+1. Then another search is performed from this new

state, and the same procedure is repeated again and again.

Since the budget for returning each action is limited, we should do

the best possible use of it, and in this chapter we focus on this problem

only. Our goal is thus to perform the most efficient search in the space

of policies starting from the current state, and given a finite numerical

budget, in order to recommend the best possible immediate action to

follow.

This online planning approach is different from the value-function

and policy search methods usually considered in dynamic programming

and reinforcement learning [111, 23, 112, 105, 36]; the latter methods

usually seek a global solution, whereas online planning finds actions on

demand, locally for each state where they are needed. Online planning

is therefore much less dependent on the state space size.

In this chapter we present three settings where the optimistic prin-

ciple can guide us in performing this search [38]. In all settings we

consider an infinite-time horizon with discounted rewards. Section 5.1

considers the case of deterministic dynamics and reward functions, Sec-

tion 5.2 the case of general stochastic rewards with deterministic dy-

namics, and Section 5.3 the general case of Markov Decision Processes.

In all three situations we provide performance bounds on the loss

(how close the quality of the recommended action is from that of the

optimal action) as a function of the number of calls to the model.

5.1. Deterministic dynamics and rewards 85

For clarity, in this chapter we will make use of standard notations

in reinforcement learning that may differ from the notations used in

previous chapters.

5.1 Deterministic dynamics and rewards

5.1.1 Setting and notations

Here the dynamics and reward functions are deterministic. Let X de-

note the state space, A the action space, f : X×A → X the transition

dynamics, and r : X×A → R the reward function. If at time t, the cur-

rent state is xt ∈ X and the chosen action at, then the system jumps

to the next state xt+1 = f(xt, at) and a reward r(xt, at) is received.

Again we will assume that all rewards lie in the interval [0, 1].

We assume that the state space is large (possibly infinite), and

the action space is finite, with K possible actions. We consider an

infinite-time horizon problem with discounted rewards (0 ≤ γ < 1 is

the discount factor). For any policy π : X → A we define the value

function V π : X → R associated to that policy:

V π(x)
def
=
∑
t≥0

γtr(xt, π(xt)),

where xt is the state of the system at time t when starting from x (i.e.

x0 = x) and following policy π.

We also define the Q-value function Qπ : X ×A → R associated to

a policy π, for each state-action pair (x, a), as the value of playing a in

x and π after:

Qπ(x, a)
def
= r(x, a) + γV π(f(x, a)).

We have the property that V π(x) = Qπ(x, π(x)). Now the optimal

value function (respectively Q-value function) is defined as: V ∗(x)
def
=

supπ V
π(x) (respectively Q∗(x, a)

def
= supπ Q

π(x, a), which corresponds

to playing a now and optimally after). From the dynamic programming

principle, we have the Bellman equations (see e.g., [23, 99]):

V ∗(x) = max
a∈A

[
r(x, a) + γV ∗(f(x, a))

]
Q∗(x, a) = r(x, a) + γmax

b∈A
Q∗(f(x, a), b).

86 Optimistic planning

5.1.2 Planning under finite numerical budget

We assume that we possess a generative model of f and r that can be

used to generate simulated transitions and rewards. We want to make

the best possible use of this model in order to return a single action (or

a sequence of actions) from any given initial state. The action-selection

procedure takes as input the current state x of the system and outputs

an action a(n) using at most n calls to the generative model. The

amount n of available numerical resources may not be known before

they are all used (e.g. because of time constraints), so we wish to design

anytime algorithms that can return an action a(n) for any time n. Our

goal is that the proposed action a(n) be as close as possible to the

optimal action in that state, thus we define the performance loss rn
as the difference in terms of the sum of rewards between following the

recommended action a(n) and then following an optimal path instead

of following an optimal path from the beginning:

rn
def
= max

a∈A
Q∗(x, a)−Q∗(x, a(n)). (5.1)

Now, from such an online planning algorithm one may define a

policy π which would select in each state encountered along a trajectory

the action recommended by the algorithm using n calls to the model.

The previous definition of the loss is motivated by the fact that an

algorithm with small loss at each state (say rn ≤ ϵ) will generate a

policy π which is ϵ
1−γ -optimal, i.e. for all x, V ∗(x)− V π(x) ≤ ϵ

1−γ (see

e.g., [72]).

5.1.3 The planning tree

For a given initial state x, consider the (infinite) planning tree defined

by all possible sequences of actions (thus all possible reachable states

starting from x). Write A∞ the set of infinite sequences (a0, a1, a2, . . .)

where at ∈ A. The branching factor of this tree is the number of actions

|A| = K. Since the dynamics are deterministic, to each finite sequence

a ∈ Ad of length d corresponds a state that is reachable starting from

x by following a sequence of d actions.

Using standard notations over alphabets, we write A0 = {∅}, A∗

the set of finite sequences, for a ∈ A∗ we write h(a) the length of a,

5.1. Deterministic dynamics and rewards 87

and aAh = {aa′, a′ ∈ Ah}, where aa′ denotes the sequence a followed

by a′. We identify the set of finite sequences a ∈ A∗ to the set of nodes

of the tree.

The value v(a) of an infinite sequence a ∈ A∞ is the discounted

sum of rewards along the trajectory starting from the initial state x

and defined by the choice of this sequence of actions:

v(a)
def
=
∑
t≥0

γtr(xt, at), where x0 = x, and xt+1 = f(xt, at).

Now, for any finite sequence a ∈ A∗ (or node) we define the value

v(a) = supa′∈A∞ v(aa′). We write v∗ = v(∅) = supa∈A∞ v(a) the opti-

mal value at the initial state (root of the tree). We also define the u-

and b-values (respectively lower- and upper- bounds on v(a)) as

u(a)
def
=

h(a)∑
t=0

γtr(xt, at), and b(a)
def
= u(a) +

γh(a)+1

1− γ
, (5.2)

Indeed, since all rewards are in [0, 1] we trivially have that u(a) ≤
v(a) ≤ b(a).

At any finite time t an algorithm has expanded a set of t nodes,

which defines the expanded tree Tt. Expanding a node a ∈ Ah means

using the generative model f and r to generate transitions and rewards

for the K children nodes aA. The set of leaves of Tt represents the set

of nodes that can be expanded at time t+ 1 and is denoted by Lt.

Thus, once a node, a ∈ A∗ is expanded, the values u(a) and b(a)

can be computed (since they only depend on rewards obtained along

the finite sequence a).

5.1.4 Minimax bounds

First, consider a uniform planning strategy, defined by expanding at

each round t any node in Lt having the smallest depth. At round n (i.e.,

once n nodes have been expanded), the algorithm returns the immedi-

ate action a ∈ A having the largest u-value: a(n)
def
= argmaxa∈A u(a)

(ties broken arbitrarily).

This strategy expands the set of sequences in a uniform fashion;

hence, at round n = 1 + K + K2 + · · · + Kd = Kd+1−1
K−1 , all nodes of

88 Optimistic planning

depth up to d have been expanded. Thus the value u(a) of each action

a ∈ A is known up to an error v(a) − u(a) ≤ γd+1

1−γ , since the rewards

of all paths up to depth d have been seen, and the remaining rewards

from depths d+1 on sum to at most γd+1

1−γ . We deduce an upper-bound

on the loss of uniform planning:

rn ≤ 1

γ2(1− γ)

[
n(K − 1) + 1

]− log 1/γ
logK . (5.3)

In addition we have the following lower-bound (see [72]): For any

algorithm and any n, there exists a reward function, such that its loss

is at least

rn ≥ γ

1− γ

[
n(K − 1) + 1

]− log 1/γ
logK . (5.4)

We thus observe that the uniform planning strategy achieves a loss

Ω(n
− log 1/γ

logK) in a minimax sense (i.e. for any possible environment).

And the lower-bound tells us that (up to a constant factor) there is no

algorithm that can do better uniformly over all problems.

However, this does not tell us that there is no better algorithms

for some problems. In the next section we show that strictly better

algorithms can be designed for specific classes of problems.

5.1.5 Optimistic planning

The infinite set of sequences A∞ is our search space (denoted by X in

previous sections) and each a ∈ A∞ is a point in that space. The value

v(a) of each sequence a ∈ A∞ is the sum of discounted rewards along

the sequence. Now, by defining the metric ℓ(a, a′) = γh(a,a′)

1−γ , where

h(a, a′)
def
= max{t ≥ 0, ∀0 ≤ s ≤ t, as = a′s}, we have the property that

for all a, a′ ∈ A∞,

|v(a)− v(a′)| ≤ ℓ(a, a′),

i.e., the value function v is Lipschitz w.r.t. the metric ℓ.

Any subtree Tt corresponds to a partitioning of A∞ into t subsets.

Expanding a leaf a ∈ Lt of this tree means splitting the corresponding

subset into K smaller subsets aa′, for a′ ∈ A. To each subset a ∈ Lt

the value b(a) is an upper-bound on v(a).

5.1. Deterministic dynamics and rewards 89

Thus one may apply the DOO algorithm from Section 3.3: at each

round t, we expand the leaf of the expanded tree with highest b-value.

And after n node expansions, we return the action with highest u-value

(where the values are defined in (5.2)).

This defines an algorithm, called Optimistic Planning algorithm

(OPD) (see Algorithm 1), that builds an asymmetric planning tree

aiming at exploring first the most promising parts of the tree. Branches

with low rewards close to the root will not be further explored and only

near-optimal paths will be continually expanded.

Algorithm 1 Optimistic Planning algorithm (OPD)

Expand the root.

for t = 1 to n do

Expand a node at ∈ argmaxa∈Lt b(a),

end for

return Action argmax
a∈A

u(a)

Although OPD is directly inspired from DOO, there are two im-

portant differences with DOO: (1) here we have a structured problem

where the value v(a) of any point a ∈ A∞ is the sum of (discounted)

rewards along an (infinite) sequence of actions, and (2) the budget n

represents the number of calls to the generative model (i.e. transitions

and rewards) and is not directly related to the number of evaluations

of the function v.

Analysis: Like for DOO, we have the property that the b-value of

any node expanded by OPD is at least as much as the b-value of a

leaf containing an optimal path, which is at least v∗. Thus the deepest

expanded node in the final tree Tn has a u-value which is at least

v∗ − γdn

1−γ , where dn is the maximal depth of nodes in Tn. We deduce

that the value of the best path in Tn (thus also the recommended action)

has a u-value which is at least v∗ − γdn

1−γ , which implies that the loss of

OPD is bounded as

rn ≤ γdn

1− γ
. (5.5)

90 Optimistic planning

As a consequence, for any reward function, the upper bound on the

loss for the optimistic planning is never larger than that of the uniform

planning (since the uniform exploration is the exploration strategy that

implies the smallest depth dn for any given n).

However the lower bound tells us that no improvement (compared

to uniform planning) may be expected in a worst-case setting. In order

to quantify a possible improvement over uniform planning, one thus

needs to define specific classes of problems.

We now define a measure of the quantity of near-optimal sequences.

By denoting T + ⊂ T ∞ the set of sequences in Ah, for any h, that are
γh+1

1−γ -optimal, we define κ ∈ [1,K] as the (asymptotic) branching factor

of T +:

κ = lim sup
h→∞

∣∣∣∣{a ∈ Ah : v(a) ≥ v∗ − γh+1

1− γ

}∣∣∣∣1/h . (5.6)

This measure is closely related to the notion of near-optimality di-

mension d (and corresponding constant C) introduced in Chapter 3.3.

Indeed, if there are C ′κh (for some constant C ′) sequences of length h

in T +, then the corresponding nodes represents a set of ℓ-balls of di-

ameter γh+1

1−γ that form a packing of the set of (infinite) sequences that

are γh+1

1−γ -optimal. Writing ϵ = γh+1

1−γ we have that the set of ϵ-optimal

points of A∞ can be packed by C ′κh = Cϵ−d such ℓ-balls, where the

near-optimality dimension d and corresponding constant C are:

d =
log κ

log 1/γ
and C = C ′κ(1− γ)−d. (5.7)

We have the following result:

Theorem 5.1. If κ > 1 then the loss of OPD is rn = O
(
n
− log 1/γ

log κ
)
.

If κ = 1 and there are at most C ′ sequences of length h in T + (for

any h ≥ 0), the loss decreases exponentially fast as rn = O
(
e−

log 1/γ

C′ n
)
.

The proof of this result can be found in [72], but in light of the

previous discussion, it is a direct consequence of the analysis of DOO.

Some intuition about T +: By definition, T + is the set of finite

sequences that are γh+1

1−γ -optimal, thus from any a ∈ T +, given the set

5.1. Deterministic dynamics and rewards 91

of rewards obtained along this sequence, one cannot decide whether

this sequence belongs to an optimal path or not. Now, once a sequence

does not belong to T +, it is not useful to further expand it since it

is clear that whatever the later rewards are, it is not be part of an

optimal path. Thus T + is exactly the set of sequences that deserve to

be further expanded in order to find the optimal path.

The nice property of OPD is that it only expands nodes in T +

(which explains why the performance of OPD is expressed in terms

of the branching factor κ of T +). This implies that OPD cannot be

improvable uniformly over the class of problems characterized by a

given κ.

Indeed, by defining the class of problems P(κ) by all environments

having a set T + with branching factor κ, we have that the loss of

OPD on any problem P ∈ P(κ) satisfies: rn(P) = O
(
n
− log 1/γ

log κ
)
. And

we may also deduce a κ-minimax lower bound: for any algorithm, for

any κ ∈ [1,K], there exists a problem P ∈ P(κ) such that the loss of

this algorithm applied to P is at least rn = Ω
(
n
− log 1/γ

log κ
)
. Thus OPD is

κ-minimax optimal.

Remark 5.1. OPD greatly improves over the uniform planning when-

ever there is a small proportion of near-optimal paths (i.e. κ is small),

and the bound is always at least as good as that for uniform planning.

The case κ = 1 provides exponential rates. In particular, this is the

case when there exists a depth h0 such that for any sequence of depth

h ≥ h0 along an optimal path, the gap in the Q-values at the corre-

sponding state xh is lower bounded by a quantity independent of h:

∃∆ > 0, for all h ≥ h0,

V ∗(xh)− max
a∈A s.t. Q∗(xh,a)<V ∗(xh)

Q∗(xh, a) ≥ ∆. (5.8)

Indeed in such a situation, the number of nodes in a sub-optimal branch

departing from any state xh (along the optimal path) is at most KH

where γH/(1−γ) ≥ ∆. Thus
∣∣∣{a ∈ Ah : v(a) ≥ v∗ − γh+1

1−γ

}∣∣∣ is bounded
by a constant independent of h, thus κ = 1.

92 Optimistic planning

SOO for planning? In previous sections (see e.g. Section 5.3.2) we

built a metric ℓ defined over the space of policies, such that the value

function v is Lipschitz w.r.t. ℓ (see e.g. (5.14)). Now it could be the

case that the value function possesses some additional local smooth-

ness around the optimal policy π∗, in the sense that there exists an-

other semi-metric ℓ′ of “higher order” such that (3.8) holds, i.e. for

all π, v(π∗) − v(π) ≤ ℓ′(π∗, π) (in a way similar to the example il-

lustrated in Section 3.3.3 where the function f was globally Lipschitz

w.r.t. ℓ1 and locally smooth w.r.t. the higher-order semi-metric ℓ2). In

such cases, it would be interesting to use a version of SOO for planning.

In the deterministic case described in Section 5.1, an extension of OPD

to the simultaneous node expansion strategy implemented in SOO is

straightforward and is expected to improve the numerical performances

in some planning problems that possess such higher order smoothness.

5.2 Deterministic dynamics, stochastic rewards

Now we consider the problem of planning in environments where tran-

sitions are deterministic but rewards are stochastic. Thus for any state

x and action a ∈ A, the call to the generative model returns a transition

to a unique next-state f(x, a) and a reward sample drawn (indepen-

dently from previous samples) from a probability distribution ν(x, a)

(with mean r(x, a)) on [0, 1]. Thus several calls to the generative model

for each state action (x, a) are required in order to estimate precisely

the average reward r(x, a). Again we consider an infinite-time hori-

zon problem with discounted rewards and the value function is defined

identically as in Section 5.1.1.

Now consider the planning problem given an initial state x and de-

fine the set of infinite sequences of actions A∞ like in Subsection 5.1.2.

For any finite sequence a ∈ A∗, we write ν(a) the corresponding reward

distribution, and r(a) its expectation. During the exploration of the en-

vironment, the agent iteratively selects sequences of actions, under the

global constraint that he can not make more than n actions in total,

and receives a reward after each action. For a ∈ Ah, write Y m
h ∼ ν(a)

the reward sample collected when selecting the sequence a for the mth

time.

5.2. Deterministic dynamics, stochastic rewards 93

5.2.1 OLOP algorithm

We now describe the Open Loop Optimistic Planning (OLOP) algo-

rithm introduced in [31]. In that paper, the term “open-loop” referred

to policies that are function of a sequence of actions only and not

of the underlying resulting states. However in the setting described

here (where the transitions are deterministic), the underlying state is

uniquely defined by the sequence of actions, thus the planning is actu-

ally closed-loop.

The OLOP algorithm is described in Algorithm 2. Given a budget

n (which here needs to be known before the algorithm starts), the

algorithms generates M sequences of actions of length L (where LM ≤
n). The algorithm defines b-values assigned to any sequence of actions

in AL. At time m = 0, the b-values are initialized to +∞. Then, after

episode m ≥ 1, the b-values are defined as follows: For any 1 ≤ h ≤ L,

for any a ∈ Ah, let

Tm(a) =

m∑
s=1

1{as1:h = a}

be the number of times we played a sequence of actions beginning with

a. Now we define the empirical average of the rewards for the sequence

a as:

µ̂m(a) =
1

Tm(a)

m∑
s=1

Y s
h 1{as1:h = a},

if Tm(a) > 0, and 0 otherwise. The corresponding upper-confidence-

bound on the value of the sequence of actions a ∈ Ah is defined as:

b′m(a) =

h∑
t=1

(
γtµ̂m(a1:t) + γt

√
2 logM

Tm(a1:t)

)
+

γh+1

1− γ
,

if Tm(a) > 0 and +∞ otherwise. Now that we have upper confidence

bounds on the value of many sequences of actions we can sharpen these

bounds for the sequences a ∈ AL by defining the b-values as:

bm(a) = inf
1≤h≤L

b′m(a1:h). (5.9)

At each episodem = 1, 2, . . . ,M , OLOP selects a sequence am ∈ AL

with highest b-value, observes the rewards Y m
t ∼ ν(am1:t), t = 1, . . . , L

94 Optimistic planning

provided by the environment, and updates the b-values. At the end of

the exploration phase, OLOP returns an action that has been the most

often played, i.e. a(n) = argmaxa∈A Ta(M).

Algorithm 2 Open Loop Optimistic Planning

Let M be the largest integer such that M⌈logM/(2 log 1/γ)⌉ ≤ n.

Let L = ⌈logM/(2 log 1/γ)⌉.
for m = 1 to M do

Computes the b-values at time m − 1 for sequences of actions in

AL using (5.9) and chooses a sequence that maximizes the corre-

sponding b-value:

am ∈ arg max
a∈AL

ba(m− 1).

end for

return Action a(n) = argmaxa∈A Ta(M).

5.2.2 Analysis of OLOP

Let κ ∈ [1,K] be defined as

κ = lim sup
h→∞

∣∣∣∣{a ∈ Ah : v(a) ≥ v∗ − 2
γh+1

1− γ

}∣∣∣∣1/h . (5.10)

Notice that this definition is very close to (5.6), where the additional 2

factor accounts for the additional uncertainty due to the empirical esti-

mation of the rewards. We deduce the following bound on the expected

loss, whose proof is omitted here but can be found in [31].

Theorem 5.2. For any κ′ > κ, the expected loss is bounded as:

Ern =

 Õ

(
n
− log 1/γ

log κ′

)
if γ

√
κ′ > 1,

Õ
(
n− 1

2

)
if γ

√
κ′ ≤ 1.

5.2. Deterministic dynamics, stochastic rewards 95

5.2.3 Discussion

In this section we compare the performance of OLOP with previous

algorithms that can be adapted to this framework. This discussion is

summarized in Figure 5.1. We also point out several open questions

raised by these comparisons.

Comparison with HOO/StoOO/Zooming algorithms: In Sec-

tion 5.1.5 we showed that the mapping a ∈ A∞ 7→ v(a) is Lipschitz

w.r.t. some metric ℓ. Thus we could use the HOO algorithm described

in Section 3.4.2 (or the zooming algorithm of [82]) and derive perfor-

mance bounds in terms of the near-optimality dimension d = log κ
log 1/γ

(see (5.7)). The expected loss of HOO would thus be of order

Ern = Õ(n−1/(d+2)) = Õ(n
− log 1/γ

log κ+2 log 1/γ). (5.11)

Clearly, this rate is always worse than the ones in Theorem 5.2.

This is expected since these algorithms do not use the specific structure

of the global reward function (which is the sum of rewards obtained

along a sequence) to generalize efficiently the estimation of rewards

across arms. More precisely, they do not consider the fact that a reward

sample observed for an arm (or sequence) ab provides information for

the estimation of any other arm in aA∞. Thus we see that is it crucial

to take into account the specific structure of the rewards in order to

obtain tight bounds.

Comparison with UCB-AIR: If one knows that there are many

near-optimal sequences of actions (i.e. when κ is close to K), then one

may deduce that among a certain number of paths chosen uniformly at

random, there exists at least one which is very good with high probabil-

ity. This idea is exploited by the UCB-AIR algorithm [118], introduced

in Section 1.2.1 for the setting of many-armed bandits. This algorithm

could be used here, where at each round one may choose either to gen-

erate a new sequence by selecting a set of actions uniformly randomly,

or to re-sample a sequence already explored (either because the rewards

are good or not sufficiently well known). We have seen that the regret

bound of UCB-AIR is expressed in terms of the coefficient β > 0, which

96 Optimistic planning

is such that the probability of selecting an ϵ-optimal sequence is of the

order of ϵβ. In the planning problem, one can see that κ is closely

related to β. Indeed, our definition of κ implies that the proportion

of ϵ-optimal sequences (chosen uniformly randomly), for ϵ = 2γh+1

1−γ , is

O(κh), resulting in κ = Kγβ. Thanks to this result, we can see that

applying UCB-AIR in our setting yields the bound on the expected

loss:

Ern =

{
Õ(n− 1

2) if κ > Kγ

Õ(n
− 1

1+β) = Õ(n
− log 1/γ

logK/κ+log 1/γ) if κ ≤ Kγ

As expected, UCB-AIR is very efficient when there is a large

proportion of near-optimal paths. Note also that UCB-AIR requires

the knowledge of β (or equivalently κ), whereas OLOP (as well as

HOO/Zooming) does not.

Figure 5.1 shows a comparison of the exponents in the loss bounds

for OLOP, uniform planning, UCB-AIR, and HOO (in the case Kγ2 >

1). We note that the rate for OLOP is better than UCB-AIR when there

is a small proportion of near-optimal paths (small κ). Uniform planning

is always dominated by OLOP and corresponds to a minimax lower

bound for any algorithm. HOO/Zooming are always strictly dominated

by OLOP and they do not attain minimax performances.

Open questions are whether or not (1) one can do as well as UCB-

AIR (for large κ) when κ is unknown, (2) one can do better than both

OLOP and UCB-AIR in intermediate cases (i.e. when 1/γ2 < κ < γK).

Comparison with OPD: Remarkably, in the case κγ2 > 1, we ob-

tain the same rate for the loss as planning with deterministic rewards

(using OPD). Intuitively, the reason is that in the case κγ2 > 1 the

planning problem is hard since both the planning horizon 1/ log(1/γ)

and the branching factor κ may be large. Thus the planning tree has

to be explored both in breadth and in depth. Fortunately, it is in those

situations that the cross estimation of rewards among sequences (as

discussed in the comparison with HOO) is the most beneficial. Indeed

in such cases, a reward r(a) is estimated using reward samples from

many observed sequences ab. Thus using the specific structure of the

rewards enables a fast estimation of the mean rewards, and OLOP

5.3. Markov decision processes 97

Many good armsFew good arms

logK
log 1/γ

logK
log 1/γ

d

β

0 2

1 0

Exponent

0
HOO, Zooming:

OLOP:

UCB-AIR:

−

1
d+2

−

1
d

−

1
β+1

−1/2

Fig. 5.1 Comparison of the exponent rate of the bounds on the simple regret for OLOP,
uniform planning, UCB-AIR, and HOO/Zooming, as a function of d ∈ [0, logK

log 1/γ
], or equiv-

alently β ∈ [0, logK
log 1/γ

], or κ ∈ [1,K], in the case Kγ2 > 1. We have the relations κ = Kγβ

and β = logK
log 1/γ

− d.

achieves the same order in the bound on the expected loss as when the

rewards are deterministic. We deduce that in hard instances of planning

problems (under deterministic transitions), planning with stochas-

tic rewards is not harder than planning with deterministic

rewards.

5.3 Markov decision processes

Now we consider the setting of Markov decision processes where tran-

sitions are stochastic. More precisely we denote by p(y|x, a) the prob-

ability of a transition from x to y given action a. Here we assume

that the number of possible next-states N is finite, i.e. supx∈X,a∈A |{y :

p(y|x, a) > 0}| def= N < ∞. We also assume that the rewards r(x, a) are

deterministic and lie in [0, 1].

98 Optimistic planning

Again we consider a infinite-time horizon problem with discounted

rewards. For any policy π : X → A the value function is defined as the

expected sum of discounted rewards:

V π(x)
def
= E

[∑
t≥0

γtr(xt, π(xt))
]
,

where xt is the state of the system at time t when starting from x (i.e.

x0 = x) and following policy π. We also define the Q-value function

Qπ : X ×A → R associated to a policy π, in state-action (x, a), as:

Qπ(x, a)
def
= r(x, a) + γ

∑
y

p(y|x, a)V π(y).

The optimal value function (respectively Q-value function) is de-

fined as V ∗(x)
def
= supπ V

π(x) (respectively Q∗(x, a)
def
= supπ Q

π(x, a))

and satisfies the Bellman equations:

V ∗(x) = max
a∈A

[
r(x, a) + γ

∑
y

p(y|x, a)V ∗(y)
]

Q∗(x, a) = r(x, a) + γ
∑
y

p(y|x, a)max
b∈A

Q∗(y, b).

We assume that we possess a full model of the transition probabil-

ities p and the reward function r, which can be used by the planning

algorithm. The model takes as input a state x and returns for each

action a the reward r(x, a) as well as the N next states y and the

corresponding transition probabilities p(y|x, a). An algorithm takes as

input an initial state x, and outputs an action a(n) using at most n

calls to the generative model. Again the performance is assessed with

the loss rn of choosing a(n) and then following an optimal path instead

of following an optimal path from the beginning, as defined in (5.1).

This setting is different from the two previous sections in the fact

that the space of policies cannot be identified with the set of infinite

sequences of actions anymore, since a policy depends on the actual

resulting states and not only on the sequence of actions.

5.3.1 Optimistic Planning in MDP

The Optimistic Planning in MDP (OP-MDP) algorithm [39, 37] works

by building incrementally a tree corresponding to the set of states that

5.3. Markov decision processes 99

Fig. 5.2 The subtree corresponding to the set of states that can be reached from the initial
state. The big arrows represent the actions (K = 2) and the thin arrows the transitions to
the next states (N = 2). Here 4 nodes have been expanded. The optimistic policy and the
leaves of the resulting optimistic subtree are represented in yellow.

can be reached from the initial state. Notice that several nodes may

correspond to the same state because of different transitions from the

root to a given state. Such duplicates could be merged by transforming

the tree into a graph; however here we restrict ourselves to a simple ver-

sion of OP-MDP that ignores duplicates (thus each node corresponds

to a unique path to any state).

We use the following notations: T denotes the infinite planning

tree and Tn ⊂ T is the subtree resulting from n node expansions, as

illustrated in Figure 5.2 for n = 4. Lt is the set of leaves of Tt. We

write xi the state associated to any node i ∈ T . For any policy π :

T 7→ A defined over the tree T , we denote by T π the (infinite) subtree

corresponding to the set of nodes that are reachable when following π.

For any finite subtree T ′ ⊂ T , we define a policy-class Π : T ′ 7→ A as a

set of policies π : T 7→ A that share the same actions on T ′. We denote

by T Π the corresponding (finite) subtree.

Algorithm 3 describes OP-MDP. T0 is initialized to be the root node,

and for each t = 1 to n − 1, a leaf Jt of Lt is selected and expanded,

which results in adding KN children nodes (the number of actions K

times the number of next states N) to the current tree. After n node

expansions, OP-MDP returns the first action of the current optimal

policy.

100 Optimistic planning

Fig. 5.3 Among the leaves of the current optimistic subtree, the one with the largest contri-

bution p(i) γ
h(i)

1−γ
is expanded (represented in red): a call to the model returns the rewards

and transition probabilities to the next states for each action.

The way the leaf Jt is selected is by first computing the optimistic

policy-class Π+
t and then selecting a leaf of the corresponding subtree

with largest “contribution”, as defined by (5.13). More precisely, at each

round t, we define the b-values and u-values of any node of the current

tree Tt as follows: for any leaf j ∈ Lt, bt(j)
def
= 1

1−γ and ut(j)
def
= 0, and

for any other node i ∈ Tt \ Lt define

bt(i)
def
= max

a∈A

[
r(xi, a) + γ

∑
j∈C(i,a)

p(xj |xi, a)bt(j)
]
,

ut(i)
def
= max

a∈A

[
r(xi, a) + γ

∑
j∈C(i,a)

p(xj |xi, a)ut(j)
]
,

where C(i, a) denotes the set of children nodes of node i when choosing

action a.

By a backward induction starting from the leaves up to the root,

we immediately deduce that the b-value (respectively the u-value) of

any node i ∈ Tt provides an upper-bound (resp. a lower bound) on the

optimal value function at the corresponding state: ut(i) ≤ V ∗(xi) ≤
bt(i), for any t.

5.3. Markov decision processes 101

Algorithm 3 Optimistic planning in MDP (OP-MDP)

Initial state x0, model of p and r, budget n

Initialize tree: T0 = {0} (root node is called 0)

for i = 1, . . . , n− 1 do

Build optimistic subtree T +
t according to (5.12),

Select leaf Jt ∈ L+
t with largest contribution:

Jt = arg max
j∈L+

t

p(j)
γh(j)

1− γ
,

Expand Jt (adding KN new leaves)

end for

Return argmaxa∈A
[
r(x0, a) + γ

∑
j∈C(0,a) p(xj |x0, a)un(j)

]
.

We define the optimistic policy-class Π+
t : Tt 7→ A as the optimal

policy for the b-values for any i ∈ Tt:

Π+
t (i) ∈ argmax

a∈A

[
r(xi, a) + γ

∑
j∈C(i,a)

p(xj |xi, a)bt(j)
]
. (5.12)

We denote by T +
t = T π+

t the corresponding optimistic subtree of

the set of nodes that can be reached when following the optimistic

policy, and L+
t the leaves of this subtree.

Now, for each leaf j ∈ L+
t (of depth h(j)) we define p(j) as the prob-

ability of reaching the leaf j when starting from the root and following

policy Π+
t :

p(j)
def
=

h(j)−1∏
h=0

p(ih+1|ih, π+
t (ih)) > 0,

where the h(j) + 1 nodes (i0
def
= 0, i1, . . . , ih(j)

def
= j) is the path from

the root to j. Notice that we have
∑

j∈L+
t
p(j) = 1. Finally, we call

contribution of a leaf j ∈ L+
t the quantity

c(j)
def
= p(j)

γh(j)

1− γ
. (5.13)

OP-MDP selects the leaf of the optimistic subtree with largest con-

tribution: Jt ∈ argmaxj∈L+
t
c(j).

102 Optimistic planning

The intuition for that choice is that the diameter (difference between

the upper and lower bounds) at the root is the sum of contributions of

the leaves j ∈ L+
t : bt(0)−ut(0) =

∑
j∈L+

t
c(j). Thus expanding the one

with largest contribution reduces as much as possible the diameter at

the root, thus the accuracy of the value function at the initial state.

5.3.2 Analysis of OP-MDP

For any two policies π, π′ : T 7→ A, define T (π, π′) = T π ∩ T π′
the

set of their common nodes, and L(π, π′) the set of leaves of T (π, π′)

(with the convention that L(π, π′) = ∅ if T π = T π′
). Define ℓ(π, π′)

def
=∑

j∈L(π,π′) c(j) the sum of the contributions of L(π, π′). We have the

property that the value function, defined for any π : T 7→ A, as

v(π)
def
=
∑
i∈T π

p(i)γh(i)r(xi, π(xi)),

is Lipschitz w.r.t. ℓ:

|v(π)− v(π′)| ≤ ℓ(π, π′). (5.14)

For any policy-class Π : T 7→ A, define the diameter of Π as

diam(Π)
def
= sup

π,π′∈Π
ℓ(π, π′).

Note that from the definition of the contributions, we have that

diam(Π) =
∑

j∈L(Π) c(j).

Thus one can see OP-MDP as a deterministic optimistic optimiza-

tion algorithm (see DOO in Chapter 3.3) where at each round t:

• the search space T is partitioned into policy-classes defined

by the current subtree Tt
• an upper bound on each policy-class can be computed with

the b-values and the optimistic policy-class Π+
t is the one

with largest upper-bound
• the diameter of the policy-class Π+

t is the sum of contribu-

tions of its leaves L+
t , thus expanding the leaf Jt ∈ L+

t with

largest contribution c(j) “splits” the optimistic policy class

along its “widest” direction.

5.3. Markov decision processes 103

Now the main difference is that we are not directly working on the

set of policies but on the set of nodes of the tree (which is no more

equivalent). Thus expanding a node has an impact on possibly many

policies, actually on all policies containing that node. Thus in order to

analyze this algorithm we should not try to characterize the quantity of

near-optimal policies, but instead the quantity of nodes that contribute

to near-optimal policies.

For any node i ∈ T , let Πi be the policy-class Π ∋ i such that

minj∈L(Π) c(j) ≥ c(i) and that has the largest diameter:

Πi = arg max
Π∋i;minj∈L(Π) c(j)≥c(i)

diam(Π),

and for any ϵ > 0, define

Sϵ
def
=
{
i ∈ T ,diam(Πi) ≥ ϵ, and ∃Π ∋ i, v(Π) ≥ v∗ − diam(Πi)

}
.

Sϵ represents the set of nodes that (1) belong to a policy-class Πi

with a diameter at least ϵ and (2) belong to a policy that is diam(Πi)-

optimal. In other words, those are the set of nodes that contribute in

a significant way to near-optimal policies.

The paper [37] uses a slightly different definition of Sϵ (taking into

account the number of leaves of Πi) but the main results stated next

are immediate consequences of the analysis undertaken in that paper.

Theorem 5.3. Let d ≥ 0 be any constant such that |Sϵ| = Õ(ϵ−d),

i.e. such that there exists a, b > 0, for all ϵ > 0,

|Sϵ| ≤ a(log(1/ϵ))bϵ−d. (5.15)

Then the loss of OP-MDP after n node expansions, is

rn =

{
Õ(n− 1

d) if d > 0

O(exp[−(na)
1
b]) if d = 0

The full proof of this result can be found in [37]. We now provide a

sketch of proof and relate this near-optimality planning exponent d to

the branching factor κ ∈ [1,KN] of the set of near-optimal nodes, like

in previous sections with (5.6) and (5.10).

104 Optimistic planning

Define the set of near-optimal nodes T + ⊂ T :

T + def
=
{
i ∈ T , v(i) ≤ v∗ − diam(Πi)

}
,

where the value of a node v(i) is the value of the best possible policy

containing that node v(i)
def
= maxπ,Tπ∋i v(π). Then the near-optimality

exponent d is related to the branching factor κ of T + by d = log κ
log 1/γ .

And like for the OPD, the set of near-optimal nodes represents

the set of nodes that deserve to be expanded in order to discover

the optimal policy. Similarly to OPD, the main intuition for the

analysis of OP-MDP is that this algorithms only expands nodes in

T +. Indeed, if at time t, a node Jt is expanded, this means that

its contribution is larger than that of any other leaf in L+
t . Thus

diam(Π+
t) =

∑
i∈L+

t
c(j) ≤

∑
j∈ΠJt

c(j) = diam(ΠJt) (by definition

of ΠJt). Now since Π+
t is the optimistic policy-class, it means that its

upper-bound v(Π+
t) + diam(Π+

t) is larger than v∗. Thus

v(Jt) ≥ v(Π+
t) ≥ v∗ − diam(Π+

t) ≥ v∗ − diam(ΠJt),

which means that Jt ∈ T +.

5.3.3 Interesting values of d

The loss is small when d is small (and we obtain exponential rate when

d = 0), or equivalently when the branching factor κ is 1.

Uniform rewards and probabilities. The worst possible rate is

achieved for κ = KN (i.e. the branching factor of T + is the same as

that of T) and in this case the loss is rn = n
− log(KN)

log 1/γ . This happens when

all policies provide the same rewards and the transition probabilities are

uniform. In that case OP-MDP reduces to a uniform search, where all

nodes of depth up to logn
log(KN) are expanded. It may seem surprising that

the performance is poor when the problem seems easy, but we should

keep in mind that one usually does not know in advance what the

difficulty of the problem is (i.e. d or κ are not known by the algorithm

although the performance of OP-MDP is expressed in terms of those

parameters). If this measure of difficulty of the problem were known,

5.3. Markov decision processes 105

one could design algorithms that would exploit it, like the UCB-AIR

algorithm presented in Chapter 1 and discussed in previous section.

Now, for any n, consider the class of problems where all rewards up

to depth logn
log(KN) are the same but differ from that depth on. Thus no

algorithm can be uniformly better than a uniform planning algorithm

on this class of problems. Thus OP-MDP is minimax-optimal on the

class of problems characterized by κ = KN .

Heterogeneous transition probabilities. When the transition

probabilities are significantly heterogeneous, the part of the branch-

ing factor of T + due to the number of next states may be significantly

less than N . Indeed, the set of nodes T + that may be expanded by

OP-MDP contains nodes with significant contribution only. Thus the

nodes that can be reached with a very small probability only are not

be part of T + thus do not need to be expanded. This saves compu-

tations when the transition probabilities are very heterogeneous, and

in the limit, when the probability (from any state) to one next state

is close to 1, then the branching factor approaches 1, and the perfor-

mance of OP-MDP is as good as OPD for deterministic dynamics (see

Section 5.1).

Structured rewards. In the case of structured rewards (i.e. the re-

wards along branches corresponding to different actions are heteroge-

neous), then the part of the branching factor of T + due to the number

of actions may be significantly less than K. This case was already il-

lustrated in Section 5.1.

Now when the problem has both structured rewards and heteroge-

neous transition probabilities, then κ can be much less than KN and

even close to 1, which provides a loss bound of order n
− log 1/γ

log κ . Thus like

previous optimistic algorithms, the performance of OP-MDP depends

on a measure of the quantity of near-optimal nodes, which are the nodes

that deserve to be expanded in order to build a near-optimal policy.

Our main contribution is to show that the right measure of complexity

for optimistic planning is defined by T + which represents the set of

states that significantly contribute to near-optimal policies.

106 Optimistic planning

5.4 Conclusions and extensions

Generative model. OP-MDP requires a full model of the transition

dynamics (i.e., for each state-action pair (x, a), a call to the model re-

turns the set of next states y and the exact values of the transition

probabilities p(y|x, a)). In many situations, only a generative model is

available: Given (x, a), each call to the model returns a single next

state y drawn from the true (but unknown) transition probabilities:

y ∼ p(·|x, a). This is the case when an agent interacts online with an un-

known environment (such as in Reinforcement learning, see [111, 112])

from which he only observes trajectories, or when one uses Monte-Carlo

simulations to numerically approximate heavy computations. Thus it

would be useful to extend OP-MDP to situations where only a genera-

tive model of the transition dynamics (and rewards) is available. Also

we would like to cover the case of potentially infinite number of next

states (like in [81]) by using a branching factor N (number of next

states) that would depend on the node characteristics (such as its con-

tribution) and the numerical budget n. Designing a sound (i.e. enjoying

finite-time performance guarantee) optimistic planning algorithm using

a generative model is still an open problem.

Extensions to POMDPs. In a partially observable Markov decision

process (POMDP) the state of the system xt cannot be observed by

the agent (see e.g. [74, 21]). However, in each time t, the agent receives

an observation yt, which is a stochastic function of the unknown state.

In a POMDP, the best policy (which maximizes the expected rewards

given the uncertainty over the state) can be obtained as a function of

the belief state bt (which is a distribution over the state space X). The

literature on online planning algorithms in this setting is large and we

refer the interested reader to [103] for a complete overview. The point-

based approximation method [97] builds a search tree of belief states,

using a heuristic best-first expansion procedure which may be combined

with branch-and-bound procedure based on computations of upper and

lower bounds on the value function. However no finite-time guarantee

on the quality of the resulting action in terms of the numerical budget

was provided.

5.4. Conclusions and extensions 107

Casting this POMDP problem into our online planning setting, the

initial state is the current belief state, and the nodes of the tree that

are expanded are the belief states that can be reached from the initial

belief given a sequence of actions and observations. Using the work

described in the previous chapter one can use OP-MDP (assuming the

number of possible observations N is finite) to perform an efficient

online planning whose performance does not depend on the size of

the belief space (which is infinite) but on characteristics of the belief

planning space, such as the quantity of belief states that contributes in

a significant way to near-optimal policies.

In the case a full model of the POMDP is unknown, one can use

sampling-based techniques such as the technique (based on UCT) de-

scribed in [107]. Unfortunately this method does not enjoy finite-time

guarantee (since UCT can be arbitrarily poor in some situations as

illustrated in Section 2.3). This provides an additional motivation for

extending the OP-MDP to situations where a generative model only is

available.

Bayesian RL. In Bayesian Reinforcement learning (see e.g. [53, 116])

some parameters of the Markov decision process are initially unknown

and exploration can be performed by using a Bayesian reasoning where

one starts with a prior over the unknown parameters and based on the

transition and reward samples observed at any time t, a posterior distri-

bution over those parameters can be computed (either in a closed form

or using numerical approximation). The so-called Bayesian-adaptive

MDP (BAMDP) defines an enriched MDP which contains both the

current state and current posterior distribution over the unknown pa-

rameters. The interesting property of the BAMDP is that its state dy-

namics are known. Also, following the optimal action of the BAMDP

from the current state provides a good exploration-exploitation strat-

egy (which is optimal in a Bayesian sense) [53]. The planning problem

(of solving the BAMDP) can be addressed using sampling techniques

similar to the ones for MDPs of [81], see [117]. Monte-Carlo tree search

approaches have been developed also recently, such as in [10, 66]. How-

ever, no finite-time guarantees were provided in those works. By using

the fact that the dynamics of the BAMDP are known and by noticing

108 Optimistic planning

that the branching factor of the BAMDP planning tree is the same

as for the original MDP (i.e. A × N), [58] applied OP-MDP to the

BAMDP planning problem and derived loss bounds in terms of the

available numerical budget.

Finally, let us mention the harder problem of solving a POMDP

when the parameters of the dynamics or observation function are

unknown. An analogous Bayesian approach introduces the Bayesian-

Adaptive POMDP (BAPOMDP) [102] and an optimal policy in the

BAPOMDP provides a Bayes-optimal exploration in the POMDP.

However the planning problem of the BAPOMDP is more challeng-

ing because the branching factor now scales with the number of states

of the original POMDP (see [102]). Again extending the OP-MDP to

handle a possible infinite number of next-states using sampling from a

generative model would contribute to the problem.

Conclusion on optimistic planning. When the dynamics are de-

terministic, the set of policies is equivalent to the set of sequences of

actions. In such cases we can design optimistic planning algorithms

(OPD and OLOP) that takes into account the specific structure of the

planning problem (i.e. that the value of a policy is defined as the sum

of, possible expected, discounted rewards). Like for optimization algo-

rithms, we derived performance bounds as a function of the quantity

of near-optimal policies, measures with quantities like d, κ, or β. When

the rewards are stochastic we described an algorithm OLOP that uses

the specific structure of the planning problem to improve over a di-

rect application of an X -armed bandit algorithm, such as HOO. This

implied that in hard instances of planning problems with stochastic

rewards (but deterministic transitions), the loss rate of OLOP is the

same as the loss achieved by OPD when the rewards are deterministic.

Now where the dynamics are stochastic, a policy is no more equiv-

alent to a sequence of actions, and a more subtle definition of the set

of important nodes that any good planning algorithm should expand

is required. We characterized the set of nodes that OP-MDP expands

as those that contribute in a significant way to near-optimal policies,

and derived loss bounds based on this new measure of complexity.

In all considered planning problems we used the property that since

5.4. Conclusions and extensions 109

the discount factor γ < 1 the value function satisfied a global Lipschitz

property w.r.t. some underlying metric defined on the planning tree.

Now this opens several questions. One question is whether it is possible

to extend those results to the case of average reward problems? The

other (already discussed at the end of Section 5.1) is whether it is pos-

sible to improve those results by using a possibly tighter semi-metric

ℓ (which may be unknown) under which the value function would be

locally smooth (instead of globally Lipschitz) around the optimal pol-

icy, and extend the results of SOO (seen in Chapter 4) to the planning

problem.

Final conclusion

The main message of this work is to show that the “optimism in the

face of uncertainty” is a simple yet powerful principle that may guide

the exploration in general optimization and planning problems. It ap-

plies when some unknown environment has to be explored while some

criterion needs to be optimized.

In the multi-armed bandit problem, an unknown environment (set

of arms with unknown distributions) has to be explored while maximiz-

ing the sum of rewards. In function optimization under finite numerical

budget (e.g. number of function evaluations), the exploration of the

space should be optimized in order to return the best possible recom-

mendation of the maximum once the numerical resources are depleted.

In both situations, the performance (either in terms of cumulative re-

gret or in terms of loss of the final recommendation) depends on some

complexity measure of the problem, which may be expressed in terms

of the quantity of near-optimal solutions.

In multi-armed bandits, the complexity measure is the inverse of

the “distance” (i.e. in terms of mean or in Kullback-Leibler divergence)

between the distributions of sub-optimal and optimal arms. In function

optimization and in planning, we have defined a complexity measure in

110

Final conclusions 111

terms of the quantity of near-optimal solutions (i.e. the near-optimality

dimension d or the proportion of near-optimal path β or the branching

factor κ of a relevant subset of the tree search) measured with respect

to some semi-metric under which the function is locally smooth.

Another important factor is our knowledge about the local smooth-

ness of the function around the global optimum. If this information

is known, then it can be used to build efficient optimization algo-

rithms with performance rate independent of the search space dimen-

sion. When it is not the case, then one can still build adaptive strategies

that can, in some situations, perform almost as well as if this informa-

tion were known.

Finally we have seen an application to the problem of online-

planning which illustrates the benefit of using the specific structure

of the problem (rewards, transitions) to design efficient algorithms. In

such situations we showed that a relevant complexity measure for the

problem of online planning in a MDP is the quantity of states that

significantly contribute to the set of near-optimal policies.

References

[1] The computer-go program mogo. http://www.lri.fr/∼teytaud/mogo.html.
[2] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvári. Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems,
2011.

[3] Y. Abbasi-Yadkori, D. Pal, and C. Szepesvári. Online-to-confidence-set con-
versions and application to sparse stochastic bandits. In Artificial Intelligence
and Statistics, 2012.

[4] B. Abramson. Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12:182–193, 1990.

[5] A. Agarwal, D. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic
convex optimization with bandit feedback. In Advances in Neural Information
Processing Systems, 2011.

[6] R. Agrawal. The continuum-armed bandit problem. SIAM Journal on Control
and Optimization, 33:1926–1951, 1995.

[7] R. Agrawal. Sample mean based index policies with O(log n) regret for the
multi-armed bandit problem. Advances in Applied Probability, 27(4):1054–
1078, 1995.

[8] S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed
bandit problem. In Conference on Learning Theory, 2012.

[9] S. Agrawal and N. Goyal. Further optimal regret bounds for Thompson sam-
pling. In Sixteenth International Conference on Artificial Intelligence and
Statistics, 2013.

[10] J. Asmuth and M. L. Littman. Learning is planning: near Bayes-optimal re-
inforcement learning via Monte-Carlo tree search. In Uncertainty in Artificial
Intelligence, 2011.

112

References 113

[11] J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic
bandits. In S. Dasgupta and A. Klivans, editors, Proceedings of the 22nd an-
nual Conference On Learning Theory, COLT ’09, Montreal,Quebec, Canada,
jun 2009.

[12] J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-
armed bandits. In Conference on Learning Theory, 2010.

[13] J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration-exploitation trade-
off using variance estimates in multi-armed bandits. Theoretical Computer
Science, 410:1876–1902, 2009.

[14] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. Jour-
nal of Machine Learning Research, 3:397–422, March 2003.

[15] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multi-
armed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[16] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32:48–77, January
2003.

[17] P. Auer, R. Ortner, and C. Szepesvári. Improved rates for the stochastic
continuum-armed bandit problem. In Proceedings of the 20th Conference on
Learning Theory, pages 454–468, 2007.

[18] A. Auger and N. Hansen. Theory of Randomized Search Heuristics: Foun-
dations and Recent Developments, chapter Theory of Evolution Strategies: A
New Perspective, pages 289–325. World Scientific Publishing, 2011.

[19] K. Azuma. Weighted sums of certain dependent random variables. Tohoku
Mathematical Journal, 19:357–367, 1967.

[20] J. S. Banks and R. Sundaram. Denumerable-armed bandits. Econometrica,
60:1071–1096, 1992.

[21] N. Bäuerle and U. Rieder. Markov Decision Processes with Applications to
Finance. 2011.

[22] D. A. Berry, R. W. Chen, A. Zame, D. C. Heath, and L. A. Shepp. Bandit
problems with infinitely many arms. Annals of Statistics, (25):2103–2116,
1997.

[23] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

[24] A. Bourki, G. Chaslot, M. Coulm, V. Danjean, H. Doghmen, J.-B. Hoock,
T. Hérault, A. Rimmel, F. Teytaud, O. Teytaud, P. Vayssière, and Z. Yu.
Scalability and parallelization of monte-carlo tree search. In International
Conference on Computers and Games, 2012.

[25] B. Bouzy and T. Cazenave. Computer Go: an AI oriented survey. Artif.
Intell., 132(1):39–103, Oct. 2001.

[26] B. Bouzy and B. Helmstetter. Monte-Carlo go developments. In H. I. Ernst
A. Heinz H. Jaap van den Herik, editor, Advances in Computer Games, page
159174. Kluwer Academic Publishers, 2003.

[27] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of monte carlo
tree search methods. IEEE Transactions on Computational Intelligence and
AIin Games, 4(1), March 2012.

114 References

[28] B. Brügmann. Monte carlo go. Technical report, Syracuse University, NY,
USA, 1993.

[29] S. Bubeck. Bandits Games and Clustering Foundations. PhD thesis, Univer-
sité de Lille 1, 2010.

[30] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems. Foundations and Trends in Machine Learn-
ing, 5(1):1–122, 2012.

[31] S. Bubeck and R. Munos. Open loop optimistic planning. In Conference on
Learning Theory, 2010.

[32] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed ban-
dits problems. In Proc. of the 20th International Conference on Algorithmic
Learning Theory, pages 23–37, 2009.

[33] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. Online optimization of
X-armed bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems, volume 22, pages
201–208. MIT Press, 2008.

[34] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits. Journal
of Machine Learning Research, 12:1655–1695, 2011.

[35] S. Bubeck, G. Stoltz, and J. Y. Yu. Lipschitz bandits without the lipschitz
constant. In International Conference on Algorithmic Learning Theory, 2011.

[36] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Reinforcement Learn-
ing and Dynamic Programming Using Function Approximators. Automation
and Control Engineering. Taylor & Francis CRC Press, 2010.

[37] L. Buşoniu and R. Munos. Optimistic planning for markov decision processes.
In Proceedings 15th International Conference on Artificial Intelligence and
Statistics (AISTATS-12), page 182189, 2012.

[38] L. Buşoniu, R. Munos, and R. Babuska. Optimistic planning in Markov de-
cision processes. In F. Lewis and D. Liu, editors, In Reinforcement Learning
and Adaptive Dynamic Programming for feedback control. Wiley, 2011.

[39] L. Buşoniu, R. Munos, B. D. Schutter, and R. Babuška. Optimistic planning
for sparsely stochastic systems. In 2011 IEEE International Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-11),
Paris, France, 11–15 April 2011. Submitted to special session on Active Rein-
forcement Learning.

[40] A. D. Bull. Adaptive-treed bandits. Technical report, arXiv:1302.2489v2,
2013.

[41] A. Burnetas and M. Katehakis. Optimal adaptive policies for sequential allo-
cation problems. Advances in Applied Mathematics, 17:122–142, 1996.

[42] A. N. Burnetas and M. N. Katehakis. Optimal adaptive policies for sequential
allocation problems. Advances in Applied Mathematics, 17(2):122–142, 1996.

[43] E. F. Camacho and C. Bordons. Model Predictive Control. Springer-Verlag,
2004.

[44] O. Cappé, A. Garivier, O.-A. Maillard, R. Munos, and G. Stoltz. Kullback-
leibler upper confidence bounds for optimal sequential allocation. Annals of
Statistics, 41(3):1516–1541, 2013.

References 115

[45] A. Carpentier and R. Munos. Theory meets compressed sensing for high
dimensional stochastic linear bandit. In International Conference on Artificial
Intelligence and Statistics, 2012.

[46] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, New York, NY, USA, 2006.

[47] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-based Algorithms
for Markov Decision Processes. Springer, London, 2007.

[48] G. Chaslot. Monte-Carlo Tree Search. PhD thesis, Maastricht University,
2010.

[49] P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In Uncer-
tainty in Artificial Intelligence, 2007.

[50] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In LNCS, editor, Computer Games, volume 4630, pages 72–83, 2006.

[51] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under
bandit feedback. In R. A. Servedio and T. Zhang, editors, Proceedings of the
21st annual Conference On Learning Theory, volume 80 of COLT ’08, pages
355–366, Helsinki, Finland, jul 2008. Omnipress.

[52] B. Defourny, D. Ernst, and L. Wehenkel. Lazy planning under uncertainties
by optimizing decisions on an ensemble of incomplete disturbance trees. In
S. Girgin, M. Loth, R. Munos, P. Preux, and D. Ryabko, editors, Recent Ad-
vances in Reinforcement Learning, volume 5323 of Lecture Notes in Computer
Science, pages 1–14. Springer, 2008.

[53] M. Duff. Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. PhD thesis, Department of Computer Science,
University of Massachusetts, Amherst, 2002.

[54] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvari. Parametric bandits:
The generalized linear case. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing
Systems 23, pages 586–594. 2010.

[55] D. E. Finkel and C. T. Kelley. Convergence analysis of the direct algorithm.
Technical report, North Carolina State University, Center for, 2004.

[56] A. D. Flaxman, A. T. Kalai, and H. Brendan McMahan. Online convex opti-
mization in the bandit setting: gradient descent without a gradient. In Pro-
ceedings of the 16th annual ACM-SIAM Symposium On Discrete Algorithms,
SODA ’05, pages 385–394. SIAM, 2005.

[57] C. Floudas. Deterministic Global Optimization: Theory, Algorithms and Ap-
plications. Kluwer Academic Publishers, Dordrecht / Boston / London, 1999.

[58] R. Fonteneau, L. Busoniu, and R. Munos. Optimistic planning for belief-
augmented Markov decision processes. In IEEE International Symposium on
Adaptive Dynamic Programming and reinforcement Learning, 2013.

[59] J. M. X. Gablonsky. Modifications of the direct algorithm. PhD thesis, 2001.
[60] A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochas-

tic bandits and beyond. In Proceedings of the 24th annual Conference On
Learning Theory, COLT ’11, 2011.

[61] S. Gelly and D. Silver. Combining online and offline knowledge in uct. In
Z. Ghahramani, editor, International Conference on Machine Learning, vol-

116 References

ume 227 of ICML ’07, ACM International Conference Proceeding Series, pages
273–280, Corvalis, Oregon, USA, jun 2007. ACM.

[62] S. Gelly and D. Silver. Monte-carlo tree search and rapid action value esti-
mation in computer go. Artificial Intelligence, 175:1856–1875, 2011.

[63] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with
patterns in monte-carlo go. Technical report, INRIA RR-6062, 2006.

[64] J. Gittins. Bandit processes and dynamic allocation indices. In Journal of the
Royal Statistical Society Series B, 41(2):148–177, 1979.

[65] J. C. Gittins, R. Weber, and K. Glazebrook. Multi-armed Bandit Allocation
Indices. Wiley, 1989.

[66] A. Guez, D. Silver, and P. Dayan. Efficient bayes-adaptive reinforcement learn-
ing using sample-based search. In Advances in Neural Information Processing
Systems, 2012.

[67] E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, New
York, 1992.

[68] E. A. Hansen and S. Zilberstein. A heuristic search algorithm for Markov
decision problems. In Proceedings Bar-Ilan Symposium on the Foundation of
Artificial Intelligence, Ramat Gan, Israel, 23–25 June 1999.

[69] J. Honda and A. Takemura. An asymptotically optimal bandit algorithm for
bounded support models. In A. T. Kalai and M. Mohri, editors, Proceedings
of the 23rd annual Conference On Learning Theory, pages 67–79. Omnipress,
June 2010.

[70] J. Honda and A. Takemura. An asymptotically optimal policy for finite sup-
port models in the multiarmed bandit problem. Machine Learning, 85:361–
391, 2011.

[71] R. Horst and H. Tuy. Global Optimization ? Deterministic Approaches.
Springer, Berlin / Heidelberg / New York, 3rd edition, 1996.

[72] J.-F. Hren and R. Munos. Optimistic planning of deterministic systems. In
E. W. o. R. L. Springer LNAI 5323, editor, Recent Advances in Reinforcement
Learning, pages 151–164, 2008.

[73] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the lipschitz constant. Journal of Optimization Theory and Applica-
tions, 79(1):157–181, 1993.

[74] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1–2):99–
134, 1998.

[75] A. Kalai and S. Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71:291–307, 2005.

[76] E. Kauffman, O. Cappé, and A. Garivier. On bayesian upper confidence
bounds for bandit problems. In International Conference on Artificial Intel-
ligence and Statistics, 2012.

[77] E. Kauffmann, N. Korda, and R. Munos. Thompson sampling: An asymptoti-
cally optimal finite time analysis. In International Conference on Algorithmic
Learning Theory, 2012.

References 117

[78] E. Kaufmann, N. Korda, and R. Munos. Thompson sampling for 1-
dimensional exponential family bandits. In Neural Information Processing
Systems, 2013.

[79] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Aca-
demic Publishers, Dordrecht / Boston / London, 1996.

[80] M. Kearns, Y. Mansour, and A. Ng. A sparse sampling algorithm for near-
optimal planning in large Markovian decision processes. In Machine Learning,
volume 49, pages 193–208, 2002.

[81] M. J. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. Machine Learning,
49(2-3):193–208, 2002.

[82] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces.
In Proceedings of the 40th ACM Symposium on Theory of Computing, 2008.

[83] R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit prob-
lem. In Proceedings of the 18th conference on advances in Neural Informa-
tion Processing Systems, NIPS ’04, Vancouver, British Columbia, Canada, dec
2004. MIT Press.

[84] R. D. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandit problems
in metric spaces. In Proceedings of the 40th ACM symposium on Theory Of
Computing, TOC ’08, pages 681–690, 2008.

[85] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Proceed-
ings of the 17th European Conference on Machine Learning (ECML-2006),
pages 282–293. 2006.

[86] J. Kujala and T. Elomaa. Following the perturbed leader to gamble at multi-
armed bandits. In International Conference on Algorithmic Learning Theory,
2007.

[87] S. M. La Valle. Planning Algorithms. Cambridge University Press, 2006.
[88] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6:4–22, 1985.
[89] C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud, S.-

R. Tsai, S.-C. Hsu, and T.-P. Hong. The computational intelligence of mogo
revealed in taiwan’s computer go tournaments. IEEE Trans. Comput. Intellig.
and AI in Games, 1(1):73–89, 2009.

[90] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.
[91] O. A. Maillard. Apprentissage séquentiel: Bandits, Statistique et Renforce-

ment. PhD thesis, Université des Sciences et des Technologies de Lille 1,
2011.

[92] O.-A. Maillard, R. Munos, and G. Stoltz. Finite-time analysis of multi-armed
bandits problems with Kullback-Leibler divergences. In Conference On Learn-
ing Theory, 2011.

[93] R. Munos. Optimistic optimization of deterministic functions without the
knowledge of its smoothness. In Advances in Neural Information Processing
Systems, 2011.

[94] Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, 1990.

[95] N. Nilsson. Principles of Artificial Intelligence. Tioga Publishing, 1980.

118 References

[96] L. Péret and F. Garcia. On-line search for solving large Markov decision
processes. In Proceedings of the 16th European Conference on Artificial Intel-
ligence, 2004.

[97] J. Pineau, G. J. Gordon, and S. Thrun. Anytime point-based approximations
for large POMDPs. Journal of Artificial Intelligence Research (JAIR), 27:335–
380, 2006.

[98] J. Pintér. Global Optimization in Action (Continuous and Lipschitz Opti-
mization: Algorithms, Implementations and Applications). Kluwer Academic
Publishers, 1996.

[99] M. Puterman. Markov Decision Processes — Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, 1994.

[100] A. Rimmel, F. Teytaud, and O. Teytaud. Biasing monte-carlo simulations
through rave values. In International Conference on Computers and Games,
2010.

[101] H. Robbins. Some aspects of the sequential design of experiments. Bulletin
of the American Mathematics Society, 58:527–535, 1952.

[102] S. Ross, J. Pineau, B. Chaib-draa, and P. Kreitmann. A bayesian approach
for learning and planning in partially observable markov decision processes.
Journal of Machine Learning Research, 12:1655–1696, 2011.

[103] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online planning algorithms
for pomdps. Journal of Artificial Intelligence Research, 32:663–704, 2008.

[104] P. Rusmevichientong and J. N. Tsitsiklis. Linearly parameterized bandits.
Math. Oper. Res., 35:395–411, May 2010.

[105] O. Sigaud and O. Buffet, editors. Markov Decision Processes in Artificial
Intelligence. Wiley, 2010.

[106] D. Silver. Reinforcement Learning and Simulation-Based Search in Computer
Go. PhD thesis, University of Alberta, 2009.

[107] D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In Advances
in Neural Information Processing Systems, 2012.

[108] A. Slivkins. Multi-armed bandits on implicit metric spaces. In Advances in
Neural Information Processing Systems, 2011.

[109] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In International
Conference on Machine Learning, pages 1015–1022, 2010.

[110] R. Strongin and Y. Sergeyev. Global Optimization with Non-Convex Con-
straints: Sequential and Parallel Algorithms. Kluwer Academic Publishers,
Dordrecht / Boston / London, 2000.

[111] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[112] Cs. Szepesvári. Algorithms for Reinforcement Learning. Morgan & Claypool
Publishers, 2010.

[113] W. Thompson. On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples. Biometrika, 25:285–294, 1933.

[114] W. R. Thompson. On the theory of apportionment. American Journal of
Mathematics, 57:450–456, 1935.

References 119

[115] M. Valko, A. Carpentier, and R. Munos. Stochastic simultaneous optimistic
optimization. In International Conference on Machine Learning, 2013.

[116] N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupart. Reinforcement
Learning: State of the Art, chapter Bayesian Reinforcement Learning. Springer
Verlag, 2012.

[117] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sam-
pling for on-line reward optimization. In International Conference on Machine
Learning, 2005.

[118] Y. Wang, J.-Y. Audibert, and R. Munos. Algorithms for infinitely many-
armed bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Proceedings of the 22nd conference on advances in Neural Information
Processing Systems, NIPS ’08, pages 1729–1736, Vancouver, British Columbia,
Canada, dec 2008. MIT Press.

[119] Y. Wang and S. Gelly. Modifications of uct and sequence-like simulations
for monte-carlo go. In IEEE Symposium on Computational Intelligence and
Games,, pages 175–182, 2007.

Acknowledgements

I would like to thank all my students and colleagues who worked with

me on the topics presented in this paper, including (by alphabetic or-

der) Jean-Yves Audibert, Sébastien Bubeck, Lucian Buşoniu, Alexan-

dra Carpentier, Pierre-Arnaud Coquelin, Rémi Coulom, Raphael

Fonteneau, Sylvain Gelly, Jean-Bastien Grill, Jean-François Hren,

Nathaniel Korda, Odalric-Ambrym Maillard, Amir Sani, Marta Soare,

Gilles Stoltz, Csaba Szepesvári, Olivier Teytaud, Michal Valko, and

Yizao Wang.

This work was supported by French National Research Agency

(ANR) through the project EXPLO-RA n◦ ANR-08-COSI-004 and by

European Community’s Seventh Framework Programme (FP7/2007-

2013) under grant agreement n◦ 270327.

120

