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Abstract

This work covers several aspects of the optimism in the face of un-

certainty principle applied to large scale optimization problems under

finite numerical budget. The initial motivation for the research reported

here originated from the empirical success of the so-called Monte-Carlo

Tree Search method popularized in Computer Go and further extended

to many other games as well as optimization and planning problems.

Our objective is to contribute to the development of theoretical foun-

dations of the field by characterizing the complexity of the underlying

optimization problems and designing efficient algorithms with perfor-

mance guarantees.

The main idea presented here is that it is possible to decompose a

complex decision making problem (such as an optimization problem in

a large search space) into a sequence of elementary decisions, where

each decision of the sequence is solved using a (stochastic) multi-armed

bandit (simple mathematical model for decision making in stochastic

environments). This so-called hierarchical bandit approach (where the

reward observed by a bandit in the hierarchy is itself the return of an-



other bandit at a deeper level) possesses the nice feature of starting the

exploration by a quasi-uniform sampling of the space and then focusing

progressively on the most promising area, at different scales, according

to the evaluations observed so far, and eventually performing a local

search around the global optima of the function. The performance of

the method is assessed in terms of the optimality of the returned solu-

tion as a function of the number of function evaluations.

Our main contribution to the field of function optimization is a class

of hierarchical optimistic algorithms designed for general search spaces

(such as metric spaces, trees, graphs, Euclidean spaces, ...) with dif-

ferent algorithmic instantiations depending on whether the evaluations

are noisy or noiseless and whether some measure of the “smoothness” of

the function is known or unknown. The performance of the algorithms

depends on the local behavior of the function around its global optima

expressed in terms of the quantity of near-optimal states measured with

some metric. If this local smoothness of the function is known then one

can design very efficient optimization algorithms (with convergence rate

independent of the space dimension), and when it is not known, we can

build adaptive techniques that can, in some cases, perform almost as

well as when it is known.

In order to be self-contained, we start with a brief introduction to the

stochastic multi-armed bandit problem in Chapter 1 and describe the

UCB (Upper Confidence Bound) strategy and several extensions. In

Chapter 2 we present the Monte-Carlo Tree Search method applied to

Computer Go and show the limitations of previous algorithms such

as UCT (UCB applied to Trees). This provides motivation for de-

signing theoretically well-founded optimistic optimization algorithms.

The main contributions on hierarchical optimistic optimization are de-

scribed in Chapters 3 and 4 where the general setting of a semi-metric

space is introduced and algorithms designed for optimizing a function

assumed to be locally smooth (around its maxima) with respect to a

semi-metric are presented and analyzed. Chapter 3 considers the case

when the semi-metric is known and can be used by the algorithm,

whereas Chapter 4 considers the case when it is not known and de-

scribes an adaptive technique that does almost as well as when it is



known. Finally in Chapter 5 we describe optimistic strategies for a

specific structured problem, namely the planning problem in Markov

decision processes with infinite horizon discounted rewards.



Contents

1 The stochastic multi-armed bandit problem 2

1.1 The multi-armed stochastic bandit 3

1.2 Extensions 11

1.3 Conclusion 15

2 Historical motivation: Monte-Carlo Tree Search 16

2.1 Historical motivation in Computer Go 17

2.2 Upper Confidence Bounds in Trees (UCT) 18

2.3 No finite-time performance for UCT 20

3 Optimistic optimization with known smoothness 23

3.1 Illustrative example 25

3.2 General setting 30

3.3 The DOO Algorithm 32

3.4 X -armed bandits 40

3.5 Conclusions 54

i



ii Contents

4 Optimistic Optimization with unknown smoothness 56

4.1 Simultaneous Optimistic Optimization (SOO) algorithm 57

4.2 Extensions to the stochastic case 71

4.3 Conclusions 79

5 Optimistic planning 80

5.1 Deterministic dynamics and rewards 82

5.2 Deterministic dynamics, stochastic rewards 89

5.3 Markov decision processes 93

5.4 Conclusions and extensions 102

Conclusions 105

References 107

Acknowledgements 115



Optimism

Optimists and pessimists inhabit different worlds, reacting to the same

circumstances in completely different ways.

Learning to Hope, Daisaku Ikeda.

Habits of thinking need not be forever. One of the most significant

findings in psychology in the last twenty years is that individuals can

choose the way they think.

Learned Optimism, Martin Seligman.
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The stochastic multi-armed bandit problem

We start with a brief introduction to the stochastic multi-armed bandit

problem. This is a simple mathematical model for sequential decision

making in unknown random environments that illustrates the so-called

exploration-exploitation trade-off. Initial motivation in the context of

clinical trials dates back to the works of Thompson [104, 103] and Rob-

bins [92]. In this chapter we mainly describe a strategy that illustrates

the optimism in the face of uncertainty principle, namely the UCB al-

gorithm (where UCB stands for upper confidence bound) introduced

by Auer, Cesa-Bianchi, and Fischer in [13]. This principle recommends

following the optimal policy in the most favorable environment com-

patible with the observations. In a multi-armed bandit the set of “com-

patible environments” is the set of possible distributions of the arms

that are likely to have generated the observed rewards. The UCB strat-

egy uses a particularly simple representation of this set of compatible

environments as a set of high-probability confidence intervals (one for

each arm) for the expected value of the arms. Then the strategy con-

sists in selecting the arm with highest upper-confidence-bound (the

optimal strategy for the most favorable environment). We introduce

the setting of the multi-armed bandit problem in Section 1.1.1, then

2



1.1. The multi-armed stochastic bandit 3

present the UCB algorithm in Section 1.1.2 and existing lower bounds

in Section 1.1.3. In Section 1.2 we describe extensions of the optimistic

approach to the case of an infinite set of arms, either when the set is

denumerable (in which case a stochastic assumption is made) or where

it is continuous but the reward function has a known structure (e.g. lin-

ear, Lipschitz).

1.1 The multi-armed stochastic bandit

1.1.1 Setting

Consider K arms (actions, choices) defined by some distributions

(νk)1≤k≤K with bounded support (here we will assume that it is [0, 1])

that are initially unknown to the player. At each round t = 1, . . . , n, the

player selects an arm It ∈ {1, . . . ,K} and obtains a reward Xt ∼ νIt ,

which is a random sample drawn from the distribution of the corre-

sponding arm It, and is assumed to be independent of previous rewards.

The goal of the player is to maximize the sum of obtained rewards in

expectation.

Define µk = EX∼νk [X] as the mean values of each arm, and µ∗ =

maxk µk = µk∗ as the mean value of one best arm k∗ (there may exist

several).

If the arm distributions were known, the agent would select the arm

with the highest mean at each round and obtain an expected cumulative

reward of nµ∗. However, since the distributions of the arms are initially

unknown, he needs to pull each arm several times in order to acquire

information about the arms (this is called the exploration) and while

his knowledge about the arms improves, he should pull increasingly

often the apparently best ones (this is called the exploitation). This

illustrates the so-called exploration-exploitation trade-off.

In order to assess the performance of any strategy, we compare its

performance to an oracle strategy that would know the distributions

in advance (and would thus play the optimal arm). For that purpose

we define the notion of cumulative regret: at round n,

Rn
def
= nµ∗ −

n∑
t=1

Xt. (1.1)
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This defines the loss, in terms of cumulative rewards, resulting from

not knowing from the beginning the reward distributions. We are thus

interested in designing strategies that have a low cumulative regret.

Notice that using the tower rule, the expected regret can be rewrit-

ten:

ERn = nµ∗ − E
[ n∑
t=1

µIt

]
= E

[ K∑
k=1

Tk(n)(µ
∗ − µk)

]
=

K∑
k=1

E[Tk(n)]∆k,

(1.2)

where ∆k
def
= µ∗ − µk is the gap in terms of expected rewards, between

the optimal arm and arm k, and Tk(n)
def
=
∑n

t=1 1{It = k} is the

number of pulls of arm k up to time n.

Thus a good algorithm should not pull sub-optimal arms too many

times. Of course, in order to acquire information about the arms, one

needs to explore all the arms and thus pull sub-optimal arms. The re-

gret measures how fast one can learn relevant quantities about some un-

known environment for the purpose of optimizing some criterion. This

combined learning-optimizing objective is central to the exploration-

exploitation trade-off.

Proposed solutions Initially formulated by [92], this exploration-

exploitation problem is not entirely solved yet. However there have

been many approaches developed in the past, including:

• Bayesian exploration: A prior is assigned to the arm distri-

butions and an arm is selected as a function of the their pos-

terior distribution (such as the Thompson strategy [104, 103]

which has been analyzed recently [7, 71], the Gittins in-

dexes, see [58, 59], and optimistic Bayesian algorithms such

as [99, 70]).
• ϵ-greedy exploration: The empirical best arm is played with

probability 1−ϵ and a random arm is chosen with probability

ϵ (see e.g. [13] for an analysis),
• Soft-max exploration: An arm is selected with a probability

that depends on the (estimated) performance of this arm

given previous reward samples (such as the EXP3 algorithm
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introduced in [14], see also the learning-from-expert setting

[41]).
• Follow the perturbed leader: The empirical mean reward of

each arm is perturbed by a random quantity and the best

perturbed arm is selected (see e.g. [69, 79]).
• Optimistic exploration: Select the arm with the largest high-

probability upper-confidence-bound (initiated by [81, 36]),

an example of which is the UCB algorithm [13] described in

the next section.

1.1.2 Upper Confidence Bounds (UCB) algorithms

The Upper Confidence Bounds (UCB) strategy [13] consists in selecting

at each time step t an arm with largest B-values:

It ∈ arg max
k∈{1,...,K}

Bt,Tk(t−1)(k),

where the B-value of an arm k is defined as:

Bt,s(k)
def
= µ̂k,s +

√
3 log t

2s
, (1.3)

where µ̂k,s
def
= 1

s

∑s
i=1Xk,i is the empirical mean of the s first rewards

received from arm k, where we write Xk,i for the reward received when

pulling arms k for the i-th time (i.e., by defining the random time

τk,i to be the instant when we pull arm k for the i-th time, we have

Xk,i = Xτk,i). We described here a slightly modified version of UCB1

where the constant defining the confidence interval is 3/2 instead of 2

in the original version.

This strategy follows the so-called optimism in the face of uncer-

tainty principle since it selects the optimal arm in the most favor-

able environments that are (in high probability) compatible with the

observations. Indeed the B-values Bt,s(k) are high-probability upper-

confidence-bounds on the mean-value of the arms µk. More precisely

for any 1 ≤ s ≤ t, we have P(Bt,s(k) ≥ µk) ≤ 1−t−3. This bound comes

from the Chernoff-Hoeffding inequality which is described below. Let
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Yi ∈ [0, 1] be independent copies of a random variable of mean µ. Then

P
(1
s

s∑
i=1

Yi − µ ≥ ϵ
)
≤ e−2sϵ2 and P

(1
s

s∑
i=1

Yi − µ ≤ −ϵ
)
≤ e−2sϵ2 .

(1.4)

Thus for any fixed 1 ≤ s ≤ t,

P
(
µ̂k,s +

√
3 log t

2s
≤ µk

)
≤ e−3 log(t) = t−3, (1.5)

and

P
(
µ̂k,s −

√
3 log t

2s
≥ µk

)
≤ e−3 log(t) = t−3. (1.6)

We now deduce a bound on the expected number of plays of sub-

optimal arms by noticing that with high probability, the sub-optimal

arms are not played whenever their UCB is below µ∗.

Proposition 1.1. Each sub-optimal arm k is played in expectation at

most

ETk(n) ≤ 6
log n

∆2
k

+
π2

3
+ 1

time. Thus the cumulative regret of UCB is bounded as

ERn =
∑
k

∆kETk(n) ≤ 6
∑

k:∆k>0

log n

∆k
+K

(π2

3
+ 1
)
.

First notice that the dependence in n is logarithmic. This says that

out of n pulls, the sub-optimal arms are played only O(log n) times, and

thus the optimal arm (assuming there is only one) is played n−O(log n)

times. Now, the constant factor in the logarithmic term is 6
∑

k:∆k>0
1
∆k

which deteriorates when some sub-optimal arms are very close to the

optimal one (i.e., when ∆k is small). This may seem counter-intuitive,

in the sense that for any fixed value of n, if all the arms have a very

small ∆k, then the regret should be small as well (and this is indeed

true since the regret is trivially bounded by nmaxk ∆k whatever the

algorithm). So this result should be understood (and is meaningful)

for a fixed problem (i.e., fixed ∆k) and for n sufficiently large (i.e.,

n > mink 1/∆
2
k).
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Proof. The proof is simple. Assume that a sub-optimal arm k is pulled

at time t. This means that its B-value is larger than the B-values of

the other arms, in particular that of the optimal arm k∗:

µ̂k,Tk(t−1) +

√
3 log t

2Tk(t− 1)
≥ µ̂k∗,Tk∗ (t−1) +

√
3 log t

2Tk∗(t− 1)
. (1.7)

This implies that either the empirical mean of the optimal arm is

not within its confidence interval:

µ̂k∗,Tk∗ (t−1) +

√
3 log t

2Tk∗(t− 1)
< µ∗, (1.8)

or the empirical mean of the arm k is not within its confidence interval:

µk,Tk(t−1) > µk +

√
3 log t

2Tk(t− 1)
, (1.9)

otherwise, we deduce that

µk + 2

√
3 log t

2Tk(t− 1)
≥ µ∗,

which is equivalent to Tk(t− 1) ≤ 6 log t
∆2

k
.

This says that whenever Tk(t − 1) ≥ 6 log t
∆2

k
+ 1, either arm k is not

pulled at time t, or one of the two small probability events (1.8) or

(1.9) does not hold. Thus writing u
def
= 6 log t

∆2
k

+ 1, we have:

Tk(n) ≤ u+

n∑
t=u+1

1{It = k;Tk(t) > u}

≤ u+

n∑
t=u+1

1{(1.8) or (1.9) fails}. (1.10)

Now, the probability that (1.8) fails is bounded by

P
(
∃1 ≤ s ≤ t, µ̂k∗,s +

√
3 log t

2s
< µ∗

)
≤

t∑
s=1

1

t3
=

1

t2
,
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using Chernoff-Hoeffding inequality (1.5). Similarly the probability

that (1.9) fails is bounded by 1/t2, thus by taking the expectation

in (1.10) we deduce that

E[Tk(n)] ≤ 6 log(n)

∆2
k

+ 1 + 2
n∑

t=u+1

1

t2

≤ 6 log(n)

∆2
k

+
π2

3
+ 1 (1.11)

The previous bound depends on some properties of the distribu-

tions: the gaps ∆k. The next result states a problem-independent

bound.

Corollary 1.1. The expected regret of UCB is bounded as:

ERn ≤
√

Kn
(
6 log n+

π2

3
+ 1
)

(1.12)

Proof. Using Cauchy-Schwarz inequality and the bound on the ex-

pected number of pulls of the arms (1.11),

Rn =
∑
k

∆k

√
ETk(n)

√
ETk(n)

≤
√∑

k

∆2
kETk(n)

∑
k

ETk(n)

≤
√

Kn
(
6 log n+

π2

3
+ 1
)
.

1.1.3 Lower bounds

There are two types of lower bounds: (1) The problem-dependent

bounds [81, 37] which say that for a given problem, any “admissible”

algorithm will suffer -asymptotically- a logarithmic regret with a con-

stant factor that depends on the arm distributions. (2) The problem-

independent bounds [41, 30] which states that for any algorithm and
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any time-horizon n, there exists an environment on which this algo-

rithm will have a regret at least of order
√
Kn.

Problem-dependent lower bounds: Lai and Robbins [81] consid-

ered a class of one-dimensional parametric distributions and showed

that any admissible strategy (i.e. such that the algorithm pulls any

sub-optimal arm k at most a sub-polynomial number of times: ∀α > 0,

ETk(n) = o(nα)) will asymptotically pull in expectation any sub-

optimal arm k at least:

lim inf
n→∞

ETk(n)

log n
≥ 1

K(νk, νk∗)
(1.13)

times (which, from (1.2), enables the deduction of a lower bound on

the regret), where K(νk, νk∗) is the Kullback-Leibler (KL) divergence

between νk and νk∗ (i.e., K(ν, κ)
def
=
∫ 1
0

dν
dκ log dν

dκdκ if ν is dominated by

κ, and +∞ otherwise).

Burnetas and Katehakis [37] extended this result to several classes

P of multi-dimensional parametric distributions. By writing

Kinf(ν, µ)
def
= inf

κ∈P:E(κ)>µ
K(ν, κ),

(where µ is a real number such that E(ν) < µ), they showed the im-

proved lower bound on the number of pulls of sub-optimal arms:

lim inf
n→∞

ETk(n)

logn
≥ 1

Kinf(νk, µ∗)
. (1.14)

Those bounds consider a fixed problem and show that any algorithm

that is “good enough” on all problems (i.e. what we called an admissible

algorithm) cannot be extremely good on any specific instance, and

thus needs to suffer some incompressible regret. Note also that these

problem-independent lower-bounds are of an asymptotic nature and do

not say anything about the regret at any finite time n.

A problem independent lower-bound: In contrast to the previ-

ous bounds, we can also derive finite-time bounds that do not depend

on the arm distributions: For any algorithm and any time horizon n,
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there exists an environment (arm distributions) such that this algo-

rithm will suffer some incompressible regret on this environment. We

deduce the minimax lower-bounds (see e.g. [41, 30]):

inf supERn ≥ 1

20

√
nK,

where the inf is taken over all possible algorithms and the sup over all

possible reward distributions of the arms.

1.1.4 Recent improvements

Notice that in the problem-dependent lower-bounds (1.13) and (1.14),

the rate is logarithmic, like for the upper bound of UCB, however the

constant factor is not the same. In the lower bound it uses KL di-

vergences whereas in the upper bounds the constant is expressed in

terms of the difference between the means. From Pinsker’s inequality

(see e.g. [41]) we have: K(ν, κ) ≥ (E[ν] − E[κ])2 and the discrepancy

between K(ν, κ) and (E[ν]−E[κ])2 can be very large (e.g. for Bernoulli

distributions with parameters close to 0 or 1). It follows that there is a

potentially large gap between the lower and upper bounds, which mo-

tivated several recent attempts to reduce the gap between the upper

and lower bounds. The main line of research consists in tightening the

concentration inequalities defining the upper confidence bounds.

A first improvement was made in [10] who introduced UCB-V (UCB

with variance estimate) that uses a variant of Bernstein’s inequality to

take into account the empirical variance of the rewards (in addition to

their empirical mean) to define tighter UCB on the mean reward of the

arms:

Bt,s(k)
def
= µ̂k,s +

√
2
Vk,s log(1.2t)

s
+

3 log(1.2t)

s
. (1.15)

They proved that the regret is bounded as follows:

ERn ≤ 10
( ∑

k:∆k>0

σ2
k

∆k
+ 2
)
log(n),

which scales with the actual variance of the arms.

Then [64, 63] proposed the DMED algorithm and proved an asymp-

totic bound that achieves the asymptotic lower-bound of [37]. Notice



1.2. Extensions 11

that [81] and [37] also provided an algorithm with asymptotic guaran-

tees (under more restrictive conditions). It is only in [54, 85, 39] that

a finite-time analysis was derived for KL-based UCB algorithms, KL-

UCB and Kinf -UCB, that achieve the asymptotic lower bounds of [81]

and [37] respectively. Those algorithms make use of KL divergences

in the definition of the UCBs and use the full empirical reward dis-

tribution (and not only the two first moments). In addition to their

improved analysis in comparison to regular UCB algorithms, several

experimental studies showed their improved numerical performance.

Finally let us also mention that the logarithmic gap between the

upper and lower problem-independent bounds (see (1.12) and (1.14))

has also been closed (up to a constant factor) by the MOSS algorithm

of [11], which achieves a minimax regret bound of order
√
Kn.

1.2 Extensions

The principle of optimism in the face of uncertainty has been success-

fully extended to several variants of the multi-armed stochastic bandit

problem, notably when the number of arms is large (possibly infinite)

compared to the number of rounds. In those situations one cannot even

pull each arm once and thus in order to achieve meaningful results we

need to make some assumptions about the unobserved arms. There are

two possible situations:

• When the previously observed arms do not give us any infor-

mation about unobserved arms. This is the case when there

is no structure in the rewards. In those situations, we may

rely on a probabilistic assumption on the mean value of any

unobserved arm.
• When the previously observed arms can give us some infor-

mation about unobserved arms: this is the case of structured

rewards, for example when the mean reward function is a lin-

ear, convex, or Lipschitz function of the arm position, or also

when the rewards depend on some tree or graph structure.

We now briefly describe those two situations.
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1.2.1 Unstructured rewards

The so-called many-armed bandit problem considers a countably infi-

nite number of arms where there is no structure among arms. Thus at

any round t the rewards obtained by pulling previously observed arms

do not give us information about unobserved arms.

To illustrate, think of the problem of selecting a restaurant for din-

ner in a big city like Paris. Each day you go to a restaurant and receive

a reward reflective of how much you enjoyed the food you were served.

You may decide to go back to one of the restaurants you have already

visited either because the food you received was good (exploitation) or

because you have not been there many times and want to try another

dish (exploration). However you may also want to try a new restau-

rant (discovery) chosen randomly (if you don’t have prior informa-

tion). Of course there are many other applications of this exploration-

exploitation-discovery trade-off, such as in marketing (e.g. you want to

send catalogs to good customers, uncertain customers, or random peo-

ple), in mining for valuable resources (such as gold or oil) where you

want to exploit good wells, explore unknown wells, or start digging at

a new location.

A strong probabilistic assumption that has been made in [17, 19] to

model such situations is that the mean-value of any unobserved arm is

a random variable that follows some known distribution. More recently

this assumption has been weakened in [108] with an assumption fo-

cussing on this distribution upper tail only. More precisely, we assume

that there exists β > 0 such that the probability that the mean-reward

µ of a new randomly chosen arm is ϵ-optimal, is of order ϵβ:

P(µ(new arm) > µ∗ − ϵ) = Θ(ϵβ), 1 (1.16)

where µ∗ = supk≥1 µk is the supremum of the mean-reward of the arms.

Thus the parameter β characterizes the probability of selecting a

near-optimal arm. A large value of β indicates that there is a small

chance that a new random arm will be good, thus we would need to

pull many arms in order to achieve a low regret (defined as in (1.1)

with respect to µ∗ and not to the best pulled arm).

1We write f(ϵ) = Θ(g(ϵ)) if ∃c1, c2, ϵ0,∀ϵ ≤ ϵ0, c1g(ϵ) ≤ f(ϵ) ≤ c2g(ϵ).
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K(t) played arms Arms not played yet

Fig. 1.1 The UCB-AIR strategy: UCB-V algorithm is played on an increasing number K(t)
or arms

The UCB-AIR (UCB with Arm Increasing Rule) strategy intro-

duced in [108] consists in playing a UCB-V strategy [10] (see (1.15))

on a set of arms that is increasing in time. Thus at each round, either

an arm already played (set of active arms) is chosen using the UCB-V

strategy, or a new random arm is selected. Theorem 4 of [108] states

that by selecting at each round t a number of active arms defined by

K(t) =

{
⌊t

β
2 ⌋ if β < 1 and µ∗ < 1

⌊t
β

β+1 ⌋ if β ≥ 1 or µ∗ = 1

then the regret of UCB-AIR is upper-bounded as:

Rn ≤

{
C
(
log n

)2√
n if β < 1 and µ∗ < 1

C
(
log n

)2
n

β
1+β if µ∗ = 1 or β ≥ 1

,

where C is a (numerical) constant.

This setting illustrates the exploration-exploitation-discovery trade-

off where exploitation means pulling an apparently good arm (based

on previous observations), exploration means pulling an uncertain arm

(already pulled), and discovery means trying a new arm.

An important aspect of this model is that the coefficient β charac-

terizes the probability of choosing randomly a near-optimal arm (thus

the proportion of near-optimal arms), and the UCB-AIR algorithm re-

quires the knowledge of this coefficient (since β is used for the choice

of K(t)). An open question is whether it is possible to design an adap-

tive strategy which would show similar performance even when β is

unknown.

Here we see an important characteristic of the performance of the

optimistic strategy in a stochastic bandit setting, that will appear sev-

eral times in different settings in the next chapters:
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• The performance depends on a measure of the quantity

of near-optimal solutions,
• and on the knowledge we have about this measure.

1.2.2 Structured bandit problems

In structured bandit problems we assume that the mean-reward of an

arm is a function of some arm parameters, where the function belongs

to some known class. This includes situations where “arms” denote

paths in a tree or a graph (and the reward of a path being the sum

of rewards obtained along the edges), or points in some metric space

where the reward function has specific structure.

A well-studied case is the linear bandit problem where the set of

arms X lies in a Euclidean space IRd and the mean-reward function

is linear with respect to (w.r.t.) the arm position x ∈ X : at time t,

one selects an arm xt ∈ X and receives a reward rt
def
= µ(xt) + ϵt,

with the mean-reward linear function µ(x)
def
= x · θ where θ ∈ IRd

is some (unknown) parameter, and ϵt is a (centered, independent)

observation noise. The regret is defined w.r.t. the best possible arm

x∗
def
= argmaxx∈X µ(x):

Rn
def
= nµ(x∗)− E

[ n∑
t=1

rt
]
.

Several optimistic algorithms have been introduced and analyzed,

such as the confidence ball algorithms in [46], as well as refined variants

in [95, 2]. The main bounds on the regret are either problem-dependent,

of the order O
(
logn
∆

)
(where ∆ is the mean-reward difference between

the best and second best extremal points), or problem-independent of

the order2 Õ(d
√
n). Several extensions to the linear setting have been

considered, such as Generalized Linear models [49] and sparse linear

bandits [40, 3].

Another popular setting is when the mean-reward function x 7→
µ(x) is convex [51, 5] in which case regret bounds of order

2where Õ stands for a O notation up to a polylogarithmic factor
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O(poly(d)
√
n) can be achieved3.

Now, other weaker assumptions on the mean-reward function have

been considered, such as a Lipschitz assumption in [76, 6, 12, 77] or an

even weaker local assumption in [29]. This setting of bandits in metric

spaces as well as more general spaces will be investigated in depth in

Chapters 3 and 4.

To conclude this brief overview on multi-armed bandits, it is worth

mentioning that there have been huge developments in the field of

Bandit Theory over the last few years which have produced emerging

fields such as contextual bandits (where the rewards depend on some

observed contextual information), adversarial bandits (where the re-

wards are chosen by an adversary instead of being stochastic), and has

drawn strong links with other fields such as online-learning (where a

statistical learning task is performed online given limited feedback) and

learning from experts (where one has to perform almost as well as the

best expert). The interested reader may consider the following books

and PhD theses [41, 30, 84, 31].

1.3 Conclusion

This chapter presented a brief overview of the multi-armed bandit prob-

lem which can be seen as a tool for rapidly selecting the best action

among a set of possible ones, assuming that each reward sample pro-

vides information about the value (mean-reward) of the selected action.

In the following we would like to use this tool as a building block to

solve more complicated problems where the action space is larger (for

example when it is a sequence of actions, or a path in a tree), which

would consist in combining bandits in a hierarchy. The next chapter in-

troduces the historical motivation for our interest in this problem while

the other chapters provide some theoretical and algorithmic material.

3where poly(d) refers to a polynomial in d
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Historical motivation: Monte-Carlo Tree Search

This chapter presents the historical motivation for our involvement

in the topic of hierarchical bandits. It starts with an experimental

success: UCB-based bandits (see previous Chapter) used in a hierar-

chy demonstrated impressive performance for tree search in the field

of Computer Go, such as in the Go programs Crazy-Stone [45] and

MoGo [109, 55]. This impacted the field of Monte-Carlo-Tree-Search

(MCTS) [43, 24] which provided a simulation-based approach to game

programming and has also been used in other sequential decision mak-

ing problems. However, the analysis of the popular UCT (Upper Confi-

dence Bounds applied to Trees) algorithm [78] have been a theoretical

failure: the algorithm may perform very poorly (much worse than a

uniform search) on some problems and it does not enjoy any finite-time

performance guarantee [44].

In this chapter we briefly review the initial idea of performing ef-

ficient tree search by assigning a bandit algorithm to each node of

the tree and following an optimistic search strategy that explores in

priority the most promising branches (according to previous reward

samples). We then mention the theoretical difficulties and illustrate

the possible failure of such approaches. This was the starting point for

16
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Fig. 2.1 Illustration of the Monte-Carlo Tree Search approach (Courtesy of Rémi Coulom
from his talk The Monte-Carlo revolution in Go). Left: Monte-Carlo evaluation of a position

in Computer Go. Middle: each initial move is sampled several times. Right: The apparently
best moves are sampled more often and the tree structure grows.

designing alternative algorithms (described in later chapters) with the-

oretical performance guarantees which will be analyzed in terms of a

new measure of complexity.

2.1 Historical motivation in Computer Go

The use of Monte-Carlo simulations in Computer Go started with the

pioneering work of Brügmann [25] followed by Bouzy, Cazenave and

Helmstetter [23, 22]. Note that a similar idea was introduced by Abram-

son in [4] for other games such as Othello. A position is evaluated by

running many “playouts” (simulations of a sequence of random moves

generated alternatively from the player and the adversary) starting

from this position until a terminal configuration is reached. This en-

ables to score each playout (where the winner is decided from a single

count of the respective territories), and then averaging the resulting

scores. See the illustration in Figure 2.1. This method approximates

the value of a Go position (which is actually the solution of a max-

min problem) by an average, and thus even if the number of runs goes

to infinity, there is not necessary convergence of this average to the

max-min value.

An important step was achieved by Coulom [45] in his Crazy-Stone

program. In this program, instead of selecting the moves according to a
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uniform distribution, the probability distribution over possible moves

is updated after each simulation so that more weight is assigned to

moves that achieved better scores in previous runs (see Figure 2.1).

In addition, an incremental tree representation adding a leaf to the

current tree representation at each playout enables the construction of

an asymmetric tree where the most promising branches (according to

the previously observed rewards) are explored to a greater depth.

This was the starting point of the so-called Monte-Carlo tree search

(MCTS) (see e.g. [43, 24]) that aims to approximate the solution of a

max-min problems with a weighted average.

This idea of starting with a uniform sampling over a set of avail-

able moves (or actions) and progressively focusing on the best actions

according to previously observed rewards is reminiscent of the bandit

problem discussed in the previous Chapter. The MoGo program initi-

ated by Yizao Wang, Sylvain Gelly, Olivier Teytaud, Pierre-Arnaud Co-

quelin and myself [55] started from this simple observation and the idea

of performing a tree search by assigning a bandit algorithm to each node

of the tree. We started with the UCB algorithm and this lead to the

so-called UCT (Upper Confidence Bounds applied to Trees) algorithm,

which was independently developed and analyzed by Csaba Szepesvári

and Levente Kocsis [78]. Several major improvements (such as the use

of features in the random playouts, the Rapid Action Value Estimation

(RAVE), the parallelization of the algorithm, and the introduction of

opening books) [56, 91, 21, 97, 43, 57] enabled the MoGo program to

rank among the best Computer Go programs (see e.g. [82, 1]) until

2012.

2.2 Upper Confidence Bounds in Trees (UCT)

In order to illustrate the UCT algorithm [78], consider a tree search

optimization problem on a uniform tree of depth D where each node

has K children. A reward distribution νi is assigned to each leaf i (there

are KD such leaves) and the goal is to find the path (sequence of nodes

from the root) to a leaf with highest mean-value µi
def
= E[νi]. Define

the value of any node k as µk
def
= maxi∈L(k) µi, where L(k) denotes the

set of leaves in the branch starting from k.
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At any round t, the UCT algorithm selects a leaf It of the tree and

receives a reward rt ∼ νIt which enables it to update the B-values of

all nodes in the tree. The way the leaf is selected is by following a path

starting from the root and from each node j along the path, the next

node is chosen to be the one with highest B-value among the children

nodes, where the B-value of any child k of node j is defined as:

Bt(k)
def
= µ̂k,t + c

√
log Tj(t)

Tk(t)
, (2.1)

where c is a numerical constant, Tk(t)
def
=
∑t

s=1 1{Is ∈ L(k)} is the

number of paths that went through node k up to time t (and similarly

for Tj(t)), and µ̂k,t is the empirical average of rewards obtained from

leaves originating from node k, i.e.,

µ̂k,t
def
=

1

Tk(t)

t∑
s=1

rs1{Is ∈ L(k)}.

The intuition for the UCT algorithm is that at the level of a given

node j, there are K possible choices, i.e. arms, corresponding to the

children nodes, and the use of a UCB-type of bandit algorithm should

enable the selection of the best arm given noisy rewards samples.

Now, when the number of simulations goes to infinity, since UCB

selects all arms infinitely often (indeed, thanks to the log term in the

definition of the B-values (2.1), when a children node k is not chosen,

its B-value increases and thus it will eventually be selected, as long as

its parent j is), we deduce that UCT selects all leaves infinitely often.

Thus from an immediate backward induction from the leaves to the

root of the tree we deduce that UCT is consistent, i.e. for any node k,

limt→∞ µ̂t(k) = µ(k), almost surely.

The main reason this algorithm demonstrated interesting numeri-

cal performance in several large tree search problems is that it explores

in priority the most promising branches according to previously ob-

served sample rewards. This mainly happens in situations where the

reward function possesses some smoothness property (so that initial

random reward samples provide information about where the search

should focus) or when no other technique can be applied (e.g. in Com-

puter Go where the branching factor is so large that regular minimax
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or alpha-beta methods fail). See [42, 97, 43, 24] and the references

therein for different variants of MCTS and applications to games and

other search, optimization, and control problems. These types of algo-

rithms appear as possible alternatives to usual depth-first or breadth-

first search techniques and apparently implement an optimistic explo-

ration of the search space. Unfortunately in the next Section we show

that this algorithm does not enjoy any finite-time performance guar-

antee and performs very poorly on some problems.

2.3 No finite-time performance for UCT

The main problem comes from the fact that the reward samples rt ob-

tained from any node k are not independent and identically distributed

(i.i.d.). Indeed, such a reward rt ∼ νIt depends on the selected leaf

It ∈ L(k), which itself depends on the arm selection process along the

path from node k to the leaf It, thus potentially on all previously ob-

served rewards. Thus the B-values Bt(k) defined by (2.1) do not define

high-probability upper-confidence-bounds on the value µk of the arm

(i.e. we cannot apply Chernoff-Hoeffding inequality). Thus the analysis

of UCB seen in Section 1.1.2 does not apply.

The potential risk of UCT is to stop exploring the optimal branch

too early because the current B-value of that branch is under-estimated.

It is true that the algorithm is consistent (as discussed previously) and

the optimal path will eventually be discovered but the time it takes for

the algorithm to do so can be desperately long.

This point is described in [44] with an illustrative example repro-

duced in Figure 2.2. This is a binary tree of depth D. The rewards

are deterministic and defined as follows: For any node of depth d < D

in the optimal branch (rightmost one), if Left action is chosen, then

a reward of D−d
D is received (all leaves in this branch have the same

reward). If Right action is chosen, then this moves to the next node in

the optimal branch. At depth D − 1, Left action yields reward 0 and

Right action reward 1.

For this problem, as long as the optimal reward has not been ob-

served, from any node along the optimal path, the left branches seem

better than the right ones and are thus explored exponentially more
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Fig. 2.2 An example of tree for which UCT performs very poorly.

often. Therefore, the time required before the optimal leaf is eventually

reached is huge and we can deduce the following lower-bound on the

regret of UCT:

Rn = c exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . . )) + Ω(log(n)),

for some constant c. The first term of this bound is a constant inde-

pendent of n (thus the regret is asymptotically of order log n as proven

in (2.1)) but this constant is “D-uply” exponential. In particular this

is much worse than a uniform sampling of all the leaves which will be

“only” exponential in D.

The reason why this is a particularly hard problem for UCT is

that the initial reward samples collected by the algorithm are strongly

misleading at each level along the optimal path. Actually, since the

B-values do not represent high-probability UCB on the true value of

the nodes, the UCT strategy does not implement the optimism in the

face of uncertainty principle.

This observation is the historical motivation for the research de-

scribed in the next chapters. UCT is very efficient in some well-
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structured problems and could be very inefficient in tricky problems

(the majority of them...). Our objectives are now to recover the opti-

mism in the face of uncertainty principle by defining algorithms making

use of true high-probability UCBs. So we need to define the classes of

problems for which performance guarantees can be obtained, or better,

define new measures of the problem complexity and derive finite-time

performance bounds in terms of this measure of complexity in situa-

tions where this quantity is known, and when it is not.



3

Optimistic optimization with known smoothness

In this chapter we consider the optimism in the face of uncertainty

principle applied to the problem of black-box optimization of a function

f given (deterministic or stochastic) evaluations of the function.

We search for a good approximation of the maximum of a func-

tion f : X → IR using a finite number n (i.e. the numerical budget) of

function evaluations. More precisely, we want to design a sequential ex-

ploration strategy A of the search space X , i.e. a sequence x1, x2, . . . , xn
of states of X , where each xt may depend on previously observed val-

ues f(x1), . . . , f(xt−1), such that at round n (which may or may not be

known in advance), the algorithm A recommends a state x(n) with the

highest possible value. The performance of the algorithm is assessed by

the loss (or simple regret):

rn = sup
x∈X

f(x)− f(x(n)). (3.1)

Here the performance criterion is the closeness to optimality of the

recommendation made after n evaluations to the function. This crite-

rion is different from the cumulative regret previously defined in the

23



24 Optimistic optimization with known smoothness

multi-armed bandit setting (see Chapter 1):

Rn
def
= sup

x∈X
f(x)−

n∑
t=1

f(xt), (3.2)

which measures how well the algorithm succeeds in selecting states

with good values while exploring the search space (notice that we write

x1, . . . , xn as the states selected for evaluation, whereas x(n) refers to

the recommendation made by the algorithm after n observations, and

may differ from xn). The two settings provide different exploration-

exploitation tradeoffs in the multi-armed bandit setting (see [27, 9] for

thorough comparison between the settings). In this chapter we con-

sider the loss criterion (3.1), which induces the so-called numerical

exploration-exploitation trade-off, since it more naturally relates

to the problem of function optimization given a finite simulation bud-

get (whereas the cumulative regret (3.2) mainly applies to the problem

of optimizing while learning an unknown environment).

Since the literature on global optimization is very important, we

only mention the works that are closely related to the optimistic strat-

egy described here. A large body of algorithmic work has been devel-

oped using branch-and-bound techniques [86, 61, 72, 65, 90, 52, 100]

such as Lipschitz optimization where the function is assumed to be

globally Lipschitz. For illustration purpose, Section 3.1 provides an

intuitive introduction to the optimistic optimization strategy in the

case when the function is assumed to be Lipschitz. The next sample

is chosen to be the maximum of an upper-bounding function which is

built from previously observed values and knowledge of the function

smoothness. This enables the algorithm to achieve a good numerical

exploration-exploitation trade off that makes an efficient use of the

available numerical resources in order to rapidly estimate the maxi-

mum of f .

However the main contribution of this chapter (starting from Sec-

tion 3.2 where the general setting is introduced) is to considerably

weaken the assumptions made in most of the previous literature since

we do not require the space X to be a metric space but only to be

equipped with a semi-metric ℓ, and we relax the assumption that f

is globally Lipschitz into a much weaker assumption that f is locally
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smooth w.r.t. ℓ (this definition is made precise in Section 3.2.2). In

this chapter we assume that the semi-metric ℓ (under which f is

smooth) is known.

The case of deterministic evaluations is presented in Section 3.3

where a first algorithm, Deterministic Optimistic Optimization (DOO)

is introduced and analyzed. In Section 3.4, the same ideas are extended

to the case of stochastic evaluations of the function, which corresponds

to the so-called X -armed bandit, and two algorithms Stochastic Op-

timistic Optimization (StoOO) and Hierarchical Optimistic Optimiza-

tion (HOO) are described and analyzed.

The main result is that we can characterize the performance of

those algorithms using a measure that depends both on the function f

and the semi-metric ℓ, which represents the quantity of near-optimal

states and is called the near-optimality dimension of f under ℓ.

We show that if the behavior of the function around its (global) max-

ima is known, then one can select the semi-metric ℓ such that the

corresponding near-optimality dimension is low, which implies efficient

optimization algorithms (whose loss rate does not depend on the space

dimension). However the performance deteriorates when this smooth-

ness is not correctly estimated.

3.1 Illustrative example

In order to illustrate the approach, we consider the simple case where

the space X is metric (let ℓ denote the metric) and the function f :

X → IR is Lipschitz continuous, i.e., for all x, y ∈ X ,

|f(x)− f(y)| ≤ ℓ(x, y). (3.3)

Define the numerical budget n as the total number of calls to the

function. At each round for t = 1 to n, the algorithm selects a state

xt ∈ X, then either (in the deterministic case) observes the exact

value of the function f(xt), or (in the stochastic case) observes a

noisy estimate rt of f(xt), such that E[rt|xt] = f(xt).

This chapter is informal and all theoretical results are deferred to

the next chapters (which describe a much broader setting where the

function does not need to be Lipschitz and the space does not need
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f(x )t

xt

f

f *

Fig. 3.1 Left: The function f (dotted line) is evaluated at a point xt, which provides a
first upper bound on f (given the Lipschitz assumption). Right: several evaluations of f
enable the refinement of its upper-bound. The optimistic strategy samples the function at
the point with highest upper-bound.

to be metric). The purpose of this chapter is simply to provide some

intuition of the optimistic approach for the optimization problem.

3.1.1 Deterministic setting

In this setting, the evaluations are deterministic, thus exploration does

not refer to improving our knowledge about some stochastic environ-

ment but consists in evaluating the function at unknown but possibly

important areas of the search space, in order to estimate the global

maximum of the function.

Given that the function is Lipschitz continuous and that we know ℓ,

an evaluation of the function at any point xt enables the definition of an

upper envelope of f : for all x ∈ X , f(x) ≤ f(xt) + l(x, xt). This upper

envelope is refined after each evaluation of f by taking the minimum

of the previous upper-bounds (see illustration on Figure 3.1): for all

x ∈ X ,

f(x) ≤ Bt(x)
def
= min

1≤s≤t
[f(xs) + l(x, xs)] . (3.4)

Now, the optimistic approach consists in selecting the next state

xt+1 as the point with highest upper bound:

xt+1 = argmax
x∈X

Bt(x). (3.5)

We can say that this strategy follows an “optimism in the face
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of computational uncertainty” principle. The uncertainty does not

come from the stochasticity of some unknown environment (as it was

the case in the stochastic bandit setting), but from the uncertainty

about the function given that the search space may be infinite and we

possess a finite computational budget only.

Remark 3.1. Notice that we only need the property that Bt(x) is

an upper-bound on f(x) at the (global) maxima x∗ of f . Indeed, the

algorithm selecting at each round a state argmaxx∈X Bt(x) will not

be affected by having a Bt(x) function under-evaluating f(x) at sub-

optimal points x ̸= x∗. Thus in order to apply this optimistic sampling

strategy, one really needs (3.4) to hold for x∗ only (instead of requiring

it for all x ∈ X ). Thus we see that the global Lipschitz assumption (3.3)

may be replaced by the much weaker assumption that for all x ∈ X ,

f(x∗)−f(x) ≤ ℓ(x, x∗). This case will be further detailed in Section 3.2.

Several issues remain to be addressed: (1) How do we generalize

this approach to the case of stochastic rewards? (2) How do we deal

with the computational problem of computing the maximum of the

upper-bounding function in (3.5)? Question 1 is the object of the next

subsection, and Question 2 will be addressed by considering a hierar-

chical partitioning of the space that will be discussed in Section 3.2.

3.1.2 Stochastic setting

Now consider the stochastic case, where the evaluations to the function

are perturbed by noise (see Figure 3.2). More precisely, an evaluation

of f at xt returns a noisy estimate rt of f(xt) where we assume that

E[rt|xt] = f(xt).

In order to follow the optimism in the face of uncertainty princi-

ple, one would like to define a high probability upper bound Bt(x)

on f(x) at any state x ∈ X and select the point with highest bound

argmaxx∈X Bt(x). So the question is how to define this UCB function.

A possible answer to this question is to consider a given subset

Xi ⊂ X containing x and define a UCB on supx∈Xi
f(x). This can be

done by averaging the rewards observed by points sampled in Xi and

using the Lipschitz assumption on f .
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xt

f(xt)

rt

x

Fig. 3.2 The evaluation of the function is perturbed by a centered noise: E[rt|xt] = f(xt).
How should we define a high-probability upper-confidence-bound on f at any state x in
order to implement the optimism in the face of uncertainty principle?

More precisely, let Ti(t)
def
=
∑t

u=1 1{xu ∈ Xi} be the number of

points sampled in Xi and write τs the absolute time instant when Xi

was sampled for the s-th time, i.e. τs = min{u : Ti(u) = s}. Notice that∑t
u=1(ru − f(xu))1{xu ∈ Xi} =

∑Ti(t)
s=1 (rτs − f(xτs)) is a Martingale

(w.r.t. the filtration generated by the sequence {(rτs , xτs)}s). Thus, we
have

P
( 1

Ti(t)

Ti(t)∑
s=1

[
rτs − f(sτs)

]
≤ −ϵt,Ti(t)

)
≤ P

(
∃1 ≤ u ≤ t,

1

u

u∑
s=1

[
rτs − f(sτs)

]
≤ −ϵt,u

)
≤

t∑
u=1

P
(1
u

u∑
s=1

[
rτs − f(sτs)

]
≤ −ϵt,u

)
≤

t∑
u=1

e−2uϵ2t,u ,

where we used a union bound in the third line and Hoeffding-Azuma

inequality [16] in the last derivation. For any δ > 0, setting ϵt,u =√
log t/δ
2u we deduce that with probability 1− δ, we have

1

Ti(t)

Ti(t)∑
s=1

rτs +

√
log t/δ

2Ti(t)
≥ 1

Ti(t)

Ti(t)∑
s=1

f(sτs). (3.6)
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Fig. 3.3 A possible way to define a high-probability bound on f at any x ∈ X is to consider

a subset Xi ∋ x and average the Ti(t) rewards obtained in this subset
∑Ti(t)

s=1 rτs , then add

a confidence interval term
√

log t/δ
2Ti(t)

, and add the diameter diam(Xi). This defines an UCB

(with probability 1− δ) on f at any x ∈ Xi.

Now we can use the Lipschitz property of f to define a high prob-

ability UCB on supx∈Xi
f(x). Indeed each term in the r.h.s. of (3.6) is

bounded as f(xτs) ≥ maxx∈Xi f(x)− diam(Xi), where the diameter of

Xi is defined as diam(Xi)
def
= maxx,y∈Xi ℓ(x, y). We deduce that with

probability 1− δ, we have

Bt,Ti(t)(Xi)
def
=

1

Ti(t)

Ti(t)∑
s=1

rτs +

√
log t/δ

2Ti(t)
+diam(Xi) ≥ max

x∈Xi

f(x). (3.7)

This UCB is illustrated in Figure 3.3.

Remark 3.2. We see a trade off in the choice of the size of Xi: The

bound (3.7) is poor either (1) when diam(Xi) is large, or (2) when Xi

contains so few samples (i.e. Ti(t) is small) that the confidence interval

term is large.

Ideally we would like to consider several possible subsets Xi (of

different size) containing a given x ∈ X and define several UCBs on

f(x) and select the tightest one: Bt(x)
def
= mini;x∈Xi Bt,Ti(t)(Xi). Now,

an optimistic strategy would simply compute the tightest UCB at each

state x ∈ X according to the rewards already observed, and choose the

next state to sample as the one with highest UCB, as in (3.5).

However this poses several problems: (1) One cannot consider con-

centration inequalities on an arbitrarily large number of subsets (since
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h=0

h=2

h=1

h=3

Partition:

Fig. 3.4 Hierarchical partitioning of the space X equivalently represented by a K-ary tree
(here K = 3). The set of leaves of any subtree corresponds to a partition of X .

we would need a union bound over too large a number of events), (2)

From a computational point of view, it may not be easy to compute the

maximum point of the bounds if the shapes of the subsets are arbitrary.

In order to provide a simple answer to both issues we consider a hier-

archical partitioning of the space. This is the approach followed

in the next section, which introduces the general setting.

3.2 General setting

3.2.1 Hierarchical partitioning

In order to address the computational problem of computing the op-

timum of the upper-bound (3.5) described above, our algorithms will

use a hierarchical partitioning of the space X .

More precisely, we consider a set of partitions of X at all scales

h ≥ 0: For any integer h, X is partitioned into a set of Kh subsets

Xh,i (called cells), where 0 ≤ i ≤ Kh − 1. This partitioning may be

represented by a K-ary tree where the root corresponds to the whole

domain X (cell X0,0) and each cell Xh,i corresponds to a node (h, i)

of the tree (indexed by its depth h and index i), and each node (h, i)

possesses K children nodes {(h+1, ik)}1≤k≤K such that the associated

cells {Xh+1,ik , 1 ≤ k ≤ K} form a partition of the parent’s cell Xh,i.

In addition, to each cell Xh,i is assigned a specific state xh,i ∈ Xh,i,

that we call the center of Xh,i where f may be evaluated.
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3.2.2 Assumptions

We now state 4 assumptions: Assumption 1 is about the semi-metric ℓ,

Assumption 2 is about the smoothness of the function w.r.t. ℓ, and As-

sumptions 3 and 4 are about the shape of the hierarchical partitioning

w.r.t. ℓ.

Assumption 1 (Semi-metric). We assume that X is equipped with

a semi-metric ℓ : X × X → IR+. We recall that this means that for all

x, y ∈ X , we have ℓ(x, y) = ℓ(y, x) and ℓ(x, y) = 0 if and only if x = y.

Note that we do not require that ℓ satisfies the triangle inequality

(in which case, ℓ would be a metric). An example of a metric space is

the Euclidean space IRd with the metric ℓ(x, y) = ∥x − y∥ (Euclidean

norm). Now consider IRd with ℓ(x, y) = ∥x − y∥α, for some α > 0.

When α ≤ 1, then ℓ is also a metric, but whenever α > 1 then ℓ does

not satisfy the triangle inequality anymore, and is thus a semi-metric

only.

Now we state our assumption about the function f .

Assumption 2 (Local smoothness of f). There exists at least one

global optimizer x∗ ∈ X of f (i.e., f(x∗) = supx∈X f(x)) and for all

x ∈ X ,

f(x∗)− f(x) ≤ ℓ(x, x∗). (3.8)

This condition guarantees that f does not decrease too fast around

(at least) one global optimum x∗ (this is a sort of a locally one-

sided Lipschitz assumption). Note that although it is required that

(3.8) be satisfied for all x ∈ X , this assumption essentially sets con-

straints to the function f locally around x∗ (since when x is such that

ℓ(x, x∗) > range(f)
def
= sup f − inf f , then the assumption is auto-

matically satisfied). Thus when this property holds, we say that f is

locally smooth w.r.t. ℓ around its maximum. See an illustration

in Figure 3.5.

Now we state the assumptions about the hierarchical partitioning.
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x∗ X

f(x∗) f

f(x∗)− ℓ(x, x∗)

Fig. 3.5 Illustration of the local smoothness property of f around x∗ w.r.t. the semi-metric
ℓ: the function f(x) is lower-bounded by f(x∗) − ℓ(x, x∗). This essentially constrains f
around x∗ since for x away from x∗ the function can be arbitrarilly non-smooth (e.g.,

discontinuous).

Assumption 3 (Bounded diameters). There exists a decreasing

sequence δ(h) > 0, such that for any depth h ≥ 0 and for any cell

Xh,i of depth h, we have supx∈Xh,i
ℓ(xh,i, x) ≤ δ(h).

Assumption 4 (Well-shaped cells). There exists ν > 0 such that

for any depth h ≥ 0, any cell Xh,i contains a ℓ-ball of radius νδ(h)

centered in xh,i.

In this chapter, we consider the setting where Assumptions 1-4 hold

for a specific semi-metric ℓ, and that the semi-metric ℓ is known

from the algorithm.

3.3 The DOO Algorithm

The Deterministic Optimistic Optimization (DOO) algorithm de-

scribed in Figure 3.6 uses explicitly the knowledge of ℓ (through the

use of δ(h)).

DOO builds incrementally a tree Tt for t = 1 . . . n, starting with

the root node T1 = {(0, 0)}, and by selecting at each round t a leaf

of the current tree Tt to expand. Expanding a leaf means adding its
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Initialization: T1 = {(0, 0)} (root node)
for t = 1 to n do

Select the leaf (h, j) ∈ Lt with maximum bh,j
def
= f(xh,j) + δ(h) value.

Expand this node: add to Tt the K children of (h, j) and evaluate the
function at the points {xh+1,j1 , . . . , xh+1,jK}

end for
Return x(n) = argmax(h,i)∈Tn f(xh,i)

Fig. 3.6 Deterministic Optimistic Optimization (DOO) algorithm.

K children to the current tree (this corresponds to splitting the cell

Xh,j into K children-cells {Xh+1,j1 , . . . , Xh+1,jK}) and evaluating the

function at the centers {xh+1,j1 , . . . , xh+1,jK} of the children cells. We

write Lt the leaves of Tt (set of nodes whose children are not in Tt),
which are the set of nodes that can be expanded at round t.

The algorithm computes a b-value bh,j
def
= f(xh,j) + δ(h) for each

leaf (h, j) ∈ Lt of the current tree Tt and selects the leaf with highest b-

value to expand next. Once the numerical budget is over (here, n node

expansions, thus nK function evaluations), DOO returns the evaluated

state x(n) ∈ {xh,i, (h, i) ∈ Tn} with highest value.

This algorithm follows an optimistic principle because it expands

at each round a cell that may contain the optimum of f , based on the

information about (i) the previously observed evaluations of f , and (ii)

the knowledge of the local smoothness property (3.8) of f (since ℓ is

known).

Thus the use of the hierarchical partitioning provides a computa-

tionally efficient implementation of the optimistic sampling strategy

described in Section 3.1 and illustrated in Figure 3.1. The (numerically

heavy) problem of selecting the state with highest upper-bound (3.5) is

replaced by the (easy) problem of selecting the cell with highest upper

bound to expand next.
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3.3.1 Analysis of DOO

Notice that Assumption 2 implies that the b-value of any cell containing

x∗ upper bounds f∗, i.e., for any cell Xh,i such that x∗ ∈ Xh,i,

bh,i = f(xh,i) + δ(h) ≥ f(xh,i) + ℓ(xh,i, x
∗) ≥ f∗.

As a consequence, a leaf (h, i) such that f(xh,i) + δ(h) < f∗ will

never be expanded (since at any time t, the b-value of such a leaf will

be dominated by the b-value of the leaf containing x∗). We deduce that

DOO only expands nodes of the set I
def
= ∪h≥0Ih, where

Ih
def
= {nodes (h, i) such that f(xh,i) + δ(h) ≥ f∗}.

In order to derive a loss bound we now define a measure of the

quantity of near-optimal states, called near-optimality dimension. This

measure is closely related to similar measures introduced in [77, 28].

For any ϵ > 0, let us write

Xϵ
def
= {x ∈ X , f(x) ≥ f∗ − ϵ}

the set of ϵ-optimal states.

Definition 3.1. The η-near-optimality dimension is the smallest d ≥ 0

such that there exists C > 0 such that for any ϵ > 0, the maximal

number of disjoint ℓ-balls of radius ηϵ and center in Xϵ is less than

Cϵ−d.

Note that d is not an intrinsic property of f : it characterizes both f

and ℓ (since we use ℓ-balls in the packing of near-optimal states), and

also depends on the constant η.

Remark 3.3. Notice that in the definition of the near-optimality di-

mension, we require the packing property to hold for any ϵ > 0. We can

also define a local near-optimality dimension by requiring this packing

property to only hold for all ϵ ≤ ϵ0 for some ϵ0 ≥ 0. However if the

space X has finite packing dimension, the near-optimality and local

near-optimality dimensions coincide. Only the constant C in their def-

inition may change. Thus we see that the near-optimality dimension
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d captures a local property of f near x∗ whereas the corresponding

constant C depends on the global shape of f .

We now bound the number of nodes in Ih.

Lemma 3.1. Let d be the ν-near-optimality dimension (where ν is

defined in Assumption 4), and C the corresponding constant. Then

|Ih| ≤ Cδ(h)−d.

Proof. From Assumption 4, each cell (h, i) contains a ball of radius

νδ(h) centered in xh,i, thus if |Ih| = |{xh,i ∈ Xδ(h)}| exceeded Cδ(h)−d,

this would mean that there exists more than Cδ(h)−d disjoint ℓ-balls

of radius νδ(h) with center in Xδ(h), which contradicts the definition of

d.

We now provide our loss bound for DOO.

Theorem 3.1. Let us write h(n) the smallest integer h such that

C
∑h

l=0 δ(l)
−d ≥ n. Then the loss of DOO is bounded as rn ≤ δ(h(n)).

Proof. Let (hmax, jmax) be the deepest node that has been expanded

by the algorithm up to round n. We known that DOO only expands

nodes in the set I. Thus the total number of expanded nodes n is such

that

n =

hmax∑
l=0

Kl−1∑
j=0

1{(h, j) has been expanded}

≤
hmax∑
l=0

|Il| ≤ C

hmax∑
l=0

δ(l)−d,

from Lemma 3.1. Now from the definition of h(n) we have hmax ≥
h(n). Now since node (hmax, jmax) has been expanded, we have that

(hmax, jmax) ∈ I, thus

f(x(n)) ≥ f(xhmax,jmax) ≥ f∗ − δ(hmax) ≥ f∗ − δ(h(n)).
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Now, let us make the bound more explicit when the diameter δ(h)

of the cells decreases exponentially fast with their depth (this case is

rather general as illustrated in the examples described next, as well as

in the discussion in [29]).

Corollary 3.1. Assume that δ(h) = cγh for some constants c > 0 and

γ < 1.

• If d > 0, then the loss decreases polynomially fast:

rn ≤
( C

1− γd

)1/d
n−1/d.

• If d = 0, then the loss decreases exponentially fast:

rn ≤ cγ(n/C)−1.

Proof. From Theorem 3.1, whenever d > 0 we have n ≤
C
∑h(n)

l=0 δ(l)−d = Cc−d γ−d(h(n)+1)−1
γ−d−1

, thus γ−dh(n) ≥ n
Cc−d

(
1−γd

)
, from

which we deduce that rn ≤ δ(h(n)) ≤ cγh(n) ≤
(

C
1−γd

)1/d
n−1/d.

Now, if d = 0 then n ≤ C
∑h(n)

l=0 δ(l)−d = C(h(n) + 1), and we

deduce that the loss is bounded as rn ≤ δ(h(n)) = cγ(n/C)−1.

Remark 3.4. Notice that in Theorem 3.1 and Corollary 3.1 the loss

bound is expressed in terms of the number of node expansions n. The

corresponding number of function evaluations is Kn (since each node

expansion generates K children where the function is evaluated).

3.3.2 Examples

Example 1: Let X = [−1, 1]D and f be the function f(x) = 1−∥x∥α∞,

for some α ≥ 1. Consider a K = 2D-ary tree of partitions with (hyper)-

squares. Expanding a node means splitting the corresponding square

in 2D squares of half length. Let xh,i be the center of Xh,i.

Consider the following choice of the semi metric: ℓ(x, y) = ∥x−y∥β∞,

with β ≤ α. We have δ(h) = 2−hβ (recall that δ(h) is defined in terms
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of ℓ), and ν = 1. The optimum of f is x∗ = 0 and f satisfies the

local smoothness property (3.8). Now let us compute its near-optimality

dimension. For any ϵ > 0, Xϵ is the L∞-ball of radius ϵ1/α centered in

0, which can be packed by
(
ϵ1/α

ϵ1/β

)D
L∞-balls of diameter ϵ (since a

L∞-balls of diameter ϵ is a ℓ-ball of diameter ϵ1/β). Thus the near-

optimality dimension is d = D(1/β − 1/α) (and the constant C = 1).

From Corollary 3.1 we deduce that (i) when α > β, then d > 0 and in

this case, rn = O
(
n
− 1

D
αβ
α−β
)
, and (ii) when α = β, then d = 0 and the

loss decreases exponentially fast: rn ≤ 21−n.

It is interesting to compare this result to a uniform sampling strat-

egy (i.e., the function is evaluated at the set of points on a uniform grid),

which would provide a loss of order n−α/D. We observe that DOO is

better than uniform whenever α < 2β and worse when α > 2β.

This result provides some indication on how to choose the semi-

metric ℓ (thus β), which is a key ingredient of the DOO algorithm

(since δ(h) = 2−hβ appears in the b-values): β should be as close as

possible to the true α (which can be seen as a local smoothness order

of f around its maximum), but never larger than α (otherwise f does

not satisfy the local smoothness property (3.8) any more).

Example 2: The previous analysis generalizes to any function that is

locally equivalent to ∥x−x∗∥α, for some α > 0 (where ∥·∥ is any norm,

e.g., Euclidean, L∞, or L1), around a global maximum x∗ (among a set

of global optima assumed to be finite). More precisely, we assume that

there exists constants c1 > 0, c2 > 0, η > 0, such that

f(x∗)− f(x) ≤ c1∥x− x∗∥α, for all x ∈ X ,

f(x∗)− f(x) ≥ c2min(η, ∥x− x∗∥)α, for all x ∈ X .

Let X = [0, 1]D. Again, consider a K = 2D-ary tree of partitions with

(hyper)-squares. Let ℓ(x, y) = c∥x − y∥β with c1 ≤ c and β ≤ α (so

that f satisfies (3.8)). For simplicity we do not make explicit all the

constants using the O notation for convenience (the actual constants

depend on the choice of the norm ∥ · ∥). We have δ(h) = O(2−hβ).

Now, let us compute the local near-optimality dimension. For any small

enough ϵ > 0, Xϵ is included in a ball of radius (ϵ/c2)
1/α centered in
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x∗, which can be packed by O
(
ϵ1/α

ϵ1/β

)D
ℓ-balls of diameter ϵ. Thus the

local near-optimality dimension (thus the near-optimality dimension

in light of Remark 3.3) is d = D(1/β − 1/α), and the results of the

previous example apply (up to constants), i.e. for α > β, then d > 0

and rn = O
(
n
− 1

D
αβ
α−β
)
. And when α = β, then d = 0 and one obtains

the exponential rate rn = O(2−α(n/C−1)).

We deduce that the behavior of the algorithm depends on our knowl-

edge of the local smoothness (i.e. α and c1) of the function around its

maximum. Indeed, if this smoothness information is available, then one

should define the semi-metric ℓ (which impacts the algorithm through

the definition of δ(h)) to match this smoothness (i.e. set β = α) and

derive an exponential loss rate. Now if this information is unknown,

then one should underestimate the true smoothness (i.e. by choosing

β ≤ α) and suffer a loss rn = O
(
n
− 1

D
αβ
α−β
)
, rather than overestimating

it (β > α) since in this case, (3.8) may not hold anymore and there is

a risk that the algorithm converges to a local optimum (thus suffering

a constant loss).

3.3.3 Illustration

We consider the optimization of the function f(x) =[
sin(13x) sin(27x) + 1

]
/2 in the interval X = [0, 1] (plotted in

Figure 3.7). The global optimum is x∗ ≈ 0.86442 and f∗ ≈ 0.975599.

The top part of Figure 3.7 shows two simulations of DOO, both using

a numerical budget of n = 150 evaluations to the function, but with

two different metrics ℓ.

In the first case (left figure), we used the property that f is globally

Lipschitz and its maximum derivative is maxx∈[0,1] |f ′(x)| ≈ 13.407.

Thus with the metric ℓ1(x, y)
def
= 14|x− y|, f is Lipschitz w.r.t. ℓ1 and

(3.8) holds. We remind that DOO algorithm requires the knowledge of

the metric since the diameters δ(h) are defined in terms of this metric.

Thus since we considered a dyadic partitioning of the space (i.e.K = 2),

we used δ(h) = 14× 2−h in the algorithm.

In the second case (right figure), we used the property that f ′(x∗) =

0, thus f is locally quadratic around x∗. Since f ′′(x∗) ≈ 443.7, us-
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Fig. 3.7 The trees Tn built by DOO after n = 150 rounds with the choice of ℓ(x, y) =
14|x− y| (left) and ℓ(x, y) = 444|x− y|2 (right) rounds. The function (shown in the bottom

part of the figure) is x ∈ [0, 1] 7−→ f(x) = 1/2
(
sin(13x) sin(27x) + 1

)
. Note that the tree

is extensively refined where the function is near-optimal, while it is much less developed in
other regions. Using a metric that reflects the quadratic regularity of f around its maximum
enables a much more precise refinement to the discretization around x∗.

ing a Taylor expansion of order 2 we deduce that f is locally smooth

(i.e. satisfies (3.8)) w.r.t. ℓ2(x, y)
def
= 222|x− y|2. Thus here we defined

δ(h) = 222× 2−2h.

Table 3.8 reports the numerical loss of DOO with these two metrics.

As mentioned in previous subsection, the behavior of the algorithm

heavily depends on the choice of metric. Although f is locally smooth

(i.e. satisfies (3.8)) w.r.t. both metrics, the near-optimality of f w.r.t. ℓ1
is d = 1/2 (as discussed in Example 2 above) whereas it is d = 0

w.r.t. ℓ2. Thus ℓ2 is better suited for optimizing this function since

in that case, the loss decreases exponentially fast with the number

of evaluations (instead of polynomially when using ℓ1). The choice of

the constants in the definition of the metric is also important. If we

were to use a larger constant in the definition of the metric, the effect

would be a more uniform exploration of the space at the beginning.

This will impact the constant factor in the loss bound but not the rate

(since the rate only depends on the near-optimality dimension d which

characterizes a local behavior of f around x∗ whereas the constant
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n uniform grid DOO with ℓ1 DOO with ℓ2
50 1.25× 10−2 2.53× 10−5 1.20× 10−2

100 8.31× 10−3 2.53× 10−5 1.67× 10−7

150 9.72× 10−3 4.93× 10−6 4.44× 10−16

Fig. 3.8 Loss rn for different values of n for a uniform grid and DOO with the two semi-
metric ℓ1 and ℓ2.

factor also depends on the corresponding constant C depending on the

global shape of f).

Now, we should be careful of not selecting a metric (such as

ℓ3(x, y)
def
= |x − y|3) which is overestimating the true smoothness of

f around its optimum since in this case (3.8) would not hold anymore

and the algorithm might not converge to the global optimum at all (it

can be stuck in a local maximum).

Thus we see that the main difficulty for applying this technique boils

down to the lack of knowledge that we may have about the smoothness

of the function around its maximum (or equivalently the metric under

which the function is locally smooth). In Chapter 4 we will consider

adaptive techniques that apply even when this smoothness is unknown.

But before this, let us discuss the stochastic case in the next section.

3.4 X -armed bandits

We now consider the case of noisy evaluations of the function, as in

Subsection 3.1.2: At round t, the observed value (reward) is rt = f(xt)+

ϵt, where ϵt is an independent sample of a random variable (whose law

may depend on xt) such that E[ϵt|xt] = 0. We also assume that the

rewards rt are bounded in [0, 1]. Thus the setting is a stochastic multi-

armed bandit with the set of arms being X . There are several ways to

extend the deterministic case described in the previous section to this

stochastic setting:

The simplest way consists in sampling several times each point in

order to build an accurate estimate of the value at that point, be-

fore deciding to expand the corresponding node. This leads to a direct

extension of DOO where an additional term in the definition of the
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Parameters: error probability δ > 0, time horizon n
Initialization: T1 = {(0, 0)} (root node)
for t = 1 to n do

For each leaf (h, j) ∈ Lt, compute the b-values bh,j(t) according to (3.9).
Select (ht, jt) = argmax(h,j)∈Lt bh,j(t)

Sample state xt
def
= xht,jt and collect reward rt = f(xt) + ϵt.

If Th,j(t) ≥ log(n2/δ)

2δ(h)2
, expand this node: add to Tt the K children of (h, j)

end for
Return the deepest node among those that have been expanded:

x(n) = arg max
xh,j :(h,j)∈Tn\Ln

h.

Fig. 3.9 Stochastic Optimistic Optimization (StoOO) algorithm

b-values accounts for a high-probability estimation interval. The cor-

responding algorithm is called Stochastic DOO (StoOO) and is close

in spirit to the Zooming algorithm of [77]. The analysis is simple but

the time horizon n needs to be known in advance (thus this is not an

anytime algorithm). This algorithm is described in Subsection 3.4.1.

Now, another way consists in expanding the selected node each time

we collect a sample. Thus the sampled points may always be different.

In that case we can use the approach illustrated in Subsection 3.1.2 to

generate high-probability upper bounds on the function in each cell of

the tree in order and define a procedure to select in an optimistic way

a leaf to expand at each round. The corresponding algorithm, Hierar-

chical Optimistic Optimization (HOO) is described in Subsection 3.4.2.

The benefit is that HOO does not require the knowledge of the time

horizon n (thus is anytime) and is more efficient in practice than StoOO

(although this improvement is not reflected in the loss bounds). How-

ever it requires a slightly stronger assumption on the smoothness of the

function.

3.4.1 Stochastic Optimistic Optimization (StoOO)

In the stochastic version of DOO the algorithm computes the b-



42 Optimistic optimization with known smoothness

values of all the leaves (h, j) ∈ Lt of the current tree as

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)
+ δ(h), (3.9)

where µ̂h,j(t)
def
= 1

Th,j(t)

∑t
s=1 rs1{xs ∈ Xh,j} is the empirical average

of the rewards received in Xh,j , and Th,j(t)
def
=
∑t

s=1 1{xs ∈ Xh,j} is

the number of times (h, j) has been selected up to time t. We use the

convention that if a node (h, j) has not been sampled at time t then

Th,j(t) = 0 and the b-value is +∞.

The algorithm is similar to DOO, see Figure 3.9, except that a

node (h, j) is expanded only if xh,j has been sampled at least a certain

number of times. Another noticeable difference is that the algorithm

returns a state x(n) which is the deepest among all nodes that have

been expanded up to round n.

Analysis of StoOO: For any δ > 0, define the following event

ξ
def
=
{
∀h ≥ 0, ∀0 ≤ i < Kh, ∀1 ≤ t ≤ n,

∣∣µ̂h,j(t)− f(xh,j)
∣∣ ≤√ log(n2/δ)

Th,j(t)

}
. (3.10)

We now prove that this event holds in high probability:

Lemma 3.2. We have P(ξ) ≥ 1− δ.

Proof. Letm ≤ n be the (random) number of nodes expanded through-

out the algorithm. For 1 ≤ i ≤ m, write ti as the time when the i-th

node is expanded, and (h̃i, j̃i) = (hti , jti) the corresponding node. Us-

ing a “local clock”, denote τ si the time when the node (h̃i, j̃i) has been

selected for the s-th time and write r̃si = rτsi the reward obtained. Note

that (hτsi , jτsi ) = (h̃i, j̃i). Using these notations, the event ξ rewrites

ξ =
{
∀1 ≤ i ≤ m,∀1 ≤ u ≤ Th̃i,j̃i

(n),

∣∣1
u

u∑
s=1

r̃si − f(xh̃i,j̃i
)
∣∣ ≤√ log(n2/δ)

u

}
.
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Since we have E[rsi |xh̃i,j̃i
] = f(xh̃i,j̃i

), then
∑t

s=1 r̃
s
i − f(xh̃i,j̃i

) is

a Martingale (w.r.t. the filtration generated by the samples collected

at xh̃i,j̃i
), and Azuma’s inequality [16] applies. Taking a union bound

over the number of samples u ≤ n and the number m ≤ n of expanded

nodes, we deduce the result.

We now show that in this event of high probability StoOO only

expands nodes that are near-optimal. Indeed, similarly to the analysis

of DOO, define the sets

Ih
def
= {nodes (h, i) such that f(xh,i) + 3δ(h) ≥ f∗}.

Lemma 3.3. In the event ξ, StoOO only expands nodes of the set

I
def
= ∪h≥0Ih.

Proof. Let (ht, jt) be the node expanded at time t. From the definition

of the algorithm, since this node is selected we have that its b-value is

larger than the b-value of the cell (h∗t , j
∗
t ) containing x∗. And since this

node is expanded, we have
√

log(n2/δ)
2Tht,jt

(t) ≤ δ(ht). Thus,

f(xht,jt) ≥ µ̂ht,jt(t)− δ(ht) under ξ

≥ bht,jt(t)− 3δ(ht) since the node is expanded

≥ bh∗
t ,j

∗
t
(t)− 3δ(ht) since the node is selected

≥ f(xh∗
t ,j

∗
t
) + δ(h∗t )− 3δ(ht) under ξ

≥ f∗ − 3δ(ht) from Assumption (2)

which ends the proof.

We now relate the number of nodes in Ih to the near-optimality

dimension.

Lemma 3.4. Let d be the ν
3 -near-optimality dimension, and C the

corresponding constant. Then

|Ih| ≤ C[3δ(h)]−d.
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Proof. From Assumption 4, each cell (h, i) contains a ball of radius

νδ(h) centered in xh,i, thus if |Ih| = |{xh,i ∈ X3δ(h)}| exceeded

C[3δ(h)]−d, this would mean that there exists more than C[3δ(h)]−d

disjoint ℓ-balls of radius νδ(h) with center in X3δ(h), which contradicts

the definition of d (take ϵ = 3δ(h)).

We now provide a loss bound for StoOO.

Theorem 3.2. Let δ > 0. Let us write h(n) the smallest integer h

such that

2CK3−d
h∑

l=0

δ(l)−(d+2) ≥ n

log(n2/δ)
.

Then with probability 1− δ, the loss of StoOO is bounded as

rn ≤ δ(h(n)).

Proof. Let (hmax, jmax) be the deepest node that has been expanded by

the algorithm up to round n. At round n there are two types of nodes:

the leaves Ln (nodes that have not been expanded) and the nodes that

have been expanded Tn\Ln, which from Lemma 3.3, belong to I on the

event ξ. Each leaf j ∈ Ln of depth h has been pulled at most log(n2/δ)
2δ(h)

times (since it has not been expanded) and its parent (written (h−1, j′)

below) belongs to Ih−1. Thus the total number of expanded nodes n is

such that

n =

hmax∑
l=0

Kl−1∑
j=0

Tl,j(n)1{(h, j) ∈ Ih}

+

hmax+1∑
l=1

Kl−1∑
j=0

Tl,j(n)1{(h− 1, j′) ∈ Ih−1}

≤
hmax∑
l=0

|Il|
log(n2/δ)

2δ(l)
+ (K − 1)

hmax+1∑
l=1

|Il−1|
log(n2/δ)

2δ(l − 1)

= K

hmax∑
l=0

C[3δ(l)]−d log(n
2/δ)

2δ(l)
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where we used Lemma 3.4 to bound the number of nodes in Il. Now

from the definition of h(n) we have hmax ≥ h(n). Now since node

(hmax, jmax) has been expanded, we have that (hmax, jmax) ∈ I on ξ

and

f(x(n)) = f(xhmax,jmax) ≥ f∗ − 3δ(hmax) ≥ f∗ − 3δ(h(n))

happens with probability 1− δ from Lemma 3.2.

Now, in the case of exponential diameters we have the following

corollary.

Corollary 3.2. Assume that δ(h) = cγh for some constants c > 0

and γ < 1. For any δ > 0 the loss of StoOO run with parameter δ is

bounded with probability 1− δ as

rn ≤ c1

[ log(n2/δ)

n

] 1
d+2

.

with c1
def
=
[
2CK3−d

1−γd+2

] 1
d+2

. Now, setting the parameter δ as a function of

the time horizon n enables the derivation of the expected loss bound.

For example with the choice δ = 1/n we have Ern = O
([ logn

n

] 1
d+2

)
.

Proof. From the definition of h(n) in Theorem 3.2, we have

n

log(n2/δ)
≤ 2CK3−d

h(n)∑
l=0

[cγl]−(d+2)

≤ 2CK3−dc−(d+2) γ
−(h(n)+1)(d+2) − 1

γ−(d+2) − 1

≤ cd+2
1 δ(h(n))−(d+2).

Now from Theorem 3.2, rn ≤ δ(h(n)) with probability 1−δ from which

we deduce the result in high probability. The result in expectation

immediately follows from

Ern ≤ (1− δ)δ(h(n)) + δ = O
([ log n

n

] 1
d+2

)
,

for the choice δ = 1/n as the loss is trivially bounded by 1 (since the

rewards are in [0, 1]).
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Notice that this algorithm requires the knowledge of the time hori-

zon n in advance. Thus this is not an anytime algorithm, in contrary

to the DOO algorithm. This algorithm is close in spirit to the Zoom-

ing algorithm introduced in [77]. In both cases, the algorithm can be

made anytime in a somehow artificial way by resorting to the so-called

doubling-trick technique, which consists in running the algorithm for

a given time horizon n0, and once finished (if n > n0), starting it

again with a double time horizon n1 = 2n0 and repeating this pro-

cess until the (unknown) horizon n is reached. One can show that the

performance of the resulting algorithm is bounded by a similar quan-

tity (to the performance of the algorithm that would know n) up to

a constant factor. The main difference between StoOO and Zooming

algorithm is that StoOO is given a hierarchical partitioning which con-

strains the computation of the upper-confidence bounds but as a con-

sequence simplifies the complexity of the sampling strategy, whereas

Zooming requires a sampling oracle that can identify states that do

not belong to the current covering centered at the set of active states.

In the next subsection we present a modification of the StoOO al-

gorithm, called HOO, which is anytime but which requires a slightly

stronger assumption on f , called weak Lipschitz assumption.

3.4.2 Hierarchical Optimistic Optimization (HOO)

We make the following assumption on the function f :

Assumption 5 (weak Lipschitz). The function f satisfies that for

all x, y ∈ X ,

f∗ − f(y) ≤ f∗ − f(x) + max
{
f∗ − f(x), ℓ(x, y)

}
. (3.11)

Intuitively, this says that around an optimum x∗ the values f(y)

should be above f∗− ℓ(x∗, y), like the local smoothness property (3.8).

But in addition, in the vicinity of other arms x, the constraint is milder

as the arm x gets worse: around any ϵ–optimal point x the values f(y)

should be larger than f∗−2ϵ for ℓ(x, y) ≤ ϵ and larger than f(x)−ℓ(x, y)

elsewhere. In other words, there is no sudden and large drop in the



3.4. X -armed bandits 47

mean-payoff function around states with values close to the optimum

(note that this property can be satisfied even for discontinuous func-

tions).

The HOO algorithm is described in Figure 3.10. The notation C(h, i)
refers to the set of children of (h, i).

At each round t, the algorithm assigns b-values to all nodes of the

current tree Tt, defined as bh,j = +∞ for any leaf (h, j) ∈ Lt (from

which no sample has been observed yet), and for any node (h, i) ∈
Tt \ Lt,

bh,i(t)
def
= min

{
µ̂h,i(t)+

√
2 log t

Th,i(t)
+δ(h), max

(h+1,j)∈C(h,i)
bh+1,j(t)

}
. (3.12)

Their computation can be done by backward induction, starting from

the leaves, up to the root node.

The algorithm works as follows: At each round t a leaf (ht, jt) ∈ Lt of

the current tree is selected. The way this leaf is chosen is by following an

“optimistic path” from the root to a leaf where at each node along this

path, the child node is the one with the highest b-value (Figure 3.11

illustrates the leaf selection procedure). Then a point xt is selected

arbitrarily in the corresponding domain Xht,jt (for example xht,jt but

it can be any other point, possibly chosen randomly) and the random

reward rt = f(xt) + ϵt is observed. Then the b-values of all nodes are

updated and the process repeats.

Finally, at round n, the algorithm returns one of the previously

sampled states chosen (uniformly) randomly.

An optimistic sampling strategy: By defining the bmin-value of

any leaf (h, j) ∈ Lt as the minimum of the b-values of all its ancestor

nodes, i.e.,

bmin
h,j (t)

def
= min

(l,i) ancestor of (h,j)
µ̂l,i(t) +

√
2 log t

Tl,i(t)
+ δ(l),

we have that bmin
h,j (t) is a refined high-probability upper-confidence

bound on supx∈Xh,j
f(x) (since each term of the min is). This is a

way to implement the idea of improving the UCB using a hierarchy of

domains mentioned in Remark 3.2.
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Parameter: δ > 0
Initialization: T1 = {(0, 0)} (root node)
for t = 1 to n do

Compute the b-values of all nodes in Tt according to (3.12),
Select a leaf (ht, jt) ∈ Lt by following an “optimistic path”:
Let (h, i)← (0, 0) (start from the root)
While (h, i) ∈ Tt \ Lt do

(h, i)← arg max
(h+1,j)∈C(h,i)

bh+1,j(t) (Ties broken arbitrarily)

The selected leaf is (ht, jt) = (h, i)
Sample a state xt arbitrarily in Xht,jt (for example xt = xht,jt) and
collect the reward rt = f(xt) + ϵt.
Expand node (ht, jt): Tt+1 ← Tt∪C(ht, jt) (add theK children of (ht, jt))

end for
Return x(n)

def
= xT , where T ∼ U({1, 2, . . . , n}).

Fig. 3.10 Hierarchical Optimistic Optimization (HOO) applied to the problem of minimiz-
ing the loss rn.

Actually from the definition of the optimistic path chosen by the

HOO algorithm, we have the property that the selected leaf (ht, jt) is

a leaf with highest bmin value among all leaves in Lt:

(ht, jt) ∈ arg max
(h,j)∈Lt

bmin
h,j (t).

This is exactly the optimistic methodology introduced in Sec-

tion 3.1.2, especially described in remark 3.2.

Analysis of HOO The bound reported in [29] is in terms of the

cumulative regret Rn
def
= nf∗ −

∑n
t=1 rt, i.e. the difference between the

sum of rewards collected by the algorithm up to time n compared to n

times the best possible expected reward f∗.

However, from an algorithm achieving a cumulative regret Rn one

can design an algorithm that achieves a loss rn in expectation of

Ern = ERn/n. This loss bound is not optimal for finitely many

armed bandits (since there exists strategies that achieve exponential

loss bounds as discussed in [27, 9]), but in the case of X -armed bandits

(where the set of arms is larger than the number of rounds n), this may

be unimprovable. The version presented in Figure 3.10 is an adaptation
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Optimistic path

h,i
b

b b
h+1,i1 h+1,i2

Sampled point xt

Selected leaf

Fig. 3.11 Illustration of the leaf selection procedure in round t. The tree represents Tt. In
the illustration, Bh+1,i1 (t) > Bh+1,i2 (t), therefore, the selected path traverses the node
(h+ 1, i1). The point xt is chosen in the selected leaf (ht, jt).

of the HOO algorithm where the state x(n) returned at the end of the

algorithm is chosen uniformly randomly among the states {xt}1≤t≤n

sampled by the algorithm up to round n:

x(n)
def
= xT , where T ∼ U({1, 2, . . . , n}). (3.13)

Thus we immediately deduce that

Ern = ET [f
∗ − f(xT )] =

1

n

n∑
t=1

[f∗ − f(xt)] =
1

n
ERn. (3.14)

Theorem 3.3 (Regret bound for HOO [29]). Under Assumption

5 on f . Let d be the ν
3 -near-optimality dimension of f w.r.t. ℓ. Then

the loss of HOO is upper-bounded as

Ern = O
([ n

log n

]− 1
d+2

)
.
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Remark 3.5. HOO requires that f satisfies (3.11) which is slightly

stronger than (3.8). The reason is that since HOO expands a leaf at

each round, it builds a high-probability UCB on supx∈Xh,i
f(x) at a

given node (h, i) based on different points in the cell Xh,i (in contrary

to StoOO that samples several times the same point in order to build

an accurate estimate of the value before expanding the node). As a con-

sequence, the rewards collected in sub-optimal cells may significantly

impact the cumulative regret. Indeed, consider a sub-optimal cell Xh,i

(thus x∗ /∈ Xh,i) such that f(xh,i) ≥ f∗ − δ(h). Assuming that f satis-

fies (3.8) only, then sampling arbitrarily at x ∈ Xh,i may cause a large

cumulative regret (since the function may be arbitrarily low at points

x ̸= xh,i). In contrast, assuming that f satisfies (3.11), one deduce that

any sample x in the cell Xh,i contributes to the cumulative regret by

f∗ − f(x) ≤ f∗ − f(xh,i) + max{f∗ − f(xh,i), ℓ(xh,i, x)} ≤ 2δ(h) only.

Since the state x(n) returned by the algorithm follows (3.13), the

loss rn of HOO is directly related to the cumulative regret Rn via

(3.14). However for the problem of minimizing the loss rn (that we

consider in this paper), it may be possible to define other choices for

the recommended state x(n) such that the loss rn may not be related

to the cumulative regret Rn. Such a possible choice would be to return

any point in the deepest leaf argmax(h,j)∈Ln
h of the final tree Tn built

from HOO. Actually, numerical experiments indicate that this strategy

provides better performance than the one defined by (3.13). However,

there is currently no theoretical guarantee for it.

The loss bounds of HOO and StoOO are of the same order. The ben-

efit of HOO over StoOO is that it is anytime (i.e. n does not need to be

known in advance) and it is usually numerically more efficient since it

does not wait until a cell has been sampled enough times to start refin-

ing the corresponding node. Thus inside a given cell Xh,i the sampling

is adaptive even when the number of samples is small, which enables

HOO to localize more rapidly the maximum of f within the cell (con-

trary to StoOO which samples the same state O(log(n)/δ(h)2) times

before refining it). Those improvements come at the cost of constrain-

ing slightly more the assumption about the function f as explained in
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the previous remark.

Finally, we provide some numerical experiments on the same one-

dimensional problem as described in Subsection 3.3.3. The mean-

reward function is f(x)
def
=
(
sin(13x) sin(27x)+1

)
/2 and the reward col-

lected at a state xt follows a Bernoulli distribution with parameter f(xt)

(i.e. rt = 1 with probability f(xt) and rt = 0 with probability 1−f(xt)).

Figure 3.12 shows the trees built by HOO after n = 102, 103, 104, and

n = 105 calls to the function using the ℓ2-metric. Here the hierarchical

partitioning is formed by dyadic intervals, δ(h) = 2−h, and the points

xt are uniformly randomly chosen in the selected cells Xht,jt .

A first observation is that tree is more uniformly balanced here

than in the deterministic case. The reason is that the loss obtained

in this stochastic case (both for StoOO and HOO) is of order n− 1
d+2 ,

where d is the near-optimality dimension, whereas in the deterministic

setting, DOO achieves the improved rate n−1/d when d > 0, and even

an exponential rate when d = 0 (see Corollary 3.1).

A second remark is that, similarly to the deterministic case, the

tree is more deeply refined where the mean-payoff function is near-

optimal, and the heterogeneous aspect of the tree increases with n: The

algorithm starts with a quasi-uniform initial exploration, then rapidly

focus on the main peaks, and eventually performs a local search around

the global optimum. We can intuitively grasp the advantages of such

hierarchical optimistic optimization methods in that they do the best

possible exploration given the numerical budget n (and the knowledge

of the smoothness of f).

Comparison with UCB-AIR algorithm One can think of apply-

ing the UCB-AIR algorithm [108] introduced in Subsection 1.2.1 in this

X -armed bandit setting, where new arms would be chosen uniformly

at random over the space X .

For illustration, let us compare UCB-AIR with StoOO/HOO on

Example 2 described in Section 3.3.2 where X = [0, 1]D and the mean-

reward function f is locally equivalent to ∥x − x∗∥α, for some α > 0,

around a global maximum x∗.

UCB-AIR would pull randomly a new arm X according to the
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Fig. 3.12 The trees Tn built by HOO after n = 100, 103, n5 and n = 105 noisy function
evaluations. The mean-payoff function (shown in the top part of the figures) is x ∈ [0, 1] 7−→
f(x) =

(
sin(13x) sin(27x) + 1

)
/2 and the corresponding rewards are Bernoulli-distributed.

Lebesgue measure on [0, 1]D, we have: P(µ(X) > µ∗ − ε) = Θ(P(||X −
x∗||α < ε)) = Θ(εD/α), for ε → 0.

Thus Assumption (1.16) holds with β = D/α, and UCB-AIR pro-

vides an expected cumulative regret bounded as (in the case f∗ < 1)

ERn = Õ(
√
n) when D < α, and ERn = Õ(nD/(α+D)) when D ≥ α.

Using the recommendation strategy of x(n) defined as in (3.13), the
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expected loss of UCB-AIR is thus:

Ern =

{
Õ
(
n−1/2

)
for D < α

Õ
(
n− α

α+D
)

for D ≥ α

Thus the loss is small when the smoothness order α is large, since

there is a reasonable chance to find a near-optimal point among a small

number of samples chosen uniformly a random. Notice that in order to

apply UCB-AIR, the coefficient α should be known.

Now using StoOO or HOO with the semi-metric ℓ(x, y) = ∥x− y∥β
with β ≤ α implies that the near-optimality dimension is d = D(1/β−
1/α) (see Subsection 1.2.1), thus the expected loss of StoOO or HOO

is

Ern =

{
Õ
(
n−1/2

)
for α = β

Õ
(
n
− 1

D(1/β−1/α)+2
)

for α > β
, (3.15)

So the important measure of the quality of this strategy is the dis-

crepancy between the actual smoothness order α of f and the “be-

lieved“ smoothness order β which is used in the algorithm. The closer

β is from α, the better (since the near-optimality dimension depends

on this discrepancy).

Thus if the local smoothness order α is known, then it is always

better to apply StoSOO or HOO with β = α than UCB-AIR since the

loss is then Õ(n−1/2). If α is not known, then UCB-AIR cannot be

applied immediately, and we would have to guess a value of β ≤ α as

close to α as possible. However, β should not be chosen strictly larger

than α, otherwise the smoothness property (3.8) or (3.11) does not

hold, and the algorithms StoOO and HOO may not converge to the

global optimum (i.e. the loss may not converge to 0).

Comparison with UCT Actually, one can see the UCT algorithm

[78] exposed in Section 2.2 as a version of HOO where δ(h) is set to

0 in the definition of the upper-confidence-bounds (3.12) (since when

δ(h) = 0 the minimum of the two terms defining the bound is always

the first one), which reduces to the UCT bound (2.1). Thus UCT can

be seen as a version of HOO where the smoothness of the function is

assumed to be infinite (i.e. β is set to ∞). Thus in light of the previous

comment, this algorithm does not enjoy any finite-time bound.
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Monte-Carlo Tree Search HOO can be seen as a Monte-Carlo Tree

Search (MCTS) algorithm as illustrated in Figure 2.1. If we consider

choosing the point xt uniformly at random over the selected cell Xht,jt

then this is equivalent to performing an (infinite) rollout where uni-

formly random moves are chosen from nodeXht,jt . Thus the results pre-

sented in this chapter can be seen as preliminary foundations for MCTS

in the sense that finite-time performance guarantees are obtained for

the problem of function optimization in general spaces (i.e. semi-metric)

under the assumption that the mean-reward function satisfies a local

smoothness property w.r.t. a known semi-metric.

3.5 Conclusions

The performance of the algorithms DOO, StoOO, HOO described in

this chapter depends on the near-optimality dimension d, which charac-

terizes the quantity of near-optimal states of f measured with the semi-

metric ℓ. Actually d can be seen as a discrepancy between the actual

smoothness order of the function around its maximum and the believed

smoothness order that is used in the algorithm (through the choice of

ℓ), as illustrated in the previous example where d = D(1/β − 1/α).

Thus when the local smoothness of f around x∗ is known, it can be

used for defining ℓ such that the near-optimality dimension is d = 0,

which leads to a loss bound rn = O(n−1/2) in the stochastic case. Thus

we obtain the nice property that the rate n−1/2 is independent of

the space dimension, thus those techniques do not suffer from the

so-called ”the curse of dimensionality“.

However it is important to notice that the constant factor hidden

in the O notation may be exponential in the dimension of the space.

This is of course unavoidable when we consider a global optimization

problem under such a weak and local assumption on the considered

functions. Thus the performance is somehow similar to a Monte-Carlo

integration method where the standard deviation of the Monte-Carlo

estimate using n random samples is σ(f)n−1/2. The rate n−1/2 is inde-

pendent of the space dimension, but the constant factor (the standard

deviation of f) is usually exponential in the dimension. Thus, in terms

of convergence rate, optimizing a function with known smoothness is
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no more difficult than integrating it!

Now, when the local smoothness of f is not known, or when there

is no semi-metric such that d = 0 then the loss bound deteriorates and

the dimension of the space appears in the rate.

Thus, like in Chapter 1, we see that the performance of the opti-

mistic strategy depends on the smoothness of f around the global

optimum (expressed in terms of a measure of the quantity of near-

optimal states) and on our knowledge about this smoothness.

The next chapter presents adaptive techniques that may apply when

the smoothness of the function is unknown.



4

Optimistic Optimization with unknown
smoothness

We now consider the setting where Assumptions 1, 2, 3, 4 hold for some

semi-metric ℓ, but now, the semi-metric ℓ is unknown from the

algorithm.

The hierarchical partitioning of the space is still given to the algo-

rithm, but since ℓ is unknown, one cannot use the diameter δ(h) of the

cells to design upper-bounds, like in DOO, StoOO, or HOO.

Alternatively, we can think of this setting as a lack of knowledge

about the local smoothness of f around its maximum. For example,

in the Examples 1 and 2 described in Section 3.3.2 the choice of β

(defining the semi-metric ℓ) is difficult if the smoothness order α of

f is unknown, but this choice is critical since β should always be less

than α (in order to guarantee the convergence of the algorithm) while

as close to α as possible in order to optimize the performance.

The question we wish to address here is: If ℓ is unknown, is it possi-

ble to implement an optimistic optimization strategy with performance

guarantees?

We provide a positive answer to this question and in addition we

show that we can do almost as well as if ℓ were known, for the

best possible valid ℓ (i.e., satisfying Assumptions 1, 2, 3, 4).

56
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Section 4.1 considers the deterministic case while Section 4.2 deals

with the stochastic case.

4.1 Simultaneous Optimistic Optimization (SOO) algorithm

In this section we consider the deterministic setting and use the same

notations as in Section 3.3.

The idea is to expand at each round simultaneously all the leaves

(h, j) of the current tree for which there exists a semi-metric ℓ such

that the corresponding upper-bound f(xh,j) + supx∈Xh,j
ℓ(xh,j , x) of

the leaf (h, j) could be the highest. In other words, we select all cells

that are potentially optimal for any valid metric. This is implemented

by expanding at each round at most a leaf per depth, and a leaf is

expanded only if it has the highest value among all leaves of same

or lower depths. The Simultaneous Optimistic Optimization (SOO)

algorithm is described in Figure 4.1.

The SOO algorithm takes as a parameter a function t → hmax(t)

which limits the tree to a maximal depth of hmax(t) after t node ex-

pansions. Again, Lt refers to the set of leaves of Tt.

4.1.1 Analysis of SOO

All previously relevant quantities such as the diameters δ(h), the sets

Ih, and the nu-near-optimality dimension d depend on the unknown

semi-metric ℓ (which is such that Assumptions 1, 2, 3, 4 are satisfied).

At time t, let us write h∗t the depth of the deepest expanded node

in the branch containing x∗ (an optimal branch). Let (h∗t +1, i∗) be an

optimal node of depth h∗t + 1 (i.e., such that x∗ ∈ Xh∗
t+1,i∗). Since this

node has not been expanded yet, any node (h∗t+1, i) of depth h∗t+1 that

is later expanded, before (h∗t + 1, i∗) is expanded, is δ(h∗t + 1)-optimal.

Indeed, f(xh∗
t+1,i) ≥ f(xh∗

t+1,i∗) ≥ f∗ − δ(h∗t + 1). We deduce that

once an optimal node of depth h is expanded, it takes at most |Ih+1|
node expansions at depth h+1 before the optimal node of depth h+1

is expanded. From that simple observation, we deduce the following

lemma.
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The maximum depth function t 7→ hmax(t) is a parameter of the algorithm.
Initialization: T1 = {(0, 0)} (root node). Set t = 1.
while True do

Set vmax = −∞.
for h = 0 to min(depth(Tt), hmax(t)) do

Among all leaves (h, j) ∈ Lt of depth h, select

(h, i) ∈ arg max
(h,j)∈Lt

f(xh,j)

if f(xh,i) ≥ vmax then
Expand this node: add to Tt the K children {(h + 1, i1), . . . , (h +
1, iK)} and evaluate the function at the corresponding centers
{xh+1,i1 , . . . , xh+1,iK}
Set vmax = f(xh,i), Set t = t+ 1
if t = n then Return

x(n)
def
= arg max

(h,i)∈Tn

f(xh,i)

end if
end for

end while.

Fig. 4.1 Simultaneous Optimistic Optimization (SOO) algorithm.

Lemma 4.1. For any depth 0 ≤ h ≤ hmax(t), whenever t ≥ (|I0| +
|I1|+ · · ·+ |Ih|)hmax(t), we have h∗t ≥ h.

Proof. We prove it by induction. For h = 0, we have h∗t ≥ 0 trivially.

Assume that the proposition is true for all 0 ≤ h ≤ h0 with h0 <

hmax(t). Let us prove that it is also true for h0+1. Let t ≥ (|I0|+ |I1|+
· · ·+ |Ih0+1|)hmax(t). Since t ≥ (|I0|+ |I1|+ · · ·+ |Ih0 |)hmax(t) we know

that h∗t ≥ h0. So, either h
∗
t ≥ h0+1 in which case the proof is finished,

or h∗t = h0. In this latter case, consider the nodes of depth h0 + 1 that

are expanded. We have seen that as long as the optimal node of depth

h0+1 is not expanded, any node of depth h0+1 that is expanded must

be δ(h0 + 1)-optimal, i.e., belongs to Ih0+1. Since there are |Ih0+1| of
them, after |Ih0+1|hmax(t) node expansions, the optimal one must be

expanded, thus h∗t ≥ h0 + 1.
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Theorem 4.1. Let us write h(n) the smallest integer h such that

Chmax(n)

h∑
l=0

δ(l)−d ≥ n. (4.1)

Then the loss is bounded as

rn ≤ δ
(
min(h(n)− 1, hmax(n))

)
. (4.2)

Proof. From Lemma 3.1 and the definition of h(n) we have

hmax(n)

h(n)−1∑
l=0

|Il| ≤ Chmax(n)

h(n)−1∑
l=0

δ(l)−d < n,

thus from Lemma 4.1, when h(n)−1 ≤ hmax(n) we have h
∗
n ≥ h(n)−1.

Now in the case h(n)−1 > hmax(n), since the SOO algorithm does not

expand nodes beyond depth hmax(n), we have h∗n = hmax(n). Thus in

all cases, h∗n ≥ min(h(n)− 1, hmax(n)).

Define (h∗n, i
∗) to be the deepest expanded node containing x∗. Using

the local smoothness assumption (3.8), we deduce that:

f(x(n)) ≥ f(xh∗
n,i

∗) ≥ f∗ − δ(h∗n) ≥ f∗ − δ(min(h(n)− 1, hmax(n))).

This result may seem very surprising: although the semi-metric ℓ

is not known, the performance is almost as good as for DOO (see

Theorem 3.1) which uses the knowledge of ℓ. The main difference is

that the maximal depth hmax(n) appears both as a multiplicative factor

in the definition of h(n) in (4.1) and as a threshold in the loss bound

(4.2). Those two appearances of hmax(n) define a trade-off between

deep (large hmax) versus broad (small hmax) types of exploration. We

now illustrate the case of exponentially decreasing diameters.

Corollary 4.1. Assume that δ(h) = cγh for some c > 0 and γ < 1.

Consider the two cases:
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• The near-optimality d > 0. Let the depth function hmax(t) =

tϵ, for some ϵ > 0 arbitrarily small. Then, for n large

enough (i.e. nϵ ≥ ξ log n for some constant ξ that depends

on c, C, γ, d) the loss of SOO is bounded as:

rn ≤
( C

1− γd

)1/d
γ−1n− 1−ϵ

d .

• The near-optimality d = 0. Let the depth function hmax(t) =√
t. Then the loss of SOO is bounded as:

rn ≤ cγ
√
nmin(1/C,1)−2.

Proof. From Theorem 3.1, when d > 0 we have

n ≤ Chmax(n)

h(n)∑
l=0

δ(l)−d = Cc−dhmax(n)
γ−d(h(n)+1) − 1

γ−d − 1

thus for the choice hmax(n) = nϵ, we deduce γ−dh(n) ≥ n1−ϵ

Cc−d

(
1 − γd

)
.

Thus h(n) is logarithmic in n and for n large enough (i.e. when

d log(1/γ)nϵ ≥ (1− ϵ) log n+ log 1−γd

Cc−d ) then h(n) ≤ hmax(n) + 1, thus

rn ≤ δ
(
min(h(n)− 1, hmax(n))

)
= δ(h(n)− 1) = cγh(n)−1

≤
( C

1− γd

)1/d
γ−1n− 1−ϵ

d .

Now, if d = 0 then n ≤ Chmax(n)
∑h(n)

l=0 δ(l)−d = Chmax(n)(h(n) + 1),

thus for the choice hmax(n) =
√
n we deduce that the loss decreases as:

rn ≤ δ
(
min(h(n)− 1, hmax(n))

)
≤ cγ

√
nmin(1/C,1)−2.

Remark 4.1. The maximal depth function hmax(t) is still a param-

eter of the algorithm, which somehow influences the behavior of the

algorithm (deep versus broad exploration of the tree). However, for a

large class of problems (e.g. when d > 0) the choice of the order ϵ does

not impact the asymptotic performance of the algorithm.



4.1. Simultaneous Optimistic Optimization (SOO) algorithm 61

Since our algorithm does not depend on ℓ, the analysis is actually

true for any semi-metric ℓ that satisfies Assumptions 1, 2, 3,

4 thus Theorem 4.1 and Corollary 4.1 hold for the best possible choice

of such a ℓ (which may depend on f itself!). In particular, we can

think of problems for which there exists a semi-metric ℓ such that

the corresponding near-optimality dimension d is 0. See the discussion

in Section 4.2.2 below. Now, instead of describing a general class of

problems satisfying this property, we illustrate in the next subsection

non-trivial optimization problems in X = IRD where there exists ℓ such

that d = 0.

4.1.2 Examples

Example 1: Consider the Example 1 described in Section 3.3.2 where

X = [−1, 1]D and f(x) = 1 − ∥x∥α∞, where α ≥ 1 is unknown. We

have seen that DOO with the metric ℓ(x, y) = ∥x − y∥β∞ provides a

polynomial loss rn = O
(
n
− 1

D
αβ
α−β
)
whenever β < α, and an exponential

loss rn ≤ 21−n when β = α. However, here α is unknown.

Now consider the SOO algorithm with the maximum depth function

hmax(t) =
√
t. As mentioned before, SOO does not require ℓ, thus we

can apply the analysis for any ℓ that satisfies Assumptions 1, 2, 3, 4.

So let us consider ℓ(x, y) = ∥x − y∥α∞. Then δ(h) = 2−hα, ν = 1, and

the near-optimality dimension of f under ℓ is d = 0 (and C = 1). We

deduce that the loss of SOO is rn ≤ 2(2−
√
n)α. Thus SOO provides a

stretched-exponential loss without requiring the knowledge of α.

Note that a uniform grid provides the loss n−α/D, which is polyno-

mially decreasing only (and subject to the curse of dimensionality since

the rate depends on D). Thus, in this example SOO is always better

than both Uniform and DOO except if one knows perfectly α and ap-

plies DOO with β = α (in which case we obtain an exponential loss).

The fact that SOO is not as good as DOO optimally fitted comes from

the truncation of SOO at a maximal depth hmax(n) =
√
n (whereas

DOO optimally fitted would explore the tree up to a depth linear in

n).
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n loss of SOO

50 rn = 3.56× 10−4

100 rn = 5.90× 10−7

150 rn = 1.92× 10−10

Fig. 4.2 Numerical performance of SOO for the function f(x) = 1/2
(
sin(13x) sin(27x)+ 1

)

Example 2: The same conclusion holds for Example 2, where we

consider a function f defined on [0, 1]D that is locally equivalent to

∥x − x∗∥α, for some unknown α > 0 (see the precise assumptions in

Section 3.3.2). We have seen that DOO using ℓ(x, y) = c∥x− y∥β with

β < α has a loss rn = O
(
n
− 1

D
αβ
α−β
)
, and when α = β, then d = 0 and

the loss is rn = O(2−α(n/C−1)).

Now by using SOO (which does not require the knowledge of α)

with hmax(t) =
√
t we deduce the stretched-exponential loss rn =

O(2−
√
nα/C) (by using ℓ(x, y) = ∥x − y∥α in the analysis, which gives

δ(h) = 2−hα and d = 0).

4.1.3 Illustrations

Figure 4.3 shows the first iterations of the SOO algorithm for the

function f(x) = 1/2
(
sin(13x) sin(27x) + 1

)
already considered in Sec-

tion 3.3.3. At each round several cells (indicated by the circled dots and

the bold segments) are simultaneously spit. Here we used a branching

factor K = 3 and the maximal depth function hmax(t) =
√
t.

Table 4.2 reports the loss of SOO for different numerical budgets.

In comparison to Table 3.8 the loss of SOO is better than DOO using

the sub-optimal semi-metric ℓ1 and is almost as good DOO with the

optimal semi-metric ℓ2. This corroborates the theoretical guarantees

stated in Subsection 4.1.1. Indeed, in this example the near-optimality

dimension of f w.r.t. the semi-metric ℓ2 is d = 0, as illustrated in

Example 2 in Subsection 4.1.2, thus the loss of SOO is a stretched-

exponential.

Figure 4.4 also shows the first iterations of the SOO algorithm for

the function f(x) = x(1 − x)
(
4 −

√
| sin(60x)|

)
. We also used K = 3
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and hmax(t) =
√
t. This function f has a local behavior (around its

maximum) f(x) ≡ f(x∗) − c|x − x∗|α, for some constant c > 0 and

α = 1/2. One can easily check that the near-optimality dimension of f

w.r.t. the metric ℓ(x, y)
def
= c|x− y|1/2 is d = 0, thus the loss of SOO is

also stretched-exponentially decreasing to 0. Notice that SOO neither

requires the knowledge of c nor α (in contrast to DOO).

Figure 4.5 illustrates the SOO algorithm for the optimization of a

Brownian motion (i.e. f is a function sample of a Gaussian process).

We can prove that with high-probability (w.r.t. the random choice of

f), f is lower-bounded as f(x) ≥ f(x∗)− c|x− x∗|α, for some constant

c > 0 (which depends on the failure probability) and α = 1/2. An

open question is whether the near-optimality dimension of f w.r.t. the

metric ℓ(x, y)
def
= c|x−y|1/2 is (in high probability) d = 0, in which case

SOO would have a stretched-exponential loss, or d > 0 for which SOO

would have a polynomial loss.

Finally, Figure 4.6 shows a 2-dimensional problem with the function

f(x1, x2) = f(x1)f(x2) where f(x) =
(
sin(13x) sin(27x) + 1

)
/2. Again

we used hmax(t) =
√
t and K = 3 (where a cell is spit in 3 along the

longest direction). In this situation again, the near-optimality dimen-

sion of f w.r.t. the semi-metric l(x, y) = c|x1 − y1|2|x2 − y2|2 (for some

constant c > 0) is d = 0.



64 Optimistic Optimization with unknown smoothness

Fig. 4.3 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here f(x) =

(
sin(13x) sin(27x) + 1

)
/2 and K = 3. The blue dots

represent the values of the function at the center of the cells. The circle around the dots
and the bold segments shows the nodes that are expanded at each iteration.
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Fig. 4.4 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here f(x) = x(1− x)

(
4−

√
| sin(60x)|

)
and K = 3.
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Fig. 4.5 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here f(x) is a Brownian motion sample and K = 3.
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Fig. 4.6 The 5 first iterations of the SOO algorithm and the resulting tree Tn after n = 150
function evaluations. Here we considered the 2-dimensional function f(x1, x2) = f(x1)f(x2)

where f(x) =
(
sin(13x) sin(27x) + 1

)
/2 and K = 3. When a node is expanded, its corre-

sponding cell is split in the widest direction in 3 subsets of same size.
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Fig. 4.7 The 3 first iterations of the SOO algorithm and after n = 17, 53 and 54 function
evaluations on the function built from the example illustrated in Figure 2.2.
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Comparison with the DIRECT algorithm: The DIRECT (DI-

viding RECTangles) algorithm [67, 50, 53] is a Lipschitz optimization

algorithm when the Lipschitz constant L of f is unknown. It uses an

optimistic splitting technique similar to ours where at each round, it

expands the set of nodes that have the highest upper-bound (as defined

in DOO) for at least some value of L. To the best of our knowledge,

there is no finite-time analysis of this algorithm (only the consistency

property limn→∞ rn = 0 is proven in [50]). Our approach generalizes

DIRECT and we are able to derive finite-time loss bounds in a much

broader setting where the function is assumed to be locally smooth (in-

stead of globally Lipschitz) only and the space is assumed semi-metric

only.

We are not aware of other finite-time analyses of similar global opti-

mization algorithms that do not require the knowledge of the smooth-

ness of the function.

SOO is a rank-based algorithm: The algorithm only requires the

knowledge of the rank of the function evaluations and not their specific

values. Indeed the decision to expand a node only depends on whether

the value at this node is larger than the values of all nodes of the

same or lower depth. The specific values are not important as long as

their rank is preserved. This is also a property shared by the CMA-

ES optimization algorithm (see e.g. Figure 10.4 in [15]). Thus if g :

IR 7→ IR is strictly increasing, SOO will perform identically on f and

g ◦ f . For example SOO will perform identically on x 7→ ∥x − x∗∥
and x 7→ g(∥x − x∗∥). And our analysis of the loss of SOO actually

reflect this property since we can choose to define the semi-metric as

ℓ(x, y) = g(∥x − y∥), as illustrated in subsection 4.1.2 for the case

g(z) = zα.

SOO for the unsmooth function illustrated in Figure 2.2 Fi-

nally we report in Figure 4.7 the result of SOO applied to the function

built from the example illustrated in Figure 2.2 (where we used D = 6).

This function served as an illustration of the perticularly bad behavior

of UCT. If one looks at this function at a high level scale, this function
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does not possess any smoothness around its maximum. Actually, for

this type of functions, the best algorithm would be a uniform search,

since no information from higher level can be used to guide the search.

In addition, any optimistic algorithm will be fooled here since, in

any cell (not containing the optimum), the function has higher values on

the left than on the right. Thus, as long as the optimum is not reached,

the search will be focussing more on left branches than on right ones,

at all levels, leading to a perticularly misleading behavior. This was

all the more true for UCT since the B-values computed by UCT are

not true high probability upper-confidence-bounds, and we saw that

the number of samples required by UCT to find the optimum can be

as bad as Ω(exp(exp(. . . exp(1) . . . ))), where the number of intricated

exponentials is D.

In contrast, SOO (fitted with hmax(t) =
√
t) requires “only”

Ω(K2D) samples to find the optimum. This is because at each iteration

SOO expands a node with largest diameter (out of at most hmax(n)

nodes). Thus after n node expansions, the
√
n nodes of lowest depth

have all been expanded.

Now if the actual “smoothness” of the function were known (we

can show that here d = 0 and C = 2D) one could use it to define

true upper-confidence-bounds and use it in the DOO algorithm. Such

a DOO optimally fitted would expand first the nodes with lowest depth

(since the diameter term δ(h) would dominate the evaluations f(xh,j)

in the computation of the b-value bh,j , see Algorithm 3.6), thus reducing

to a uniform search. The resulting number of samples required to find

the optimum would be KD.

Thus in this hard instance of function optimization, the uniform

search (or DOO optimally fitted) is exponential in D, SOO is expo-

nential in a multiple of D, whereas UCT is “D-uply“ exponential. This

example illustrates the fact that any optimistic algorithm that does

not know the smoothness of the function may be poorer than a uni-

form search on perticularly unsmooth functions. But this is the price

to pay in order to be able to do much better than uniform as soon as

the function possesses some smoothness (even if it is unknown).
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4.2 Extensions to the stochastic case

We now consider an extension of SOO to the stochastic case where an

evaluation of f at a point xt returns a noisy estimate rt of f(xt) such

that E[rt|xt] = f(xt). We actually follow the same approach as StoOO

(see Section 3.4.1) where each state xh,j is sampled several times in

order to build an accurate estimate of f(xh,j) before the corresponding

node Xh,j is expanded.

The corresponding algorithm, called StoSOO (for Stochastic and

Simultaneous Optimistic Optimization), is described in Figure 4.8 and

introduced in [105].

Parameters: δ > 0, the max number of samples per node k > 0, and the
maximum depth function t 7→ hmax(t).
Initialization: T1 = {(0, 0)} (root node). Set t = 1 (round number)
while t ≤ n do

Set vmax = 0.
For each leaf (h, j) ∈ Lt, compute the b-values bh,j(t) according to (4.3).
for h = 0 to min(depth(Tt), hmax(t)) do

if t ≤ n then
Among all leaves of depth h, select (h, i) ∈ argmax(h,j)∈Lt bh,j(t)
if bh,i(t) ≥ vmax then

if Th,i(t) < k then
Sample state xt = xh,i and collect reward rt
t← t+ 1

else
Add the K children of (h, i) to Tt (we expand this node)
Set vmax = bh,i(t).

end if
end if

end if
end for

end while.
Return the state with highest empirical value corresponding to the set of
expanded nodes:

x(n) = arg max
xh,j∈Tn\Ln

µ̂h,j(n).

Fig. 4.8 The Stochastic Simultaneous Optimistic Optimization (StoSOO) algorithm
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StoSOO defines the b-values bh,j(t) of any node at round t, by

bh,j(t)
def
= µ̂h,j(t) +

√
log(n2/δ)

2Th,j(t)
, (4.3)

where Th,j(t)
def
=
∑t

s=1 1{xs ∈ Xh,j} is the number of times (h, j) has

been selected up to time t, and µ̂h,j(t)
def
= 1

Th,j(t)

∑t
s=1 rs1{xs ∈ Xh,j}

is the empirical average of the rewards received in Xh,j . In the case of

Th,j(t) = 0 we let bh,j(t) = ∞.

Now, instead of selecting the promising nodes according of their

value f(xh,j we select them according to their b−value bh,j . The pa-

rameter k used in the algorithm is the number of samples collected from

a state before the corresponding node is expanded. Finally, StoSOO re-

turns the state x(n) with highest empirical value among the set of nodes

that have been expanded (thus which have been sampled k times).

4.2.1 Analysis of StoSOO

We have the property that for any δ > 0, defining the event ξ as in

(3.10), Lemma 3.2 implies that P(ξ) ≥ 1− δ. Notice that the b-values

bh,j(t) define high-probability upper-confidence-bounds on the values

f(xh,j) (and not on supx∈Xh,j
f(x) as it was the case for the b-values

defined by StoOO in (3.9)).

Thus the intuition of the algorithm is that in the event ξ, the esti-

mation µ̂h,j(t) of a node Xh,j that has been expanded (thus sampled

at least k times) is ϵ-close to its value f(xh,j), where ϵ =

√
log(n2/δ)

2k .

Thus, in the event ξ, StoSOO is very close to the algorithm SOO

where:

• The sampling budget is only m = n/k, which corresponds to

the number of nodes that are expanded,
• Each of the m evaluations is only ϵ-correct.

Indeed notice that when a node (h, i) is expanded by StoSOO it

means that k samples have been collected from the state xh,i, and the

ϵ-estimation f̂(xh,i) of f(xh,i) is at least as good as the estimation

f̂(xh′,j) of nodes that have been expanded at previous depths h′ < h.
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Thus the analysis of StoSOO (in the event ξ) reduces to the analysis of

the so-called “ϵ-perturbed SOO algorithm, which is defined exactly

as the SOO algorithm except that each evaluation to the function is

perturbed by at most ϵ (i.e., when sampling a state xh,j one observes

f̂(xh,j), which is such that |f̂(xh,j)− f(xh,j)| ≤ ϵ).

Let us now analyze this ϵ-perturbed SOO using a similar proof to

that of SOO. Define the sets

Iϵh
def
= {nodes (h, i) such that f(xh,i) + δ(h) + 2ϵ ≥ f∗}.

After t (perturbed) function evaluations, let us write h∗t the depth

of the deepest expanded node in the branch containing x∗ (an optimal

branch). Let (h∗t + 1, i∗) be an optimal node of depth h∗t + 1 (i.e., such

that x∗ ∈ Xh∗
t+1,i∗). Since this node has not been expanded yet, any

node (h∗t +1, i) of depth h∗t +1 that is later expanded, before (h∗t +1, i∗)

is expanded, is [δ(h∗t + 1) + 2ϵ]-optimal. Indeed,

f(xh∗
t+1,i) ≥ f̂(xh∗

t+1,i)− ϵ ≥ f̂(xh∗
t+1,i∗)− ϵ

≥ f(xh∗
t+1,i∗)− 2ϵ ≥ f∗ −

[
δ(h∗t + 1) + 2ϵ

]
.

We deduce that once an optimal node of depth h is expanded, it takes

at most |Iϵh+1| node expansions at depth h+1 before the optimal node

of depth h+1 is expanded, which corresponds to at most hmax(t)|Iϵh+1|
function evaluations. We deduce the following lemma as a straightfor-

ward extensions of Lemma 4.1.

Lemma 4.2. For any depth 0 ≤ h ≤ hmax(t), whenever t ≥
hmax(t)(|Iϵ0|+ |Iϵ1|+ · · ·+ |Iϵh|), we have h∗t ≥ h.

The next lemma bounds the number of nodes in the sets |Iϵh| for
any depth h ≤ hϵ

def
= min{h ≥ 0, s.t. δ(h+ 1) < ϵ}:

Lemma 4.3. Let d be the ν/3-near-optimality dimension (where ν is

defined in Assumption 4), and C be the corresponding constant. Then

for any h ≤ hϵ, we have

|Iϵh| ≤ C
[
δ(h) + 2ϵ

]−d
.
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Proof. The proof is similar to that of Lemma 3.1. By contradiction: for

h ≤ hϵ, if |Iϵh| > C[δ(h)+2ϵ]−d we would have |Iϵh| > C[3δ(h)]−d, which

would mean that there exists more than C[3δ(h)]−d disjoint ℓ-balls of

radius νδ(h) with center in Xδ(h). This contradicts the fact that d is

the ν/3-near-optimality dimension.

Now we can state our main result for ϵ-perturbed SOO using a

budget of m perturbed evaluations of f .

Theorem 4.2. Let d be the ν/3-near-optimality dimension and h(m)

be the smallest integer h such that

Chmax(m)
h∑

l=0

[
δ(l) + 2ϵ

]−d ≥ m. (4.4)

Then the loss of ϵ-perturbed SOO is bounded as

rm ≤ 2ϵ+ δ
(
min(h(m)− 1, hmax(m), hϵ)

)
. (4.5)

Proof. Consider first the case when h(m)−1 ≤ hϵ. Then using a similar

argument as in the proof of Theorem 4.1 we deduce that after m node

expansions, the depth h∗m of the deepest expanded node in the branch

containing x∗ satisfies h∗m ≥ min(h(m)−1, hmax(m)). Now if h(m)−1 >

hϵ, we can use Lemma 4.3 up to depth hϵ to deduce similarly that h∗m ≥
min(hϵ, hmax(m)). Thus altogether h∗m ≥ min(h(m)− 1, hϵ, hmax(m)).

Now define (h∗m, i∗) the optimal node of depth h∗m (i.e., containing

x∗). Let xh,j be the state returned by the algorithm. Thus f̂(xh,j) ≥
f̂(xh∗

m,i∗) and we deduce that

f(xh,j) ≥ f̂(xh,j)− ϵ ≥ f̂(xh∗
n,i

∗)− ϵ

≥ f(xh∗
n,i

∗)− 2ϵ ≥ f∗ − δ(h∗m)− 2ϵ

≥ f∗ − δ(min(h(m)− 1, hmax(m), hϵ))− 2ϵ.

We now state our main result for StoSOO in the case when the

near-optimality dimension for the best valid semi-metric ℓ is d = 0.
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Theorem 4.3. Assume there exists a semi-metric ℓ such that f is lo-

cally smooth around one global optimum x∗ (i.e. such that (3.8) holds)

and that Assumptions 1, 3, 4 hold. Assume that the diameters (mea-

sured with ℓ) of the cells decrease exponentially fast, i.e. δ(h) = cγh for

some c > 0 and γ < 1. Assume that the ν/3-near-optimality dimension

is d = 0 (and write C the corresponding constant). Then the expected

loss of StoSOO run with parameters k, hmax(t) =
√

t/k, and δ > 0, is

bounded as:

E[rn] ≤ (2 + 1/γ)

√
log(n2/δ)

2k
+ cγ

√
n/kmin(1/C,1)−1 + δ. (4.6)

In particular, for the choice k = n
(logn)3

and δ = 1/
√
n, we have

E[rn] = O
((log n)2√

n

)
.

Proof. In the event ξ, the StoSOO algorithm behaves like the ϵ-

perturbed SOO with ϵ =

√
log(n2/δ)

2k run for m = n/k rounds (node

expansions).

When d = 0, from Theorem 4.2, we have that m ≤
Chmax(m)

∑h(m)
l=0

[
δ(l) + 2ϵ

]−d
= Chmax(m)(h(m) + 1), thus for

hmax(m) =
√
m we deduce that the loss of ϵ-perturbed SOO (thus

the loss of StoSOO in the event ξ) is at most:

rn ≤ 2ϵ+ δ
(
min(h(m)− 1, hmax(m), hϵ)

)
≤ 2ϵ+ δ(hϵ) + δ

(
min(h(m)− 1, hmax(m))

)
≤ (2 + 1/γ)ϵ+ cγ

√
mmin(1/C,1)−2.

The bound on the expected loss of StoSOO follows from the fact

that ξ holds with probability 1− δ.

Finally, for the specific choice k = n
(logn)3

we notice that the second

term in the bound (4.6) is a o(1/
√
n).

Thus in the case the near-optimality dimension for the best valid

semi-metric is d = 0 and the diameters are exponentially decreasing,
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StoSOO achieves the same rate 1/
√
n (neglecting logarithmic factors)

as StoOO and HOO (which required the knowledge of the semi-metric

ℓ). In the next subsection we discuss this important case d = 0.

4.2.2 The case d = 0

Notice that SOO and StoSOO algorithms do not require the knowledge

of the semi-metric ℓ; the semi-metric is only used in the analysis of

the algorithm. Thus one can choose the best possible semi-metric ℓ,

possibly according to the function f itself, as long as it satisfies

the following properties:

• f should be locally smooth w.r.t. ℓ around a global optimum

x∗ (i.e. such that (??) holds)
• The diameters of the cells (measured with ℓ) should decrease

exponentially fast
• There exists C > 0 such that for any ϵ > 0, the maximal

number of disjoint ℓ-balls of radius νϵ centered in Xϵ is less

than C (i.e. the near-optimality dimension d is 0).

In Examples 1 and 2 we illustrated the case of functions f defined on

[0, 1]D that are locally equivalent to a polynomial of degree α around

their maximum, i.e., f(x) − f(x∗) = Θ(∥x − x∗∥α) for some α > 0,

where ∥ · ∥ is any norm. The precise definition is given in Example

2 of Subsection 3.3.2. In light of the discussion in Subsection 4.1.2,

the choice of semi-metric ℓ(x, y)
def
= ∥x − x∗∥α implies that the near-

optimality dimension d = 0.

More generally, this results extends to any function whose upper-

and lower envelopes around x∗ are of same order. More precisely, we

assume that there exists constants c > 0, and η > 0, such that

min(η, cℓ(x, x∗)) ≤ f(x∗)− f(x) ≤ ℓ(x, x∗), for all x ∈ X . (4.7)
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x∗

f(x∗) f(x∗)− cℓ(x, x∗)

f(x∗)− ℓ(x, x∗)

f(x∗)− η

Fig. 4.9 Any function satisfying (4.7) (i.e., lying in the gray area) has a near-optimality
dimension d = 0 since it possesses a lower- and upper-envelopes that are of same order
around x∗.

Now, one can even define the semi-metric ℓ according to the be-

havior of f around x∗ in order that (??) holds. For example if the

space X is a normed space (with norm ∥ · ∥), one can define the metric

ℓ(x, y)
def
= ℓ̃(∥x− y∥) with

ℓ̃(r)
def
= sup

x;∥x∗−x∥≤r
f(x∗)− f(x).

Thus f(x∗) − ℓ(x, x∗) naturally forms a lower-envelope of f . Thus as-

suming that the first inequality of (4.7) (upper-envelope) holds, then

the near-optimality dimension is d = 0 again. This is the case in par-

ticular when the function is strongly concave, or only locally strongly

concave (i.e. only in a η-neighborhood of x∗).

However, although the case d = 0 is quite general, it does not hold in

situations where there is a discrepancy between the upper- and lower-

envelopes of f around x∗ as illustrated in Figure 4.10.
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Fig. 4.10 We illustrate the case of a function with different order in the upper and lower
envelopes. Here f(x) = 1−

√
x+ (−x2 +

√
x) ∗ (sin(1/x2) + 1)/2. The lower-envelope is of

order 1/2 whereas the upper one is of order 2. We deduce that d = 3/2.

Finally, as discussed in Remark 3.3, the near-optimality dimen-

sion d is a local property of f near x∗ since it coincides with the

local near-optimality dimension (defined in the same remark). How-

ever the corresponding constant C in the definition 3.1 depends on

the global shape of f . For instance, in a Euclidean space X , assume

that a function f has a near-optimality dimension d around x∗ with

a corresponding constant C. Now consider the function f̃ defined as

f̃(x)
def
= max1≤i≤k f(x

∗ − x+ xi), where {x1, . . . , xk} are k points in X
(i.e. f̃ is the maximum of k translated copies of f). Thus f̃ possesses
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k global optima {x1, . . . , xk} and the near-optimality dimension of f̃

is still d but the corresponding constant can be as large as kC (this is

simply because it requires at most k times more balls to cover the set

of ϵ-optimal states of f̃ , than it takes for ϵ-optimal states of f).

4.3 Conclusions

Assuming that the function f is locally smooth w.r.t. some semi-metric

ℓ enables the design of optimistic exploration strategies, even when ℓ is

unknown. Since the algorithm does not depend on ℓ, the loss analysis

can be undertaken using the best possible valid (i.e. such that Assump-

tions 1, 2, 3, 4 hold) semi-metric. In the deterministic case, the SOO

algorithm performs almost as well as DOO optimally-fitted.

In the stochastic case, the StoSOO algorithms performs almost as

well as StoOO or HOO only in the case when there exists a valid semi-

metric such that the corresponding near-optimality dimension d is 0.

We showed that this already covers a large class of functions. Now,

when this is not the case (as illustrated in Figure 4.10) the problem of

designing an algorithm that would do almost as well as StoOO or HOO

for the smallest d > 0 corresponding to a valid semi-metric, is open.
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Optimistic planning

In this chapter we consider the optimistic approach for solving planning

problems. In comparison to the previous chapters about optimization,

the planning problem introduces some structure in the search space

and the function to be optimized. Here, the search space is the set of

possible policies (where a policy is an action to follow in each possible

situation), and the function to optimized (the so-called value function)

depends on the sum of rewards along the trajectories resulting from

the policy that is evaluated.

We consider that a full model of the dynamics and the reward func-

tion is available but each call to the model has some numerical cost.

Thus our goal is to return the best possible plan given a finite number

of calls to the model (our numerical budget). A possible setting is the

following.

Online planning: We consider a class of online model-based algo-

rithms that, at each step, looks at the current state of the system and

uses the model to predict the system’s response to various sequences of

actions. Exploiting these predictions, an action that is as good as possi-

ble is applied in the real world, which results in a new state. The entire

80
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cycle then repeats. In computer science such algorithms belong to the

planning class [80] and are known as online planning [73, 88] or lazy

planning [47]. While we use the name ‘online planning’ and mainly re-

fer to the computer science literature, it must be emphasized that such

algorithms are also widely studied in systems and control, where they

are known as model-predictive or receding-horizon control [83, 38]. In

the AI community, related works are the classical A* heuristic search

[87] and the AO* variant from [62].

More precisely, at time k, let the current state of the system be xk.

Our goal is to select an action ak to follow. In order to do so, we perform

a simulated search (planning) in the set of all possible policies starting

from the current state xk using a finite numerical budget (here a finite

number n of calls to the generative model), and this search returns a

recommended action ak to follow. Then this action is executed in the

real environment, which generates a transition to a next state xk+1.

Then another search is performed from this new state, and the same

procedure is repeated again and again. This is called online planning

because the planning is performed online at each time step. Since time

is limited for selecting each action, the planning part should be as

efficient as possible given the time (or numerical budget) allowed.

The goal of this “online planning” is thus to perform in each current

state a search in a policy space starting from that state and using

a finite budget n and return a recommended action whose quality is

almost as good as the best action to follow from that state.

The online planning approach is different from the value-function

and policy search methods usually considered in dynamic programming

and reinforcement learning [101, 20, 102, 96, 33]; the latter methods

usually seek a global solution, whereas online planning finds actions on

demand, locally for each state where they are needed. Online planning

is therefore much less dependent on the state space size.

In this chapter we present three settings where the optimistic prin-

ciple can guide us in performing this search [32]. In all settings we

consider an infinite-time horizon with discounted rewards. Section 5.1

considers the case of deterministic dynamics and reward functions, Sec-

tion 5.2 the case of general stochastic rewards with deterministic dy-

namics, and Section 5.3 the general case of Markov Decision Processes.
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In all three situations we provide performance bounds on the loss

(how close the quality of the recommended action is from that of the

optimal action) as a function of the number of calls to the model. For

clarity, in this chapter we will make use standard notations in control

that differ from the notations used in previous chapters.

5.1 Deterministic dynamics and rewards

5.1.1 Setting and notations

Here the dynamics and reward functions are deterministic. Let us write

X the state space, A the action space, f : X × A → X the transition

dynamics, and r : X×A → IR the reward function. Thus if at time t, the

current state is xt ∈ X and the chosen action at, then the system jumps

to the next state xt+1 = f(xt, at) and a reward r(xt, at) is received.

Again we will assume that all rewards are in the interval [0, 1].

We assume that the state space is large (possibly infinite), and

the action space is finite, with K possible actions. We consider an

infinite-time horizon problem with discounted rewards (0 ≤ γ < 1 is

the discount factor). For any policy π : X → A we define the value

function V π : X → IR associated to that policy:

V π(x)
def
=
∑
t≥0

γtr(xt, π(xt)),

where xt is the state of the system at time t when starting from x (i.e.

x0 = x) and following policy π.

We also define the Q-value function Qπ : X ×A → IR associated to

a policy π, for each state-action pair (x, a), as the value of playing a in

x and π after:

Qπ(x, a)
def
= r(x, a) + γV π(f(x, a)).

We have the property that V π(x) = Qπ(x, π(x)). Now the op-

timal value function (respectively Q-value function) is defined as:

V ∗(x)
def
= supπ V

π(x) (respectively Q∗(x, a)
def
= supπ Q

π(x, a), which

corresponds to playing a now and optimally after). And from the dy-

namic programming principle, we have the Bellman equations:

V ∗(x) = max
a∈A

[
r(x, a) + γV ∗(f(x, a))

]
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Q∗(x, a) = r(x, a) + γmax
b∈A

Q∗(f(x, a), b).

5.1.2 Planning under finite numerical budget

We assume that we possess a generative model of f and r that can be

used to generate simulated transitions and rewards. We want to make

the best possible use of this model in order to return a single action

(or a sequence of actions), given an initial state. The action-selection

procedure takes as input the current state of the system and outputs an

action a(n) using at most n calls to the generative model. The amount

n of available numerical resources may not be known before they are all

used (e.g. because of time constraints), so we wish to design anytime

algorithms that can return an action A(n) for any time n. Our goal

is that the proposed action a(n) be as close as possible to the optimal

action in that state, and we define the performance loss rn resulting

from choosing this action and then following an optimal path instead

of following an optimal path from the beginning:

rn
def
= max

a∈A
Q∗(x, a)−Q∗(x, a(n)). (5.1)

Thus the goal is to find the best way to explore the environment

(first phase) so that, once the available resources have been used, the

agent is able to make the best possible recommendation on the action

to play in the environment.

From an action-selection algorithm one may define a policy π which

would select in each state encountered along a trajectory the action

recommended by the algorithm using n calls to the model. The previous

definition of the loss is motivated by the fact that an algorithm with

small loss at each state (say rn ≤ ϵ) will generate a policy π which is
ϵ

1−γ -optimal, i.e. for all x, V ∗(x)− V π(x) ≤ ϵ
1−γ (see [66]).

5.1.3 The planning tree

For a given initial state x, consider the (infinite) planning tree defined

by all possible sequences of actions (thus all possible reachable states

starting from x). Write A∞ the set of infinite sequences (a0, a1, a2, . . . )

where at ∈ A. The branching factor of this tree is the number of actions
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|A| = K. Since the dynamics are deterministic, to each finite sequence

a ∈ Ad of length d corresponds a state that is reachable starting from

x by following a sequence of d actions.

Using standard notations over alphabets, we write A0 = {∅}, A∗

the set of finite sequences, for a ∈ A∗ we write h(a) the length of a,

and aAh = {aa′, a′ ∈ Ah}, where aa′ denotes the sequence a followed

by a′. We identify the set of finite sequences a ∈ A∗ to the set of nodes

of the tree.

The value v(a) of an infinite sequence a ∈ A∞ is the discounted

sum of rewards along the trajectory starting from the initial state x

and defined by the choice of this sequence of actions:

v(a)
def
=
∑
t≥0

γtr(xt, at), where x0 = x, and xt+1 = f(xt, at).

Now, for any finite sequence a ∈ A∗ (or node) we define the value

v(a) = supa′∈A∞ v(aa′). We write v∗ = v(∅) = supa∈A∞ v(a) the opti-

mal value. We also define the u- and b-values (respectively lower- and

upper- bounds on v) as

l(a)
def
=

h(a)∑
t=0

γtr(xt, at) (5.2)

b(a)
def
= l(a) +

γh(a)+1

1− γ
, (5.3)

Indeed, since all rewards are in [0, 1] we have that l(a) ≤ v(a) ≤ b(a).

At any finite time t an algorithm has expanded a set of t nodes,

which define the expanded tree Tt. Expanding a node a ∈ Ah means

using the generative model f and r to generate transitions and rewards

for the K children nodes aA. The set of leaves of Tt represents the set

of nodes that can be expanded at time t+ 1 and is denoted by Lt.

Thus, once a node, a ∈ A∗ is expanded, the values l(a) and b(a) can

be computed (since they only depend on rewards obtained along the

finite sequence a).

5.1.4 Minimax bounds

First, consider a uniform exploration policy, defined by expanding at

each round t a node in Lt with the smallest depth. Now, at time n
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(once n nodes have been expanded), the algorithm returns the imme-

diate action with largest u-value: a(n)
def
= argmaxa∈A l(a) (ties broken

arbitrarily).

This strategy expands the set of sequences in a uniform fashion;

hence, at round n = 1 + K + K2 + · · · + Kd = Kd+1−1
K−1 , all nodes of

depth up to d have been expanded. Thus the value l(a) of each action

a ∈ A is known up to an error v(a) − l(a) ≤ γd+1

1−γ , since the rewards

of all paths up to depth d have been seen, and the remaining rewards

from depths d+1 on sum to at most γd+1

1−γ . We deduce an upper-bound

on the loss of uniform planning:

rn ≤ 1

γ(1− γ)

[
n(K − 1) + 1

]− log 1/γ
logK . (5.4)

In addition we have a matching lower-bound: For any algorithm and

any n, there exists a reward function, such that the loss is at least

rn ≥ γ

1− γ

[
n(K − 1) + 1

]− log 1/γ
logK . (5.5)

The proof of those results can be found in [66]. We thus observe

that the uniform planning strategy achieves a loss of O(n
− log 1/γ

logK ) in

a minimax sense (i.e. for any possible environment). And the lower-

bound tells us that (up to a constant factor) there is no algorithm that

can do better uniformly over all problems.

However, this does not tell us that there is not better algorithms

for some problems. In the next section we show that strictly better

algorithms can be designed for specific class of problems.

5.1.5 Optimistic planning

The infinite set of sequences A∞ is our search space (denoted by X in

previous sections) and each a ∈ A∞ is a point in that space. The value

v(a) of each sequence a ∈ A∞ is the sum of discounted rewards along

the sequence. Now, by defining the metric ℓ(a, a′) = γh(a,a′)

1−γ , where

h(a, a′)
def
= max{t ≥ 0, ∀0 ≤ s ≤ t, as = a′s}, we have the property that

for all a, a′ ∈ A∞,

|v(a)− v(a′)| ≤ ℓ(a, a′),
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thus the value function v is Lipschitz w.r.t. the metric ℓ.

Any subtree Tt corresponds to a partitioning of A∞ into t subsets.

Expanding a leaf a ∈ Lt of this tree means splitting the corresponding

subset into K smaller subsets aa′, for a ∈ A. To each subset a ∈ Lt the

value b(a) is an upper-bound on v(a).

Thus one may apply the DOO algorithm from Section 3.3: at each

round t, expand the leaf of the expanded tree with highest b-value. And

after n node expansions, return the action with highest u-value (where

the values are defined as in 5.2).

This defines an algorithm, called Optimistic Planning algorithm

(OPD) (see Algorithm 1), that builds an asymmetric planning tree

aiming at exploring first the most promising parts of the tree. Branches

with low rewards close to the root will not be further explored and only

near-optimal paths will be continually expanded.

Algorithm 1 Optimistic Planning algorithm (OPD)

Expand the root.

for t = 1 to n do

Expand a node at ∈ argmaxa∈Lt b(a),

end for

return Action argmax
a∈A

l(a)

Although OPD is directly inspired from DOO, there are two im-

portant differences with DOO: (1) here we have a structured problem

where the value v(a) of any point a ∈ A∞ is the sum of (discounted)

rewards along an (infinite) sequence of actions, and (2) the budget n

represents the number of calls to the generative model (i.e. transitions

and rewards) and not directly the number of evaluations of the function

v.

Analysis The loss of OPD is bounded as

rn(AO) ≤
γdn

1− γ
, (5.6)

where dn is the maximal depth of nodes in Tn ([66]). As a consequence,

for any reward function, the upper bound on the loss for the optimistic
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planning is never larger than that of the uniform planning (indeed since

the uniform exploration is the exploration strategy with minimal depth

dn for a given n, thus the depth obtained when using OPD is at least

as high as that of the uniform one).

However the lower bound tells us that no improvement (over uni-

form planning) may be expected in a worst-case setting. In order to

quantify possible improvement over uniform planning, one thus needs

to define specific classes of problems.

We now define a measure of the quantity of near-optimal sequences.

More precisely, by denoting T + ⊂ T ∞ the set of sequences in Ah, for

any h, that are γh+1

1−γ -optimal, we define κ ∈ [1,K] as the branching

factor of T +:

κ = lim sup
h→∞

∣∣∣∣{a ∈ Ah : v(a) ≥ v∗ − γh+1

1− γ

}∣∣∣∣1/h . (5.7)

This measure is closely related to the notion of near-optimality di-

mension d (and corresponding constant C) introduced in Chapter 3.3.

Indeed, if there are C ′κh (for some constant C ′) sequences of length h

in T +, then the corresponding nodes represents a set of ℓ-balls of di-

ameter γh+1

1−γ that form a packing of the set of (infinite) sequences that

are γh+1

1−γ -optimal. Writing ϵ = γh+1

1−γ we have that the set of ϵ-optimal

points of A∞ can be packed by C ′κh = Cϵ−d such ℓ-balls with the

near-optimality dimension d and corresponding constant C being:

d =
log κ

log 1/γ
and C = C ′κ(1− γ)−d. (5.8)

We have the following result:

Theorem 5.1. If κ > 1 then the loss of OPD is rn = O
(
n
− log 1/γ

log κ
)
.

If κ = 1 and there are at most C ′ sequences of length h in T + (for

any h ≥ 0), the loss decreases exponentially fast as rn = O
(
e−

log 1/γ

C′ n
)
.

The proof of this result can be found in [66], but in light of the

previous discussion, it is a direct consequence of the analysis of DOO.

Some intuition about T +: By definition, T + is the set of finite

sequences that are γh+1

1−γ -optimal, thus from any sequence a ∈ T +, given
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the sequence of rewards obtained along this sequence, one cannot decide

whether this sequence belongs to an optimal sequence or not. Now once

a sequence does not belong to T +, it is not useful to further expand

it since it is clear that whatever the later rewards, it will not be part

of an optimal sequence. Thus T + is exactly the set of sequences that

deserve to be further expanded in order to find the optimal path.

The nice property of OPD is that it only expands nodes in T +

(which explains why the performance of OPD is expressed in terms

of the branching factor κ of T +). This implies that OPD cannot be

improvable in the class of problems defined by a given κ.

Indeed, if we characterize the class of problems P(κ) by all envi-

ronments having a set T + with branching factor κ, we have that the

loss of OPD on any problem P ∈ P(κ) satisfies: rn(P ) = O
(
n
− log 1/γ

log κ
)
.

And we deduce a κ-minimax lower bound: for any algorithm, for any

κ ∈ [1,K], there exists a problem P ∈ P(κ) such that the loss of this

algorithm applied to P is at least rn = Ω
(
n
− log 1/γ

log κ
)
.

Thus OPD is κ-minimax optimal.

Remark 5.1. OPD greatly improves over the uniform planning when-

ever there is a small proportion of near-optimal paths (i.e. κ is small),

and the bound is always at least as good as that for uniform planning.

The case κ = 1 provides exponential rates. In particular, this is the case

where there exists a depth h0 such that any sequence of depth h ≥ h0
along an optimal path, the gap in the Q-values at the corresponding

state xh is lower bounded by a quantity independent of h: ∃∆ > 0, for

all h ≥ h0,

V ∗(xh)− max
a∈A s.t. Q∗(xh,a)<V ∗(xh)

Q∗(xh, a) ≥ ∆. (5.9)

Indeed in such a situation, the number of nodes in a sub-optimal branch

departing from any state xh (along the optimal path) is at most KH

where γH/(1−γ) ≥ ∆. Thus
∣∣∣{a ∈ Ah : v(a) ≥ v∗ − γh+1

1−γ

}∣∣∣ is bounded
by a constant independent of h, thus κ = 1.

SOO for planning? In previous sections (see e.g. Section 5.3.2) we

built a metric ℓ defined over the space of policies, such that the value
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function v is Lipschitz w.r.t. ℓ (see e.g. (5.14)). Now it could be the

case that the value function possesses some additional local smooth-

ness around the optimal policy π∗, in the sense that there exists an-

other semi-metric ℓ′ of “higher order” such that (3.8) holds, i.e. for

all π, v(π∗) − v(π) ≤ ℓ′(π∗, π) (in a way similar to the example il-

lustrated in Section 3.3.3 where the function f was globally Lipschitz

w.r.t. ℓ1 and locally smooth w.r.t. the higher-order semi-metric ℓ2). In

such cases, it would be interesting to use a version of SOO for planning.

In the deterministic case described in Section 5.1, an extension of OPD

to the simultaneous node expansion strategy implemented in SOO is

straightforward and is expected to improve the numerical performances

in some planning problems that possess such higher order smoothness.

5.2 Deterministic dynamics, stochastic rewards

Now we consider the problem of planning in environments where tran-

sitions are deterministic but rewards are stochastic. Thus for any state

x and action a ∈ A, the call to the generative model returns a transition

to a unique next-state f(x, a) and a reward sample drawn (indepen-

dently from previous samples) from a probability distribution ν(x, a)

(with mean r(x, a)) on [0, 1]. Thus several calls to the generative model

for each state action (x, a) are required in order to estimate precisely

the average reward r(x, a). Again we consider an infinite-time hori-

zon problem with discounted rewards and the value function is defined

identically as in Section 5.1.1.

Now consider the planning problem given an initial state x and de-

fine the set of infinite sequences of actions A∞ like in Subsection 5.1.2.

For any finite sequence a ∈ A∗, we write ν(a) the corresponding reward

distribution, and r(a) its expectation. During the exploration of the en-

vironment, the agent iteratively selects sequences of actions, under the

global constraint that he can not take more than n actions in total,

and receives a reward after each action. For a ∈ Ah, write Y m
h ∼ ν(a)

the reward sample collected when selecting the sequence a for the mth

time.
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5.2.1 OLOP algorithm

We now describe the Open Loop Optimistic Planning (OLOP) intro-

duced in [26]. In that paper, the term “open-loop” referred to policies

that were the function of a sequence of actions only and not of the un-

derlying resulting states. However in the setting described here (where

the transitions are deterministic), the underlying state is uniquely de-

fined by the sequence of actions, thus the planning is actually closed-

loop.

The OLOP algorithm is described in Algorithm 2. Given a budget n

(which needs to be known before the algorithm starts), the algorithms

generates M sequences of actions of length L (where L×M ≤ n). The

algorithm defines b-values assigned to any sequence of actions in AL.

At time m = 0, the b-values are initialized to +∞. Then, after episode

m ≥ 1, the b-values are defined as follows: For any 1 ≤ h ≤ L, for any

a ∈ Ah, let

Ta(m) =

m∑
s=1

1{as1:h = a}

be the number of times we played a sequence of actions beginning with

a. Now we define the empirical average of the rewards for the sequence

a as:

µ̂a(m) =
1

Ta(m)

m∑
s=1

Y s
h 1{as1:h = a},

if Ta(m) > 0, and 0 otherwise. The corresponding upper confidence

bound on the value of the sequence of actions a is by definition:

ua(m) =

h∑
t=1

(
γtµ̂a1:t(m) + γt

√
2 logM

Ta1:t(m)

)
+

γh+1

1− γ
,

if Ta(m) > 0 and +∞ otherwise. Now that we have upper confidence

bounds on the value of many sequences of actions we can sharpen these

bounds for the sequences a ∈ AL by defining the b-values as:

ba(m) = inf
1≤h≤L

ua1:h(m). (5.10)

At each episodem = 1, 2, . . . ,M , OLOP selects a sequence am ∈ AL

with highest b-value, observes the rewards Y m
t ∼ ν(am1:t), t = 1, . . . , L
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provided by the environment, and updates the b-values. At the end of

the exploration phase, OLOP returns an action that has been the most

often played, i.e. a(n) = argmaxa∈A Ta(M).

Algorithm 2 Open Loop Optimistic Planning

Let M be the largest integer such that M⌈logM/(2 log 1/γ)⌉ ≤ n.

Let L = ⌈logM/(2 log 1/γ)⌉.
for m = 1 to M do

Computes the b-values at time m − 1 for sequences of actions in

AL using (5.10) and chooses a sequence that maximizes the corre-

sponding b-value:

am ∈ arg max
a∈AL

ba(m− 1).

end for

return Action a(n) = argmaxa∈A Ta(M).

5.2.2 Analysis of OLOP

Let κ ∈ [1,K] be defined as

κ = lim sup
h→∞

∣∣∣∣{a ∈ Ah : v(a) ≥ v∗ − 2
γh+1

1− γ

}∣∣∣∣1/h . (5.11)

Notice that this definition is very close to (5.7), where the additional

2 factor accounts for the additional uncertainty due to the empirical

estimation of the rewards.

Theorem 5.2. For any κ′ > κ, the expected loss is bounded as1:

Ern =

 Õ

(
n
− log 1/γ

log κ′

)
if γ

√
κ′ > 1,

Õ
(
n− 1

2

)
if γ

√
κ′ ≤ 1.

1We say that un = Õ(vn) if there exists α, β > 0 such that un ≤ α(log(vn))βvn



92 Optimistic planning

5.2.3 Discussion

In this section we compare the performance of OLOP with previous

algorithms that can be adapted to our framework. This discussion is

summarized in Figure 5.1. We also point out several open questions

raised by these comparisons.

Comparison with HOO/StoOO/Zooming algorithms In Sec-

tion 5.1.5 we showed that the mapping a ∈ A∞ 7→ v(a) is Lipschitz

w.r.t. some metric ℓ. Thus we could use the HOO algorithm described

in Section 3.4.2 (or the zooming algorithm of [75]) and derive perfor-

mance bounds in terms of the near-optimality dimension d = log κ
log 1/γ

(see (5.8)). The expected loss of HOO is thus of order

Ern = Õ(n−1/(d+2)) = Õ(n
− log 1/γ

log κ+2 log 1/γ ). (5.12)

Clearly, this rate is always worse than the ones in Theorem 5.2.

This is expected since these algorithms do not use the specific structure

of the global reward function (which is the sum of rewards obtained

along a sequence) to generalize efficiently the estimation of rewards

across arms. More precisely, they do not consider the fact that a reward

sample observed for an arm (or sequence) ab provides information for

the estimation of any other arm in aA∞. Thus we see that is it crucial

to take into account the specific tree structure of the rewards.

Comparison with UCB-AIR: When one knows that there are

many near-optimal sequences of actions (i.e. when κ is close to K),

then one may be convinced that among a certain number of paths cho-

sen uniformly at random, there exists at least one which is very good

with high probability. This idea is exploited by the UCB-AIR algorithm

of [108], introduced in Section 1.2.1, designed for infinitely many-armed

bandits, where at each round one chooses either to sample a new arm

(or sequence in our case) uniformly at random, or to re-sample an arm

that has already been explored (using a UCB-like algorithm to choose

which one). The regret bound of UCB-AIR is expressed in terms of the

probability of selecting an ϵ-optimal sequence when one chooses the

actions uniformly at random. More precisely, the important quantity β
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is such that this probability is of order of ϵβ. Again, one can see that κ

is closely related to β. Indeed, our assumption says that the proportion

of epsilon-optimal sequences of actions (with ϵ = 2γh+1

1−γ ) is O(κh),

resulting in κ = Kγβ. Thanks to this result, we can see that applying

UCB-AIR in our setting yields the loss bounded by:

Ern =

{
Õ(n− 1

2 ) if κ > Kγ

Õ(n
− 1

1+β ) = Õ(n
− log 1/γ

logK/κ+log 1/γ ) if κ ≤ Kγ

As expected, UCB-AIR is very efficient when there is a large pro-

portion of near-optimal paths. Note also that UCB-AIR requires the

knowledge of β (or equivalently κ), whereas OLOP (or HOO/Zooming)

does not.

Figure 5.1 shows a comparison of the exponents in the loss bounds

for OLOP, uniform planning, UCB-AIR, and HOO (in the case Kγ2 >

1). We note that the rate for OLOP is better than UCB-AIR when there

is a small proportion of near-optimal paths (small κ). Uniform planning

is always dominated by OLOP and corresponds to a minimax lower

bound for any algorithm. HOO/Zooming are always strictly dominated

by OLOP and they do not attain minimax performances.

Open questions are whether or not (1) one can do as well as UCB-

AIR (for large κ) when κ is unknown, (2) one can do better than both

OLOP and UCB-AIR in intermediate cases (i.e. when 1/γ2 < κ < γK).

Comparison with OPD Remarkably, in the case κγ2 > 1, we ob-

tain the same rate for the loss as planning with deterministic rewards.

Thus, in this case, we can say that planning with stochastic rewards

(under deterministic transitions) is not harder than planning with de-

terministic rewards.

5.3 Markov decision processes

Now we consider the setting of Markov decision processes where

transitions are stochastic. More precisely we denote by p(y|x, a)
the probability of a transition from x to y given action a. Here

we assume that the number of possible next-states N is finite,
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Fig. 5.1 Comparison of the exponent rate of the bounds on the simple regret for OLOP,
uniform planning, UCB-AIR, and HOO/Zooming, as a function of κ ∈ [1,K], in the case
Kγ2 > 1.

i.e. supx∈X,a∈A |{y; p(y|x, a) > 0}| def
= N < ∞. We also assume that

the rewards r(x, a) are deterministic and lie in [0, 1].

Again we consider a infinite-time horizon problem with discounted

rewards. For any policy π : X → A the value function is defined as the

expected sum of rewards:

V π(x)
def
= E

[∑
t≥0

γtr(xt, π(xt))
]
,

where xt is the state of the system at time t when starting from x (i.e.

x0 = x) and following policy π. We also define the Q-value function

Qπ : X ×A → IR associated to a policy π, in state-action (x, a), as:

Qπ(x, a)
def
= r(x, a) + γ

∑
y

p(y|x, a)V π(y).

The optimal value function (respectively Q-value function) is de-

fined as V ∗(x)
def
= supπ V

π(x) (respectively Q∗(x, a)
def
= supπ Q

π(x, a)),
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and the Bellman equations can be written

V ∗(x) = max
a∈A

[
r(x, a) + γ

∑
y

p(y|x, a)V ∗(y)
]

Q∗(x, a) = r(x, a) + γ
∑
y

p(y|x, a)max
b∈A

Q∗(y, b).

We assume that we possess a full model of the transition probabil-

ities p and the reward function r, which can be used by the planning

algorithm. The model takes as input a state x and returns for each

action a the reward r(x, a) as well as the N next states y and the

corresponding transition probabilities p(y|x, a). An algorithm takes as

input an initial state x, and outputs an action a(n) using at most n

calls to the generative model. Again the performance is assessed with

the loss rn(A) of choosing a(n) and then following an optimal path

instead of following an optimal path from the beginning, as defined in

(5.1).

This setting is different from the two previous sections in the fact

that the space of policies cannot be identified with the set of infinite

sequences of actions anymore, since a policy depends on the actual

resulting states and not only on the sequence of actions.

5.3.1 Optimistic Planning in MDP

The Optimistic Planning in MDP (OP-MDP) algorithm [35, 34] works

by building incrementally a tree corresponding to the set of states that

can be reached from the initial state. Notice that several nodes may

correspond to the same state (because there may be different transi-

tions from the root state to a given state). Such duplicates could be

merged which would close the tree into a graph; however here we re-

strict ourselves to a simple version of OP-MDP that ignores duplicates

(thus each node corresponds to a unique path to any state).

We use the following notations: T denotes the infinite planning

tree and Tn ⊂ T is the subtree resulting from n node expansions, as

illustrated in Figure 5.2 for n = 4. Lt is the set of leaves of Tt. We

write xi the state associated to any node i ∈ T . For any policy π :

T 7→ A defined over the tree T , we denote by T π the (infinite) subtree
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Fig. 5.2 The subtree corresponding to the set of states that can be reached from the initial
state. The big arrows represent the actions (K = 2) and the thin arrows the transitions to
the next states (N = 2). Here 4 nodes have been expanded. The optimistic policy and the
leaves of the resulting optimistic subtree are represented in yellow.

Fig. 5.3 Among the leaves of the current optimistic subtree, the one with largest contribu-

tion p(i) γ
h(i)

1−γ
is expanded (represented in red): a call to the model returns the rewards and

transition probabilities to the next states for each action.

corresponding to the set of nodes that are reachable when following π.

For any finite subtree T ′ ⊂ T , we write a policy-class Π : T ′ 7→ A as a

set of policies π : T 7→ A that share the same actions on T ′. We write

T Π the corresponding (finite) subtree.
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Algorithm 3 describes OP-MDP. T0 is initialized to be the root node,

and for each t = 1 to n − 1, a leaf Jt of Lt is selected and expanded,

which results in adding KN children nodes (number of actions K times

number of next states N) to the current tree. After n node expansions,

OP-MDP returns the first action of the current optimal policy.

The way the leaf Jt is selected is by first computing the optimistic

policy-class Π+
t and then selecting a leaf of the corresponding subtree

with largest “contribution”. More precisely, at each round t, we define

the b-values and u-values of any node of the current tree Tt as follows:
for any leaf j ∈ Lt, bt(j)

def
= 1

1−γ and ut(j)
def
= 0, and for any other node

i ∈ Tt \ Lt define

bt(i)
def
= max

a∈A

[
r(xi, a) + γ

∑
j∈C(i,a)

p(xj |xi, a)bt(j)
]
,

ut(i)
def
= max

a∈A

[
r(xi, a) + γ

∑
j∈C(i,a)

p(xj |xi, a)ut(j)
]
,

where C(i, a) denotes the set of children nodes of node i when choosing

action a.

By a backward induction starting from the leaves up to the root,

we immediately deduce that the b-value (respectively the u-value) of

any node i ∈ Tt provides an upper-bound (resp. a lower bound) on the

optimal value function at the corresponding state: ut(i) ≤ V ∗(xi) ≤
bt(i), for any t.

We define the optimistic policy-class Π+
t : Tt 7→ A as the optimal

policy for the b-values for any i ∈ Tt:

Π+
t (i) ∈ argmax

a∈A

[
r(xi, a) + γ

∑
j∈C(i,a)

p(xj |xi, a)bt(j)
]
. (5.13)

We denote by T +
t = T π+

t the corresponding optimistic subtree of

the set of nodes that can be reached when following the optimistic

policy, and L+
t the leaves of this subtree. Thus for each leaf j ∈ L+

t (of

depth h(j)) define p(j) as the probability of reaching the leaf j when

starting from the root and following policy Π+
t :

p(j)
def
=

h(j)−1∏
h=0

p(ih+1|ih, π+
t (ih)) > 0,
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Algorithm 3 Optimistic planning in MDP (OP-MDP)

Initial state x0, model of p and r, budget n

Initialize tree: T0 = {0} (root node is called 0)

for i = 1, . . . , n− 1 do

Build optimistic subtree T +
t according to (5.13),

Select leaf Jt ∈ L+
t with largest contribution:

Jt = arg max
j∈L+

t

p(j)
γh(j)

1− γ
,

Expand Jt (adding KN new leaves)

end for

Return argmaxa∈A
[
r(x0, a) + γ

∑
j∈C(0,a) p(xj |x0, a)un(j)

]
.

where the h(j) + 1 nodes (i0
def
= 0, i1, . . . , ih(j)

def
= j) is the path from

the root to j. Notice that we have
∑

j∈L+
t
p(j) = 1.

We call contribution of a leaf j ∈ L+
t the quantity c(j)

def
= p(j)γ

h(j)

1−γ .

OP-MDP selects the leaf of the optimistic subtree with largest contri-

bution: Jt ∈ argmaxj∈L+
t
c(j).

The intuition for that choice is that the diameter (difference between

the upper and lower bounds) at the root is the sum of contributions of

the leaves j ∈ L+
t : bt(0)−ut(0) =

∑
j∈L+

t
c(j). Thus expanding the one

with largest contribution reduces as much as possible the diameter at

the root, thus the accuracy of the value function at the initial state.

5.3.2 Analysis of OP-MDP

For any two policies π, π′ : T 7→ A, define T (π, π′) = T π ∩ T π′
the

set of their common nodes, and L(π, π′) the set of leaves of T (π, π′)

(with the convention that L(π, π′) = ∅ if T π = T π′
). Define ℓ(π, π′)

def
=∑

j∈L(π,π′) c(j) the sum of the contributions of L(π, π′). We have the

property that the value function, defined for any π : T 7→ A, as

v(π)
def
=
∑
i∈T π

p(i)γh(i)r(xi, π(x, i)),
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is Lipschitz w.r.t. ℓ:

|v(π)− v(π′)| ≤ ℓ(π, π′). (5.14)

For any policy-class Π : T 7→ A, define the diameter of Π as

diam(Π)
def
= sup

π,π′∈Π
ℓ(π, π′).

Note that from the definition of the contributions, we have that

diam(Π) =
∑

j∈L(Π) c(j).

Thus one can see OP-MDP as a deterministic optimistic optimiza-

tion algorithm (see DOO in Chapter 3.3) where at each round t:

• the search space T is partitioned into policy-classes defined

by the current subtree Tt
• an upper bound on each policy-class can be computed with

the b-values and the optimistic policy-class Π+
t is the one

with largest upper-bound
• the diameter of the policy-class Π+

t is the sum of contribu-

tions of its leaves L+
t , thus expanding the leaf Jt ∈ L+

t with

largest contribution c(j) “splits” the optimistic policy class

along its “largest” dimension.

Now the main difference is that we are not directly working on the

set of policies but on the set of nodes of the tree (which is no more

equivalent). Thus expanding a node has an impact on all the policies

containing that node. Thus in order to analyze this algorithm we should

not try to characterize the quantity of near-optimal policies, but instead

the quantity of nodes that contribute to near-optimal policies.

For any node i ∈ T , let Πi be the policy-class Π ∋ i such that

minj∈L(Π) c(j) ≥ c(i) and that has the largest diameter:

Πi = arg max
Π∋i;minj∈L(Π) c(j)≥c(i)

diam(Π).

Finally for any ϵ > 0, define

Sϵ
def
=
{
i ∈ T ,diam(Πi) ≥ ϵ, and ∃Π ∋ i, v(Π) ≥ v∗ − diam(Πi)

}
.

The set Sϵ represents the set of nodes that (1) belong to a policy-

class Πi with non-negligible diameter and (2) belong to a policy that
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is diam(Πi)-optimal. In other words, those are the set of nodes that

contribute in a significant way to near-optimal policies.

The paper [34] uses a slightly different definition of Sϵ (taking into

account the number of leaves of Πi) but the main results stated next

are immediate consequences of the analysis undertaken in that paper.

Theorem 5.3. Let d ≥ 0 be any constant such that |Sϵ| = Õ(ϵ−d),

i.e. such that there exists a, b > 0, for all ϵ > 0,

|Sϵ| ≤ a(log(1/ϵ))bϵ−d. (5.15)

Then the loss of OP-MDP after n node expansions, is

rn =

{
Õ(n− 1

d ) if d > 0

O(exp[−(na )
1
b ]) if d = 0

The full proof of this result can be found in [34]. We now provide a

sketch of proof and relate this near-optimality planning exponent d to

the branching factor κ ∈ [1,KN ] of the set of near-optimal nodes, like

in previous sections with (5.7) and (5.11).

Define the set of near-optimal nodes T + ⊂ T :

T + def
=
{
i ∈ T , v(i) ≤ v∗ − diam(Πi)

}
,

where the value of a node v(i) is the value of the best possible policy

containing that node v(i)
def
= maxπ,Tπ∋i v(π). Then the near-optimality

exponent d is related to the branching factor κ of T + by d = log κ
log 1/γ .

And like for the OPD, the set of near-optimal nodes represents

the set of nodes that deserve to be expanded in order to discover the

optimal policy. Similarly to OPD, the main intuition for the analysis of

OP-MDP is that this algorithms only expands nodes in T +. Indeed, if at

time t, a node Jt is expanded, this means that its contribution is larger

than that of any other leaf in L+
t . Thus diam(Π+

t ) =
∑

i∈L+
t
c(j) ≤∑

j∈Π(Jt)
c(j) = diam(ΠJt) (by definition of ΠJt). Now since Π+

t is

the optimistic policy-class, it means that its upper-bound v(Π+
t ) +

diam(Π+
t ) is larger than v∗. Thus

v(Jt) ≥ v(Π+
t ) ≥ v∗ − diam(Π+

t ) ≥ v∗ − diam(ΠJt),

which means that Jt ∈ T +.



5.3. Markov decision processes 101

5.3.3 Interesting values of d

The loss is small when d is small (and we obtain exponential rate when

d = 0), or equivalently when the branching factor κ is close to 1.

Uniform rewards and probabilities The worst possible rate is

achieved for κ = KN (i.e. the branching factor of T + is the same as

that of T ) and in this case the loss is rn = n
− log(KN)

log 1/γ . This happens when

all policies provide the same rewards and the transition probabilities are

uniform. In that case OP-MDP reduces to a uniform search, where all

nodes of depth up to logn
log(KN) are expanded. It may seem surprising that

the performance is poor when the problem seems easy, but we should

keep in mind that one usually does not know in advance what the

difficulty of the problem is (i.e. d or κ are not known by the algorithm

although the performance of OP-MDP is expressed in terms of those

parameters). If this measure of difficulty of the problem were known,

one could design algorithms that would exploit it, like the UCB-AIR

algorithm presented in Chapter 1 and discussed in previous Section.

Now, for any n, consider the class of problems where all rewards up

to depth logn
log(KN) are the same but differ from that depth on. Thus no

algorithm can be uniformly better than a uniform planning algorithm

on this class of problems. Thus OP-MDP is minimax-optimal on the

class of problems characterized by κ = KN .

Heterogeneous probabilities When the transition probabilities

are significantly heterogeneous, the part of the branching factor of T +

due to the number of next states may be significantly less than N .

Indeed, the set of “near-optimal” states T + contains states i whose

contribution c(i) is sufficiently significant to a near-optimality policy

containing i. Thus if the transition probabilities to most of the next

states is very small, the corresponding nodes will not be part of T +.

And in cases when the transition probabilities to one next state tends

to 1, then this branching factor approaches 1, and the performance of

OP-MDP is as good as Optimistic Planning in Deterministic systems

(Section 5.1).
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Structured rewards In the case of structured rewards (i.e. the re-

wards along branches corresponding to different actions are heteroge-

neous), then the part of the branching factor of T + due to the number

of actions may be significantly less than K. This case was already il-

lustrated in Section 5.1.

Now when the problem has both structured rewards and heteroge-

neous transition probabilities, then κ can be much less than KN and

even close to 1, which provides a loss bound of order n
− log 1/γ

log κ . Thus like

previous optimistic algorithms, the performance of OP-MDP depends

on a measure of the quantity of near-optimal nodes, defined by the fact

that those are the set of nodes that need to be expanded in order to

build a near-optimal policy. The main contribution of this chapter is

to show that the right measure of complexity for optimistic planning is

defined by T + which represents the set of states that significantly

contribute to near-optimal policies.

5.4 Conclusions and extensions

Generative model OP-MDP requires a full model of the transition

dynamics (i.e., for each state-action pair (x, a), a call to the model re-

turns the set of next states y and the exact values of the transition

probabilities p(y|x, a)). In many situations, only a generative model is

available: Given (x, a), each call to the model returns a single next

state y drawn from the true (but unknown) transition probabilities:

y ∼ p(·|x, a). This is the case when an agent interacts online with an

unknown environment (such as in Reinforcement learning, see [101])

from which he only observes trajectories, or when one uses Monte-Carlo

simulations to numerically approximate heavy computations. Thus it

would be useful to extend OP-MDP to situations where only a genera-

tive model of the transition dynamics (and rewards) is available. Also

we would like to cover the case of potentially infinite number of next

states (like in [74]) by using a branching factor N (number of next

states) that would depend on the node characteristics (such as its con-

tribution) and the numerical budget n. Designing a sound (i.e. enjoying

finite-time performance guarantee) optimistic planning algorithm using

a generative model is still an open problem. We conjecture that loss
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bounds in this setting would scale as O(n−1/(d+2)) (where d is defined

similarly to (5.15)). This research direction is left for future works.

Extensions to POMDPs In a partially observable Markov decision

process (POMDP) the state of the system xt cannot be observed by

the agent (see e.g. [68, 18]). However, in each time t, the agent receives

an observation yt determined by observation probabilities p(yt|xt, at).
In a POMDP, the best policy (which maximizes the expected rewards

given the uncertainty over the state) can be obtained as a function

of the belief state bt (which is a distribution over the state space X).

The literature on the topic is huge and online planning techniques have

been developed, such as the point-based value iteration [89, 93]. This

method builds a search tree of belief states, using a heuristic best-first

expansion procedure which may be combined with branch-and-bound

procedure based on computations of upper and lower bounds on the

value function. However no theoretical guarantee on the quality of the

resulting action in terms of the numerical budget was provided.

Using the work described in the previous chapter one can use OP-

MDP to perform the planning. The initial state is the current belief

state. The fact that the belief space is large (infinite) is not a prob-

lem for this online planning technique. Now, the nodes of the tree that

are expanded are the belief states that can be reached from the ini-

tial belief given a sequence of actions and transitions (the number of

next states is the number of different observations). Thus OP-MDP is

an online planning technique with theoretical guarantees that may be

advantageously applied here.

In the case a full model of the POMDP is unknown, one can use

sampling-based techniques such as the technique (based on UCT) de-

scribed in [98]. Unfortunately this method does not have finite-time

guarantee (since UCT can be arbitrarily poor in some situations, see

Section 2.3). This provides an additional motivation for extending the

OP-MDP to situations where only a generative model is available.

Bayesian RL In Bayesian Reinforcement learning (see e.g. [48, 106])

some parameters of the Markov decision process are initially unknown
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and exploration can be performed by using a Bayesian reasoning where

one starts with a prior over the unknown parameters and based on the

transition and reward samples observed at any time t, a posterior distri-

bution over those parameters can be computed (either in a closed form

or using numerical approximation). The so-called Bayesian-adaptive

MDP (BAMDP) is a new MDP that enriches the state by the current

posterior distribution over the parameters. The interesting property of

the BAMDP is that the dynamics are known thus following the op-

timal action of the BAMDP from the current state provides a good

exploration-exploitation strategy (optimal in a Bayesian sense) [48].

The planning problem (of solving the BAMDP) can be addressed us-

ing sampling techniques similar to the ones for MDPs of [74], see [107].

Monte-Carlo tree search approaches have been developed also recently,

such as in [8, 60]. However, no finite-time guarantees are provided in

those works. Now, since the dynamics of the BAMDP are known one

could use the OP-MDP planning technique described above to derive

loss bounds in terms of the numerical budget allocated to solving the

BAMDP (the branching factor of the BAMDP planning tree is the

same as in the original MDP, i.e. A×N).

Finally, let us mention the harder problem of solving a POMDP

when the parameters of the dynamics or observation function are

unknown. An analogous Bayesian approach introduces the Bayesian-

Adaptive POMDP (BAPOMDP) [94] and an optimal policy in the

BAPOMDP provides a Bayes-optimal exploration in the POMDP.

However the planning problem of the BAPOMDP is more challeng-

ing because the branching factor now scales with the number of states

of the original POMDP (see [94]). Again extending the OP-MDP to

handle a possible infinite number of next-states using sampling from a

generative model would contribute to the problem.



Final conclusion

The main message of this work is to show that the “optimism in the

face of uncertainty” is a simple yet powerful principle that enables to

guide the exploration for general learning and optimization problems.

It applies when some unknown environment has to be explored while

some criterion needs to be optimized.

In the multi-armed bandit problem, an unknown environment (set

of arms with unknown distributions) has to be explored while maximiz-

ing the sum of rewards. In function optimization under finite numerical

budget (e.g. number of function evaluations), the exploration of the

space should be optimized in order to return the best possible recom-

mendation of the maximum once the numerical resources are depleted.

In both situations, the performance (either in terms of cumulative re-

gret or in terms of loss of the final recommendation) depends on some

measure of complexity of the problem, which expresses how

close sub-optimal solutions are to the optimum.

In multi-armed bandits, the complexity measure is the inverse of

the “distance” (i.e. in terms of mean or in Kullback-Leibler divergence)

between the distributions of sub-optimal and optimal arms.

In function optimization, the complexity measure is expressed with
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the quantity of near-optimal solutions (i.e. the near-optimality dimen-

sion) measured according to some semi-metric. Another important fac-

tor is our knowledge about the local smoothness of the function

around the global optimum. If this information is known, then it

can be used to build efficient algorithms with performance rate inde-

pendent of the search space dimension. If this is not the case, then one

can still build adaptive strategies that can, in some situations, perform

almost as well as if this information was known.

Finally we have seen an application to the problem of online-

planning which illustrates the benefit of using the specific structure

of the problem (rewards, transitions) to design efficient algorithms. In

such situations we showed that a relevant complexity measure for the

problem of online planning in a MDP is the quantity of states that

significantly contribute to the set of near-optimal policies.
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[40] Alexandra Carpentier and Rémi Munos. Theory meets compressed sensing
for high dimensional stochastic linear bandit. In International Conference on
Artificial Intelligence and Statistics, 2012.
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