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On compound vortices in a two-component
Ginzburg–Landau functional

Stan Alama∗ Lia Bronsard∗ Petru Mironescu†

September 8, 2011

Abstract

We study the structure of vortex solutions in a Ginzburg–Landau system for two
complex valued order parameters. We consider the Dirichlet problem in the disk in R2

with symmetric, degree-one boundary condition, as well as the associated degree-one
entire solutions in all of R2. Each problem has degree-one equivariant solutions with
radially symmetric profile vanishing at the origin, of the same form as the unique (com-
plex scalar) Ginzburg–Landau minimizer. We find that there is a range of parameters
for which these equivariant solutions are the unique locally energy minimizing solu-
tions for the coupled system. Surprisingly, there is also a parameter regime in which
the equivariant solutions are unstable, and minimizers must vanish separately in each
component of the order parameter.

1 Introduction

We continue our study of the structure of vortices in two-component Ginzburg–Landau

functionals begun in [AB2, ABM]. Let Ω ⊂ R2 be a smooth, bounded domain, and Ψ ∈
H1(Ω;C2). We define an energy functional,

Eε(Ψ; Ω) =

∫
Ω

{
1

2
|∇Ψ|2 +

1

4ε2
(
|Ψ|2 − 1

)2
+

β

4ε2
(
|ψ+|2 − |ψ−|2

)2
}
dx, (1)

where Ψ = (ψ+, ψ−), β > 0 and ε > 0 are parameters. Energy functionals of a form similar

to Eε have been introduced in physical models, and at the end of the section we will briefly

describe two such contexts: a Spinor Ginzburg–Landau functional, describing ferromagnetic

and antiferromagnetic superconductors, and giving rise to half-integer degree vortices; and
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Two-component Ginzburg–Landau 2

a Gross-Pitaevskii functional for a two-component Bose-Einstein condensate. Although the

physical models are more complex, we expect that the essential features of the singular limit

ε→ 0 in the physical systems will be well described by the simpler energy (1).

As a model problem, we consider (1) with appropriate Dirichlet boundary conditions,

and study the behavior of energy minimizers as ε → 0. In the limit, minimizers Ψ should

lie on the manifold in C2 on which the potential F (Ψ) = 1
4
(|Ψ|2 − 1)2 + β

4
(|ψ+|2 − |ψ−|2)2

vanishes. That manifold is a 2-torus Σ ⊂ S3 ⊂ C2, parametrized by two real phases

Ψ =

(
1√
2
eiα+ ,

1√
2
eiα−

)
,

and thus a Σ-valued map Ψ(x) carries a pair of integer-valued degrees around any closed

curve C,

deg(Ψ;C) = [n+, n−], n+ = deg(ψ+;C) n− = deg(ψ−;C).

If the given Dirichlet boundary condition has nonzero degree in either component, then there

is no finite energy map Ψ which takes values in Σ and satisfies those boundary conditions,

and we expect that vortices will be created in the ε → 0 limit, just as in the classical

Ginzburg–Landau model [BBH].

An analysis of the global minimizers of the Dirichlet problem, with Σ-valued boundary

data, is given in [AB1, AB2]. As in the seminal work of Bethuel, Brezis, & Hélein [BBH],

nonzero degree boundary data give rise to vortices in Ω, each of degree one in one (or

both) of the two phases α±, and the location of the vortices is determined by minimizing a

renormalized energy, which is derived by sharp estimates of the interaction energy between

the vortices. The essential difference between the classical Ginzburg–Landau model and the

energy (1) is that there are different species of vortices, allowing for winding in one or both of

the two phases, α±. In the renormalized energy expansion, vortices with winding in different

components do not interact directly, in the sense that there is no term in the renormalized

energy which couples the location of the α+ and α− vortices. However, we discovered that

there is a very short-range interaction between these two species due to the energy of the

vortex cores. In particular, it is shown (for certain values of the parameter β,) that it may

be beneficial for two vortices of different type (one with degree [n+, n−] = [1, 0] and one with

[n+, n−] = [0, 1]) to coincide in the ε→ 0 limit, rather than to converge to distinct points (as

the renormalized energy would normally dictate.) In this paper, we study the finer structure

of these compound vortices: for ε > 0 small we ask, do they resemble Ginzburg–Landau

vortices, with |Ψ| = 0 at a common vortex location; or does each component ψ± vanish

separately?
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To illustrate, we begin with a simple but prototypical example: let Ω = D1 = D(0, 1),

the unit disk, and denote

Eε(Ψ) = Eε(Ψ;D1).

We consider minima (or more generally, critical points) of Eε over the space H, consisting

of all functions Ψ ∈ H1(D1;C2) with the symmetric boundary condition:

Ψ|∂D1 =
1√
2

(
eiθ, eiθ

)
. (2)

The degree on the boundary is [n+, n−] = [1, 1], and the energy expansion of [AB2] shows

that the minimizers Ψε converge to a Σ-valued harmonic map in D1 with a single limiting

vortex at the origin. Thus, minimizers produce a compound vortex with winding in each

phase near the origin. For ε > 0 small but nonzero, do the zeros of the two components

coincide or not? It is easy to verify that if uε minimizes the classical Ginzburg–Landau

energy with symmetric boundary condition,

Gε(u) =

∫
D1

[
1

2
|∇u|2 +

1

4ε2
(|u|2 − 1)2

]
, u|∂D1 = eiθ,

then Uε = 1√
2
(uε, uε) is a critical point of Eε with boundary data (2). Is the Ginzburg–Landau

minimizer Uε minimizing for Eε?

We prove the following:

Theorem 1.1. Let uε minimize Gε with uε|∂D1 = eiθ and

Uε =
1√
2

(uε(x), uε(x)).

(i) If β ≥ 1, then Uε minimizes Eε with Dirichlet condition (2) for every ε > 0.

(ii) If 0 < β < 1, then for all sufficiently small ε > 0, Uε is not the minimizer of Eε with

boundary condition (2).

The proof of Theorem 1.1 is based on comparisons between the vortex core energies (see

(13)), and on our previous results in [AB1, ABM], and is the content of Section 2. For

0 < β < 1, the form of minimizers is more complex and more interesting. Our results (see

Corollary 2.5 and Lemma 2.6,) suggest that the compound [n+, n−] = [1, 1] vortex which

appears in the ε→ 0 limit actually breaks down into two distinct simple vortices for ε > 0.

Although this example seems quite special, in fact the symmetric minimization problem

plays an important role in the expansion of the energy in the method of [BBH], and we
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expect that minimizers of this problem accurately describe the structure of vortices near the

vortex core.

Another approach to the core structure of vortices is obtained by blowing up the solution

at scale ε around the vortex center. After rescaling and passing to the limit, one obtains an

entire solution in all of R2 to the elliptic system,

−∆ψ+ = (1− |Ψ|2)ψ+ + β(|ψ−|2 − |ψ+|2)ψ+,

−∆ψ− = (1− |Ψ|2)ψ− − β(|ψ−|2 − |ψ+|2)ψ−.

}
(3)

Solutions to (3) obtained by blowing up minimizers in Ω will satisfy an integrability condition,∫
R2

{(
|Ψ|2 − 1

)2
+ β

(
|ψ−|2 − |ψ+|2

)2
}
dx <∞, (4)

analogous to the condition of [BMR] for the classical Ginzburg–Landau equation. While they

have infinite energy measured in the whole of R2, they do inherit a local energy minimizing

property, identified by De Giorgi. For Ψ ∈ H1
loc(R2;C2) satisfying (4), we denote

E(Ψ; Ω) := E1(Ψ; Ω) =

∫
Ω

{
1

2
|∇Ψ|2 +

1

4

(
|Ψ|2 − 1

)2
+
β

4

(
|ψ−|2 − |ψ+|2

)2
}
. (5)

Definition 1.2. We say that Ψ is a locally minimizing solution of (3) if (4) holds and if for

every bounded regular domain Ω ⊂ R2,

E(Ψ; Ω) ≤ E(Φ; Ω)

holds for every Φ = (ϕ+, ϕ−) ∈ H1(Ω;C2) with Φ|∂Ω = Ψ|∂Ω.

For the classical Ginzburg–Landau equation in R2,

−∆u = (1− |u|2)u,

the locally minimizing solutions are completely known. Combining results by Shafrir [Sh],

Sandier [Sa], and Mironescu [M2], the unique nontrivial locally minimizing solution is (up

to symmetries) the degree-one equivariant solution, u = f(r)eiθ.

In [ABM] we proved several results on the entire solutions of (3). Following the work of

[BMR] on the Ginzburg–Landau equations, any solution of (3) satisfying (4) has a degree

pair at infinity, (see [ABM]), n± = deg(ψ±;∞) = deg
(
ψ±
|ψ±| ;SR

)
for all sufficiently large radii

R. We also showed that there exists a unique equivariant solution to (3) for each degree

pair [n+, n−], but as in the Ginzburg–Landau case we do not expect all those solutions to be

local minimizers. Indeed, it is only for the simplest, “ground state” degrees [n+, n−] = [1, 0]
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or [0, 1] that we can assert the existence of locally minimizing entire solutions. In [ABM] we

show that these vortex solutions are “coreless”, that is, |Ψ| is bounded away from zero in

R2.

For degrees [1, 1] at infinity, it is not clear whether or not a locally minimizing solution

exists for (3). For instance, it is easy to verify that, if u = f(r)eiθ is the symmetric, degree

one solution of the Ginzburg–Landau equations in R2, then U =
(

1√
2
u, 1√

2
u
)

solves (3) with

degrees [n+, n−] = [1, 1]. We then ask: is U a locally minimizing solution, and are there any

others?

We prove the following result:

Theorem 1.3. (i) For β > 1, Ψ∗ is a locally minimizing solution with degree deg(ψ∗±,∞) =

1 if and only if

Ψ∗ =
1√
2

(
u(x− a)eiφ+ , u(x− a)eiφ−

)
, (6)

where φ± are real constants, a ∈ R2 is constant, and u(x) is the (unique) equivariant

solution to the Ginzburg–Landau equation in R2 with deg(u,∞) = 1.

(ii) If 0 < β < 1 and Ψ∗ is a locally minimizing solution with degree deg(ψ∗±,∞) = 1, then

|Ψ∗| is bounded away from zero in R2. Moreover,∫
R2

(
|ψ+|2 − |ψ−|2

)2 ≥ π. (7)

In particular, for 0 < β < 1, the Ginzburg–Landau solution is not locally minimizing

for (3). This implies (see Proposition 4.1) that for 0 < β < 1, local minimizers with degree

pair [n+, n−] = [1, 1] must have distinct zeros in each component. In this way, a locally

minimizing solution for β ∈ (0, 1) should resemble a gluing together of two simple vortex

solutions (of degrees [1, 0] and [0, 1]), studied in [ABM]. This has an important implication

for the Dirichlet problem: let Ω ⊂ R2 be a bounded, smooth domain, and g : ∂Ω → Σ a

given smooth boundary condition. We then conclude:

Theorem 1.4. Let 0 < β < 1, and suppose Ψε minimizes Eε(Ψ; Ω) with Dirichlet boundary

condition Ψε|∂Ω = g. Then there is some c > 0 such that, for all ε > 0 sufficiently small,

|Ψε| ≥ c in Ω.

In particular, the minimizer in the disk Ω = D1 with symmetric boundary condition (2)

has a single Ginzburg–Landau type vortex (with both components vanishing at the origin)

for β ≥ 1, but for 0 < β < 1 each component vanishes separately, and |Ψε| is bounded

away from zero. From the analysis of the renormalized energy done in [AB1, AB2], as
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ε → 0 the zeros of ψ+ and ψ− must tend to the origin. It is an interesting open question

to determine the rate at which they coalesce as ε → 0. If the mutual distance between the

zeros in each component is of the order of ε, then blowing up at scale ε produces a locally

minimizing solution to (3) with degree pair [1, 1] at infinity. Necessarily, this local minimizer

is non-equivariant, with separated zeros in each component. On the other hand, if no locally

minimizing solution exists with degree pair [n+, n−] = [1, 1], then the distance between the

two vortices in the boundary-value problem must necessarily be much larger than ε, and the

compound vortex breaks down into a distinct pair of [n+, n−] = [1, 0] and [n+, n−] = [0, 1]

vortices for ε > 0.

The analysis of locally minimizing solutions to (3) is done in sections 3 and 4. It relies

on a priori estimates of solutions in the spirit of Brezis, Merle, & Rivière [BMR] and Shafrir

[Sh].

Finally, we return to the symmetric boundary value problem (2). Recall that Theorem 1.1

states that for 0 < β < 1 the symmetric solutions Uε = 1√
2
(uε, uε) cannot be local minimizers

for small ε. Using a bifurcation analysis, we provide a more detailed description of how the

symmetric solutions lose stability, and the structure of the solutions near the critical value:

Theorem 1.5. Let 0 < β < 1.

(i) There exists εβ > 0 for which Uε is a strict local minimizer of Eε for ε > εβ, and Uε is

unstable if ε < εβ.

(ii) ε = εβ is a point of bifurcation for critical points of Eε with Dirichlet condition (2).

More precisely, there exists δ > 0 and a real-analytic family {(Ψt,ξ, ε(t)}|t|<δ,ξ∈S1 of

non-equivariant solutions bifurcating from Uεβ at t = 0, and these are the only non-

equivariant solutions in a δ-neighborhood of (Uεβ , εβ) in H× (0,∞). Each component

of the non-equivariant solutions Ψ = (ψ+, ψ−) has exactly one zero ψ±(z±) = 0, and

their zeros are antipodal z− = −z+ 6= 0.

A more detailed description of the bifurcation from the equivariant solutions Uε is given

in Theorem 5.23. Indeed, the analysis of the linearization around Uε follows the same steps

as for the degree d ≥ 2 case for the Ginzburg–Landau functional (see Mironescu [M1]), and

we show that, apart from the S1-symmetry of the problem, the ground state eigenspace is

simple.

Finally, we briefly discuss two physical contexts for our results on compound vortices.
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Fractional degree vortices

Our original motivation for studying the functional (1) comes from Spinor Ginzburg–Landau

functionals introduced in models of ferromagnetic and antiferromagnetic superconductors

[KR] or Bose–Einstein Condensates (BEC) [IsM].

Let Ω ⊂ R2 be a smooth, bounded domain, and Ψ ∈ H1(Ω;C2). We define an energy

functional,

Eε(Ψ) =
1

2

∫
Ω

{
|∇Ψ|2 +

1

2ε2
(
|Ψ|2 − 1

)2
+

2β

ε2
(ψ1 × ψ2)2

}
dx,

where Ψ = (ψ1, ψ2), ψ1 × ψ2 = Im (ψ1ψ2), β > 0 and ε > 0 are parameters. The quantity

S = ψ1 × ψ2 = Im {ψ1 ψ2}

is interpreted as the z-component of a spin vector, which in this two-dimensional model is

assumed to be orthogonal to the plane of Ω.

As ε → 0, energy minimizers should converge pointwise to the manifold on which the

potential term F (Ψ) = (|Ψ|2 − 1)
2

+ β
2

(ψ1 × ψ2)2 vanishes. Since β > 0, we obtain a two-

dimensional surface (a 2-torus) Σ ⊂ S3 ⊂ C2 parametrized by two real phases, φ, ω:

Σ : Ψ = G(φ, ω) := (eiφ cosω , eiφ sinω).

Notice that G is doubly-periodic with minimal period G(φ+ π, ω± π) = G(φ, ω), with each

phase executing a half cycle. For a smooth function Ψ(x) taking values in Σ and a simple

closed curve C contained in the domain of Ψ we may therefore define a pair of half-integer

valued degrees (dφ, dω) corresponding to the winding numbers of the two phases around

Σ. From the above observation, these degrees satisfy dφ, dω ∈ 1
2
Z, and dφ + dω ∈ Z. The

singularities which appear in energy minimizers as ε→ 0 will thus be half-integer quantized,

giving rise to fractional degree vortices.

The connection between the energies Eε and Eε is direct: by a unitary transformation in

the range,

ψ± :=
1√
2

(ψ1 ± iψ2),

the two are seen to be equal, Eε(ψ1, ψ2) = Eε(ψ+, ψ−). In these new coordinates, the frac-

tional degree vortex for (ψ1, ψ2) with degree pair (dφ, dω) becomes an integer quantized

vortex for (ψ+, ψ−), with degree pair [n+, n−] = [dφ + dω, dφ − dω]. In particular, the min-

imal energy fractional degree vortices with (dφ, dω) = (1
2
,±1

2
) are associated to the integer

degrees [n+, n−] = [1, 0] and [0, 1], and the Ginzburg–Landau-like vortex of degree pair
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(dφ, dω) = (1, 0) becomes the compound vortex [n+, n−] = [1, 1] in the new coordinates for

Ψ. We note that in the new coordinates, the spin

S = ψ1 × ψ2 =
1

2
(|ψ−|2 − |ψ+|2)

remains an important quantity.

Two-component BEC

The functional (1) may also be derived from the Gross-Pitaevsky energy for a rotating

mixture of two BEC, introduced in [SCETC]. In this model, we consider the pair Ψ =

[ψ+, ψ−] : R2 → C2 which minimizes

Gε(Ψ) =

∫
R2

{
1

2
|∇Ψ|2 − ω〈Ψ, i∂θΨ〉+

1

2
V (x)|Ψ|2 +

1

ε2
[
a+|ψ+|4 + a−|ψ−|4 + 2b|ψ+|2|ψ−|2

]}
,

(8)

where the constant ω represents the angular speed of rotation, V (x) the trapping potential,

and a+, a− > 0 and b ∈ R material constants. Here, and throughout the paper, we use angle

brackets to denote the real scalar product on C or C2,

〈Φ,Ψ〉 = Re
{

Φ ·Ψ
}
, Φ,Ψ ∈ C2; 〈ϕ, ψ〉 = Re {ϕψ} , ϕ, ψ ∈ C.

The energy is to be minimized over the constraints,∫
R2

|ψ+|2 = m+,

∫
R2

|ψ−|2 = m−.

For simplicity we replace the trapping potential V by a “flat trap” in the domain Ω b R2

(see [CY] for example), in other words we set V (x) ≡ 0 but impose a (Neumann) boundary

condition via Ψ ∈ H1(Ω;C2). We also assume that a+ = a− =: a > 0 and assume the two

species are balanced,

−
∫

Ω

|ψ+|2 =
1

2
= −
∫

Ω

|ψ−|2. (9)

Given the constraints on the L2-norms, we may then complete the square in the quartic terms

of the potential by adding in constant multiples of |ψ±|2 without changing the minimizers,

to arrive at an energy which more closely resembles (1),

G̃ε̃(Ψ) =

∫
Ω

{
1

2
|∇Ψ|2 − ω〈Ψ, i∂θΨ〉+

1

ε̃2
(|Ψ|2 − 1)2 +

β

ε̃2
[
|ψ−|2 − |ψ+|2

]2}
,

with ε̃2 = ε2

2(b+a)
and β = −2 (b−a)

(b+a)
. Thus we recover the form of (1) with β > 0 provided that

−a < b < a. As for the single-component BEC energy (see Ignat & Millot [IM1],) we expect
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that for ω = O(| ln ε̃|), minimizers will have vortices in Ω, and blow-up around vortex centers

will result in locally minimizing entire solutions of our system (3). In particular, the small-

scale structure of vortices in the two-component BEC for −a < b < a will be determined by

our analysis of the blow-up problem (3). Since the parameter regime −a < b < 0 corresponds

to β > 1, the degree [n+, n−] = [1, 1] vortices will be radially symmetric, and well-described

by the classical Ginzburg–Landau model. However, the range 0 < b < a corresponds to

β ∈ (0, 1), and in this case the [n+, n−] = [1, 1] vortices will decompose into two separate

vortex cores, with |Ψ| bounded away from zero in the core, the “coreless” vortices.

2 The Symmetric Dirichlet Problems

We begin with the fundamental boundary value problems, with symmetric data given on the

boundary of the unit disk Ω = D1: for n± ∈ {0, 1}, define

I[n+,n−](ε; β) = min

{
Eε(Ψ) : Ψ ∈ H1(D1;C2), Ψ|∂D1 =

1√
2

(ein+θ, ein−θ)

}
, (10)

For future use, we also define analogous values for the disk Dδ centered at the origin and of

radius δ:

J[n+,n−](ε, δ; β) := min

{
Eε(Ψ) : Ψ ∈ H1(Dδ;C2), Ψ|∂Dδ =

1√
2

(ein+θ, ein−θ)

}
(11)

= I[n+,n−]

( ε
δ

; β
)
,

by scaling. For comparison purposes, we also define the analogous quantity for the Ginzburg–

Landau functional,

IGL(ε) = min
{
Gε(u) : u ∈ H1(D1;C), u|∂D1 = eiθ

}
, (12)

Gε(u) =

∫
D1

(
1

2
|∇u|2 +

1

4ε2
(|u|2 − 1)2

)
dx,

and JGL(ε, δ) = IGL(ε/δ) in analogy with (11). Our analysis depends on comparisons between

the following vortex core energies, (see [AB2], [BBH]),

Q[1,1] = lim
ε→0

(
I[1,1](ε; β)− π| ln ε|

)
,

Q[1,0] = Q[0,1] = lim
ε→0

(
I[1,0](ε; β)− π

2
| ln ε|

)
,

QGL = lim
ε→0

(IGL(ε)− π| ln ε|)

 . (13)

From [AB2] (using the renormalized energy for the problem I[1,1](ε; β)) we have

Q[1,1](β) ≤ 2Q[1,0](β), for all β > 0. (14)
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We will constantly use the following elementary but useful identity:

F (Ψ) :=
(
|Ψ|2 − 1

)2
+ β(|ψ+|2 − |ψ−|2)2

= 2

[(
|ψ+|2 −

1

2

)2

+

(
|ψ−|2 −

1

2

)2
]

+ 4(β − 1)S2, (15)

and we recall that the Spin is given by

S =
1

2

(
|ψ−|2 − |ψ+|2

)
.

Lemma 2.1. For all β > 0, I[1,1](ε; β) ≤ IGL(ε). For β ≥ 1, I[1,1](ε; β) = IGL(ε).

For β > 1 and for any minimizer Ψε of I[1,1](ε; β), we have

Ψε(x) =
1√
2

(u(x), u(x)) ,

where u(x) is a minimizer for the problem IGL(ε).

For β = 1 and for any minimizer Ψε of I[1,1](ε; 1), we have

Ψε(x) =
1√
2

(
u1(x), u2(x)

)
,

where u1, u2 are minimizers for the problem IGL(ε).

Proof. Let uε be the minimizer of IGL(ε), and Uε = 1√
2
(uε, uε). Then, Uε is admissible for

I[1,1](ε; β) and has spin zero, and therefore

I[1,1](ε; β) ≤ Eε(Uε) = Gε(uε) = IGL(ε),

for each ε > 0 and β > 0.

If β ≥ 1, let Ψε = (ψε+, ψ
ε
−) minimize I[1,1](ε; β), and set vε± =

√
2ψε±. Using (15), we

have, with Sε =
1

2
(|ψε+|2 − |ψε−|2),

IGL(ε) ≤ min{Gε(v
ε
+), Gε(v

ε
−)}

≤ 1

2

[
Gε(v

ε
+) +Gε(v

ε
−)
]

=

∫
D1

{
1

2
|∇Ψε|2 +

1

2ε2

((
|ψε+|2 −

1

2

)2

+

(
|ψε−|2 −

1

2

)2
)}

= Eε(Ψ
ε)− β − 1

ε2

∫
D1

S2
ε

= I[1,1](ε; β)− β − 1

ε2

∫
D1

S2
ε .
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Thus, I[1,1](ε; β) = IGL(ε) for all ε > 0 and β ≥ 1. For β > 1, Sε(x) ≡ 0, and Eε(Ψ
ε) =

1
2
[Gε(v

ε
+) + Gε(v

ε
−)], and we conclude that each component must be a minimizer for IGL(ε).

Since |vε+| = |vε−|, the zeros of vε± coincide. By Theorem 9.1 of Pacard and Rivière [PR],

vε+ = vε−.

For β = 1, Eε decomposes into a Ginzburg–Landau energy for each component ψ±, and

the conclusion is immediate.

For β > 1, there is a net energy saving in replacing two simple vortices, of degree pairs

[0, 1] and [1, 0], by a single compound vortex at the same limiting location:

Lemma 2.2. For all β > 1, Q[1,1](β) = QGL < 2Q[1,0](β).

Proof. The assertion Q[1,1](β) = QGL for all β ≥ 1 follows trivially from Lemma 2.1, and

so Q[1,0](β) ≥ 1
2
QGL for β ≥ 1 follows from (14). Note also that when β = 1 by (15) the

components decouple,

Eε(Ψ) =
1

2

(
Gε(
√

2ψ+) +Gε(
√

2ψ−)
)
,

and hence I[1,0](ε; 1) = 1
2
IGL(ε) for all ε > 0.

Suppose that Q[1,0](β) = 1
2
QGL for some β > 1, and let Ψε attain the minimum I[1,0](ε; β)

for that β. Then,

I[1,0](ε; β) = Eε,β(Ψε) = Eε,1(Ψε) +
β − 1

ε2

∫
D1

S2
ε

≥ I[1,0](ε, 1) +
β − 1

ε2

∫
D1

S2
ε

≥ 1

2
IGL(ε) +

β − 1

ε2

∫
D1

S2
ε .

In particular, we conclude that
1

ε2

∫
D1

S2
ε → 0.

By the analysis of problem I[1,0](ε; β) in [AB1], minimizers Ψε have a vortex ball Dε (of

radius O(ε)) with degree deg(ψε+, ∂Dε) = 1, deg(ψε−, ∂Dε) = 0. Rescaling by ε and passing to

the limit, these converge to a locally minimizing entire solution Ψ∗ of (3) in R2, with degree

[n+, n−] = [1, 0] at infinity. The convergence being uniform on any compact set, the limit Ψ∗

has spin S∗ = 1
2
(|ψ∗−|2 − |ψ∗+|2) ≡ 0 in R2. This contradicts the main result of [ABM], where

it is proven that |ψ∗−| is bounded away from zero for such solutions (and hence S∗ > 0 at the

zero of ψ∗+.)

We now turn to the case 0 < β < 1, where the situation is very different.
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Lemma 2.3. For all β ∈ (0, 1),

Q[1,1](β) ≤ 2Q[1,0](β) ≤ QGL − (1− β)
π

4
.

In particular, for β < 1 we may already conclude that the Ginzburg–Landau solution

is not the minimizer for the problem I[1,1](ε; β), and hence Theorem 1.1 follows from Lem-

mas 2.3 and 2.1. It is an interesting open question to determine whether the strict inequality

Q[1,1](β) < 2Q[1,0](β) holds or not.

Proof. Let uε minimize IGL(ε), and set ψ+ = 1√
2
uε, ψ− = 1√

2
. Then Ψ = (ψ+, ψ−) is

admissible for I[1,0](ε; β), and

I[1,0](ε; β) ≤ Eε(Ψ)

=

∫
D1

{
1

4
|∇uε|2 +

(1 + β)

16ε2
(1− |uε|2)2

}
=

1

2
Gε(uε)−

(1− β)

16ε2

∫
D1

(1− |uε|2)2.

By blow-up and the result of Brezis, Merle, and Rivière [BMR] we have

1

ε2

∫
D1

(1− |uε|2)2 → 2π,

and therefore we conclude that

Q[1,0](β) ≤ 1

2
QGL − (1− β)

π

8
,

as claimed.

Lemma 2.4. For all β ∈ (0, 1),

QGL ≤ Q[1,1](β) + (1− β) lim inf
ε→0

1

ε2

∫
D1

S2
ε dx,

where Sε is the spin associated to any minimizer Ψε of I[1,1](ε; β).

Proof. Let Ψε minimize I[1,1](ε; β) with 0 < β < 1, and set v± =
√

2ψε±. Each v± is admissible

for IGL(ε), hence

IGL(ε) ≤ 1

2
(Gε(v+) +Gε(v−))

=

∫
D1

[
1

2
|∇Ψε|2 +

1

2ε2

((
|ψε+|2 −

1

2

)2

+

(
|ψε−|2 −

1

2

)2
)]

(16)

= Eε(Ψ
ε) +

(1− β)

ε2

∫
D1

S2
ε

= I[1,1](ε; β) +
(1− β)

ε2

∫
D1

S2
ε .
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Subtracting π| ln ε| from both sides and passing to the limit we obtain the desired conclusion.

By putting together Lemma 2.3 with Lemma 2.4 we obtain interesting information about

the minimizers of the problem I[1,1](ε; β): when 0 < β < 1, a fixed amount of the core energy

must come from the spin term.

Corollary 2.5. If Ψε is any minimizer of I[1,1](ε; β) with 0 < β < 1, and Sε is its spin, then

lim inf
ε→0

1

ε2

∫
D1

S2
ε dx ≥

π

4
.

A similar calculation applies also to the fractional degree case:

Lemma 2.6. Assume 0 < β < 1. Then, for any minimizer Ψε of I[1,0](ε; β), its spin Sε

satisfies:

lim inf
ε→0

1

ε2

∫
D1

S2
ε dx ≥

π

8
.

Proof: Let Ψε minimize I[1,0](ε; β) and v± =
√

2ψε±. Now only v+ is admissible for the

problem IGL(ε), so

1

2
IGL(ε) ≤ 1

2
Gε(v+)

≤ 1

2
[Gε(v+) +Gε(v−)]

≤ Eε(Ψ
ε) +

(1− β)

ε2

∫
D1

S2
ε

= I[1,0](ε; β) +
(1− β)

ε2

∫
D1

S2
ε ,

where we have applied the same reasoning in the next-to-last line as in the computation (16)

above. Subtracting π
2
| ln ε| from both sides and passing to the limit we have

1

2
QGL ≤ Q[1,0](β) + lim inf

ε→0

(1− β)

ε2

∫
D1

S2
ε .

The conclusion then follows from Lemma 2.3.

♦

3 A different way to measure core energies

In this section we consider entire solutions Ψ in R2, satisfying the integrability condition (4),

with given degree [n+, n−] at infinity. Measured on all of R2, the energy (defined in (5)) of
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such a solution diverges. However, when properly renormalized, there is a well-defined core

energy, defined as the limit below:

Lemma 3.1. Let Ψ solve (3) in R2, satisfying (4). Then, the following limit exists:

lim
R→∞

[
E(Ψ;DR)− π

2
(n2

+ + n2
−) lnR

]
. (17)

For locally minimizing Ψ we expect more. In the case of the single Ginburg–Landau

equation

−∆U = (1− |U |2)U, (18)

it is known from Shafrir [Sh] that the only nontrivial solutions which are locally minimizing

for the energy

G∗(U ; Ω) =

∫
Ω

{
1

2
|∇U |2 +

1

4
(|U |2 − 1)2

}
,

have degree deg(U,∞) = ±1. And for those (unique, by [M2]) local minimizers, the anal-

ogous limit (17) coincides with the vortex core energy defined via the symmetric Dirichlet

problem (12),

QGL = lim
R→∞

(G∗(u;DR)− π lnR) .

We will show that the same is true for Ψ:

Proposition 3.2. A nontrivial local minimizer of (3) satisfying (4) must have degrees n± ∈
{0,±1}.

Proposition 3.3. For any β > 0 and for any given degrees n± ∈ {0,±1}, if Ψ is an entire

solution satisfying (4), then

lim
R→∞

[
E(Ψ;DR)− π

2
(|n+|+ |n−|) lnR

]
≥ Q[n+,n−].

If in addition Ψ is a local minimizer of energy, then equality holds in the above.

We begin by proving Lemma 3.1.

Proof of Lemma 3.1. By the estimates in [ABM], there exists R0 > 0 for which the solution

Ψ(x) admits a decomposition for |x| ≥ R0 in the following form:

ψ±(x) = ρ±(x) exp[iα±(x)], α±(x) = n±θ + χ±(x),

with χ±(x)→ φ± (constants) uniformly as |x| → ∞.

}
(19)
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Without loss of generality we may take φ± = 0, so χ±(x) → 0 uniformly as |x| → ∞.

Moreover, the estimates in [ABM] imply that for large r,∣∣∣∣ρ± − 1√
2

∣∣∣∣ ≤ c

r2
(20)

|∇ρ±(x)| ≤ c

r3
(21)∫

|x|≥R0

[
|∇ρ±|2 + |∇χ±|2

]
<∞, (22)

for R0 sufficiently large that the decomposition (19) holds.

First, we observe that for any R > R0, by an integration by parts we have:∫
DR\DR0

∇χ± · ∇θ = 0.

Thus,

E(Ψ;DR \ DR0)−
π

2
(n2

+ + n2
−) ln

R

R0

=

∫
DR\DR0

f,

with

f =
∑
±

[
|∇ρ±|2 +

(
ρ2
± −

1√
2

)
n2
±

r2
+ ρ2

±|∇χ±|2 + 2n±

(
ρ± −

1√
2

)
∇θ · ∇χ±]

]
+

1

4
(ρ2

+ + ρ2
− − 1)2 +

β

4
(ρ2

+ − ρ2
−)2.

Using the estimates (20)–(22), f is integrable in R2 \ DR0 ; writing

E(Ψ;DR)− π

2
(n2

+ + n2
−) lnR = E(Ψ;DR0)−

π

2
(n2

+ + n2
−) lnR0 +

∫
DR\DR0

f,

we conclude that the limit R→∞ exists.

Next, we do a patching argument as in [Sh].

Lemma 3.4. Let Ψ be an entire solution of (3) satisfying (4). Then, there exists a family

Ψ̃R ∈ H1(DR;C2) of functions so that

Ψ̃R(x) = Ψ(x) for |x| ≤ R
2

,

Ψ̃R(x) =
1√
2

[
ei(n+θ+φ+), ei(n−θ+φ−)

]
, on |x| = R, for constants φ± ∈ R,∫

DR
|∇Ψ̃R|2 =

∫
DR
|∇Ψ|2 + o(1),

∫
DR

(|Ψ̃R|2 − 1)2 =

∫
DR

(|Ψ|2 − 1)2 + o(1),∫
DR
S̃2
R =

∫
DR
S2 + o(1),
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as R→∞, where S̃R = 1
2
(|ψR,−|2 − |ψR,+|2). In particular,

E(Ψ̃R;DR) = E(Ψ;DR) + o(1)

as R→∞.

Proof: We employ the same decomposition (19) for ψ±(x), |x| ≥ R0, as in the proof of

Lemma 3.1. Define the cutoff,

L(r) = LR(r) =


0 if r ≤ R

2
,

ln(2r/R)
ln 2

, if R
2
≤ r ≤ R,

1 if r ≥ R.

We define our modification

Ψ̃R =
(
ψ̃R,+, ψ̃R,−

)
, ψ̃R,± = ρ̃±(x) exp[iα̃±],

ρ̃±(x) =
1√
2
L(r) + (1− L(r))ρ±(x), α̃±(x) = n±θ + (1− L(r))χ±(x).

 (23)

Then,

|∇ρ̃±|2 − |∇ρ±|2 =
1

(ln 2)2r2

(
1√
2
− ρ±

)2

+ (L2 − 2L)|∇ρ±|2

+
2

r ln 2
(1− L)

(
1√
2
− ρ±

)
∂ρ±
∂r

.

By combining the estimates 0 ≤ L(x) ≤ 1, ρ2
+ + ρ2

− < 1, |∇ρ±| ≤ Cr−3 (see [ABM]) with

(22), we obtain ∫
R/2<|x|<R

∣∣|∇ρ̃±|2 − |∇ρ±|2∣∣ dx→ 0

as R→∞.

Let C = [ln 2]−1. Then,

|∇α̃±|2 − |∇α±|2 = |∇χ±|2[(1− L)2 − 1] +
C

r2
χ2
± − 2L

n±
r

(∇χ± · θ̂)

− 2C

r
(1− L)χ±(∇χ± · r̂).

We expand

ρ̃2
±|∇α̃±|2 − ρ2

±|∇α±|2 = ρ2
±
(
|∇α̃±|2 − |∇α±|2

)
+ |∇α±|2

(
ρ̃2
± − ρ2

±
)

+
(
ρ̃2
± − ρ2

±
) (
|∇α̃±|2 − |∇α±|2

)
. (24)
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Defining A = {R/2 < |x| < R} and taking each term separately,∣∣∣∣∫
A

ρ2
±
(
|∇α̃±|2 − |∇α±|2

)∣∣∣∣ ≤ ∫
A

∣∣|∇α̃±|2 − |∇α±|2∣∣
≤ C

∫
A

[
|∇χ±|2 +

1

r
|∇χ±|+

1

r2
χ2
±

]
,

with constant C independent of R. The first term tends to zero by (22) directly. For the

second,∫
A

1

r
|∇χ±| ≤

[
2π

∫ R

R/2

dr

r

∫
|x|≥R

|∇χ±|2
]1/2

≤
[
2π ln 2

∫
|x|≥R

|∇χ±|2
]1/2

→ 0,

again by (22). For the last term,∫
A

1

r2
χ2
± ≤ 2π

∫ R

R/2

dr

r
sup
|x|≥R/2

χ2
± = 2π ln 2 sup

|x|≥R/2
χ2
± → 0,

since χ± → 0 uniformly as |x| → ∞. Thus, the first term of (24) tends to zero as R→∞.

For the second term of (24), note that by (20),∫
A

|ρ̃2
± − ρ2

±| |∇α±|2 ≤
∫
A

c

r2

(
n2
±

r2
+ |∇χ±|2

)
→ 0,

again using (22) for the second piece. The third integral is estimated in a similar way to the

first one and also vanishes as R→∞. In conclusion,∣∣∣∣∫
A

ρ̃2
±|∇α̃±|2 − ρ2

±|∇α±|2
∣∣∣∣→ 0.

The estimate (20) also implies

(|Ψ|2 − 1)2 + 4S2 = O
(
r−4
)

and (|Ψ̃R|2 − 1)2 + 4S̃2
R = O

(
r−4
)
.

Therefore, we have ∫
A

|(|Ψ|2 − 1)2 − (|Ψ̃R|2 − 1)2|+ |S2 − S̃2
R| → 0,

as R→∞. Putting these results together we obtain

|E(Ψ̃R;DR)− E(Ψ;DR)| = |E(Ψ̃R;A)− E(Ψ;A)| → 0

as R→∞, which completes the proof of the lemma.

♦
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Note that by the same procedure as above, but with the choice

ρ̂±(x) =
1√
2

(1− LR(r)) + LR(r)ρ±(x), α̂±(x) = n±θ + LR(r)χ±,

(and LR as in the proof of Lemma 3.4,) we obtain the opposite patching result, connecting

a given solution outside a large ball DR to the symmetric boundary condition on ∂DR/2:

Lemma 3.5. Let Ψ be an entire solution of (3) satisfying (4). Then, there exists a family

Ψ̂R ∈ H1(DR \ DR/2;C2) of functions so that

Ψ̂R(x) = Ψ(x) for |x| = R,

Ψ̂R(x) =
1√
2

(
ei(n+θ+φ+), ei(n−θ+φ−)

)
, on |x| = R/2, for constants φ± ∈ R,∫

DR\DR/2
|∇Ψ̂R|2 =

∫
DR\DR/2

|∇Ψ|2 + o(1),∫
DR\DR/2

(|Ψ̂R|2 − 1)2 =

∫
DR\DR/2

(|Ψ|2 − 1)2 + o(1),

∫
DR\DR/2

Ŝ2
R =

∫
DR
S2 + o(1),

as R→∞, where ŜR = 1
2
(|ψR,−|2 − |ψR,+|2). In particular,

E(Ψ̂R;DR \ DR/2) = E(Ψ;DR \ DR/2) + o(1)

as R→∞.

Proof of Proposition 3.2. The proof closely follows that of Theorem 2 in [Sh]. Let Ψ be a

local minimizer. If either |n+| ≥ 2 or |n−| ≥ 2, we must have n2
+ + n2

− > |n+| + |n−|, and

hence Lemma 3.1 implies that for all R sufficiently large,

lim
R→∞

E(Ψ;DR)

lnR
=
π

2
(n2

+ + n2
−) >

π

2
(|n+|+ |n−|). (25)

By Lemma 3.5, for R large we obtain Ψ̂R with constants φ±, defined in DR\DR/2. Denote

by

G∗(U ; Ω) := Gε=1(U ; Ω) =

∫
Ω

{
1

2
|∇U |2 +

1

4
(|U |2 − 1)2

}
,

the Ginzburg–Landau energy for U ∈ H1
loc(Ω;C). Taking Ω = DR/2, let U±R minimize the

Ginzburg–Landau energy G∗ with boundary condition U±R |∂DR/2 = ei[n±θ+φ±]. By the results

of Brezis, Bethuel, & Hélein [BBH],

G∗(U
±
R ;DR/2) = π|n±| ln(R/2) +O(1).
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Now let

ΦR(x) =

{(
1√
2
U+
R ,

1√
2
U−R

)
, in DR/2

Ψ̂R(x), in DR \ DR/2

.

Since Ψ is a local minimizer, we have

E(Ψ;DR) ≤ E(ΦR;DR)

=
1

2

[
G∗(U

+
R ;DR/2) +G∗(U

−
R ;DR/2)

]
+ E(Ψ̂R;DR \ DR/2)

=
π

2
(|n+|+ |n−|) ln(R/2) + E(Ψ;DR \ DR/2) +O(1).

From Lemma 3.1, it follows that

E(Ψ;DR \ DR/2) =
π

2
(n2

+ + n2
−) ln 2 + o(1),

as R→∞, and hence

E(Ψ;DR) ≤ π

2
(|n+|+ |n−|) lnR +O(1).

This contradicts (25).

Proof of Proposition 3.3. Let Ψ be an entire solution to (3) satisfying (4) with degrees n± ∈
{0, 1} at infinity. (The degree -1 case may be obtained by complex conjugation.) Multiplying

each component ψ± by a complex constant of modulus one if necessary, we may assume that

ψ± → 1√
2
ein±θ as |x| → ∞ (that is, φ± = 0.) For large R, let Ψ̃R be as in Lemma 3.4, so

that Ψ̃R|∂DR = 1√
2
(ein+θ, ein−θ). Note that by scaling,

J[n+,n−](1, R; β) = min

{
E(Ψ;DR) : Ψ|∂DR =

1√
2

(ein+θ, ein−θ)

}
= I[n+,n−]

(
1

R
; β

)
. (26)

Using (12) we conclude that

E(Ψ;DR) = E(Ψ̃R;DR)− o(1)

≥ J[n+,n−](1, R; β)− o(1) =
π

2
(n+ + n−) lnR +Q[n+,n−] − o(1),

which proves the first assertion in Proposition 3.3.

Now assume in addition that Ψ is a local minimizer. We now employ Lemma 3.5, with

Ψ̂R =
(
ψ̂R,+, ψ̂R,−

)
, ψ̂R,± = ρ̂±(x) exp[iα̂±],

ρ̂±(x) =
1√
2

(1− LR(r)) + LR(r)ρ±(x), α̂±(x) = n±θ + L(r)χ±(x)

 , (27)
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so that

Ψ̂R|∂DR/2 =
1√
2

(ein+θ, ein−θ), Ψ̂R|∂DR = Ψ|∂DR ,

and for all R > R0,

E(Ψ̂R;DR \ DR/2) = E(Ψ;DR \ DR/2) + o(1) =
π

2
(n+ + n−) ln 2 + o(1).

Next, we let VR(x) be a minimizer for the problem I[n+,n−](1, R/2; β) with symmetric data.

By scaling,

E(VR;DR/2) = J[n+,n−](1, R/2; β) = I[n+,n−](2/R; β) =
π

2
(n+ +n−) ln

(
R

2

)
+Q[n+,n−] + o(1).

We now define a trial function in DR,

ΦR(x) =

{
Ψ̂R(x), if R/2 ≤ |x| ≤ R

VR(x), if |x| ≤ R/2
.

Since ΦR = Ψ on ∂DR, and Ψ is a local minimizer, we have:

E(Ψ;DR) ≤ E(ΦR;DR)

= E(VR;DR/2) + E(Ψ̂R;DR \ DR/2)

=
π

2
(n+ + n−) lnR +Q[n+,n−] + o(1).

4 Locally minimizing solutions

We are ready to prove Theorem 1.3 stated in the Introduction, concerning locally minimizing

solutions of the system (3).

Proof of Theorem 1.3. First, if Ψ∗ has the form

Ψ∗ =
1√
2

(
u(x− a)eiφ+ , u(x− a)eiφ−

)
,

then it is a local minimizer. By Theorem 1.1, the minimizer for the boundary-value problem

I[1,1](ε; β) coincides with (
√

2 times) the Ginzburg-Landau minimizer in each component. By

blow-up around the vortex we converge to a solution to the system in R2 which is a local

minimizer. Since each component of the minimizer in D1 is a solution of the Ginzburg–

Landau equation, the solution we obtain is of the form above, and hence such solutions are

local minimizers.
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Now, assume Ψ∗ is any local minimizer with degree deg(ψ∗±,∞) = 1. We claim that its

spin S∗ = 1
2
(|ψ∗−|2 − |ψ∗+|2) = 0. Suppose not, and let

σ =

∫
R2

S2
∗ dx > 0.

Choose R0 large enough so that
∫
DR0

S2
∗ dx ≥ σ/2.

We use Lemma 3.4 with n± = 1 to bound the energies E(Ψ∗;DR) from below. Let

Ψ̃R = [ψ̃R,+, ψ̃R,−] be as in Lemma 3.4, uR,± =
√

2ψ̃R,±, and apply the identity (15):

E(Ψ∗;DR) = E(Ψ̃R;DR) + o(1)

=
1

2
(G∗(uR,+;DR) +G∗(uR,−;DR)) + (β − 1)

∫
DR
S̃2
R + o(1)

≥ IGL

(
1

R

)
+ (β − 1)

σ

2
+ o(1)

= π lnR +QGL + (β − 1)
σ

2
+ o(1), (28)

since uR,± = eiθ on ∂DR, and by scaling we have

JGL(1, R) := min{G∗(u;DR) : u ∈ H1
eiθ(DR)} = IGL(1/R).

Now let Ψ̂R be as in Lemma 3.5, and define

ΦR(x) =

{
Ψ̂R(x), if R/2 ≤ |x| ≤ R,

1√
2

(
uR/2e

iφ+ , uR/2e
iφ−
)
, if |x| < R/2,

where uR/2 is the minimizer of the Ginzburg–Landau functional in DR/2 with symmetric

data,

G∗(uR/2;DR/2) = min{G∗(v;DR/2) : v ∈ H1
eiθ(DR/2)} = IGL(2/R).

By the estimates of Lemma 3.5,

E(ΦR;DR) = E(Ψ̂R;DR \ DR/2) + E(ΦR;DR/2)

= E(Ψ∗;DR \ DR/2) + IGL(2/R) + o(1)

=

(
π ln

(
R

R/2

)
+ o(1)

)
+ (π ln(R/2) +QGL) + o(1)

= π lnR +QGL + o(1),

as R→∞. Hence, comparing with (28) we have

E(ΦR;DR) ≤ E(Ψ∗;DR)− (β − 1)
σ

2
+ o(1),
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and for σ > 0 we have that Ψ∗ cannot be a local minimizer for β > 1. Therefore the claim

is established, S∗ ≡ 0 for any local minimizer.

We then conclude that for any local minimizer, |ψ−| = |ψ+|. So ψ± have their zeros

coincident, and each solves

−∆ψ± = (1− 2|ψ±|2)ψ±

in R2 with degree one at infinity. By Mironescu [M2] each is (
√

2 times) an equivariant entire

solution of the Ginzburg–Landau equation, and therefore Ψ must have the form (6). This

completes the proof of (i) of Theorem 1.3.

Next we turn to the case 0 < β < 1. We first show that if Ψ is a local minimizing entire

solution in R2 with n± = 1, then ∫
R2

S2 dx ≥ π

4
,

with S = 1
2
(|ψ−|2 − |ψ+|2). Let

σR :=

∫
DR
S2 dx, σ =

∫
R2

S2 dx.

First, we bound E(Ψ;DR) from below. Apply Lemma 3.4 to obtain for each R > 0 a

corresponding Ψ̃R, and set ũ± = ψ̃R,±. By Lemma 3.4 and (15),

E(Ψ;DR) = E(Ψ̃R;DR)− o(1)

=
1

2
(G∗(ũ+;DR) +G∗(ũ−;DR))− (1− β)

∫
DR
S̃2 − o(1)

≥ IGL(1/R)− (1− β)σR − o(1)

= π lnR +QGL − (1− β)σ − o(1). (29)

For the upper bound we use the local minimality of Ψ. First, as in [BBH] (see [AB1])

for any pair of points a1, a2 ∈ D1, ρ > 0 fixed, and all small ε > 0 there exists Φ̂ with

Φ̂|∂D1 = 1√
2
[eiθ, eiθ] so that

Eε(Φ̂ε) = π ln

(
1

ρ

)
+W (a1, a2; [1, 0], [0, 1]) + I[1,0](ε; ρ) + I[0,1](ε; ρ) +O(ρ)

= π ln

(
1

ρ

)
− π

2

[
ln(1− |a1|2) + ln(1− |a2|2)

]
+ J[1,0](ε, ρ; β) + J[0,1](ε, ρ; β) +O(ρ),

where W is the renormalized energy associated to the Dirichlet problem (see [AB1].) For

any η > 0, fix a1 = −a2 6= 0 close enough to the origin and ρ > 0 such that

Eε(Φ̂ε) ≤ π ln

(
1

ρ

)
+ J[1,0](ε, ρ; β) + J[0,1](ε, ρ; β) + η.
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Using scaling and Lemma 2.3,

Eε(Φ̂ε) ≤ π ln

(
1

ρ

)
+ J[1,0](ε, ρ; β) + J[0,1](ε, ρ; β) + η

= π ln

(
1

ρ

)
+ 2

[π
2

ln
(ρ
ε

)
+Q[1,0]

]
+ η + o(1)

≤ π| ln ε|+QGL − (1− β)
π

4
+ η + o(1), (30)

where o(1) is with respect to ε→ 0.

We now construct a function ΦR with the same boundary values as Ψ on ∂DR. Applying

Lemma 3.5, we set ΦR = Ψ̂R in DR \DR/2, with ΦR|∂DR/2 = 1√
2
(eiθ+φ+ , eiθ+φ−), φ± constants.

Inside DR/2 we define ε = 2/R and ΦR = Φ̂2/R(2x/R), with Φε as constructed above. By

rescaling and Lemma 3.5 we have (as R→∞),

E(ΦR;DR) = E(Ψ̂R;DR \ DR/2) + E(ΦR;DR/2) + o(1)

= π ln

(
R

R/2

)
+ E 2

R
(Φ̂2/R) + o(1)

≤ π lnR +QGL − (1− β)
π

4
+ η + o(1).

Since Ψ is a local minimizer, we obtain the upper bound,

E(Ψ;DR) ≤ π lnR +QGL − (1− β)
π

4
+ η + o(1), (31)

for any η > 0, in the limit R→∞.

Putting together (29) and (31), since β < 1 we have

σ ≥ π

4
− η

1− β
.

Since η > 0 is arbitrary we obtain the estimate (7) in Theorem 1.3. As a corollary, we

observe that the equivariant, Ginzburg–Landau-like solutions are not local minimizers for

0 < β < 1.

To complete the proof of Theorem 1.3 we require the following uniqueness result for entire

solutions with a common zero in each component:

Proposition 4.1. Suppose Ψ is an entire solution of (3), satisfying (4), with [n+, n−] =

[1, 1]. If in addition ψ+(x0) = ψ−(x0) = 0 for some x0 ∈ R2, then there exist constants

φ± ∈ R with

ψ+(x) =
1√
2
u(x− x0)eiφ+ , ψ−(x) =

1√
2
u(x− x0)eiφ− , (32)

where u = f(r)eiθ is the equivariant, degree one entire solution to the Ginzburg–Landau

equation in R2.
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Remark 4.2. The proof of Proposition 4.1 is based on the method of Mironescu [M2], and

is deferred to the end of this section. The existence or non-existence of a locally minimizing

entire solution for (3) with degrees n+ = 1 = n− is an interesting open question. If such

a local minimizer were to exist, Proposition 4.1 implies that its vortices must be spatially

separated.

We may now complete the proof of Theorem 1.3. Since σ ≥ π
4
, the local minimizer Ψ

is not of the form (32), and hence by Proposition 4.1, we conclude that |Ψ(x)|2 6= 0 on R2.

By (20) there exists R > 0 so that |Ψ(x)|2 ≥ 1
4

for |x| > R, while on the compact set DR,

|Ψ(x)|2 is continuous and non-vanishing, thus bounded away from zero. This completes the

proof of Theorem 1.3.

Remark 4.3. When β = 1 the equations decouple completely, and each component satisfies

the Ginzburg–Landau equation in R2. In this special case there is a huge degeneracy, and

the solution space with degree [n+, n−] = [1, 1] is completely described by:

U(x) = Ua,b,φ+φ− =
1√
2

(
u(x− a)eiφ+ , u(x− b)eiφ−

)
,

where u = f(r)eiθ is the unique equivariant solution with degree one, a, b ∈ R2 are arbitrary

points in the plane, and φ± are arbitrary constants. Since the equivariant solution is a local

minimizer for Ginzburg–Landau and because the energy decouples when β = 1,

E(U ;DR) =
1

2
(G∗(u(x− a);DR) +G∗(u(x− b);DR)),

it is clear that each of these solutions is a local minimizer. The question then arises whether

there exist local minimizers with β < 1 which bifurcate from this degenerate family as β → 1.

Alas, if we calculate the L2 norm of the spin Sa,b,φ+,φ− associated to Ua,b,φ+,φ− , we have∫
R2

S2
a,b,φ+,φ− dx <

π

4
,

and the value approaches π/4 as |a− b| → ∞. In particular, by Theorem 1.3, no family Ψβ

of local minimizers for β → 1− can converge to a member of the family Ua,b,φ+,φ− , and so

there is no bifurcation.

Next, we complete the proof of Theorem 1.4 stated in the Introduction:
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Proof of Theorem 1.4. Let Ψε ∈ H1
g (Ω;C2) be minimizers of Eεn,β with 0 < β < 1. We argue

by contradiction, and assume that there is no such constant c > 0 for which |Ψ| ≥ c in Ω. In

that case, there exists a sequence εn → 0 and points pn ∈ Ω for which Ψεn(pn)→ 0. By the

methods of [BBH] extended to the energy Eε (see [AB2],) |Ψn| is bounded away from zero in

a neighborhood of the boundary ∂Ω, so in particular, we can assume dist(pn, ∂Ω)� εn for εn

sufficiently small. Blowing up around pn at scale εn, by standard estimates a subsequence of

the rescaled minimizers converge in Ck
loc to a locally minimizing solution Ψ̃ to (3), satisfying

(4), with Ψ(0) = 0. By Proposition 3.2, the degree pair deg(Ψ̃,∞) = [n+, n−] has one of

the forms [0, 0], [±1, 0], [0,±1], [±1,±1]. We claim that each is impossible. Indeed, from

(4), the only [0, 0] solution is constant (of modulus 1/
√

2) in each component. In [ABM]

it is proven that the [0,±1] and [±1, 0] locally minimizing solutions never vanish for any

β > 0. And Theorem 1.3 (ii) asserts the same conclusion for the [±1,±1] local minimizer

when 0 < β < 1. In conclusion, there must exist c > 0 for which |Ψε| ≥ c > 0 as claimed.

We conclude the section with the deferred proof of Proposition 4.1:

Proof of Proposition 4.1. We follow the uniqueness proof of Mironescu [M2]. Denote by

ρ = 1√
2
f . Without loss of generality, assume x0 = 0, and form the quotients

w±(x) =
ψ±(x)

ρ(|x|)
∈ C∞(R2 \ {0}).

We may then derive the system of equations satisfied by w±,

−∆w+ − 2
ρ′

ρ

∂w+

∂r
− 1

r2
w+ = ρ2

[
2− |w+|2 − |w−|2 + β(|w−|2 − |w+|2)

]
w+

−∆w− − 2
ρ′

ρ

∂w−
∂r
− 1

r2
w− = ρ2

[
2− |w+|2 − |w−|2 − β(|w−|2 − |w+|2)

]
w+.

 (33)

As in the derivation of the Pohozaev identity, we multiply each equation by x · ∇w±, and

integrate over the domain DR \ DR0 . The resulting identity has the form

F (R)− F (R0) = G(R,R0),

with

F (R) =

∫
∂DR

Rρ2

4

[
(2− |w+|2 − |w−|2)2 + β(|w−|2 − |w+|2)2

]
−
∑
±

∫
∂DR

[
1

2R
|w±|2 +

R

2

[
|∂rw±|2 − |∂τw±|2

]]
.
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and

G(R,R0) =

∫
DR\DR0

[
2rρ′

ρ

(
|∂rw+|2 + |∂rw−|2

)
+

2ρ2 + 2rρρ′

4

[
(2− |w+|2 − |w−|2)2 + β(|w−|2 − |w+|2)2

]]
.

Using the estimates (20)–(22) on the solutions ψ± for large R, the corresponding facts for the

Ginzburg–Landau profile ρ, we obtain F (R)−F (R0)→ 0 as both R→∞ and R0 → 0, and

thus conclude thatG(∞, 0) = 0. Since ρ > 0 and ρ′ > 0, we may conclude that |w+| = |w−| =
1 and ∂rw± = 0 in all of R2, and hence w± = w±(θ) = eiχ±(θ), that is ψ± = ρw± = ρeiχ±(θ).

By the estimates in [ABM], ψ± − 1√
2
ei(θ+φ±) → 0 uniformly as |x| → ∞, with constants

φ± ∈ R. In particular, χ± = φ± are constant, and ψ± = ρei(θ+χ±(θ)) = 1√
2
f(r)ei(θ+φ±) as

claimed.

5 Bifurcation of symmetric vortices

In this section we study the stability and bifurcation of the equivariant solutions of the

Dirichlet problem in the unit disk D1. For convenience, we replace the usual parameter ε by

λ = ε−2 in both Eε and the Ginzburg–Landau energy Gε, and (with abuse of notation) write

Eλ(Ψ) =

∫
D1

{
1

2
|∇Ψ|2 +

λ

4

(
|Ψ|2 − 1

)2
+
λβ

4

(
|ψ+|2 − |ψ−|2

)2
}
dx,

Gλ(u) =

∫
D1

[
1

2
|∇u|2 +

λ

4
(|u|2 − 1)2

]
.

We consider critical points Ψ ∈ H := {Ψ ∈ H1(D1;C2) : Ψ|∂D1 = 1√
2
(eiθ, eiθ)}, which solve

the Dirichlet problem,
−∆ψ+ = λ(1− |Ψ|2)ψ+ + λβ(|ψ−|2 − |ψ+|2)ψ+ in D1

−∆ψ− = λ(1− |Ψ|2)ψ− − λβ(|ψ−|2 − |ψ+|2)ψ− in D1

ψ± =
1√
2
eiθ on ∂D1

, (34)

in the unit disk D1, for fixed β, as λ ranges in the half-line λ ∈ (0,∞). We will show that if

0 < β < 1, the symmetric vortex solution

Uλ =

(
1√
2
uλ,

1√
2
uλ

)
,

where uλ = fλ(r)e
iθ is the degree-one equivariant solution of the classical Ginzburg–Landau

model in the unit disk, is stable (a strict minimizer of energy) for λ = ε−2 small, but loses

stability at some λβ = ε−2
β > 0.

First, we note that for λ small enough, there are no other solutions to (34):
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Proposition 5.1. There exists λ∗β > 0 so that for every λ < λ∗β the unique solution to (34)

is the symmetric solution Uλ.

Proof. First, define the convex set B = {Ψ ∈ H : |Ψ(x)| ≤ 1 in D1}. By Lemma 4.2 of [AB2],

any solution of (34) lies in B. The second variation of the energy around Ψ = (ψ+, ψ−) ∈ H

in direction Φ = (ϕ+, ϕ−) ∈ H1
0 (D1;C2) is:

E ′′λ(Ψ)[Φ] =

∫
D1

{
|∇Φ|2 + λ(|Ψ|2 − 1)|Φ|2 + 2λ 〈Ψ,Φ〉2

+βλ
[
|ψ+|2 − |ψ−|2

] [
|ϕ+|2 − |ϕ−|2

]
+ 2βλ [〈ψ+, ϕ+〉 − 〈ψ−, ϕ−〉]2

}
.

For any Ψ ∈ B, we have

E ′′λ(Ψ)[Φ] ≥
∫
D1

{
|∇Φ|2 − C(β)λ|Φ|2

}
dx,

with constant C(β) ≥ 0 independent of λ,Φ. By choosing λ∗β sufficiently small that C(β)λ

is smaller than the first Dirichlet eigenvalue of the Laplacian in D1 we may conclude that

E ′′λ(Ψ) is a strictly positive definite quadratic form on H1
0 (D1;C), for any Ψ ∈ B. Thus, Eλ

is strictly convex on B, and hence it has a unique critical point.

We also observe that the symmetric vortex solution Uλ is the unique solution to (34) for

which both components vanish at the origin:

Proposition 5.2. Suppose Ψ is a solution to (34) with ψ+(0) = 0 = ψ−(0). Then Ψ = Uλ.

Proof. The proof is exactly as for Proposition 4.1: as before, let w± = ψ±
ρ(|x|) , with ρ(r) =

1√
2
|uλ|, so w± = eiθ on ∂D1. In particular, |w±|2 = |∂τw±|2 = 1 on ∂D1, so

F (1) = −1

2

∫
∂D1

|∂rw+|2 + |∂rw−|2 ≤ 0.

Arguing as above, we may conclude that G(1, 0) = 0, and hence |w±| = 1 and ∂rw± = 0 in

D1, with w± = eiθ on ∂D1. Thus, w±(x) = eiθ on D1, that is ψ± = ρ(r)eiθ = 1√
2
uλ.

It is important to recognize the role played by two groups of symmetry acting on the

problem. First, the problem is invariant under the action of the group S1, with the following

representation: for ψ ∈ H1
eiθ

(D1;C), writing the independent variable in complex form z =

x+ iy, we represent ξ ∈ S1 ⊂ C via

(Rξψ)(z) = ξψ(ξ z).
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By abuse of notation, for Ψ = (ψ+, ψ−) ∈ H we define

RξΨ = (Rξψ+ , Rξψ−) .

Our problem is also invariant with respect to the involution,

TV = (−v−(−x) , −v+(−x)) , V = (v+(x), v−(x)). (35)

The equivariant solution Uλ is fixed by both groups, RξUλ = Uλ = TUλ, for all ξ ∈ S1.

With the goal of studying bifurcations from the symmetric solutions, our first task is to

study the spectrum of the linearization of the energy around Uλ,

E ′′λ(Uλ)[Φ] =

∫
D1

[
|∇Φ|2 + λ(|uλ|2 − 1)|Φ|2 + λ 〈uλ, ϕ+ + ϕ−〉2 + λβ 〈uλ, ϕ+ − ϕ−〉2

]
,

for Φ = (ϕ+, ϕ−) ∈ H1
0 (D1;C2). The quadratic form E ′′λ(Uλ) is associated to the linearized

operator,

LλΦ =

[
L+
λΦ

L−λΦ

]
=

[
−∆ϕ+ + λ(|uλ|2 − 1)ϕ+ + λ〈uλ, ϕ+ + ϕ−〉uλ + βλ〈uλ, ϕ+ − ϕ−〉uλ
−∆ϕ− + λ(|uλ|2 − 1)ϕ− + λ〈uλ, ϕ+ + ϕ−〉uλ − βλ〈uλ, ϕ+ − ϕ−〉uλ

]
.

For each λ > 0, Lλ defines a self-adjoint operator acting on its domain H2 ∩H1
0 (D1;C2) ⊂

L2(D1;C2) (with real scalar product). Moreover, by elliptic regularity theory, for all λ > 0

is has compact resolvent, and thus discrete spectrum, consisting of eigenvalues,

σ(Lλ) = {µ1(λ) ≤ µ2(λ) ≤ µ3(λ) ≤ · · · },

repeated according to their (finite) multiplicities, and ordered by the min-max principle for

each fixed λ > 0. . We seek the critical value λ = λβ at which the radial solution loses

stability with increasing λ. The group invariance under Rξ, ξ ∈ S1, and T are inherited by

the linearized operator, and each of the eigenspaces is invariant under these two symmetries.

We will uncover the spectral properties of the linearized operator Lλ via a sequence of

reductions, and prove analytic dependence on λ of eigenvalues and eigenfunctions provided

they are simple modulo the action of the group S1.

Reduction of Lλ

First, we reduce to a scalar problem: let

Lλϕ := −∆ϕ+ λ (|uλ|2 − 1)ϕ+ 2βλ 〈uλ, ϕ〉uλ,

as an operator acting on L2(D1;C), with associated quadratic form

Qλ(w) :=

∫
D1

[
|∇w|2 + λ(|uλ|2 − 1)|w|2 + 2βλ〈uλ, w〉2

]
.
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We also define the linearization of the classical Ginzburg–Landau energy,

G′′λ(uλ)[ϕ] =

∫
D1

[
|∇ϕ|2 + λ(|uλ|2 − 1)|ϕ|2 + 2λ 〈uλ, ϕ〉2

]
.

and

LGλϕ := −∆ϕ+ λ(|uλ|2 − 1)ϕ+ 2λ〈uλ, ϕ〉uλ.

By [M1], LGλ is a positive definite operator for all λ > 0.

Lemma 5.3. (1) For any β ≥ 1, Lλ is positive definite for all λ > 0.

(2) For any β > 0, µ is an eigenvalue of Lλ with eigenfunction Φ if and only if:

(i) either µ ∈ σ(LGλ );

(ii) or µ ∈ σ(Lλ) and Φ = (ϕ,−ϕ), where ϕ is an eigenfunction for Lλ.

Proof. A simple calculation shows that

E ′′λ(Uλ)[Φ] = G′′λ(uλ)[ϕ+] +G′′λ(uλ)[ϕ−] + (β − 1)λ

∫
D1

〈uλ, ϕ+ − ϕ−〉2 . (36)

By [M1], G′′λ(uλ) is positive definite, and thus (36) implies that Lλ is positive definite for

β ≥ 1, proving (1).

Now let β > 0 be arbitrary, and assume Φ = (ϕ+, ϕ−) solves LλΦ = µΦ. We then have

L+
λΦ = LGλϕ+ + (β − 1)λ 〈uλ, ϕ+ − ϕ−〉uλ

L−λΦ = LGλϕ− − (β − 1)λ 〈uλ, ϕ+ − ϕ−〉uλ.

Adding these two identities together,

LGλ (ϕ+ + ϕ−) = L+
λΦ + L−λΦ = µ(ϕ+ + ϕ−).

Thus, if µ /∈ σ(LGλ ), we must have −ϕ− = ϕ+ =: ϕ, and moreover L±λΦ = Lλϕ = µϕ.

This proves the only if part. The “if” part is obvious.

Denote the eigenvalues (repeated by multiplicity) of Lλ by

σ(Lλ) = {µ̃1(λ) ≤ µ̃2(λ) ≤ · · · }.

The next step is to decompose w ∈ H1
0 (D;C) in its Fourier modes in θ:

w =
∑
n∈Z

bn(r)einθ.
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Using Parseval’s identity, we have∫
D1

〈uλ, w〉2 dx =
π

2

∫ 1

0

f 2
λ(r)

∑
n∈Z

|bn+1 + b1−n|2 r dr.

Consequently, the operator Lλ can be identified to a direct sum in Fourier modes,

Lλw ∼=
∞⊕
n=0

L(n)
λ (bn+1, b1−n), (37)

where the operators L(n)
λ are associated to the quadratic forms

Q(n)
λ (bn+1, b1−n) := π

∫ 1

0

[
|b′n+1|2 + |b′1−n|2 +

(n+ 1)2

r2
|bn+1|2 +

(1− n)2

r2
|b1−n|2

+ λ(f 2
λ − 1)

(
|bn+1|2 + |b1−n|2

)
+ λβf 2

λ |bn+1 + b1−n|2
]
r dr,

for n 6= 0, and

Q(0)
λ (b1) := π

∫ 1

0

[
|b′1|2 +

1

r2
|b1|2 + λ(f 2

λ − 1)|b1|2 + λβf 2
λ |b1 + b1|2

]
r dr.

If we let
X = {f : (0, 1]→ C; f(r)/r ∈ L2, f ′ ∈ L2, f(1) = 0},

Y = {f : (0, 1]→ C; f ′ ∈ L2, f(1) = 0},

then: Q(0)
λ acts on X, Q(1)

λ acts on X ⊕ Y and, for n 6= 0, 1, Q(1)
λ acts on X ⊕X.

The spectrum of this direct sum is given by the union of the eigenvalues of the operators

L(n)
λ . As we show below, only one of these operators may contribute an eigenvalue near zero.

Define (in Fourier Space)

L̃λw̃ :=
⊕
n 6=1

L(n)
λ (bn+1, b1−n),

where w̃ =
∑

n 6=0,2 bn(r)einθ, and so Lλw ∼= L(1)
λ (b2, b0)⊕ L̃λw̃. Let Q̃λ denote the quadratic

form associated to L̃λ.

Lemma 5.4. There exists a function m0(λ) > 0 such that inf σ(L̃λ) ≥ m0(λ) > 0 for every

λ > 0 and, in addition, inf
I
m0(λ) > 0 for each compact interval I ⊂ (0,∞).

Proof. This follows from the reductions described on page 337 of [M1]. Let w̃ ∈ H1
0 (D1;C)

with associated coefficients {bn(r)}n6=0,2, such that
∑

n6=0,2 ‖bn‖2
L2((0,1);r dr) = 1. We define
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a1 := i(
∑

n6=0,2 |bn|2)1/2. Then, a1(r) is purely imaginary, ‖a1‖L2((0,1);r dr) = 1, and

Q̃λ(w̃) ≥ π
∑
n6=0,2

∫ 1

0

{
|b′n(r)|2 +

n2

r2
|bn(r)|2 + λ(f 2

λ(r)− 1)|bn(r)|2
}
r dr

≥ π

∫ 1

0

{
|a′1(r)|2 +

1

r2
a2

1(r) + λ(f 2
λ(r)− 1)|a1(r)|2

}
r dr

=
1

2
Q

(0)
λ (a1, a1).

Now set m0(λ) := inf 1
2
Q

(0)
λ (a1, a1), where the infimum is taken over all a1 ∈ H1

0 ((0, 1)) with

‖a1‖L2((0,1);r dr) = 1. In [M1] it is proven that m0(λ) > 0 for all λ > 0. By the min-max

principle, inf σ(L̃λ) ≥ m0(λ) > 0.

It remains to show that m0(λ) can be bounded away from zero when λ is bounded

away from zero. To do that, we make a transformation as in [M1] in order to consider a

fixed system of equations on an increasing family of disks DR, with R =
√
λ. We define

ûR(x) := uλ(x/
√
λ) = F (r, R)eiθ, and â1(r) = a1(r/

√
λ), for r ∈ [0, R]. In this way,

m0(λ)

λ
= m̂0(R) := inf

‖â1‖L2((0,R);r dr)=1
π

∫ R

0

{
|â′1|2 +

1

r2
â2

1(r) + (F (r, R)2(r)− 1)|â1|2
}
r dr.

We now show m̂0(R) is decreasing in R > 0. First, the radial profiles fR(r) are pointwise

decreasing in R: whenever R < R′, we have F (r, R′) < F (r, R) for all r ∈ (0, R). (Indeed, on

[0, R], F (·, R′) is a subsolution for the equation satisfied by F (·, R).) Using this fact and the

inclusion H1
0 (DR) ⊂ H1

0 (DR′), we find that m̂0(R′) ≤ m̂0(R). In case the two are equal, this

would imply that the minimizers of Q
(0)
λ in DR′ (which are nonnegative,) vanish identically in

DR′ \DR. This is impossible, by the maximum principle. Thus m̂0(R) is strictly decreasing.

Finally, given a fixed interval I = [Λ0,Λ1], whenever λ ∈ I,

m0(λ) = λm̂0(
√
λ) ≥ Λ0m̂0(

√
Λ1) := CI > 0.

Combining the results of Lemmas 5.3 and 5.4, we may conclude:

Corollary 5.5. If µk(λ) ∈ σ(Lλ) and µk(λ) ≤ 0 for some λ > 0, then µk(λ) ∈ σ(L(1)
λ ).

In particular, if µ1(λ) is to cross zero it must be because of the ground state eigenvalue

µ
(1)
1 (λ) of L(1)

λ . We perform one final reduction of the operator L(1)
λ : We define a quadratic

form Q
(1)
λ on real-valued radial functions (a0, a2) by

Q
(1)
λ (a0, a2) := π

∫ 1

0

[
(a′0)2 + (a′2)2 +

4

r2
a2

2 + λ(f 2
λ − 1)

(
a2

0 + a2
2

)
+ βλf 2

λ (a0 − a2)2

]
r dr.
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The self-adjoint operator associated to Q
(1)
λ is

Mλ

[
a0

a2

]
=

 −a′′0 −
1

r
a′0 + λ(f 2

λ − 1)a0 + βλf 2
λ(a0 − a2)

−a′′2 −
1

r
a′2 +

4

r2
a2 + λ(f 2

λ − 1)a2 − βλf 2
λ(a0 − a2)

 . (38)

Lemma 5.6. µ ∈ R is an eigenvalue of L(1)
λ over L2(([0, 1]; r dr);C2) if and only if it is an

eigenvalue of Mλ over L2(([0, 1]; r dr);R2). Moreover, if µ is a simple eigenvalue of Mλ

with eigenspace spanned by (a0, a2), then

ker(L(1)
λ − µI) = {t (ξ̄a0 , −ξa2) : ξ ∈ S1, t ∈ R}.

Proof. Let µ ∈ σ(L(1)
λ ) with (complex-valued) eigenvector (b0, b2), that is:

L(1)
λ

[
b0

b2

]
=

 −b′′0 −
1

r
b′0 + λ(f 2

λ − 1)b0 + βλf 2
λ(b0 − b2)

−b′′2 −
1

r
b′2 +

4

r2
b2 + λ(f 2

λ − 1)b2 + βλf 2
λ(b2 − b0)

 = µ

[
b0

b2

]
. (39)

We observe that a0 = Im b0, a2 = Im b2 will be eigenvectors ofMλ with the same eigenvalue

µ. On the other hand, it is clear that if (a0, a2) are (real-valued) eigenvectors of Mλ, then

(b0, b2) = (ia0, ia2) will be eigenvectors of L(1)
λ with the same eigenvalue. Thus, σ(L(1)

λ ) =

σ(Mλ).

Finally, suppose µ is a simple eigenvalue of Mλ with eigenspace spanned by (a0, a2). If

(b0, b2) is an eigenfunction of L(1)
λ , then (by the observation above) (Im b0, Im b2) = −q(a0, a2)

for q ∈ R. Similarly, (Re b0,−Re b2) is an eigenfunction of Mλ, and so (Re b0,−Re b2) =

p(a0, a2) for p ∈ R. Setting t =
√
p2 + q2 and ξ =

p+ iq

t
∈ S1, we have (b0, b2) =

t
(
ξ̄ a0 , −ξ a2

)
, as claimed.

We conclude this part with the following essential fact about the ground state eigenvalue

of Mλ:

Lemma 5.7. The ground state eigenvalue µ
(1)
1 (λ) of Mλ is simple. It is generated by

(a0(r;λ), a2(r;λ)) with 0 ≤ a2(r;λ) ≤ a0(r;λ), a0(r;λ), a2(r;λ) > 0 in (0, 1), a0(0;λ) > 0,

and a2(r;λ) = O(r2) for r → 0, for all λ > 0.

Proof. This fact follows as in [M1]: we claim that, up to a change of sign, 0 ≤ a2(r) ≤ a0(r)

holds for all r. Indeed, if not we define ã2(r) = min{|a0(r)|, |a2(r)|}, and similarly ã0(r) =

max{|a0(r)|, |a2(r)|}. Replacing a0, a2 respectively by ã0, ã2 does not change the quantity∫ 1

0

[|a0(r)|2 + |a2(r)|2] r dr, and the first, second, and fourth terms in Q
(1)
λ are unchanged.
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However, the third and last terms are reduced, contradicting the minimality of the Rayleigh

quotient at (a0, a2). By a standard argument, nonnegativity of the eigenfunctions and of

a0− a2 implies simplicity of the eigenvalue. Each function is strictly positive in (0, 1) by the

strong maximum principle (or the uniqueness theorem for ordinary differential equations).

The behavior of a0, a2 at r = 0 follows from the ordinary differential equations (see (16)

of [M1]) satisfied by a0, a2 in (0, 1).

Analyticity

In this part, we prove that the radial profile fλ is analytic in both λ and r, and conclude

real analytic dependence on λ of the simple eigenvalues of Lλ.

Proposition 5.8. fλ(r) is real-analytic in r ∈ [0, 1] and λ > 0.

As in the proof of Lemma 5.4, we rescale our problem to study a fixed equation in a

variable domain. We define

F (r, R) = fλ(r/
√
λ),

for r ∈ (0, R), with R =
√
λ. Then, F solves

−F ′′ − 1

r
F ′ +

1

r2
F = (1− F 2)F, F (0) = 0, F (R) = 1. (40)

While the existence of such an F (r) may easily be done by minimization of its energy

functional, to obtain the desired properties of F it will be necessary to relate the solution

F (r, R) of the boundary value problem to solutions φ(r, b) of a Cauchy-type problem,

−φrr −
1

r
φr +

1

r2
φ = (1− φ2)φ, φ(0, b) = 0, φ′(0, b) = b, (41)

where the value of b is chosen (by “shooting”) to achieve the boundary condition φ(R, b) = 1.

Indeed, it has been shown (see [CEQ]) that F (r, R) = φ(r, bR) for a unique value of b = bR >

0. We note that the equation being singular at r = 0, this is not a regular initial-value

problem, and thus the existence and analyticity of the solution do not follow directly from

the Picard existence theorem. (See Theorems 8.1 and 8.3 of [CL].)

In the remainder of this section it will be convenient to extend φ(r, b) to r ∈ C, with

complex parameter b ∈ C. The following equivalence follows easily from the variation of

parameters formula, and may be established by direct calculation.

Lemma 5.9. Let g(r) be continuous for |r| ≤ r0, r0 > 0. If f is continuous on |r| ≤ r0 and

solves

f(r) = br +
1

2

∫ r

0

(s
r
− r

s

)
s g(s) ds, (42)



Two-component Ginzburg–Landau 34

then f ∈ C2({r ∈ C : 0 < |r| < r0}) and solves

−frr −
1

r
fr +

1

r2
f = g(r), for r ∈ (0, r0), f(0, b) = 0, f ′(0, b) = b. (43)

Conversely, if f ∈ C1(Dr0) ∪ C2(Dr0 \ {0}) is a solution of (43), then it also solves (42).

Moreover, if g is analytic in Dr0, then f will be analytic for r ∈ Dr0 and b ∈ C.

The integral in (42) is a complex path integral, and the path is the straight-line segment

joining 0 to r in C. Note that in the analytic case, the singularity of the solution of (43) is

removable, and thus f is analytic in the entire disk Dr0 .

Using Lemma 5.9 we may obtain an analytic solution to the Cauchy-like problem (41)

by Picard iteration of the integral equation,

φ(r, b) = br +
1

2

∫ r

0

(s
r
− r

s

)
s (1− φ(s, b)2)φ(s, b) ds. (44)

Let b0 ∈ C be fixed, and define a rectangle in C× C,

R := {(r, b) : |r| ≤ ρ, |b− b0| ≤ ρ} with ρ := min

{
1

2
,

1

2|b0|

}
.

Lemma 5.10. For any fixed b0 ∈ C, there exists a unique solution to (41), which is analytic

for (r, b) ∈ R.

Proof. Let h(r, b) = φ(r, b)/r. Then, f solves (44) if and only if h solves the fixed-point

equation,

h(r, b) = T [h](r, b) := b+
1

2

∫ r

0

(
s2

r2
− 1

)
s(1− s2h(s, b)2)h(s, b) ds.

Define a class of continuous functions,

M := {h ∈ C(Dρ;C) : |h(r)− b0| ≤ 1 ∀r ∈ Dρ} .

We observe that if h ∈M , then for any r ∈ Bρ,

|rh(r)| ≤ |r(h− b0)|+ |rb0| ≤
1

2
+

1

2
= 1. (45)

Thus, |1− s2h2(s)| ≤ 2 for 0 < |s| < |r| ≤ ρ, and

|T [h](r)− b0| ≤ |b− b0|+
1

2

∫ |r|
0

|1− s2h2(s)| |sh(s)| d|s| ≤ 1

2
+ |r| ≤ 1,
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and hence T : M →M . If h1, h2 ∈M , then

|T [h2](r)− T [h1](r)| ≤ 1

2

∫ |r|
0

[
1 + |s|2(|h1|2 + |h1h2|+ |h2|2)

]
|s| |h2(s)− h1(s)| d|s|

≤ 2‖h2 − h1‖∞
∫ |r|

0

|s| d|s|

= |r|2 ‖h2 − h1‖∞ ≤
1

4
‖h2 − h1‖∞,

for any r ∈ Dρ, where we have used (45) to estimate the integrand. Thus, T is a contraction

on M , and there exists a unique continuous solution of the fixed point equation for r ∈ Dρ.

Since the solution may be characterized as the uniform limit of the iterates hn := T [hn−1],

h0 = b, and by induction each hn is analytic for (r, b) ∈ R, the solution h so obtained is

analytic for (r, b) ∈ R. Setting φ(r, b) = rh(r, b), we obtain a unique analytic solution to

(44), which by Lemma 5.9 provides a unique analytic solution of (41) for (r, b) ∈ R.

For r 6= 0, the initial value problem for the differential equation (41) is regular, and the

existence, uniqueness, and analytic dependence of solutions in the complex plane follow from

Theorem 8.3 of [CL]. Using this observation, we may extend the solution φ(r, b) analytically

along the real axis in r to obtain a maximally defined analytic solution. Indeed, for any

b, |b − b0| < ρ, define Rb to be the supremum of all real values R > 0 for which there

exists an analytic solution φ(r, b) of (41) in a C-neighborhood of the real interval [0, R]. By

Lemma 5.10, we know that Rb > ρ.

Proposition 5.11. For any b ∈ R there exists a unique solution φ(r, b) to (41) for r ∈ [0, Rb),

which is real analytic in (r, b). Either Rb =∞, or Rb <∞ and limr→R−b
|φ(r, b)| =∞.

Proof. The proof is a standard extension argument from the theory of ODE (see [CL].) By

the definition of Rb, for each real value s ∈ [0, Rb) there exists a neighborhood Ns of [0, s)

for which φ(r, b) is analytic for r ∈ Ns. By the uniqueness of solutions to (41) these sets are

nested, and in fact φ(r, b) is analytic in N = ∪s∈[0,Rb)Ns. Assume Rb <∞, but

lim sup
r→R−

b
r∈N

|φ(r, b)| <∞.

Then, from the integral equation (44), it is easy to see that φ, φ′ both have limits as r → R−b .

Using these limits as initial conditions for the differential equation, and applying Theorem 8.1

of [CL], there exists a C-neighborhood of Rb and an analytic solution of the equation, which

extends φ(r, b). This contradicts the definition of Rb as the supremum. By restricting b and

r to R, the complex analytic solution is real analytic on the desired domains.
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We next prove some additional properties of F (r, R) = φ(r, bR). In the following we

restrict to r ∈ R.

Lemma 5.12. Suppose F (r) is a solution of (41) with 0 < F (r) < 1 on (0, r0). Then:

F ′′(0) = 0;

[
F (r)

r

]′
< 0;

2F (r)

r3
>
F ′(r)

r2
, r ∈ (0, r0). (46)

Proof. Since F (r)/r → b as r → 0, by the equation and L’Hôpital’s rule,

lim
r→0+

F ′′(r) = lim
r→0+

rF ′(r)− F (r)

r2
=

1

2
lim
r→0+

F ′′(r).

Hence, F ′′(0) = 0. To verify the second conclusion, let h(r) = F (r)/r, and calculate

1

r3

(
r3h′(r)

)′
= h′′(r) +

3

r
h′(r) =

1

r
F (r)(F 2(r)− 1) < 0.

In particular, r3h′(r) is strictly decreasing. Since r3h′(r)|r=0 = 0, we have h′(r) = (F (r)/r)′ <

0, as claimed.

Finally, for the third statement,

F ′

r2
− 2F

r3
=

(
F

r2

)′
=

(
h

r

)′
=
h′

r
− h

r2
< 0,

by the second conclusion.

As the boundary-value problem (40) does admit a unique solution for each R > 0 (ob-

tained as an energy minimizer,) for each R > 0, there is a unique choice of b = bR > 0 for

which φ(R, bR) = 1. The following facts are well-known, but we sketch the proof here:

Lemma 5.13. Let φ(r, bR) solve (40). Then bR > 0, 0 < φ(r, bR) < 1 and ∂rφ(r, bR) ≥ 0 for

r ∈ (0, R).

Proof. The existence of a solution of (40) follows from minimizing the energy,

E(F ) =

∫ R

0

[
1

2
(F ′(r))2 +

1

r2
F 2(r) +

1

4
(F 2(r)− 1)2

]
r dr,

over F ∈ H1((0, R); r dr) with F (0) = 0, F (R) = 1. Since E(|F |) = E(F ), |F | is a

minimizer if F is. By the strong maximum principle, we find that |F |(r) > 0, and thus

F > 0 in (0, R]. Applying the maximum principle to the equation satisfied by F 2(r)− 1 we

may also conclude that F (r) < 1 for r ∈ (0, R). We next prove that this F is monotone.

First, we claim b = F ′(0) > 0. Indeed, if F ′(0) = 0, then F is a fixed point of the equation

(44) with b = 0. Since the solution is unique for each fixed b, we must have F (r) ≡ 0,
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which is a contradiction. Thus, b > 0. Suppose that F is not monotone. Then, there exist

0 < R1 < R2 < R such that F has a local maximum at R1 and a local minimum at R2, with

F (R1) > F (R2). Therefore, we have F ′(R1) = 0 = F ′(R2), and F ′′(R1) ≤ 0 ≤ F ′′(R2), and

so
F (R1)

R2
1

≤ F (R1)
(
1− F 2(R1)

)
, and

F (R2)

R2
2

≥ F (R2)
(
1− F 2(R2)

)
.

Consequently, we have

R−2
1 ≤ 1− F 2(R1) ≤ 1− F 2(R2) ≤ R−2

2 ,

a contradiction. Hence, F (r) is monotone, and F ′(r) = ∂rφ(r, bR) ≥ 0 for all r ∈ (0, R).

Finally, uniqueness of the solution of (40) is proved in [M2].

We now consider the linearized operator,

Lg(r) := −g′′ − 1

r
g′ +

1

r2
g − (1− 3F 2(r, R))g,

around F (r, R) = φ(r, bR), the solution of (40).

Lemma 5.14. Let λ1 denote the smallest eigenvalue of L with Dirichlet boundary conditions

on (0, R). Then λ1 > 0.

Proof. Let g ∈ H1
0 ((0, R)), g(r) > 0, be an eigenfunction associated to the first eigenvalue

λ1, Lg = λ1g. Now, h := F ′(r) > 0 solves a similar equation, and in fact

Lh =
2F

r3
− F ′

r2
> 0,

by Lemma 5.12. Multiplying the equation for g by rh, the equation for h by rg, and

integrating by parts, we have

λ1

∫ R

0

g(r)h(r) r dr =

∫ R

0

(
2F

r3
− F ′

r2

)
g(r) r dr > 0.

In particular, λ1 > 0.

We may now examine the dependence of the solution φ(r, b) on the shooting parameter

b:

Lemma 5.15. Let b = bR, with φ(R, bR) = 1. Then ∂bφ(r, bR) > 0.
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Proof. Let h(r) = ∂bφ(r, b). Then we have

−h′′ − 1

r
h′ +

1

r2
h = (1− 3φ2(r, bR))h, h(0) = 0, h′(0) = 1. (47)

Suppose that h vanishes somewhere in (0, R]. Let R0 ∈ (0, R) be the smallest value of r > 0

for which h(R0) = 0. Since h′(0) = 1, we must have R0 > 0 and h(r) > 0 in (0, R0).

Choosing g(r) > 0 the eigenfunction associated to the smallest eigenvalue λ1 of L,

−g′′ − 1

r
g′ +

1

r2
g = (1− 3φ2(r, bR))g + λ1g,

we multiply by rh and integrate by parts on (0, R0) to obtain:

λ1

∫ R0

0

g h r dr = 0.

This is impossible, as g, h > 0 in (0, R0), and hence h(r) = ∂bφ(r, bR) > 0 in (0, R].

Lemma 5.16. bR is analytic in R > 0, and ∂RbR < 0.

Proof. Since bR is defined as the solution to the equation φ(R, b) = 1, and from Lemma 5.15

we have ∂bφ(R, bR) > 0, applying the analytic version of the Implicit Function Theorem (see

[N]), we conclude that both ∂RbR = −∂Rφ(R, bR)

∂bφ(R, bR)
< 0 and the dependence of bR on R is

real-analytic.

Proposition 5.8 now follows trivially from Lemma 5.11 and Lemma 5.16, as fλ(r) =

F (
√
λr,
√
λ), and F (r, R) = φ(r, bR) is the composition of analytic maps in a neighborhood

of the positive real axis λ > 0.

We may now apply analytic perturbation theory to simple eigenvalues of the operator

Mλ associated to the quadratic form Qλ.

Lemma 5.17. Assume that, for some λ0 > 0 and n ≥ 1, µ
(1)
n (λ0) is a simple eigenvalue of

Mλ0. Then:

(a) There exist δ, η > 0 such that for λ in a (complex) neighborhood Dδ(λ0), the operator

Mλ has exactly one isolated simple eigenvalue µ
(1)
n (λ) ∈ Dη(µ

(1)
n (λ0)).

(b) There exists a normalized eigenvector (a0(·;λ), a2(·;λ)) of Mλ with eigenvalue µ
(1)
n (λ),

each depending analytically on λ ∈ Dδ(λ0).

We remark that, by Lemma 5.7, the ground state eigenvalue µ
(1)
1 (λ) is a simple eigenvalue

of Mλ for each fixed λ > 0, and so the conclusions of Lemma 5.17 apply to µ
(1)
1 (λ) in

particular.
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Proof. First, by Proposition 5.8, fλ(r) is real-analytic in both r and λ > 0, and thus may be

extended to complex λ as an analytic function of both r, λ, for λ ∈ Dδ0(λ0) for some δ0 > 0.

Next, we observe that, for λ ∈ Dδ0(λ0), Mλ is an analytic family in the sense of Kato,

which has compact resolvent for all λ ∈ Dδ0(λ0) and is self-adjoint for λ > 0. The conclusions

(a) and (b) of the lemma then follow from the Kato–Rellich Theorem (Theorem XII.8 of

[RS]).

Monotonicity of simple eigenvalues

In order to study the dependence on λ of the eigenvalues of the linearized operatorMλ(a0, a2)

(defined in (38)), we proceed as in the proof of Lemma 5.4: we replace the dependence on λ

by a dependence on the domain (0, R), via a change of variables. In this way, we define the

quadratic form

Q̂R(â0, â2) = Q
(1)
λ (a0, a2), where â0(r) = a0(rR), â2(r) = a2(rR), R =

√
λ.

The associated operator is then denoted by M̂R. We observe that the eigenvalues σ(M̂R) =

{µ̂n(R)}n∈N (ordered by the min-max principle, and repeated by multiplicity,) are related to

the eigenvalues µ
(1)
n (λ) via µ

(1)
n (λ) = R2µ̂n(R).

Proposition 5.18. Suppose µ̂n(R0) is a simple eigenvalue of M̂R0 for some R0 > 0. Then

µ̂′n(R0) < 0.

Proof. We use the family φ(r, b) of solutions to the Cauchy problem (41) above, and recall

that φ(r, b) is real analytic in both (r, b).

Let R0 > 0 be fixed, and η > 0 given. We recall that for any R > 0 there exists a unique

b = bR > 0 such that the solution to the boundary-value problem (40) is F (r, R) = φ(r, bR).

Furthermore, we assert that:

there exists ε > 0 so that |bR − bR0| < η whenever |R−R0| < ε; (48)

there exists C0 > 0 so that b′(R) ≤ −C0 < 0 whenever |R−R0| < ε. (49)

Indeed, both follow from the conclusions of Lemma 5.16 and Proposition 5.8.

Next, we claim that there exists a constant C1 > 0 so that

φ(r, bR) ≥ C1 r, for all r ∈ [0, R], R ∈ (R0 − ε, R0 + ε). (50)

From statement (48) above, and the analyticity of φ, there exists δ > 0 such that

φ′(r, bR) ≥ bR0

2
for all r ∈ (0, δ) and |R−R0| < ε.
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Since φ(r, bR) > 0 for r > 0 and for all R > 0,

k := min
r∈[δ,R]
|R−R0|≤ε

φ(r, bR) > 0.

Let C1 := min
{
bR0

2
, k
R0

}
. Then, putting the previous two estimates together we conclude

that F (r, R) = φ(r, bR) ≥ C1 r, for all r ∈ [0, R] and |R − R0| < ε, and the claim (50) is

established.

The next step involves the derivative ∂bφ(r, br) =: h(r, R). By Lemma 5.15, h is analytic

in both (r, R), and h(r, R) > 0 for all r ∈ (0, R], b > 0. We recall that h solves (47), and

h′(0, R) = 1 for all R.

Following exactly the same arguments used in proving (50), we obtain that the existence

of a constant C2 > 0 so that

h(r, R) = ∂bφ(r, bR) ≥ C2 r, for all r ∈ [0, R], R ∈ (R0 − ε, R0 + ε). (51)

As a consequence of (51) and (49), we have

∂RF (r, R) = ∂Rφ(r, bR) = ∂bφ(r, bR) ∂RbR ≤ −C0C2r,

for all r ∈ [0, R] and |R−R0| < ε, using statement (49) above. By the mean-value theorem,

for any R ∈ (R0, R0 + ε) and for all r ∈ [0, R0], there exists R̃ ∈ (R0, R) with

F 2(r, R0)− F 2(r, R) = −2(R−R0)F (r, R̃)∂RF (r, R̃)

≥ (R−R0)C3 r
2, (52)

with constant C3 = 2C0C1C2 > 0.

We are now ready to bound the eigenvalue from below. Let R ∈ (R0, R0 + ε) be fixed.

By Lemma 5.17, there exists δ > 0 for which µ̂n(R) is simple for |R − R0| < δ, and µ̂n(R)

is analytic in that interval. Let E0
n denote the linear span of the first n eigenfunctions,

w1 = (a1
0, a

1
2), . . . , wn = (an0 , a

n
2 ), of M̂R0 , each normalized with ‖wk‖L2 = 1, k = 1, . . . , n.

As each wk(R0) = 0, extending their definition by zero for r > R0, each lies in the domain
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of the the operator M̂R for all R > R0. Thus, by the Courant-Fischer min-max principle,

µ̂n(R) = inf
dimE=n

max
w∈E
‖w‖2=1

Q̂R(w)

≤ max
w∈E0

n
‖w‖2=1

Q̂R(w)

= max
w=(a0,a2)∈E0

n
‖w‖2=1

[
Q̂R0(w) +

∫ R0

0

[
F 2(r, R)− F 2(r, R0)

] [
(a2

0 + a2
2) + β(a0 − a2)2

]
r dr

]

≤ µ̂n(R0)− C3(R−R0) min
w=(a0,a2)∈E0

n
‖w‖2=1

∫ R0

0

(a0(r, R0)2 + a2(r, R0)2) r3 dr

≤ µ̂n(R0)− C4(R−R0),

with constant C4 > 0 independent of R, using (52) and the finite dimensionality of E0
n. Since

µ̂(R) is isolated and simple in a neighborhood of R0, by Kato-Rellich it is differentiable at

R0. By the above estimate, we conclude that µ̂′n(R0) ≤ −C4 < 0.

From Lemma 5.7 we thus have:

Corollary 5.19. Denote by µ̂1(R) the smallest eigenvalue of Q̂R. Then µ̂′1(R) < 0 for all

R > 0.

In order to return to the problem on a fixed ball D1, with parameter λ = R2, we recall

that the eigenvalues of Mλ and M̂R are related via µ
(1)
n (λ) = R2µ̂n(R), λ = R2. So,

d
dλ
µ

(1)
n (λ) = 1

2
Rµ̂′n(R) + µ̂n(R) is negative at a simple eigenvalue at the point at which

µn(R) = 0 (that is, exactly at a bifurcation point):

Corollary 5.20. Suppose µ
(1)
n (λ) is a simple eigenvalue of Mλ for |λ − λ0| < δ, and

µ
(1)
n (λ0) = 0. Then, d

dλ
µ

(1)
n (λ0) < 0.

Finally, we show that at least one eigenvalue ofMλ must cross through zero as λ increases:

the ground state µ
(1)
1 (λ).

Lemma 5.21. There exists a unique λβ > 0 so that µ
(1)
1 (λ) > 0 for λ < λβ and µ

(1)
1 (λ) < 0

for λ > λβ.

Proof. By Corollary 5.19 above, µ̂1(R) is strictly decreasing. From Corollary 5.20, it suffices

to show that µ̂1(R) < 0 for some sufficiently large R. Thus µ̂1(Rβ) = 0 at a unique Rβ > 0,

whence µ
(1)
1 (λβ) crosses through zero at a unique λβ = R2

β. To do this we argue as in
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Theorem 2 of [M1]. As R → ∞, the radial profile F (·, R) → F∞(·) in Ck([0, R]) for all

R > 0 and k ∈ N, with F∞ the modulus of the unique entire equivariant solution of the form

u∞ = F∞(r)eiθ. We have already shown that for 0 < β < 1, the entire equivariant solution

U∞ = 1√
2
(u∞, u∞) is not a local minimizer (in the sense of de Giorgi) in R2, so there exists

R > 0 and Φ ∈ C∞0 (DR) for which E(U∞ + Φ;DR) < E(U∞;DR). By an approximation

argument, we could then conclude that E ′′R(UR)[Φ] < 0 for some Φ ∈ C∞0 (DR), and hence

µ
(1)
1 (R2) < 0 for that value of R.

Instead, we give a more direct proof, using Q̂R. Let â0(r), â2(r) be the ground-state

eigenfunctions. Define A = â0 − â2 and B = â0 + â2. In terms of A,B we have:

Q̂R(â0, â2) = 4π

∫ R

0

{
(A′)2 + (B′)2 +

2

r2
(B − A)2 + (F 2 − 1)(A2 +B2) + 2βA2

}
r dr

=: Q̆R(A,B).

We would like to make the choice A = F ′∞ and B = F∞/r, but these functions are not

admissible as test functions, since they do not vanish at r = R. Nevertheless, since F∞

vanishes linearly at r = 0, A(r) and B(r) are regular near r = 0, and since A−B = r(F∞/r)
′,

the second term in Q̆R is well-defined. Moreover, it is well-known (see [HH]) that the

derivatives of F∞ decay sufficiently rapidly as r → ∞ in order to have A and B in the

domain of definition of Q∞, and

Q̆∞(A,B) = lim
R→∞

Q̆R(A,B).

This last quantity we can evaluate exactly, using the equations which A,B solve (see (18’)

of [M1]): 
− A′′ − 1

r
A′ +

2

r2
(A−B)− (1− 3F 2

∞)A = 0

−B′′ − 1

r
B′ − 2

r2
(A−B)− (1− F 2

∞)B = 0
.

We multiply the first equation by A, the second by B, add, and integrate by parts to obtain

Q̆∞(A,B) = 8π(β − 1)

∫ ∞
0

F 2
∞A

2 r dr < 0,

when 0 < β < 1. By approximation, we may find a large R and Ă, B̆ ∈ C∞(0, R) such that

Q̆R(Ă, B̆) = Q̆∞(Ă, B̆) < 0. Thus, for sufficiently large R, µ
(1)
1 (R2) = R2µ̂1(R) < 0.

Bifurcation at simple eigenvalues

We are finally ready to prove bifurcation of symmetric solutions to (34) at simple eigenvalues

of Lλ. The following lemma summarizes the previous results on the eigenvalues of Lλ,

obtained in the previous parts:
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Proposition 5.22. Assume 0 < β < 1.

(a) Suppose µn(λ0) is a simple eigenvalue of Mλ0. Then:

(i) µn(λ) is an eigenvalue of Lλ, with eigenspace

Xλ =
{
sWξ : s ∈ R, ξ ∈ S1

}
,

with Wξ = (wξ,−wξ), wξ = Rξ w1 = ξ a0(r;λ, n)− ξ a2(r;λ, n) e2iθ.

(ii) Both the eigenvalue µn(λ) and normalized eigenvectors are analytic in a (complex)

neighborhood of λ0.

(iii) If µn(λ0) = 0, then µ′n(λ0) < 0.

(b) There exists a unique λβ > 0 for which the ground state eigenvalue is given by µ1(λβ) =

0 = µ
(1)
1 (λβ), and 0 is a simple eigenvalue of Mλβ .

Proof. Statement (i) follows from the reductions in Lemma 5.3 and (37), together with the

description of the eigenspaces of L(1)
λ in Lemma 5.6. The analyticity claimed in (ii) was

proven in Lemma 5.17, and (iii) follows from Corollary 5.20. Part (b) puts together the

results of Lemmas 5.7 and 5.21 with that of Corollary 5.5.

We are ready to analyze the bifurcation of solutions at isolated simple eigenvalues ofMλ

which cross zero at λ0 > 0. We write Ψ ∈ H as Ψ = Uλ+V with V = (v+, v−) ∈ H1
0 (D1;C2).

Then, Ψ solves (34) if and only if

0 = F (V, λ) := LλV + λH(V, λ) =

[
L+
λ V + λH+(V, λ)

L−λ V + λH−(V, λ)

]
, (53)

with

H+(V, λ) = (|v+|2 + |v−|2)(v+ +
uλ√

2
) + 2

〈
uλ√

2
, v+ + v−

〉
v+

+ β
(
|v+|2 − |v−|2

)
(v+ +

uλ√
2

) + 2β

〈
uλ√

2
, v+ − v−

〉
v+

H−(V, λ) = (|v+|2 + |v−|2)(v− +
uλ√

2
) + 2

〈
uλ√

2
, v+ + v−

〉
v−

− β
(
|v+|2 − |v−|2

)
(v− +

uλ√
2

)− 2β

〈
uλ√

2
, v+ − v−

〉
v−


. (54)

The above defines a smooth map F : H1
0 (D1;C2) × R+ → H−1(D1;C2). If we iden-

tify a complex vector V = (v+, v−) = (v1
+ + iv2

−, v
1
− + iv2

−) ∈ C2 with the real vector

(v1
+, v

2
+, v

1
−, v

2
−) ∈ R4, then by Proposition 5.8 we recognize that the symmetric solution Uλ
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is real-analytic as an R4-valued function of (x, λ), and the map F is likewise real-analytic,

viewed as a map of V ∈ H1
0 (D1;R4) and λ. We also note that HV (0, λ) = 0, and so

FV (0, λ) = Lλ, the linearization around the symmetric vortex solution Uλ.

We now state our bifurcation result. Denote by X⊥λ the orthogonal complement of Xλ in

H1
0 (D1;C2).

Theorem 5.23. Suppose λ0 > 0 is such that, for some n ≥ 1, µ
(1)
n (λ0) is a simple eigenvalue

of Mλ0 with µ
(1)
n (λ0) = 0. Then (Uλ0 , λ0) is a point of bifurcation for the equations (34). In

particular:

(1) there exists a neighborhood N of (Uλ0 , λ0) in H× (0,∞), δ > 0, and real analytic maps

Φ : (−δ, δ)→ X⊥λ0 and φ : (−δ, δ)→ (0,∞) with Φ(0) = 0, φ(0) = λ0, such that there

exists a non-equivariant solution (34) of the form

Ψ(t, ξ) = Uφ(t) + tRξ(W1 + Φ(t)), λ = φ(t)

for all |t| < δ and ξ ∈ S1. Moreover, Ψ(−t, ξ) = R−1Ψ(t, ξ) and φ(−t) = φ(t).

(2) Any solution (Ψ, λ) of (34) in the neighborhood N is either an equivariant solution

(Uλ, λ) or of the form (Ψ(t, ξ), φ(t)) above.

(3) All solutions of (34) in N satisfy TΨ = Ψ (where the involution T is defined in (35).)

Moreover, each component ψ±(t, ξ) of Ψ(t, ξ) = (ψ+(t, ξ), ψ−(t, ξ)) has exactly one zero,

and their zeros are antipodal and distinct from the origin.

By (b) of Proposition 5.22, we may apply Theorem 5.23 at λ = λβ, and obtain bifur-

cation at the ground state eigenvalue µ1(λβ) = 0, which implies Theorem 1.5 stated in the

Introduction.

Proof. Given any V ∈ H1
0 (D1;C2), there exists a unique α > 0, ξ ∈ S1, and Z̃ ∈ X⊥λ0

with V = αWξ + Z̃ = Rξ (αW1 + Z), with Z = RξZ̃ ∈ X⊥λ0 and W1 = W1(λ) as in (i) of

Proposition 5.22, normalized with ‖W1‖L2 = 1. Define the Hilbert space Y = {αW1} ⊗X⊥λ0 ,
as a subspace of H1

0 (D1;C2). We then consider the equation F (V, λ) = 0 as in (53), restricted

to V ∈ Y . Since F is equivariant under the Rξ action, every solution V ∈ Y gives rise to an

orbit of solutions in H1
0 (D1;C2), while any solution V ∈ H1

0 (D1;C2) corresponds to a solution

RξV ∈ Y by an appropriate choice of ξ ∈ S1. Thus, it suffices to consider the equation (53)

in the smaller space Y to determine the solution space in H1
0 (D1;C2).

We next list some properties of F restricted to Y . First, it remains true that F (0, λ) = 0

for all λ > 0, and F is a real analytic function of V ∈ Y , λ > 0 (by Proposition 5.22
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(ii) and Proposition 5.8, thinking of Uλ, V ∈ C2 as real vectors in R4.) By the restriction

to Y , we have FV (0, λ0) = Lλ0 with kerY(Lλ0) = {αW1}, and thus dim kerY(Lλ0) = 1 =

codim Ran(Lλ0). Lastly, we calculate the derivative µ′n(λ0) in terms of the function F : as

µn(λ) = 〈W1(λ), FV (0, λ)W1(λ)〉, by (iii) of Proposition 5.22 we have

0 > µ′n(λ0) = 2〈W ′
1(λ0), FV (0, λ0)W1(λ0)〉+ 〈W1, FV,λ(0, λ0)W1〉

= 〈W1, FV,λ(0, λ0)W1〉, (55)

as FV (0, λ0)W1 = Lλ0W1 = 0 (since µn(λ0) = 0). We now claim that FV,λ(0, λ0)W1(λ0) 6∈
RanY (Lλ0). Indeed, assume the contrary, so there exists X ∈ Y with FV (0, λ0)X =

FV,λ(0, λ0)W1(λ0), and take the scalar product with W1(λ0). We have

0 > µ′n(λ0) = 〈W1(λ0), FV (0, λ0)X〉 = 0,

a contradiction.

The celebrated Crandall–Rabinowitz bifurcation theorem (Theorem 1.7 of [CR]) may

then be applied to F in the space Y . We note that since F is an analytic map, by invoking

the analytic version of the Implicit Function theorem in the proof of [CR] the maps obtained

will be real analytic. We conclude that there exists a neighborhood Ñ of (0, λ0) in Y×(0,∞),

δ > 0, and real analytic maps Φ, φ as in the statement of the theorem, such that

F−1{0} ∩ Ñ =

{
(V t, λ) = (t[W1(λ0) + Φ(t)], φ(t)) : |t| < δ

}
∪
{

(0, λ) ∈ Ñ
}
.

Define the neighborhood N ∈ H1
0 (D1;C2) as the union of the images of Ñ under the action

of Rξ, ξ ∈ S1. The characterization of the solution set in N in statements (1) and (2) then

follows.

It remains to verify the symmetry results in (1) and (3). First, we note that if (V t, φ(t))

is a solution in Ñ of the above form, then

Ṽ := R−1V
t = (−t)(W1 − Φ(t)) ∈ Ñ ⊂ Y

is also a non-equivariant solution with λ = φ(t). Therefore, there exists s, |s| < δ for which

(Ṽ , φ(t)) = (V s, φ(s)). Since W1 ⊥ X⊥λ0 , we have

(s+ t)W1 = sΦ(s)− tΦ(t) = 0,

and hence s = −t and Φ(s) = Φ(−t) = −Φ(t). We conclude that φ(−t) = φ(t) and

V −t = R−1V
t, which finishes the proof of (1).
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Next, we show TV t = V t for the involution T . As above, TV t is also a solution with

the same λ = φ(t), in the neighborhood Ñ . We note that TW1 = W1, and by following the

same arguments as above, TΦ(t) = Φ(t). Since TUλ = Uλ, we conclude TΨ(t, ξ) = Ψ(t, ξ)

for the whole family of solutions.

Finally, we consider the zero set of each component of Ψ(t, ξ). Since Ψ(t, ξ) → Uλ0 in

C2 as t → 0, and the equivariant solutions Uλ0 have exactly one non-degenerate zero (the

origin) in each component, the same must be true for Ψ(t, ξ) for |t| sufficiently small. Since

Ψ(t, ξ) is fixed by the involution T , the zeros of the components ψ+(t, ξ), ψ−(t, ξ) must be

antipodal. By Proposition 5.2, only the equivariant solution Uλ vanishes in both components

at the origin, so the zeros of ψt± must be antipodal and distinct. This concludes the proof

of Theorem 5.23.

Remark 5.24. (a) Given that the solution curves are analytic, we may expand them around

the bifurcation point λ0 and (in principle) obtain further information about the direction

and stability of the bifurcating solutions. For instance, we may calculate higher derivatives

of λ = φ(t), and obtain λ′ = φ′(0) = 0, and

λ′′ = φ′′(0) =

∫
D1

〈LλβV ′′(0), V ′′(0)〉 − 2λβ

∫
D1

|W1|4

µ′(λβ)
.

Since Lλβ is positive definite on X⊥λ0 , the sign of the numerator is not clear a priori, so

numerical approximation may be necessary to determine the details of the bifurcation at λβ.

(b) In a similar vein, if we compute the quantity in (55) directly, we obtain∫
D1

〈FV,λ(0, λ0)W,W 〉 = 4π

∫ 1

0

[
∂λ
(
λ(f 2

λ − 1)
)

[a2
0 + a2

2] + ∂λ
(
λf 2

λ

)
[a0 − a2]2

]
r dr

∣∣∣∣
λ=λ0

.

Expressed in this form, it is not apparent whether this quantity is non-zero. Only by recog-

nizing the connection to the derivative µ′n(λ) are we able to apply the Crandall-Rabinowitz

theorem.

(c) While we know (from Lemma 5.21) that the ground state eigenvalue µ1(λ) must cross

zero for β ∈ (0, 1), it is unclear whether any of the higher eigenvalues can lead to other

bifurcations of the symmetric solutions.

(d) A very general result by Rabinowitz [Ra] shows that bifurcation always occurs at eigen-

values of any finite multiplicity in a variational problem. Although the form of equation

assumed in [Ra] is somewhat different than our F (V, λ), the result nevertheless holds true in

our setting, although the conclusions of the bifurcation theorem are weaker than the state-

ment obtained by using the simplicity of the eigenspace as in [CR]. In particular, one may
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conclude that non-equivariant solutions exist in any neighborhood of Uλ0 when 0 = µn(λ0)

is a degenerate eigenvalue, and by analyticity (see [ L]) the continua of solutions form finitely

many analytic curves, but there is no complete characterization of the solution set as in (1),

(2) of Theorem 5.23.

References

[AB1] S. Alama, L. Bronsard, “Des vortex fractionnaires pour un modèle Ginzburg–
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