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Abstract—The evolution of systems during their operational
lifetime is becoming ineluctable. Dependable systems, which
continuously deliver trustworthy services, must evolve in order
to comply with changes having different origins, e.g. new
fault tolerance requirements, or changes in available resources.
These evolutions must not violate their dependability proper-
ties, which leads to the notion of resilient computing. This paper
presents a methodology for developing adaptive fault tolerance
mechanisms, from the design to the actual runtime reconfigu-
ration, leveraging component-based middleware which enable
fine-grained manipulation of software architectures.
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I. INTRODUCTION

Nowadays, systems are becoming increasingly complex,
their development most often being an iterative process.
The capacity to easily evolve in order to efficiently cope
with change is a requirement of utmost importance. This
issue is even more complex in the case of critical systems,
which cannot be stopped for a long period of time and
which must continuously provide trustworthy services. Their
properties must not be violated by changes occurring in the
environment or in the system itself and evolution must be
performed seamlessly with service delivery. This leads to
the notion of resilient computing [1].

Our focus is on fault-tolerant systems, designed according
to the principle of separation of concerns, which facilitates
the introduction of fault tolerance mechanisms in an applica-
tion in a flexible way for subsequent modification and reuse.
According to this principle, software architectures consist
of two abstraction levels where the base level provides the
required functionalities and the top level contains the fault
tolerance mechanism(s) [2]. This model is based on the idea
of behavioural reflection [3].

The choice of an appropriate Fault-Tolerance Mechanism
(FTM) is based on several criteria: fault model, application
assumptions such as determinism and state accessibility,
available resources. Evolution in terms of these dimensions
can require changing the FTM in operation to maintain
dependability properties. In this paper, we first discuss the
problem statement in more detail in Section II. Section III
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presents our “design for adaptation” approach for developing
a toolbox of FTMs. Section IV describes the mapping of
FTMs to components, Section V explains how runtime
adaptation of FTMs can be implemented and Section VI
presents further benefits of component-based architectures.
In Section VII we present related work before concluding
in Section VIII.

II. PROBLEM STATEMENT AND OVERALL APPROACH

A. Problem Statement

The evolution of systems concerns several aspects, cov-
ering system configuration, environmental changes, appli-
cation changes due to bug correction or evolution in the
functional specifications. This is particularly the case for
autonomic computing systems, mobile systems, or sensor
network systems. As far as dependability is concerned, the
evolution of non-functional mechanisms is also an issue.
Their evolution may be due to environmental changes, run-
time support changes, non-functional specification changes
in the lifetime of the system. This is the point we address
in this work.

The evolution of a dependable system relates first to
the required dependability properties and, in particular, its
fault tolerance capabilities (FT), the available resources
(R) and the application assumptions at a given point in
time (A). FT encompasses one or several FTMs that are
obviously strongly related to the fault model and the required
dependability properties (reliability, availability, integrity,
confidentiality). To run the selected mechanisms, a set of
resources R is required and should be available. Last but
not least, the characteristics of the application A have an
impact on the validity of the selected FTMs. An application
can be zero-default from a software development viewpoint,
have an accessible state or not, be deterministic or not, etc.
A lack of resources (e.g., network bandwidth), a change
in the application assumption due to versioning (e.g., non
deterministic version), an evolution of the non-functional
requirements (e.g., transient faults to be tolerated due to
hardware aging or environmental modifications) implies a
change of the running FTM. At any point in time, (A,R,FT)
must be valid in order to fulfill dependability properties.

To this aim, we investigate in this work the use of
CBSE technologies and companion middleware support for
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Figure 1. Transitions between FTMs - a scenario

two reasons: 1) the fine-grained development of software
packages using autonomous components following the SCA
paradigm, and 2) the capabilities to perform modifications
of the software architecture at runtime. This technology is
used to develop FTMs that can be easily updated.

B. Overall Approach

Our overall approach is composed of several steps, start-
ing from the design of FTMs to simplify the implementation
of changes at runtime.

• The very first step is of utmost importance: the design
of FTMs must be done with adaptation in mind, i.e. they
must be finely-grained decomposed, easily specialisable
and also composable with each other (e.g. it should
be easy to compose a duplex strategy tolerating crash
faults with a mechanism tolerating transient faults).

• The detailed design of the mechanisms must then be
mapped to a component-based middleware, in such a
way that resulting components are small enough to hold
a simple state that can be easily transferred to a new
component.

• Development of transition algorithms to transform a
running component-based implementation of an FTM
into a variant, this implying removal of components,
insertion of components, mastering component life-
cycle at runtime and bindings.

• Monitoring both system state and distributed properties
are important issues that are not tackled in this paper.
A conventional monitoring of resources and related
dependability measures are required to provide infor-
mation to the system manager. He is responsible in a
first step for developing a valid FTM and the corre-
sponding transition algorithm. He is also responsible
for triggering the change at runtime.

We have developed a number of Fault Tolerance Design
Patterns considering various fault models and application
assumptions in UML. The main effort was to consider adap-
tation when designing the mechanisms as a first objective.
We validated this approach by implementing and testing
these FT Design Patterns in C++. A full account of this work

can be found in [4]. The basic philosophy, an example of
such a design and lessons learnt are presented in Section III.

From this design, the next step was to map it to com-
ponents and to develop transition scripts. The current im-
plementation is done on the OW2 FraSCAti middleware
as a proof of concept. In summary, the various FTMs
are viewed as a graph of components at runtime. Several
of them share some root components, so the evolution
of a given mechanism leads to modifying the graph by
removing, replacing, adding components to the mechanism
in operation. A so-called transition algorithm performs the
updates.

Based on CBSE and related middleware facilities, this
approach provides an interesting perspective to master evo-
lution of dependable systems, making them resilient. The
considered mechanisms do not need to be all available at
a given point in time. Monitoring the system in operation
gives insights to the system designer to design a new ap-
propriate mechanism and develop the appropriate transition
algorithm. The benefit here is that only new components
and the transition algorithm need to be uploaded at runtime.
The system manager can then trigger the execution of the
transition algorithm. This approach has also the benefit of
reducing the resource overhead and the interruption time for
resource constrained systems.

C. An Illustrative Example

We consider in the practical section of this paper two well-
known variants of a duplex protocol tolerating crash faults:
PBR and LFR strategies. PBR stands for Primary Backup
Replication: a first active replica (the master) executes
service requests and propagates checkpoints to a so-called
passive replica (the slave). LFR stands for Leader Follower
Replication: Both replicas process input requests, and only
the master delivers response messages to the client. In both
cases, a crash detection of the master triggers a recovery
action by which the slave becomes the master. In terms
of application assumptions the two strategies differ: LFR
requires determinism of the application behaviour but does
not require state capture, the slave executing the same input



requests. Conversely, PBR does not require determinism of
the application behaviour but imposes state capture that can
be a very tricky action. In terms of resource cost, PBR
requires more network bandwidth in normal operation.

Figure 1 gives an example of a possible sequence of
updates at runtime. At t0, an application is loaded with
a PBR1 strategy. At some time later t1, some update is
performed leading to a PBR2 strategy. A new evolution
now at t2 is done to reduce the bandwidth used in normal
operation. An LFR strategy is selected. At t3, the system
manager observes a high number of transient faults and
decides to complement the duplex strategy with a Time
Redundancy (TR) strategy.

III. DESIGN FOR ADAPTATION

In this section, we describe the process of developing our
toolbox of reusable and customizable FT Design Patterns
following a “design for adaptation” approach. The basic idea
of this approach is that we must analyze the various FT
protocols we target and to identify and isolate the different
variation points between them. By identifying and isolating
these differences (in this object-oriented design, we isolate
the variation points in specific object methods), moving from
one protocol to another becomes extremely intuitive and can
be done without unnecessarily duplicating elements which
are common to the initial and the final mechanism from our
transition.

We consider this “design for adaptation” approach as a
means of achieving what we call “cold resilient computing”
because for moving from one mechanism to a new one,
we must stop the application and restart it. By mapping
this design on platforms supporting runtime reconfiguration,
we reach what we call “hot resilient computing”, the topic
of Section V. This toolbox is the result of several design
loops, each loop corresponding to a refinement step towards
achieving the optimal representation of the various concerns
and protocols and, in particular, towards a generic protocol
execution scheme.

A. Initial design

The requirements we set for building our toolbox were
to develop FT mechanisms targeting the crash fault model,
in a first step, which can be attached to query-response
systems (processing incoming requests) and which preserve
the “only-once” semantics. We used IBM Rational Software
Architect v8.0 for UML design and attached the FT pro-
tocols to a very simple application for validation, a basic
calculator service.

To really perceive in deep the way to adapt FTMs, we
start with a design of PBR (and its corresponding imple-
mentation) whose core is a class encompassing general fault
tolerance concerns, duplex concerns and the PBR protocol
itself. The aim is to reach a clean separation between these

FTM Before Proceed After
TR Capture state Compute Restore state
Assertion Assert-input Compute Assert-output
PBR (P) Nothing Compute Checkpoint to B
PBR (B) Nothing Nothing Process checkpoint
LFR (L) Forward request Compute Notify F
LFR (F) Receive request Compute Process notification

Figure 2. Generic execution scheme of FT strategies

Figure 3. Excerpt from FT Design Patterns Toolbox (UML class diagram)

concerns and to be able to easily develop duplex variants
and non-duplex protocols.

B. Design for adaptation steps

By analyzing the different inter-replica protocols, we
identified the variation points between them and reached a
generic execution scheme, inspired from aspect-oriented pro-
gramming. The main idea is that for adding FT to ordinary
request processing, some actions must be performed before,
e.g. apply assertions on the input parameters. If these actions
are successful, processing proceed; then some actions are
performed after, e.g. apply assertions on the result and, if
these actions are successful as well, the result is sent to the
client. This is, in short, the Before-Proceed-After execution
scheme, which is similar to aspect-oriented programming, in
which function calls can be intercepted and different actions
can be performed before and after calling the actual function.
Figure 2 summarizes the description of the FT strategies we
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Figure 4. FT toolbox design and implementation: development time (left) and source lines of code (right)

are currently considering, according to our scheme.
When designing a duplex mechanism targeting the crash

fault model, this execution scheme can be translated into
Sync before-Proceed-Sync after, which is a generic repre-
sentation of an inter-replica protocol. Basically, there is a
form of inter-replica synchronization taking place before
request processing and another synchronization after the
processing. The three steps in this execution scheme rep-
resent the variation points between different protocols and
combinations of protocols.

This execution scheme enables us to factorize what is
common to all duplex strategies in a class, DuplexProtocol
in Figure 3 and then specialize, through inheritance, the
various protocols, PBR and LFR. Other duplex variants can
be easily added to our toolbox by following this design ap-
proach, i.e. describing the protocol according to our generic
scheme and inheriting, either from DuplexProtocol, or from
PBR or LFR, if we want to develop a variant of one of
these. Decoupling the duplex base-class from specific duplex
protocols represents the first design loop for adaptation.

Going further in a new design loop for adaptation, an-
other separation/factorization can be done between what is
common to all FT strategies, duplex or not, and what is
specific to duplex ones. Communication with the client,
preservation of “only-once” semantics and request forward-
ing to the actual functional service in the processing step
are therefore encapsulated in a class, FaultTolerancePro-
tocol in Figure 3. This enables us to place non-duplex
protocols in our framework, i.e. protocols targeting other
fault models, namely value faults (transient and permanent):
TimeRedundancy and Assertion, which follow the same
generic execution scheme (see Figure 2). Other non-duplex
protocols can be easily added to our framework by inher-
iting from FaultToleranceProtocol and the two subclasses
(TimeRedundancy and Assertion) can be tailored to the
user’s needs, through inheritance as well, especially in the
case of Assertion, which usually demands the definition
of an application-dependent assertions. Decoupling general
fault tolerance concerns from duplex ones and developing
non-duplex protocols represent our second design loop.

C. Combining FT strategies

Having developed the protocols resulting from the two
design loops for adaptation, our next aim was to combine
mechanisms targeting different fault models, i.e. a duplex
protocol (PBR, LFR) with a mechanism tolerating value
faults (Assertion, Time Redundancy). Mechanism combina-
tion is extremely intuitive and results from inheriting the
corresponding duplex protocol and the value fault tolerance
mechanism, as shown in Figure 3. We obtain four composed
mechanisms: PBR TR, LFR TR, PBR A, LFR A. Our
Before-Proceed-After scheme enables nesting the execution
steps of the base classes. For instance, PBR TR inherits
from PBR and TimeRedundancy and has the follow-
ing steps: sync before() of PBR, before() of TimeRe-
dundancy, processing(), after() of TimeRedundancy,
sync after() of PBR.

D. Development efficiency

The implementation of our first experimental validation
of FTMs and composed mechanisms in C++ is almost
immediate thanks to our two design loops, but their signif-
icance is nonetheless powerful: they extend the fault model
initially considered (the crash fault model) to crash faults
and value faults. During the development of this FT toolbox,
we observed that our design approach was very efficient,
in terms of development time of new mechanisms and in
terms of code reuse and lines of code to be produced
(see Figure 4). Our statistics, which are based on the work
done by a pair of junior developers, clearly show that the
development of a concrete protocol takes less than a quarter
of the time spent on a design loop for adaptation.

The toolbox we presented in this section validates our
“design for adaptation” approach, showing that careful de-
sign, evolution prediction, modularity and clean separation
of concerns, in the large and in the small, enable us to reach a
generic protocol execution scheme which is the cornerstone
of our framework.

In the next sections we show the process of moving from
this toolbox to a component-based implementation in which
transitions between FT mechanisms are executed at runtime.



IV. FROM OBJECTS TO COMPONENTS

The design we obtained is essential for understanding
and achieving a detailed implementation of FTMs, validated
on a simple service. Now, this design must be mapped to
components for adaptation, in particular at runtime.

A. Service Component Architecture

Service Component Architecture (SCA) [5], [6] provides
a set of specifications for building and composing loosely-
coupled, tailorable applications encompassing a wide range
of technologies. The main idea of this paradigm is that ap-
plications are built from bricks (i.e., components) exposing
their functionalities in the form of services and consuming
services provided by other components through references.
By separating the interfaces (services and references) from
the actual implementation, this approach facilitates reuse,
evolution and technology-agnosticism as components con-
sume services provided by other components without being
aware of how they are implemented and whether the imple-
mentation changes over time.

B. OW2 FraSCAti

The component-based middleware on which we develop
our toolbox of adaptive FTMs is OW2 FraSCAti v1.4 [7], a
platform providing runtime support for SCA and developed
according to SCA principles. The OW2 FraSCAti runtime
provides support for SCA composite definitions following
the SCA Assembly Model V1.0 specification, Java compo-
nent implementation (SCA Java Component Implementation
V1.0 and SCA Java Common Annotations and APIs V1.0),
remote component bindings using Web Services (Soap or
RESTful) and Java RMI protocols.

C. Runtime reconfiguration support

FraSCAti goes beyond SCA specifications by also provid-
ing support for runtime reconfigurations of component-based
architectures and reflective capabilities. Runtime architecture
exploration and reconfiguration can be performed in several
ways, and one of the most convenient ones is by using
FScript. Dedicated to querying and modifying component-
based applications, this scripting language provides support
for atomic changes [8], thus guaranteeing that a reconfig-
uration either takes a component-based architecture to a
consistent state or leaves it unmodified in its initial state,
should there be a bug in the script. This is an essential
property for our transitions as the addition of dynamics to
FTMs should not impair the reliability of the mechanisms.

The runtime reconfiguration requirements we have iden-
tified for building a resilient computing framework are the
following:

• access to components’ state and properties;
• control over components’ lifecycle (start, stop);
• control over interactions between components, for cre-

ating or removing bindings.

Furthermore, to maintain consistency, several issues must be
carefully considered:

• components must be stopped in a quiescent state, i.e.
when all internal processing has finished;

• incoming requests on stopped components must be
buffered;

• the state of old components must be mapped to the ones
replacing them.

FraSCAti and FScript fulfill the first two requirements, leav-
ing component state management to the designer. Several
options can be envisaged:

• stateful components can explicitly provide a state man-
agement service (in the form of a Java interface with
getState() and setState() methods) which is
called when needed;

• the designer can create a @State annotation and place
it on the attributes considered part of the component
state and develop the corresponding component con-
troller which interprets this annotation;

• we can design the architecture in such a way that com-
ponents which are subject to runtime reconfigurations
have no state at all.

In our current implementation, the application server im-
plements a state management interface which enables us to
capture and restore state for protocols demanding it, e.g.
PBR, TR. Components which are part of the actual FTM are
stateless, as a result of careful design for reaching the desired
granularity, which is further detailed. If stateful components
are manipulated at runtime, we must define a method (e.g.
a specific action in FSript) for capturing the state of old
components and restoring it on the newly instantiated ones.

D. Towards component-based design
Building on the lessons learnt during the previous step

of our development process, namely design for adaptation,
we design the FTMs targeting crash faults, i.e. Primary-
Backup Replication and Leader-Follower Replication, ac-
cording to the Before-Proceed-After general protocol execu-
tion scheme. The transition from an object-oriented design to
a component-based architecture is not an automatic process,
neither in terms of entities nor in terms of interactions
between them. A component-based architecture could be
designed using either a top-down or a bottom-up approach.

Given the freedom to design components as fine-grained
as we want, the obvious question which arises is: what is
the right granularity? First, we need to define what right
means, in the context of our work. We aim at facilitating the
transitions between mechanisms and as the unit of runtime
manipulation is the component, it means that for performing
fine-grained reconfigurations it is necessary and sufficient to
encapsulate the differences between closely-related FTMs in
individual components .

As described in Section III, for performing a transi-
tion between PBR and LFR, we would need to change
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the methods sync before() and sync after(). Therefore,
when moving towards a component-based implementation, it
seams ideal to encapsulate each step of the Before-Proceed-
After execution scheme in an individual component.

This analysis gives us the right component granularity: we
have reached the suitable level of decomposition when we
are able to isolate in separate components the differences
between closely-related FTMs in what could be regarded
as a separation of concerns in the small. In practice, for
decomposing the PBR entity (and its base classes) from the
class diagram in Figure 3, we use 4 components, represented
in Figure 5: a stateful one, protocol, encapsulating the
functionalities of the classes PBR inherits from (FTProto-
col, DuplexProtocol) and 3 stateless ones, syncBefore,
proceed, syncAfter, corresponding to the methods
sync before(), processing(), sync after().

During the process of mapping our object-oriented design
to components, we observed the following:

• Relationships such as composition, association and ag-
gregation are usually translated into a reference-service
interaction;

• Translating inheritance usually needs to be tackled on
a case-by-case basis;

• In some cases, 1 object maps to 1 component, e.g.
FTProtocol to protocol;

• In some cases, 1 method maps to 1 component, e.g.
sync before() to syncBefore.

Apart from granularity, another problem to tackle is the
generality of interfaces representing services provided by
components. Components provide and consume services,
therefore they have interface-typed members instead of
classic references to objects. In order to replace a component
A with a component A’, A and A’ must provide the same
services to the consumers which are not modified by the

reconfiguration. Therefore, from the very beginning, compo-
nents which may be changed in order to execute a transition
from one mechanism to other(s) must implement generic
interfaces. This can be obtained by using polymorphism,
for instance, on the types of parameters taken as input by
methods in the given interfaces. Replacing a component does
not necessarily imply a 1-to-1 correspondence between old
and new components.

In the next section, we describe in details the archi-
tecture of our PBR component-based implementation and
the transition towards LFR through reconfiguration scripts
executed at runtime. Other possible transition scenarios are
also discussed.

V. COMPONENT-BASED IMPLEMENTATION AND RUNTIME
RECONFIGURATION

A. PBR component-based architecture for adaptation

Figure 5 shows the component-based design of Primary-
Backup Replication, with a detailed view of the primary
entity. In the current implementation, we name the server
entities master and slave rather than primary and backup
in order to have a uniform naming convention when passing
to another duplex protocol, i.e. Leader-Follower Replication.
We can see that the Before-Proceed-After execution scheme
is mapped onto individual components, as explained in
Section IV. All the components represented in Figure 5 are
implemented in Java. Our application consists of three com-
posite components and their interactions: the client, the
master processing the requests and the slave processing
the checkpoints sent by the master. In parallel, a failure
detector periodically checks the liveness of the master using
a heartbeat mechanism. Should the master crash, the slave
substitutes for it.

The component-based design emphasizes the separation
of concerns between the functional layer of the application



(the actual server) and the non-functional one (the FTM
protocol, encapsulated in a composite component, master-
side and slave-side). The application itself (i.e. the functional
layer) is a basic calculator service, the aim being to trigger
the execution of the FTM protocol.

B. From PBR to LFR at runtime

Now, we focus on the actual transition between two FTMs
targeting the crash fault model, i.e. PBR and LFR. This is
achieved through a reconfiguration process, involving the
replacement of old components with new ones and dealing
with distributed computing aspects.

1) Replacing components: As previously discussed in
Section IV-C, when replacing components, we must deal
with state management, more precisely capturing the state
of the old component, disconnecting it, mapping the state
on the new component and connecting it to the overall
architecture. In our architecture, when moving from PBR
to LFR, we must replace syncBefore and syncAfter
(see Figure 2).

These components, identified as possible points of vari-
ation, together with proceed, are rendered stateless in
our design by having them pull information from stateful,
stable components (not subject to change when moving from
one FTM to another) such as protocol, in the form of
parameters in service calls, and replyLog. Having dealt
with the state management issue, two ways of performing
the “mechanics” of component replacement are possible.

• The first one consists in deploying, from the begin-
ning, a component-based architecture containing all the
foreseeable syncBefore, proceed, syncAfter
components and only wiring the ones which belong
to the initial FTM, i.e. PBR, while the others are left
unwired. A script would only need to unwire the old
components and wire the new ones. With this solution,
all possible reconfigurations and transitions must be
foreseen from the beginning, in the initial architecture.

• The second solution, which is the one we implemented,
consists in deploying an architecture corresponding to
the first mechanism, i.e. PBR, and, in the runtime re-
configuration script, loading the new components from
separate description files. This enables us to have a
separation between the fault-tolerance concerns and the
adaptation ones and to enrich our framework with new
reconfiguration scenarios. There is a trade-off between
flexibility and reconfiguration speed: given the fact
that the new components are not instantiated a priori,
they must be loaded on-the-fly from a separate file,
therefore reconfiguration is slower than in the first case.
Our implementation is at an early stage, therefore we
do not have precise measures for each step of the
reconfiguration process, this being part of our future
plans.

Figure 6 contains the script executing the transition be-
tween PBR and LFR, master-side, i.e. the transition between
Primary and Leader. In short, this script does the following:

• load syncBeforeLFR and syncAfterLFR from a
separate description file (lines 3− 11);

• disconnect the old syncBefore and syncAfter
from all their services and references (lines 16 − 22
and 31− 36);

• connect syncBeforeLFR and syncAfterLFR to
all the necessary services and references (lines 23− 25
and 37− 39);

• delete old components (lines 26− 28 and 40− 42).
Concerning the components that must be stopped, FraSCAti
requires us to stop a component only if it has a reference
wired (i.e. connected through a local binding, inside the
same process) to a component which is going to be removed.
Buffering incoming requests, putting components in a qui-
escent state when executing various actions such as wiring
references, binding and unbinding services and references
are platform-specific and transparent to the user.

2) Distributed computing issues: Reconfiguration me-
chanics is executed by local scripts, meaning that there is
a component implemented in FScript on the master and
another one on the slave, in order to have access to the
component graph corresponding to each machine. For the
time being, reconfiguration is triggered by the system man-
ager through a service provided by the master, which runs
the master script and then, if no problem was encountered,
the slave one. Script termination is a property guaranteed by
the framework, as previously mentioned.

The inverse transition (LFR to PBR) is also possible,
through a similar procedure (having a separate description
of the corresponding components, their Java implementation
and the associated scripts), provided that our server com-
ponent implements a state management interface enabling
us to capture state and to map it.

C. Composing FTMs

Fault tolerance requirements represent one of the three
axes in our change model frame of reference described in
Section II. The fault model can change during the system’s
lifetime by being extended. Composing FTMs tolerating dif-
ferent fault models can sometimes be necessary, especially
if fault tolerance requirements were not completely defined
during the specification phase of the system’s development
cycle. A typical scenario, as shown in Figure 1, requiring the
composition of FTMs can be the following: at initial time, a
duplex strategy was selected for a given function to comply
with the crash fault model, as requested in the specification;
at a later time, the monitoring of the system reveals a high
number of transient physical faults impacting the results of
the function. It is decided to combine a time redundancy
(TR) strategy with the duplex strategy to comply with this
new situation.



1 action changeStrategyPbr2Lfr() {
2
3 sca-new("pbr2lfr.composite");
4 master=$domain/scachild::master;
5 ftm=$master/scachild::ftm;
6 protocol=$ftm/scachild::protocol;
7 add-scachild($ftm,$domain/scachild::pbr2lfr/scachild::syncBeforeLFR);
8 add-scachild($ftm,$domain/scachild::pbr2lfr/scachild::syncAfterLFR);
9 sca-remove("pbr2lfr");

10 new_sync_before=$ftm/scachild::syncBeforeLFR;
11 new_sync_after=$ftm/scachild::syncAfterLFR;
12 old_sync_before=$ftm/scachild::syncBefore;
13 old_sync_after=$ftm/scachild::syncAfter;
14
15 -- Replacing SyncBefore
16 set-state($old_sync_before,’STOPPED’);
17 set-state($protocol,’STOPPED’);
18 remove-scawire($protocol/scareference::syncBeforeService,$old_sync_before/scaservice::execute);
19 remove-scawire($protocol/scareference::syncAfterService,$old_sync_after/scaservice::execute);
20 set-state($protocol,’STARTED’);
21 old_binding=$old_sync_before/scareference::synchronizeService/scabinding::syncBefore-RESTful-stub;
22 remove-scabinding($old_sync_before/scareference::synchronizeService,$old_binding);
23 add-scawire($protocol/scareference::syncBeforeService,$new_sync_before/scaservice::execute);
24 add-rest-binding($new_sync_before/scareference::synchronizeService,"http://localhost:8082/SyncBeforeService");
25 set-state($new_sync_before,’STARTED’);
26 set-state($ftm,’STOPPED’);
27 remove-scachild($ftm,$old_sync_before);
28 set-state($ftm,’STARTED’);
29
30 -- Replacing SyncAfter
31 set-state($old_sync_after,’STOPPED’);
32 remove-scawire($old_sync_after/scareference::replyLogService,$ftm/scachild::replyLog/scaservice::replyLogService);
33 old_binding=$old_sync_after/scareference::stateAccessService/scabinding::syncAfter-RESTful-stub;
34 remove-scabinding($old_sync_after/scareference::stateAccessService,$old_binding);
35 old_binding=$old_sync_after/scareference::synchronizeService/scabinding::syncAfter-RESTful-stub;
36 remove-scabinding($old_sync_after/scareference::synchronizeService,$old_binding);
37 add-scawire($protocol/scareference::syncAfterService,$new_sync_after/scaservice::execute);
38 add-rest-binding($new_sync_after/scareference::synchronizeService,"http://localhost:8083/SyncAfterService");
39 set-state($new_sync_after,’STARTED’);
40 set-state($ftm,’STOPPED’);
41 remove-scachild($ftm,$old_sync_after);
42 set-state($ftm,’STARTED’);
43 }

Figure 6. The script implementing the transition between PBR and LFR, master-side (Primary to Leader)

For facilitating mapping to components, we can combine
the execution steps of TR (see Figure 2) in one single
component proceedTR. In practice, to add TR, given our
PBR component-based architecture or the LFR mechanism
obtained after executing the transition described in the pre-
vious section, we would only need to change the proceed
component which, in its current configuration, only calls the
actual service and sends back the result. A proceedTR
implementation would need to do the following:

• capture the state of the server prior to computation;
• call the service and store the result;
• restore the state of the server to the initial one;
• call the service a second time and store the result;
• compare the results: if they are identical, send the

result, if not send an error code.

For the runtime reconfiguration we need the implementation
of the new proceedTR component and a script performing
the following actions:

• load the description of the new component;
• stop the protocol component;

• unwire protocol from proceed;
• wire protocol to proceedTR;
• start the protocol component;
• wire proceedTR to the calculator service provided by

the server;
• wire proceedTR to the state management service pro-

vided by the server because, unlike the old proceed,
the new one also needs to capture and restore state;

• delete proceed.
Our current work focuses on completing the implementation
of this scenario.

VI. FURTHER BENEFITS OF A COMPONENT-BASED
IMPLEMENTATION

In this section, we describe two ways of exploiting the
support and capabilities of a component-based architecture:
first, we show how to exploit the separation of concerns
provided by our component-based architecture for replacing
the functional layer (the application) with another one and
reusing the FTM; next, we describe the recovery procedure
of PBR, which is implemented in a reconfiguration script.



The component-based design emphasizes the separation
of concerns between the functional layer of the application
(the actual server) and the non-functional one (the FTM
protocol, encapsulated in a composite component, master-
side and slave-side). Notice that it is not difficult to develop
a more sophisticated application, given the fact that SCA is
particularly useful for precisely identifying where we need
to modify the implementation. To be more precise, we need
to change:

• the server component both in terms of functional
service/application implementation and in terms of
state management service, as state information is
application-dependent;

• the client component, to stay consistent with the
application;

• the syncAfter components, master-side and slave-
side, which respectively pack and unpack checkpoints,
and therefore need to know contained inside check-
points;

• the replyLog component, which needs to store en-
riched results;

• the data structures, e.g. ClientRequest, CheckpointMes-
sage, ServerState, which are application-dependent.

However, some components do not need specific modifica-
tions. For instance, components which only delegate service
calls (protocol), components that forward incoming in-
formation (syncBefore and proceed), or components
that only slightly modify service calls (proxy only adds an
identifier to the client request) are left unmodified.

We have also experimented implementing the recovery
procedure in PBR in a reconfiguration script, which gave
us the possibility to experiment with dynamics at runtime in
the small, i.e. inside one particular mechanism. We target the
PBR component-based implementation described before and
develop the recovery procedure in a script which manipulates
components on-the-fly. When the master fails, the client
needs to be connected to the former slave, which will
become the new master. To that aim, Figure 7 presents the
associated script that implements the following actions:

• a reference to the requested operation is obtained by
introspecting the client component (compute, lines
2− 5);

• the binding between the client and the former service
provider is disconnected (line 6);

• a new connection between the client and the service
provided by the new master is established (line 7).

Reconfigurations scripts can be executed step-by-step
using the the OW2 FraSCAti interactive Explorer (a sort
of testing phase), but can also be directly executed. In
practice, such reconfiguration scripts (e.g. the recovery one
and the transition between FTMs) are actually components
implemented in FScript and publishing services in the form
of Java interfaces. Reconfiguration is triggered in special

1action switchServer(){
2client_machine = $domain/scachild::client_machine;
3proxy = $client_machine/scachild::proxy;
4refcompute = $proxy/scareference::compute;
5bind_old = $refcompute/scabinding::proxy-RESTful-stub;
6remove-scabinding($refcompute,$bind_old);
7add-rest-binding($refcompute,
8"http://localhost:8081/ComputeService");
9}

Figure 7. Script-based runtime recovery procedure inside PBR

conditions (in this case because of the master failing) by
components which have a reference on the Java interface/ser-
vice provided by the component implemented in FScript.

VII. RELATED WORK

One of our first areas of interest was Autonomic Com-
puting (AC) [9], more precisely self-healing systems, i.e.,
systems which are able to repair themselves. We consider
that runtime adaptation of FTMs and, more generally, re-
silient computing are part of this trend. Similarly, in [10] ,
the author states that dependability and fault tolerance are
not only “specifically aligned to the self-healing facet” of AC
but, on a closer view, “all facets of Autonomic Computing
are concerned with dependability” (i.e., self-configuration,
self-optimization and self-protection as well).

In the field of adaptive fault tolerance (AFT) [11], several
projects exist, especially targeted at CORBA-based applica-
tions [12], but evolution is tackled differently: adaptation
has a parametric form (e.g. number of replicas) or it is
performed at compile time or, if done at runtime, has a
coarse-grained nature. [13] describes a component model
based on the CORBA Component Model for building dis-
tributed applications with fault-tolerance requirements which
are able to change their FT strategy at runtime. Leveraging
the flexibility provided by a components, it is the closest
work we have found but reconfiguration is more coarse-
grained than in our approach and only the crash fault model
is taken into account.

In the area of reconfigurable software architectures,
RAINBOW [14] builds on the use of architectural models
for problem diagnosis and repair. The proposed framework
includes a monitoring layer composed of two types of
entities, namely probes which gather basic data from the
running system and gauges which perform computations on
the data in order to obtain measures of the system properties.
An architecture manager is in charge of maintaing the
architectural model at runtime and of verifying that the con-
straints on the system elements are maintained. The project
is very complex as it includes a very expressive ADL called
ACME [15], a system in charge of verifying constraints,
called ARMANI, a library of gauges, etc. In [16], the authors
describe their experience in associating an enriched version
of ACME with the OpenCOM middleware (a component-
based middleware) for providing programmed and ad-hoc



changes at runtime while maintaining certain constraints.
Although these projects do not tackle adaptation in a fine-
grained way as we do and they do not target fault-tolerance
mechanisms, they are interesting from a methodological
point of view.

Concerning design patterns for fault tolerance, [17] de-
scribes a generalized FT design pattern for strategies target-
ing software faults. This could be a source of inspiration for
enriching our current toolbox of fault tolerance strategies.

VIII. CONCLUSION

Our approach to resilient computing relies on several
steps, from a design for adaptation down to the verification
of the consistency of distributed updates of a real system. A
cornerstone in this process is the manipulation of software
architecture at runtime. A component-based middleware is
an essential piece of this process. The experiments described
in this paper show that combining careful design with the
exploration and control capabilities provided by such a
platform enable resilient computing to be addressed.

In our future work, we aim at exploring several directions:
enriching the existing component-based FT toolbox with
different transition scenarii; integrating our mechanisms in a
framework which takes into account fault tolerance require-
ments, generates the most appropriate FTM to connect to
an application and triggers adaptation according to changes
in the initial requirements; use the lessons learnt from this
first implementation for building our adaptive FTMs on a
platform for networks of environmental wireless sensors.
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