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New limit cycles of dry friction oscillators under har monic

load

M adeleine Pascal

Abstract We consider a system composed of two
masses connected by linear springs. One of the masses
is in contact with a driving belt moving at a constant
velocity. Friction force, with Coulomb’s characteris-
tics, acts between the mass and the belt. Moreover, the
mass is also subjected to a harmonic external force.
Several periodic orbits including stick phases and slip
phases are obtained. In particular, the existence of pe-
riodic orbits including a part where the mass in contact
with the belt moves in the same direction at a higher
speed than the belt itself is proved. Non-sticking or-
bits are also found for a non-moving belt. We prove
that this kind of solution is symmetric in space and in
time.

Keywords Dry friction - Periodic orbits - Coupled
oscillator - Stick-slip motion

1 Introduction

This paper is a continuation of several investigations
[5-7], related to vibrating systems excited by dry
friction. These systems are frequently encountered in
many industrial applications. One of the most popu-
lar models of stick-slip oscillators consists of several

masses connected by linear springs, one (or more) of
the masses is in contact with a driving belt moving
at a constant velocity. In the past, several authors in-
vestigated the behavior of this system, with different
friction laws and with or without external actions and
damping [1, 4], mainly via numerical approach.

However, assuming Coulomb’s laws of dry friction,
the corresponding dynamical model is a piecewise
linear system, and even for multi-degree-of-freedom
cases, some analytical results about the existence and
the stability of periodic orbits including stick-slip
phases have been obtained [5-7].

One interesting phenomenon is the existence, in-
side periodic orbits with stick and slip parts, of an
“overshooting” slip phase. During this part of the or-
bit, the mass in contact with the belt moves in the same
direction at a higher speed than the belt itself.

Up to now [9], this phenomenon has been observed
only for more complex friction characteristics than
Coulomb’s ones. In [7], a self-excited stick-slip oscil-
lator including two degrees of freedom is considered.
Assuming Coulomb’s laws of dry friction, a set of pe-
riodic orbits including an overshooting part is obtained
using analytical methods.

In this work, we consider the same model of dry
friction oscillator subjected to a harmonic external
force. Several periodic orbits containing stick phases
and slip phases are obtained. In particular, the exis-
tence of periodic orbits including an overshooting part
is proved.
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Fig. 1 Dry friction oscillator

2 Problem formulation

The system (Fig. 1) is composed of two masses m 1, m»
connected by two linear springs of stiffness k1, k2. The
second mass is in contact with a belt moving at a con-
stant velocity vg. A friction force F acts between the
mass and the belt. Moreover, the second mass is also
subjected to an external force R given by

usSign(V — x5), if V—x5#0,
Xx(x2 —x1) — B eos(wt +¢), ifV —x;=0,
S if V- x} =0,
—Us, ifV—xé:O,

’)((xz—x1)—%cos(wt~l—g0)’ <y,
X (x2 — x1) — L cos(ot +¢) > up,
x(x2 —x1) — %Cos(a)t—i—(p) <—ur, O<us<u,, V=23,

R = jcos(@t’ + ¢)
(p, @, @ are constant parameters) 1)
The equations of motion related to this system are

written as
x] +x1— xx2 =0,

)
x§ + xn(x2 — x1) = nu + p cos(wt + @)
x1, x2 are the displacements of the masses,
my ka F
=—, X= , u=—
m2 k1 4+ ko k1 + ko
p ki +k
p=n—L— i—or, o= [9tR @)
ki + k2 mi
d(0) 10}
0) =——, - =
32 dt @ 2

The dry friction force u is obtained from Coulomb’s
laws:

(4)

Yo

u, is the friction force at rest (sticking), u; is the slip-
ping friction force.

3 Prediction of the oscillations exhibited by the
system

The dynamical behavior of this oscillator includes sev-
eral phases of slip and stick motion of my. For each
kind of motion, a close form solution is available.

3.1 Slip motion of my with x; < V

The solution is obtained from a modal analysis of (2)
where u = u

Z(t) = H(t)(Zo — Fo) + F(1),

F( = ( R ) (5)

R'(1)
R(t) = Qcos(wt + ¢), Fo= F(0),

zZ= (Zz) Zo=2Z(0),
z=X—do, X=(x1,x2)",
_(Hi(t) Ha() B , ©®
H(t)_<H3(t) Hl(tc)), do = (do1, do2)",
do1 = 1L dop = 2,
—X X
_ ' _ PX
0=(q1.92), q1= . w%)(a)Z - wg), o
(1-w?

q2 =41

The two by two matrices H;(r) (i =1,2,3) and the
natural frequencies (w1, w2) are obtained in analytical
form (see Appendix 1).

3.2 Slip motion of m3 with x; > V (overshooting)

The solution is obtained from (2) where u = —u;
Z(t) = H(t)(Zo — Fo) + F(t) + 2L(t)do,

_(Hi()—1 (10 ®)
Lm_( Hs (1) ) I‘(o 1>



3.3 Stick motion of mp (x; = V)

This motion is related to the following dynamical sys-
tem:

xy =0 9
The solution [5] is given by

x{ +x1— xx2 =0,

I3(t) I

The two by two matrices I;(¢) (i =1, 2, 3) are given
in Appendix 1. Moreover, during all this kind of mo-
tion, the following constraint holds:

Z(t)= ') Zo, F(r)=<m) FZ(’)) (10)

| xn(x2 — x1) — pos(wt +@)| < nu, (11)

4 Symmetrical periodic solutions

A first set of periodic orbits of period ® = 27 /w is
obtained. These motions involve for each period first a
slip motion of m with x; < V followed by a phase of
stick motion of the mass (x5, = V). At the beginning
(t = 0) of the slip motion, the initial conditions are
given by
2(0) =V,
(12)

x1(22(0) —21(0)) = pcose + n(u, — uy)
For 0 <t < t, the system undergoes a slip motion de-
fined by (5).

At the end (¢ = t) of the slip motion, the following
condition is assumed:

Z(t)=EZy, E= (—01 (1)) (13)

The time lag ¢ of the external force is given by ¢ =
(m — wt)/2. From (12) and (13), we deduce:
—n(ur +ug) < xn(z2c — 21c) — pCOS(®T + @)

= —n(u, —us) < n(uy — uy) (14)

For t <t < 7 4+ T, the system motion is a sticking
motion given by

Z(t)=TI'(t —1)EZo

A periodic solution of period @ is obtained if the fol-

lowing relation is fulfilled:
Zo=I(TYEZy, (T=060 —1) (15)

Taking into account the properties (Appendix 1) of the
matrices H(t), I'(t), the conditions for the existence

of this periodic solution are given by the following sys-
tem of four scalar equations:

(Hy + 1)(z0 — Qs0) + H2(zy + Qwcg) =0,
H; = H;(7)

(I + Dzo — I2z5 =0,
(i=1,2)

I =TI(T), (16)

so =sin(wt/2), c¢o=C0S(wt/2)

7 and hence the time duration 7 = & — t of the stick
motion, together with the initial conditions z(0), z'(0)
are computed. As in the case of the self-excited dry
friction oscillator considered in [5], an interesting
property of symmetry is proved for these orbits (see
Appendix 2):

ZG)=EZ(rt—1t), O<t<rt/2, (slipmotion)
Z()=EZ(T —1n), 0<n<T/2, an
(stick motion), n=t-—r1

A numerical validation is made for the following set
of data:

x = 0.5,
V=1,

n=23.8,
o =0.6,

us =0.02,
p=0.05

u, = 0.1607,

The other parameters related to this orbit are com-
puted:
T=7.749, T =2723, ©=10.472,
z1(0) =1.0609, z2(0)=1.3615, z;(0)=0.581
The corresponding phase portraits (z;, z;),i = (1,2)
of the two masses are shown on Fig. 2: these curves
are symmetrical with respect to the vertical line z = 0.
(The thick parts of the curves are related to the slip
motion while the thin parts show the stick motion.)
The constraints derived from (11) during the stick

motion:
(t<n<T, h=t—r1)
fi=xn(z2 —z21) + psin(w (1 + 7/2))

—n(uyr —us) <0
fo=xn(z2 —z1) + psin(w(t + 7/2))

+nur +us) >0

are fulfilled.
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Fig. 2 Phase portraits of the symmetrical solution

5 Periodic orbitsincluding an over shooting part

A second set of periodic orbits of period ® =27 /w is
obtained. For each period, the motion is composed of
three parts. The first one is a slip motion of my with
xy<VforO<t <, thenextpart (0 <t —7 <11)is
an overshooting slip motion of the mass (x; > V); the
lastpart 0 <t —1—11 < T

(T =® — 1t — 17) is astick motion of m,.

At the beginning of the motion for r = 0, the condi-

tions (12) are fulfilled. If at r = 7, instead of (13), the

following conditions:

B =V,

xn(z2(r) — 21(1)) — pcos(wt + @) (18)
+nur+us) <0

are fulfilled, we get an overshooting motion for ¢ > .
This motion ends at r = 7 + 11 if, at this time:

e =n+nu)=V,
—n(ur +ug) < x(22¢ — 21¢)
— pcos(w(t +12) + @) (19)
< n(u, — ug)
Zie=zic(t+1), (=12

Fort + 71 <t <1+ 11+ T, the system undergoes
a sticking motion. A periodic solution of period v +
71+ T = O is obtained if:

Z(©) =2 (20)

Taking into account the constraints deduced from (18),
(19) and (20), the solution is defined by five linear
equations with respect to (z10, 220, 27)-

aiz10 +bizoo +cizip+di =0, (=1,...,5 (21)

(ai, b;, ci, d;) are given in Appendix 3.
Assuming that A = det(a;,bj,c;) # O,
(j =1,2,3), the values of (z10, z20, z},) are obtained:

110=ﬂ, zzo=£, z’10=E
A A A
di b1
Ap=det—|dy by c2,
d3 b3z c3
di a1 c1 (22)
Ay =det|dy a» c2],
d3 az c3
d b1 a
Az=det|dy by ap
d3 b3 a3

The parameters (z, 1) are the roots of the compatibil-
ity conditions:

Fi(t,71) = aiy3A1 + by 3A2 + 343 + diy3A
-0, (*k=1,2) (23)

Assuming that (x, n, V, uy) are given data, u, is de-
duced from the relation:

ur =ugs + f, f:X(ZZO—Zlo)—g(?OS‘P (24)

An example of overshooting orbit is obtained for the
values

x =0.2,
o =0.6289,

ug =0.05,
p=0.05 ¢=0

n=A4, V=1,

The other parameters related to this solution are com-
puted:

7 =4.909,
© =9.9908,
72(0) = 3.3861,

11 =2.8275, T =2.2543,
u, = 0.4585, z1(0) = 1.2809,
2,(0) = —0.4117

The phase portraits (z;,z;), i = (1,2) of the two
masses are shown on Fig. 3. (The heavy thick part of
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Fig. 3 Phase portraits of the overshooting periodic solution

the curves shows the overshooting motion while the
thin one is related to the stick motion.)

6 Non-sticking periodic solutions

In industrial applications, avoiding sticking phases of
motion is sometimes necessary. In the past, several au-
thors [2, 3, 8] investigated the existence of periodic
non-sticking solutions of a one-degree-of-freedom os-
cillator subjected to simple harmonic loading. The
mass is in contact with a fixed surface and a dry fric-
tion force acts between the mass and the surface. The
aim of these works is to obtain some estimates about
the minimum external force amplitude needed to pre-
vent this sticking motion. The non-sticking orbit in-
volves for each period a slipping motion with a nega-
tive mass velocity, and a slipping motion with a pos-
itive mass velocity (overshooting motion). Moreover,
the authors assumed that the motion is symmetric in
space [2, 3, 8] and time [3, 8].

In the following, this problem is revisited for the
two-degree-of-freedom oscillator considered in this
work.

Let us consider the system described in Fig. 1, and
assume the following initial conditions:

X1 (z20 — z10) > pCOS@ + n(u, — uy)
(25)

2=V,

For 0 < ¢ < 7, the system undergoes a slipping motion
with z;, < V, given by (5).
This motionends at r = 7 if 2, = 25,(7) = V.

Let us assume that t = 7 /w = ©/2 and that

xn(z2 — z21B) < pCOS(®T + @) — n(ur + us)
=—pcosg —n(u, + uy),
zip=2zi(r), (=12) (26)
For ¢ > 7 the system undergoes an overshooting slip-
ping motion (z5, > V). This motion is given by
Z(t)=H({t —1)(Zp — Fp)
+2L(t —t)do + F (1) (27)

A periodic motion of period ® = 2x /w is obtained if
Zy=Z2(0)=H(t)(Zp — Fp) + 2L(7)do + Fo,
Zp =Z(v) = H(t)(Zo — Fo) + FB, (28)
Fp=F(1)=—-F
From (28) we deduce:
[H(t) = H(=0)][Zp — Fp] +2L(t)do =0,

CHen —2| 0 H 29
H(t)— H(-1)=2 g0l (29)
Hl‘ = H,'(‘L’), (l = 1, 2, 3)

From (29), we obtain
Hz(Z/B — Qwsing) + (Hy — Ddg =0
(30)

H3(zp + Qcos¢ +dp) =0

From (30), if det(H3) # 0, the following relations
hold:

zp =—QC0s¢ —do
2y = Qusing + Hy, (I — Hy)do

From (28), (31) and the relation:

Hf — I =HyHs, hence H3= H, 'H? — Hy* (32)
the following results are obtained

z0 = Q COs¢ — do,
zp=—Quwsing + Hy (Hy — Ddo = —7;

This last condition and the relation z, = 25, = V lead
toV =0.

In conclusion, non-sticking periodic orbits are ob-
tained only for V = 0, and the motion is symmetric in
space and time (see Appendix 4).

The initial conditions and the time lag ¢ of the ex-
ternal force are deduced from (33):

i.e.xpg =—0C0s¢p, 1)

i.e. xo=—xp=0cC0Sg
(33)

210 =¢q1C08¢ —do1, 220 =¢2C0S¢ — do2,
2o = —q1wSing — ardor — azdp; (34)

ay =d(pir2 — @2A1), a2 =d(g2 — ¢1)



sing = —(b1do1 + bad) /2w,
|(b1do1 + bado2) /q200| < 1,
by =d(p1 —@2)A1h2, b2 =d (Ao — A1¢1)

¢; = w; tan g(w; /2w),

(35)

_1—w2

Ai L (=12, d=yx/(of o))
X

The constraints deduced from (25) and (26) lead to the
same condition:

xn(q2 — q1) C0S ¢ — pCOSp — nu, >0 (36)

and from (36), a condition about the minimum value of
the external force amplitude needed to avoid a sticking
motion is obtained:

b1do1 + bado?

(1 _ wZ)w D = (a)z - w%) (w2 - a)g)

@37)

A numerical validation is performed for the following
values of the parameters:

x =0.3,
ug =0.1,

n=4, =06,
u, = 0.2996,

p=1
© =10.472

The corresponding values of the initial conditions and
of the time lag ¢ are obtained:

x10 = 1.5608,
xjp = 0.1523,

x20 = 3.3295,
¢ =0.3925

The phase portraits (x;,x]), i = (1,2) of the two
masses are shown on Fig. 4 (the thick parts of the
curves are related to the overshooting motion). These
curves are symmetrical with respect to the origin 0.

Under the assumption that there are only two transi-
tions of motion during one period, we prove that non-
sticking orbits are symmetric in space and time for al-
most all values of w (see Appendix 5).

7 Conclusion

In this work, the steady state response of a two-degree-
of-freedom oscillator subjected to dry friction and har-
monic load is considered. Assuming Coulomb’s laws
of dry friction, the existence of several interesting peri-
odic orbits, including stick and slip phases, is proved.
In particular, periodic solutions with a phase during
which the mass in contact with the belt moves faster

2.5
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Fig. 4 Phase portrait of the non-sticking solution

than the belt are obtained. Moreover, in the case of a
non-moving belt, a set of non-sticking periodic solu-
tions is obtained, and we prove that these orbits are
symmetrical in space and in time.

Appendix 1

Hi(t) = ABi() AL,

(51 0
BZ(I)_( 0 sz/w2>’ (38)

sj=sin(w;t) (j =1,2),
Bi(r) = By(1), Ba(r) = Bra(t)

The natural frequencies (w1, w2) are the roots of the
characteristic equation:

D(s?) =det(K — I5s%) =0,

()
\—xn xm

The eigenvectors ¢ ; = ()\l, ), (j =1, 2) are defined by
(K — Iwi)w,- =0.
These matrices fulfil the following property:

(i=1,2,3),

HE(t) — Ha(1)H3(1) =0, (40)
LH=Zynxt, (=123),
ro=(%"0) ==(5 ). @

n) =y t),  yst) =yt
The matrices I (¢) fulfil also the property:
g — N3 =0 (42)



Appendix 2

For /2 <t < 7, the periodic solution is defined by
Z(t —t)=H(t —1)(Zo — Fo) + F(t — 1) (43)
From the identities:

F(r —1)=EF(), (ie F(r)=EF)
H(t—1)=H(t)H(—t), H(—t)E=EH(1)

the first relation (17) is deduced.
ForT/2 <t < T, the solution is defined by

Zt)=I'(T —n)EZy (45)
From the identities:

I'(T —n)=T(T)I'(-t1),

El(—t1)=T'(n)E, (46)
Z(®)=T(TYEZo=Zo

the last relation (17) follows.

(44)

Appendix 3

a1 = Hip — I'a, by = Hip — Iy,
c1 = Hiz — I'3
d1 = —(Huq1 + Hi2g2) cos ¢ (47)
+ w(H13q1 + H1aq2) Sing + g1 c0s o¢
+ 2(h11 — D)do + 2h12doz + (Hia + a) V.,
c2=Hy3

az = Hn, by = Hyp — 1,

dy = —(Hoq1 + H22q2) cos 48)
+ o(Haaq1 + Haaq2) sing + g2 C0s oc
+ 2ho1do1 + 2(ho2 — 1)doz + (Hoa + T)V,
a3z = Ha1 + I, by = Hz; + I's2,
c3=Hi—I'n
d3 = —(Ha1q1 + H32q2) OS¢ (49)
+ o(H11q1 + H12g2) Sing — q1singc
+ 2hz1dor + 2hspdoz + (Hi2 — I'2) V,
by = Hyy,

as = Hy, ca = Ha,

ds = (Hpp — 1)V — qowsin(gp)
(50)
— (Ha191 + Hazq2) COS @

+ (H2191 + Ha2g2)wsing,

as = Ha, bs = Hay, 5= Ho1,
ds = (Hp2 — 1)V — qaosin(pc)
— (Haq1 + Hapgz) cos ¢ (51)
+ (o191 + Hogz)wsing
+ 2(ha1do1 + ha2do2)
Hij=H;j(v), hij=H;j(t1), Hj=H;j(+1)
Yp=wT+¢, @c=¢ptown
Appendix 4

From (5), (19) and (30), the non-sticking periodic orbit
obtained with the assumption that t =7 /w = ©®/2 is
described by

X (1) = H(1)(Xo — Fo — Ao) + F (1) + Ao,
X(t+1)=H(@®)(Xg — Fg+ Ag)
+ F(t+1)— Ao, (52)

O<t<rt, A0=<0(l)0)

Taking into account the properties
F@t+7)=-F(@), Xp=—Xo (53)
the symmetry of the motion is deduced:
X(t)=—X(t+71), 0=<t<t (54)

O<t<rm,

Appendix 5

Let us consider the same kind of non-sticking periodic
orbits as in Sect. 6, with V = 0 but without the as-
sumption T = © /2.

For 0 < ¢ < 1, the motion is given by (5), while for
7 <t < ©, the motion is described by

Z)=H({t—1)(Zg — Fp) + F (1),

Z(t) = (Z,(t) ) . Z(0) = z(1) + 2do, (55)
_ A\
ZB = Z(‘L’)

A periodic motion of period ® = 27 /w is obtained if
Z(©®) = Zgor:

Zo=H(r1)(Zp — Fg) + Fo,
Zp=Z(t)=H(t)(Zo — Fo) + Fp, (56)

Fp=F(), 1=0—1, Zy=Z(0)



From (56), we deduce:
§1=Z7Zp— Fp+ E(Zo — Fo)
= (H () + E)(Zo — Fo),

_ - (57)
&2=2Zp— Fp+ E(Zo — Fo)
=(H(-11) + E)(Zo — Fo)
From the relations:
H(NE=E(H(1) " =EH(—1) (58)
it follows:
(H(-t)—E)(H(t)+ E) =0, (59)

(H®)—E)(H(-t)+ E)=0

From (57) and (59), we deduce

(H(—=1)— E)&1 =0, (H(t1) — E)&2=0 (60)
On the other hand, it is not difficult to show that

&1 —&=Zp—Zp+ E(Zo— Zo)=0 (61)

Let us introduce the following notations:

X; .
s,:(yl_), (i=1.2)

X1=(H1—1I)(z0 — QCOsgp)
+ Ha(zg + Qusing),
Y1 = H3(zo — QCOSg)
+ (H1+ I)(zy + Qusing),

(62)
X = (h1 —I)(z0 — QCOSQ)
— ha(zy + Qwsing),
Y2 = —h3(zo — Q COS@)
+ (h1+ I)(z) + Qusing),
Hj=Hj(t),hj=hj(r1), (j=1,2,3)
From (60), it results:
Yi=PiX1, Pi=Hy (Hi+D),
(63)

Yo=PX;, Pr= —hz_l(hl +1)

The relations X3 = X, Y1 = Y», deduced from (61)
are equivalent to:

X1=X,, PX1=0, P=P —P; (64)
From (64), two cases are obtained:
1. Det(P) # 0 leads to X1 =0, hence

X2=0, Y1 =0, Y,=0 (65)

From (56) and (64), we deduce
zp — QCOSpp =z0 — QCOSp,
2 + Qusingg = —(z5 + Qusing), (66)
Zgp — QCOspp =270 — QCOS@
From the relation:
7y =—Quwsingp — (z(’) + Qa)singo), ©7)
2 =2 =0
we obtain singp = —sing, hence
op=wt+eo=—¢, @=—wt/2 oOor
pp=wt+e=m+¢, hencet=n/w=1
In the first case, (¢ = —¢, ¢ = —w1/2), from (67)
7y = —z; and from (66):
Zp =20 — QCOS@ + QCOSpp = 720
which is impossible because for 0 < ¢ < 7, z, <0,
hence: z2p < z20.

In the second case, (t = 7 /w = 1), hence H; =
hi,i=1,2,3
zg+ QC0Sp=z0— QCOSe, ie.,
xp + QCcosp =xg— QCOS¢.

From (56), we get
zp+zZp+20cC0sg

=Hi(z0+70 —20cC0S¢) i.e.

(68)
xp+ Qcosg

= Hi(xg — QC0S¢p) =x0 — QCOS¢
Hence, if det(H, — I) # 0, we obtain

x0 = QC0sp, xp=—0C0Sp =—xq (69)

. Det(P)=0

From P = H, *(Hy + )+ hyt (ha + 1): we de-
duce

P=APA™, ﬁ:("l O),

0 p
11
A_<M M) (70)
- sin(ai + i) .
P =% naneingy’ (L2

aj =w;t/2, Pi=wT1/2

It results Det(P) = 0 if sin(e; + Bi) =
sin(w;m/w) =0, i.e.,, w; =kw, (k=1,2,...) (res-
onance).



Except this particular case of resonance with the
natural frequencies of the system, only symmetrical
periodic solutions with a phase of slipping motion
and a phase of overshooting motion exist.
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