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Prescribing the Jacobian in critical spaces

Pierre Bousquet ∗ Petru Mironescu†

July 12, 2012

Abstract

We consider the Sobolev space X = W s,p(Sm;Sk−1). We prove the existence of a robust
distributional Jacobian Ju for u ∈ X provided sp ≥ k−1; this generalizes a result of Bourgain,
Brezis and the second author [10], where the case m = k is considered. In the critical case
where sp = k − 1, we identify the image of the map X 3 u 7→ Ju. This extends a result of
Alberti, Baldo and Orlandi [2] for s = 1 and p = k−1. We also present a new, analytical, dipole
construction method.
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1 Introduction
In general, one cannot approximate manifold-valued Sobolev maps with manifold-valued smooth
maps. This contrasts with the case of scalar maps. Here is a simple example, with D the unit
disc in R2: the map u0 : D→ S1, u0(z) = z

|z| , belongs to W1,1, but cannot be approximated in

W1,1 with smooth S1-valued maps [37]. Beyond the approximation problem, singularities occur
in the regularity theory of manifold-valued maps (developed by Schoen and Uhlenbeck [37, 38]
and extended by Hardt and Lin [24]): unlike the scalar case, manifold-valued minimizers of

the Dirichlet integral
ˆ

|∇u|2 or more generally of
ˆ

|∇u|p are not smooth, but have a (small)

singular set. In the case of sphere-valued maps, Brezis, Coron and Lieb [13] generalized a
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calculation of Ball [4] and discovered the possibility of detecting the singularities of maps via
the distributional Jacobian. We will recall below the definition of the distributional Jacobian
in the general case, but for the time being let us consider the case of maps u :D→S1. If u ∈ C1,
then the Jacobian determinant Jacu satisfies

Jacu = 0. (1.1)

Indeed, by differentiating the identity |u|2 ≡ 1 we find that u · ∂ ju ≡ 0, j = 1,2, and thus
∂1u ∥ ∂2u. Therefore Jacu = 0. Ball [4] discovered that for less smooth maps the Jacobian,

when defined properly, need not vanish. Indeed, consider the distribution Ju = 1
2π

∂1(u∧∂2u)+
1

2π
∂2(∂1u∧ u),1 which makes sense if u is merely W1,1 ∩L∞. If u ∈ C2, then Ju = 1

π
Jacu.

Therefore, if u is in addition circle-valued, then Ju vanishes as above. With more work, one
may prove that the same holds if u is less smooth, for example if u ∈ W1,2. However, the
above u0 belongs to W1,p, p < 2, and it is easy to see that Ju = δ0 [4].2 More generally, if
u ∈W1,1(D;S1) is smooth outside a finite set A(u), then [13]

Ju = ∑
a∈A(u)

deg(u,a)δa. (1.2)

Here, deg(u,a) is the winding number (degree) of u computed on a small circle around a.3 It is
still possible to compute the distribution Ju for an arbitrary u ∈W1,1(D;S1), but this requires
additional ingredients.

1. First ingredient: the class R of circle-valued maps u smooth outside some finite set A(u)
is dense in W1,1(D;S1). This is a result of Bethuel and Zheng [8].

2. Second ingredient: for u ∈R, it is possible to rearrange the singularities of u and write

Ju =∑
(δP j −δN j ), with P j, N j ∈D and

∑ |P j −N j| ≤ 1
2π

‖∇u‖L1 ;

this was proved by Brezis, Coron and Lieb [13].

By combining the above, a straightforward Cauchy sequences argument leads to the represen-
tation

Ju =∑
(δP j −δN j ), with P j, N j ∈D and

∑ |P j −N j| ≤ 1
2π

‖∇u‖L1 ; (1.3)

this time, the sum may contain an infinite number of terms.
A remarkable fact is that there is a "converse" to (1.3): given sequences (P j), (N j) ⊂D such

that
∑

j
|P j − N j| < ∞, there exists some u ∈ W1,1(D;S1) such that Ju = ∑

(δP j − δN j ). The

ingredients of the proof of this fact are already in [13], but the result was explicitly formulated
much later; see [2] and also [16].

A similar approach can be followed for maps in W1,k−1(Bk;Sk−1), k ≥ 2.4 However, for ap-
plications this functional setting is not sufficient. Indeed, the distributional Jacobian plays a
crucial role e.g. in approximation problems [5, 34] or in the study of the Ginzburg-Landau
equation [26, 9]. In these contexts, the natural functional setting need not be the one of
W1,k−1(Bk;Sk−1). For example, the trace space W1/2,2(S2;S1) is related to the study of the
Ginzburg-Landau equation [9]. The above suggests the following general program in the
Sobolev space X = W s,p(Ω;Sk−1), with s > 0, 1 ≤ p < ∞ and Ω an open set in Rm or an m-
dimensional manifold:

Task 1. Prove density in X of a suitable class R of Sk−1-valued maps u smooth except on a
small set A(u).

1Here, ∧ stands for the vector product of complex numbers: a∧b = a1b2 −a2b1.
2Here, δ0 is the Dirac mass at the origin.
3By invariance of the degree by homotopy, this integer is independent of the circle.
4Here, Bk is the open unit ball in Rk. The closed unit ball is denoted B

k
.
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Task 2. Define (possibly by density starting from maps in R) the distributional Jacobian Ju of
a map u ∈ X .
Task 3. Determine the range of the map X 3 u 7→ Ju.

Our paper presents new results concerning Tasks 2 and 3. Additional directions, though not
discussed in the present paper, are equally interesting. An example: Bethuel [5] proved that
the equality Ju = 0 characterizes the "absence of singularities": a map u ∈W1,2(B3;S2) satisfies
Ju = 0 if and only if u is in the strong W1,2-closure of smooth S2-maps; see also [7, 11, 35].
The generalization of this result to different Sobolev regularities has not been obtained in full
generality.

The above program has not been completely realized; we present below the state-of-the-art
in these directions. To start with, let us define properly the class R. From the pioneering work
of Bethuel [6], the good candidate is known to be the class

R =
{
u ∈W s,p(Ω;Sk−1)∩C∞(Ω\ A(u)); dim A(u)= m− [sp]−1

}
,

where A(u) is a finite union of Lipschitz manifolds (depending on u). Bethuel [6] proved density
of R when s = 1 and the target is an arbitrary compact oriented manifold.5 Very recently, Ponce,
Van Schaftingen and the first author [12] extended this result for s = 2,3, . . . On the other hand,
density of R (for arbitrary targets) when s < 1 was obtained by Brezis and the second author
[15]. Another essentially known case is the one where k−1≤ sp < k. This case can be tackled by
adapting the projection method of Federer and Fleming [20]. The idea of using this method for
manifold-valued maps goes back to Hardt, Kinderlehrer and Lin [23]. The projection method
was used to prove density of the class R in the following cases:

a) When s = 1, k−1≤ p < k in [8].

b) When s = 1/2, p = 2, k = 1, m = 2 in [36].

c) When s < 1 and k−1≤ sp < k in [9].6

d) When s ≥ 1, 1≤ sp < 2 and k = 2 in [11].

Though the case where k−1≤ sp < k does not appear anywhere in full generality, the subcase
s = 1 is already in [8], the subcase s < 1 is contained in [15], and the subcase s > 1 is very likely
to follow from the arguments in [11]. However, we emphasize the fact that, even though this
special case is under control and even if the case of spheres is simpler than the one of arbitrary
compact targets, density of R for sphere-valued maps and for arbitrary m,k, s and p is not
known.

Task 2 concerns the possibility of defining Ju. Some cases are to be discarded from the
beginning:

a) When sp < k−1, smooth maps are dense in W s,p(Ω;Sk−1) [28]. In this case, it is natural
to let Ju = 0 for each u.

b) Same holds when sp ≥ m = dimΩ. This goes back essentially to [37]; see also [17].

By the above, we may always assume that

k−1≤ sp < m, (1.4)

and we see that the limiting cases are the ones where sp = k − 1. When m = k, s = 1 and
p = k−1, the distributional Jacobian Ju is defined as the divergence of an L1-vector field:

Ju = div
1

kωk
(det(u,∂2u, . . . ,∂ku),det(∂1u,u,∂3u, . . . ,∂ku), . . . ,det(∂1u, . . . ,∂k−1u,u)); (1.5)

here, ωk is the volume of Bk. This definition can be adapted to the case where m > k, s = 1 and
p = k−1 [3, 25, 2]. We explain the procedure e.g. when Ω=Sm.7 We consider the volume form

5 The case of sphere-valued maps was previously known for k−1≤ p < k [8].
6The proof there is for special values of s and p, but works without changes in the general case.
7All our results are stated for Ω=Sm, but it will be transparent from the proofs that Ω could be any bounded open

set in Rm or m-dimensional compact manifold.
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on Sk−1,

ω0 := 1
kωk

k∑
i=1

(−1)i−1 yid y1 ∧ ...∧ d̂ yi ∧ ...∧d yk (1.6)

(with the convention that ̂ denotes a missing term). For every u ∈W1,k−1(Sm;Sk−1), we define
the (m− k)-current Ju by its action on the space W1,∞(Λm−kSm) of Lipschitz (m− k)-forms in
Sm:

〈Ju,ζ〉 := (−1)m−k+1
ˆ
Sm

dζ∧ (u]ω0), ∀ ζ ∈W1,∞(Λm−kSm). (1.7)

Here, u]ω0 stands for the pullback

u]ω0 = 1
kωk

k∑
i=1

(−1)i−1uidu1 ∧ ...∧ d̂ui ∧ ...∧duk.

The formula (1.7) is a generalization of (1.5) when m > k. It is clear that Ju is well-defined as
an element of the dual of W1,∞(Λm−kSm), and that the map

W1,k−1(Sm;Sk−1) 3 u 7→ Ju ∈ (W1,∞(Λm−kSm))∗ (1.8)

is continuous. Similarly, the distribution Ju is continuous wrt u in the space W s,p(Sm;Sk−1)
provided s ≥ 1 and sp ≥ k−1. This follows from the embedding W s,p∩L∞ ,→W1,k−1, valid when
s ≥ 1 and sp ≥ k−1.

Existence of Ju is less clear when s < 1 and sp ≥ k−1. A first result in this direction was
obtained by Hang and Lin [22]. These authors were able to define Ju for u ∈ W s,p(Sk;Sk−1)
provided s ≥ 1−1/k and sp ≥ k−1. This result was completed in [10]; there, it is proved that
there is a natural way of defining Ju in the spaces W s,p(Sk;Sk−1) when s < 1 and sp = k−1.
This is obtained as follows: first, the class W1,k−1 ∩W s,p(Sk;Sk−1) is dense in W s,p(Sk;Sk−1).8

Next, the key step in [10] consists in proving that u 7→ Ju, initially defined for maps in W1,k−1∩
W s,p(Sk;Sk−1), is continuous wrt the W s,p-norm. This gives a (unique) natural notion of Ju
for u ∈ W s,p(Sk;Sk−1), provided sp ≥ k−1. Our first result is a generalization of the above to
higher dimensions m.

1.1 Theorem. There exists a (unique) map

J :
⋃

0<s≤1
p=(k−1)/s

W s,p(Sm;Sk−1)→ (W1,∞(Λm−kSm))∗

such that:

1. For u ∈W1,k−1(Sm;Sk−1), Ju coincides with the distributional Jacobian defined by (1.7).

2. The restriction of J to every W s,p(Sm;Sk−1) with 0< s < 1 and p = (k−1)/s is continuous.

3. In addition, for s and p as above the following estimate holds:

|〈Ju,ζ〉| ≤ Cp|u|pW s,p‖dζ‖L∞ . (1.9)

Here | |W s,p stands for the standard semi-norm in W s,p; for the convenience of the reader, its
formula will be recalled in Section 2.

Task 2 is completed.

We next turn to Task 3: characterize the set
{

Ju; u ∈W s,p(Ω;Sk−1)
}
. This requires estab-

lishing the analog of (1.3) and of its "converse". A first hint is given by [13]. There, it is proved
that

inf

{ˆ
R3

|∇u|2; Ju =
k∑

j=1
(δP j −δN j )

}
= 8π inf

σ∈Sk

k∑
j=1

|P j −Nσ( j)|, (1.10)

8This is proved in the same way as the density of the class R.
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the sum in the right-hand side of (1.10) being the length of the shortest curve connecting the
P j ’s to the N j ’s. It was conjectured in [13] that when, say, m = 4 and k = 3, the minimal
Dirichlet energy required to create a Jacobian supported by a simple closed curve M ⊂ R4

equals

8πmin {M(N); N is a 2−rectifiable current such that ∂N = M} .

Here, M(N) stands for the mass of N. For polygonal lines, this conjecture9 has been confirmed
by Almgren, Browder and Lieb [3]. Far reaching extensions of this result were obtained by
Alberti, Baldo and Orlandi [2]. Their results are the following: on the one hand,{

Ju; u ∈ Ẇ1,k−1(Rm;Sk−1)
}
= {∂N; N is an (m−k+1)−dimensional rectifiable current} . (1.11)

Here, Ẇ1,k−1 stands for the homogeneous Sobolev space. On the other hand,

inf
{ˆ

Rk
|∇u|k; Ju = M

}
∼ inf {M(N); N is rectifiable and ∂N = M} . (1.12)

Very recently, by combining the arguments in [3] and [2], Molnar [31] improved the conclusion
(1.12) to

inf
{ˆ

Rk
|∇u|k; Ju = M

}
= (k−1)(k−1)/2kωk inf {M(N); N rectifiable, ∂N = M} . (1.13)

A crucial point in [13, 3, 2] is the dipole construction discovered in [13]. Let us give an example:
for S1-valued maps in R2, a dipole with a positive singularity P1 and a negative singularity
N1 is a map u : R2 → S1 such that Ju = δP1 −δN1 which is, in addition, constant outside an
arbitrarily small set B(u). For arbitrary s and p, one cannot control both the W s,p-semi-norm
of u and the size of B(u). However, this is possible in W1,1: for every ε > 0, it is possible
to construct u such that ‖∇u‖L1 ≤ 2π|P1 − N1| + ε and |B(u)| ≤ ε. An inspection of the dipole
construction in [13] leads to the conclusion that this construction can be adapted to the critical
spaces W s,p(Ω;Sk−1) characterized by the equality sp = k − 1. Our next results extend the
results in [2] to the full scale of critical spaces.

1.2 Theorem. Let 0 < s ≤ k−1 and p ≥ 1 be such that sp = k−1. Assume that m ≥ k. Let
u ∈W s,p(Sm;Sk−1). Then there exists an (m−k+1)-rectifiable current N in Sm such that

1. ∂N = Ju.

2. M(N)≤ Cp|u|pW s,p .

1.3 Theorem. Let M be the boundary of an (m−k+1)-rectifiable current N in Sm. Then there
exists u ∈ ⋂

sp=k−1
W s,p(Sm;Sk−1) such that:

1. Ju = M.

2. |u|pW s,p ≤ CpM(N) if sp = k−1.

Let us discuss how Theorems 1.2 and 1.3 compare to the corresponding results in [2]. When
k ≥ 3, the critical spaces are nested: if the couples (s1, p1) and (s2, p2) are critical and s1 > s2,
then we have the Gagliardo-Nirenberg type embeddings W s1,p1(Sm;Sk−1) ,→ W s2,p2(Sm;Sk−1).
Therefore, Theorem 1.3 follows from the special case s = k−1, p = 1 combined with the Gagliardo-
Nirenberg inequalities. In turn, we prove this special case by adapting the techniques in [2]. As
explained in the course of the proof, the new technical difficulties10 arise from the fact that we
need smooth (and not merely Lipschitz) dipoles and from the fact that we work on Sm instead
of Rm.11 However, the case k = 2 does not follow from the above strategy. This is due to the
fact that the corresponding Gagliardo-Nirenberg embeddings are wrong: e.g., we do not have

9And its generalization to arbitrary m and k.
10When compared to [2].
11Our proof adapts also to the case of a bounded domain in Rm.
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W1,1(Sm;S1) ,→ W1/2,2(Sm;S1). In this case, we present two proofs. One of them is "geomet-
ric": it relies on a dipole construction with control of several norms combined with a Cauchy
sequences argument. The second one is purely "analytical": by an averaging argument remi-
niscent of the projection method of Federer and Fleming [20], we associate to each function
u a "better" function with the same singular set.12 We think that this second approach is of
independent interest and may serve in other situations. The proof of Theorem 1.2 is very much
in the spirit of Almgren, Browder and Lieb [3], who were the first to use the coarea formula
in the proof of estimates for sphere-valued maps. Later, Hang and Lin [22] and Alberti, Baldo
and Orlandi [2] used a similar approach in order to establish special cases of Theorem 1.2. Our
approach is similar to the one in [22], but we had to face new technical difficulties. A final
remark about the coarea formula setting. The content of Theorem 1.2 is that Ju is the bound-
ary of a rectifiable current N. The main idea of [3] is to take N = u−1(a) for some appropriate
a ∈ Sk−1; this idea is also at the heart of [2]. This leads, in general, to a nonsmooth N.13 It
turns out that it is possible to write Ju = ∂M with smooth M provided we let M live in the
higher dimensional space Sm × [0,∞); this is how our construction goes.14 We next land on Sm

by letting N be the projection of M. Technically, this leads us to the use of the standard coarea
formula, as opposed to its Sobolev spaces version required in [2].

Task 3 is thus completed in the scale of critical spaces. However, little is known about the
non critical spaces. To give an example, the characterization of the space

{
Ju; u ∈W1,p(S3;S2}

,
with 2 < p < 3, is not known. The situation is completely understood only for circle-valued
maps. The space

{
Ju; u ∈W s,p(Sm;S1}

, with 1 < sp < 2, has been characterized in [11] when
s ≥ 1 and in [30] when s < 1.15 However, the proofs there rely heavily on the fact that the target
space is S1. The case where the target is Sk−1 with k ≥ 3 is widely open.

Our paper is organized as follows: in Sections 2, 3 and 4 we recall, for the convenience of the
reader, the main analytical tools required in the proofs. In Section 5, we establish Theorems
1.1 and 1.2. The proof of Theorem 1.1 relies on a technical lemma, Lemma 5.1, whose long
proof is postponed to Section 7. Section 6 is devoted to the proof of Theorem 1.3.

2 Sobolev spaces of currents and forms
Our presentation follows essentially [21, Chapters 2, 3]. Let H be a subspace of the Euclidean
space Rm, m ≥ 1. For 0 ≤ l, we denote by Λl H the vector space of l-vectors in H and by Λl H =
Λl H∗ the vector space of l-covectors in H. The duality pairing betweenΛl H andΛl H is defined
in terms of simple vectors and covectors as follows: If h = h1 ∧ . . .∧ hl ∈ Λl H, h j ∈ H and
θ = θ1 ∧ . . .θl ∈Λl H, θi ∈ H∗, then

〈h,θ〉 = 〈θ,h〉 = det (θi(h j)).

The inner product of vectors and covectors (which only depends on the inner product defined
on Rm) is defined as follows. Let (e i) denote an orthonormal basis in Rm, e∗i be the dual basis,
and set

I(l,m)= {(i1, . . . , i l); 1≤ i1 < ...< i l ≤ m}.

If we set

e I = e i1 ∧ ...∧ e i l , e∗I = e∗i1
∧ ...∧ e∗i l

, ∀ I ∈ I(l,m),

then, for ξ=∑
I
ξI e I , ξ′ =∑

I
ξ′I e I , α=∑

I
αI e∗I , α′ =∑

I
α′

I e∗I , we define

〈ξ,ξ′〉 =∑
I
ξIξ

′
I , 〈α,α′〉 =∑

I
αIα

′
I , (2.1)

12The key result is Lemma 6.15.
13This is due to the fact that Ju need not be the boundary of a smooth N. See the discussion in [2, p. 277].
14This approach is inspired by [22].
15The results in [30] are described in [29].
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|ξ| =
(∑

I
|ξI |2

)1/2

, |α| =
(∑

I
|αI |2

)1/2

. (2.2)

The above quantities do not depend on the choice of the orthonormal basis (e i).
A linear map L : H → K induces the morphism

ΛlL :Λl H →ΛlK , Λl H 3 v1 ∧ ...∧vl
Λl L−−→ Lv1 ∧ ...∧Lvl ∈ΛlK ,

and its adjoint ΛlL :ΛlK →Λl H.
Let Ω ⊂ Rm be an open set. For 0 ≤ l ≤ m, we denote by C∞(ΛlΩ) (an abbreviation for

C∞(Ω;ΛlRm)) the set of smooth l-forms in Ω. Similarly, C∞
c (ΛlΩ) is the set of smooth l-forms

compactly supported in Ω. The differential of a form ω is denoted by dω. An l-current T ∈
(C∞

c (ΛlΩ))∗, l ≥ 0, is a continuous linear form on the set C∞
c (ΛlΩ) endowed with the topology

of distributions. The boundary of an l−current T, l ≥ 1, is the (l−1)-current ∂T ∈ (C∞
c (Λl−1Ω))∗

defined by

〈∂T,ω〉 = 〈T,dω〉 , ∀ω ∈ C∞
c (Λl−1Ω).

For 0< s <∞, 1≤ p <∞, we denote by W s,p(ΛlΩ) the set of l-forms such that

‖ω‖W s,p := ∑
k≤[s]

∥∥∥Dkω
∥∥∥

Lp
+

∣∣∣D[s]ω
∣∣∣
Wσ,p

<∞,

where [s] is the integer part of s, σ := s− [s] and for ω=∑
ωI dxI , dxI = dxi1 ∧ ...∧dxi l ,∥∥∥Dkω

∥∥∥
Lp

:=
{∑

I

∑
|α|=k

ˆ
Ω

∣∣∣∣∂αωI

∂xα
(x)

∣∣∣∣p
dx

}1/p

∣∣∣D[s]ω
∣∣∣
Wσ,p

:=


∑
I

∑
|α|=[s]

ˆ
Ω

ˆ
Ω

∣∣∣∣∂αωI

∂xα
(x)− ∂αωI

∂xα
(y)

∣∣∣∣p

|x− y|m+σp dx dy


1/p

.

The definition extends, with the obvious modification, to the case p =∞.
We next turn to the definition of Sobolev spaces of forms on manifolds. This requires defin-

ing the pullback of forms. Let ϕ :Ω1 ⊂Rm1 →Ω2 ⊂Rm2 be a smooth map between two open sets
Ω1 and Ω2. The pullback ϕ]ω of a measurable l-form ω in Ω2 is defined by

(ϕ]ω)(x)(η1, ...,ηl)=ω(ϕ(x))(dϕ(x)(η1), ...,dϕ(x)(ηl)), ∀ x ∈Ω1, η1, ...,ηl ∈Rm1 .

Then ϕ]ω is a measurable l-form on Ω1, and, if ω is smooth, then we have the chain rule
dϕ]ω=ϕ]dω.

Let ϕ : Ω1 ⊂ Rm1 → Ω2 ⊂ Rm2 be a smooth proper map between two open sets Ω1 and Ω2.
Then we define the pushforward ϕ]T of an l-current T ∈ (C∞

c (ΛlΩ1))∗ as the following l-current
on Ω2 :

〈ϕ]T,ω〉 = 〈T,ϕ]ω〉 , ∀ω ∈ C∞
c (ΛlΩ2).

In the special case where ϕ :Ω1 →Ω2 is a diffeomorphism, we may define two additional ob-
jects: ϕ]ω = (ϕ−1)]ω and ϕ]T = (ϕ−1)]T, whenever ω is a form on Ω1 and T is a current on
Ω2.

We are now in position to define the Sobolev spaces of forms on manifolds. Consider
a smooth oriented compact m-dimensional boundaryless submanifold M of Rm+n. The set
Λl M := ⋃

x∈M
({x}×ΛlTxM) has a natural differential structure. Same forΛl M := ⋃

x∈M
({x}×ΛlTxM).

The set of smooth compactly supported l-forms in M is denoted by C∞
c (Λl M). This set reduces

to the set C∞(Λl M) of smooth l-forms on M when M is compact. In order to simplify the
presentation, we further assume that either M is compact, or M = N ×ω, with N compact
and t-dimensional and ω ⊂ Rl (this will indeed be the case of all the submanifolds considered
later). The definition of W s,p(Λl M) follows from that of W s,p(ΛlΩ) via a finite covering of M by
domains of local coordinates. Let (ϕ j,U j,Vj) be a finite atlas of M, where:
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a) If M is compact, then ϕ j : U j ⊂ M →Vj ⊂Rm is a smooth diffeomorphism.

b) If M = N ×ω, then ϕ j = η j ⊗ Id, with η j : Wj ⊂ N → X j ⊂ Rt is a smooth diffeomorphism.
Here, (Wj) is a covering of N with domains of local coordinates.

Consider maps θ j : M → [0,1], such that:

a) If M is compact, then (θ j) is a partition of the unit subordinated to the covering (U j).

b) If M = N×ω, then θ j =ψ j⊗Id, with (ψ j) partition of the unit subordinated to the covering
(Wj) of N.

For s ≥ 0 and p ≥ 1, we let

‖ω‖W s,p = ‖ω‖W s,p(Λl M) =
∑

j

∥∥ϕ j](θ jω)
∥∥

W s,p(ΛlVj)
.

Two different choices of finite coverings lead to the same space W s,p(Λl M), with equivalent
norms.

Let 0 < s and 1 ≤ p ≤∞. When ω ∈W s,p
loc (Λ0M),16 we define the seminorm |ω|W s,p(M) ∈ [0,∞]

as follows.

|ω|pW s,p(M) =



ˆ
M

ˆ
M

|ω(x)−ω(y)|p
d(x, y)m+sp dx dy, if s < 1ˆ

M
|dω|p, if s = 1

‖dω‖W s−1,p , if s > 1

,

with the obvious modification when p =∞. Here, d(x, y) is the geodesic distance between x and
y.

An equivalent semi-norm is given by
∥∥∥∥ω−

 
M
ω

∥∥∥∥
W s,p

. Alternatively, one can consider the

standard norm on the quotient space W s,p/R.17 Other (equivalent) semi-norms will be intro-
duced in the next sections.

We next identify currents defined in M with currents defined in Rm+n. This goes as follows.
If ϕ is a smooth map defined on M with values into some other manifold, then one may define
the pullback and the pushforward by ϕ as above. Let U be an open neighborhood of M in Rm+n

and

i : M →U , M 3 x i−→ x ∈U

be the canonical inclusion. Given an l-form ω on U , we denote by ω|M the form on M defined
by i]ω. We say that

1. A form ω ∈ C∞
c (ΛlU) is null at M if i]ω= 0,

2. An l-current T ∈ (C∞
c (ΛlU))∗ is a current along M if 〈T,ω〉 = 0 for every ω ∈ C∞

c (ΛlU)
which is null at M.

One can easily see that T 7→ i]T is an isomorphism between the space of l-currents defined in
M and the space of l-currents along M.18

3 Rectifiability, area and coarea
We follow [19, Chapters 2, 3]; see also [21, Chapter 2] and [32, Chapters 3, 4].

An m-rectifiable set M ⊂Rm+n is a set of the form M =M0 ∪
∞⊔
j=1

M j, where

1. t stands for a disjoint union.

16In this case, ω is identified to a function.
17We will apply this with ω an Rk-valued map. In this case, the quotient space is (W s,p(Λ0M))k/Rk.
18Here, the spaces of currents are endowed with the usual topologies.
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2. H m(M0)= 0.

3. For j ≥ 1, every M j is a Borel subset of an m-dimensional C1-submanifold N j of Rm+n.

4. The total measure H m(M )=∑∞
j=1 H m(M j) is finite.

Let M be m-rectifiable. An m-dimensional subspace P of Rm+n is the approximate tangent
space of M at x ∈Rm+n if

lim
λ→0+

ˆ
(M − x)/λ

g(y)dH m(y)=
ˆ

P
g(y)dH m(y), ∀ g ∈ C∞

c (Rm+n).

If it exists, such a P is unique and is denoted by TxM . An m-rectifiable set M admits H m-a.e.
on M an approximate tangent space [21, Section 2.1.4], and moreover

TxM = TxN j, H m −a.e. x ∈M j. (3.1)

An m-rectifiable current19 in the open set U ⊂Rm+n is defined via a triple (M ,ξ,θ), where

1. M ⊂U is an m-rectifiable set.

2. ξ : M → ΛmR
m+n is a Borel measurable map such that |ξ| = 1 and ξ(x) ∈ ΛmTxM for

H m-a.e. x.20

3. θ : M →Z is a Borel locally H m-summable function.21

The m-rectifiable current associated to this triple acts through the formula

〈T,ω〉 =
ˆ

M

〈ξ,ω〉θdH m , ∀ω ∈ C∞
c (ΛmU).

Clearly, such a T acts on the space of compactly supported m-forms with continuous coeffi-
cients, and thus it may be identified with a (vector-valued) measure. As a measure, the total
variation (mass) of T is given by

M(T) :=
ˆ

M

|θ|dH m.

We end this section by recalling the area and coarea formulae.
Let M be a smooth m-dimensional submanifold of an Euclidean space. Let f ∈ Liploc(M;Rk).

We define the Jacobian of f at x ∈ M by

JM
f (x) :=

{
(det(d f (x))∗(d f (x)))1/2, if k ≥ m
(det(d f (x))(d f (x))∗)1/2, if k ≤ m

.

Here, the differential d f (x) : TxM → Rk of f at x is defined for a.e. x. The area formula
and coarea formula read as follows [21, Section 2.1.5]. Let f : M → Rk be locally Lipschitz.
Let A ⊂ M be an H m-measurable set. Then for any nonnegative Borel measurable function
u : M →R, we have

1. (Area formula) If k ≥ m, then
ˆ

A
u(x)JM

f (x)dH m(x)=
ˆ

f (A)

( ∑
f −1(y)∩A

u(x)

)
dH m(y).

2. (Coarea formula) If k < m, then
ˆ

A
u(x)JM

f (x)dH m(x)=
ˆ

f (A)

(ˆ
f −1(y)∩A

u dH m−k(x)
)

dH k(y).

19Sometimes refered as an integer multiplicity m-rectifiable current.
20ξ is a Borel measurable orientation.
21θ is the multiplicity function. By changing ξ if necessary, one may assume that θ takes only nonnegative values.

9



4 Interpolation inequalities
We start by recalling the following Gagliardo-Nirenberg type inequality [33, Lecture II], [14,
Corollary 2].22

4.1 Lemma. Let θ ∈ (0,1), a > 0, p ≥ 1, 1< q ≤∞. Let r satisfy
1
r
= θ

p
+ 1−θ

q
. The inequality

‖u‖Wθa,r ≤ C‖u‖θWa,p‖u‖1−θ
Lq , ∀u ∈ C∞

c (Rm) (4.1)

is true in the following cases.

1. a is not an integer.

2. a and θa are integers.

3. a is an integer and p > 1 .

As a consequence, we have

4.2 Lemma. For every p ≥ 1 and k ≥ 3, there exists C = C(p,m)> 0 such that

‖u‖W (k−1)/p,p(Sm) ≤ C‖u‖1/p
Wk−1,1(Sm)

‖u‖1−1/p
L∞(Sm), ∀u ∈ C∞(Sm). (4.2)

Proof. It suffices to prove (4.2) for u ∈ C∞
c (Bm). Indeed, assume that (4.2) holds in this case.

Consider a covering of Sm with finitely many open subsets U j such that U j is diffeomorphic to
the closed ball B

m
. We denote by ϕ j : U j → B

m
the corresponding diffeomorphisms, and by (θ j)

a partition of the unit subordinated to the covering (U j). Then, for every u ∈ C∞(Sm) we have

‖u‖W (k−1)/p,p(Sm) ∼
∑

j

∥∥(ϕ j)](θ ju)
∥∥

W (k−1)/p,p(Bm) ≤ C
∑

j

∥∥(ϕ j)](θ ju)
∥∥1/p

Wk−1,1(Bm)

∥∥(ϕ j)](θ ju)
∥∥1−1/p

L∞(Bm)

≤ C‖u‖1−1/p
L∞(Sm)

∑
j

∥∥(ϕ j)](θ ju)
∥∥1/p

Wk−1,1(Bm) ≤ C‖u‖1−1/p
L∞(Sm)‖u‖1/p

Wk−1,1(Sm)
,

as claimed.
Let u ∈ C∞

c (Bm). Since (4.2) is trivially true for p = 1, we may assume that p > 1. By item 2
in Lemma 4.1, we have

‖u‖W j,(k−1)/ j ≤ C‖u‖ j/(k−1)
Wk−1,1 ‖u‖1− j/(k−1)

L∞ , ∀ j ∈ J1, ...,k−1K. (4.3)

We claim that (4.2) is a consequence of the following inequality:

‖u‖W s,p ≤ C‖u‖s
W1,1‖u‖1−s

Lq , ∀ s ∈ (0,1), q ∈ (1,∞), u ∈ C∞
c (Rm), (4.4)

where p is defined by
1
p
= s+ 1− s

q
. Indeed, assume for a moment that (4.4) is true. Then we

are able to complete the proof of (4.2) by considering three different cases.

Case 1.
k−1

p
∈ (k−2,k−1).

By (4.3), we have

‖u‖Wk−2,(k−1)/(k−2) ≤ C‖u‖(k−2)/(k−1)
Wk−1,1 ‖u‖1−(k−2)/(k−1)

L∞ . (4.5)

By combining this estimate with (4.4) applied to the map Dk−2u, to q = k−1
k−2

and to s = k−1
p

−
(k−2), we obtain∥∥∥Dk−2u

∥∥∥
W (k−1)/p−(k−2),p

≤ C
∥∥∥Dk−2u

∥∥∥(k−1)/p−(k−2)

W1,1

∥∥∥Dk−2u
∥∥∥1−(k−1)/p+k−2

L(k−1)/(k−2)
≤ (by (4.5))

≤ C
∥∥∥Dk−2u

∥∥∥(k−1)/p−(k−2)

W1,1

(
‖u‖(k−2)/(k−1)

Wk−1,1 ‖u‖1/(k−1)
L∞

)1−(k−1)/p+k−2

≤ C‖u‖1/p
Wk−1,1‖u‖1−1/p

L∞ .

(4.6)

22The results in [14] are stated only for p > 1, but the arguments still hold when p = 1.
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Using Rellich’s theorem, one may prove by contradiction that there exists some C > 0 such that
the following Poincaré type inequality holds:

‖u‖W (k−1)/p,p ≤ C
∥∥∥Dk−2u

∥∥∥
W (k−1)/p−k+2,p

, ∀u ∈ C∞
c (Bm). (4.7)

We obtain (4.2) by combining (4.6) and (4.7).

Case 2.
k−1

p
is an integer.

This case follows from item 2 in Lemma 4.1.

Case 3.
k−1

p
∈ (l−1, l) for some integer l ∈ J1,k−2K.

In this case, we have

‖u‖W (k−1)/p,p ≤ C‖u‖(k−1)/(pl)
W l,(k−1)/l ‖u‖1−(k−1)/(pl)

L∞ (by (4.1))

≤ C
(
‖u‖l/(k−1)

Wk−1,1 ‖u‖1−l/(k−1)
L∞

)(k−1)/(pl) ‖u‖1−(k−1)/(pl)
L∞ (by (4.3))

≤ C‖u‖1/p
Wk−1,1‖u‖1−1/p

L∞ ;

that is (4.2) holds.
It remains to prove (4.4). Let ε ∈ (0, s). By [18, Theorem 1.5], we have

‖u‖W s,p ≤ C‖u‖θεW1,1‖u‖1−θε
Wε,r , (4.8)

where θε = s−ε
1−ε and r is defined by

1
p
= θε+ 1−θε

r
.

By (4.1), we have

‖u‖Wε,r ≤ C‖u‖ηεLq‖u‖1−ηε
W s,p , (4.9)

where ηε = 1− ε

s
satisfies

1
r
= ηε

q
+ 1−ηε

p
.

We obtain (4.2) by combining (4.8) with (4.9). The proof of Lemma 4.2 is complete.

4.3 Corollary. For every p ≥ 1 and k ≥ 3, there exists C = C(p,m)> 0 such that

|u|W (k−1)/p,p(Sm) ≤ C|u|1/p
Wk−1,1(Sm)

‖u‖1−1/p
L∞(Sm), ∀u ∈ C∞(Sm). (4.10)

Proof. Apply Lemma 4.2 to u−
 
Sm

u.

4.4 Remark. In the proof of Theorem 1.2, item 2, it suffices to consider the case where
p > k − 1. Indeed, assume that the conclusion of Theorem 1.2 holds when p > k − 1. Let
u ∈W (k−1)/p,p(Sm;Sk−1) for some p ≤ k−1.

Assume first that p > 1. Let s ∈ (0,1). By Lemma 4.1, we have u ∈ W s,(k−1)/s(Sm;Sk−1) and
the argument leading to Corollary 4.3 yields

|u|W s,(k−1)/s(Sm) ≤ C|u|(sp)/(k−1)
W (k−1)/p,p(Sm)

‖u‖1−(sp)/(k−1)
L∞(Sm) .

By Theorem 1.2, there exists some (m− k+1)-rectifiable current N in Sm such that Ju = ∂N
and

M(N)≤ C|u|(k−1)/s
W s,(k−1)/s(Sm)

≤ C|u|pW (k−1)/p,p(Sm)
.

When p = 1, Lemma 4.1 combined with the argument leading to Corollary 4.3 implies

|u|W1,k−1(Sm) ≤ C|u|1/(k−1)
Wk−1,1(Sm)

‖u‖1−1/(k−1)
L∞(Sm) .

In this case, it suffices to invoke Theorem 1.2 in the space W1,k−1(Ω;Sk−1), which was proved
in [2, Theorem 3.8]. Here, Ω ⊂ Rm is an open set, and not Sm as we want; however, it is easy
to transfer results from open sets to spheres (or, more generally, embedded manifolds); see the
proof of Theorem 1.3 at the end of the Section 6.1.

Similarly, in the proof of Theorem 1.3 it suffices to consider the cases p = 1 and k ≥ 3 (by
Corollary 4.3), respectively k = 2 and p ≥ 1.
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For further use, we note the following special case of Lemma 4.1.

4.5 Lemma. Let 1< p0 < p <∞. Then we have

‖u‖W1/p,p ≤ C‖u‖p0/p
W1/p0 ,p0

‖u‖1−p0/p
L∞ , ∀u ∈ C∞(Sm)

and

|u|W1/p,p ≤ C|u|p0/p
W1/p0 ,p0

‖u‖1−p0/p
L∞ , ∀u ∈ C∞(Sm).

5 Proof of Theorems 1.1 and 1.2
In the definition of Ju beyond the space W1,k−1(Sm;Sk−1), we rely on the following quantitative
version of the trace theory.

5.1 Lemma. For p > k−1 and u ∈ W (k−1)/p,p (
Sm;Rk)

, there exists a map v : Sm × [0,∞) → Rk

satisfying:

1. v ∈ C∞(Sm × (0,∞)).

2. For T > 0, we have v ∈Wk/p,p(Sm × (0,T);Rk) and in addition

|v|Wk/p,p(Sm×(0,T)) ≤ CT |u|W (k−1)/p,p(Sm) (5.1)

and ˆ
Sm

|v(x, ·)|pWk/p,p(0,∞)
dH m(x)≤ C|u|pW (k−1)/p,p(Sm)

. (5.2)

3. tr|Sm×{0}v = u.

4. If u ∈ C∞, then v ∈ C∞(Sm × [0,∞)) and v(·,0)= u.

5. If |u| ≤ 1 a.e. then |v(x, t)| ≤ 1 and |dv(x, t)| ≤ C
t

, ∀ (x, t) ∈Sm × (0,∞).

Finally, we may choose v such that the correspondence u 7→ v is linear and, in addition, v does
not depend on p.

Here,

|u|pW (k−1)/p,p(Sm)
=
ˆ
Sm

ˆ
Sm

|u(x)−u(x′)|p
d(x, x′)m+k−1 dH m(x)dH m(x′),

and the semi-norm |v(x, ·)|pWk/p,p(0,∞)
is given by

1.
ˆ ∞

0

ˆ ∞

0

|v(x, t)−v(x, t′)|p
|t− t′|1+k dtdt′, if p > k.

2.
ˆ ∞

0
|∂tv(x, t)|p dt, if k = p.

3.
ˆ ∞

0

ˆ ∞

0

∣∣∂tv(x, t)−∂tv(x, t′)
∣∣p

|t− t′|1+k−p dtdt′, if k−1< p < k.

The above result is well-known to experts, but seems difficult to find in the literature. For
the convenience of the reader, we present a proof of Lemma 5.1 in Section 7.

5.2 Remark. When p = k, we recover the classical result that any map in W1−1/k,k is the trace
of a map in W1,k. More precisely, the proof of Lemma 5.1 shows that

|dv|Lk(Sm×(0,∞)) ≤ C|u|W1−1/k,k(Sm). (5.3)
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In what follows, it will be convenient to denote by u 7→ Tu the distributional Jacobian whose
existence we want to establish (to be distinguished of the already existent map u 7→ Ju). Thus
the conclusion of Theorem 1.1 1 reads Tu = Ju if u ∈ W1,k−1, and similarly Theorems 1.2 and
1.3 can be rephrased in terms of Tu.

We now fix p > k − 1 and u ∈ W (k−1)/p,p(Sm;Sk−1) and proceed to defining Tu. Let Φ ∈
C∞

(
Rk;B

k)
be such that

Φ(X )= X
|X | if |X | ≥ 1

2
. (5.4)

Let v be given by Lemma 5.1 and set U :=Φ◦v, which is defined in Sm×[0,∞), and whose trace
on Sm × {0} is u. Clearly, U ∈ C∞

(
Sm × (0,∞);B

k)
and |U(x, t)| = 1 for every (x, t) ∈G , where

G :=
{

(y, s) ∈Sm × (0,∞); |v(y, s)| > 1
2

}
.

As in the proof of (1.1), we find that U]γ= 0 on G for every γ ∈ C∞(ΛkRk); in particular, this
holds for γ = d y. The key estimates in the proof of Theorems 1.1 and 1.2 are given by the
following lemma, reminiscent of similar results in [10, Lemma 1, Lemma 2].

5.3 Lemma. Let γ ∈ C∞
c (ΛkRk). Then

1. U]γ ∈ L1(Sm × (0,∞)) and ‖U]γ‖L1(Sm×(0,∞)) ≤ C|u|pW (k−1)/p,p(Sm)
.

2. H m
({

x; |v(x, t)| ≤ 1
2

})
= o

(
tk−1

)
as t → 0.

Proof. Since |U]γ| ≤ C|dv|k, we have
ˆ
Sm×(0,∞)

|U]γ| =
ˆ

M

|U]γ| ≤ C
ˆ

M

|dv|k,

where M := (Sm × (0,∞))\G .
For x ∈Sm, we define

d(x) := inf
{

t ∈ (0,∞); |v(x, t)| ≤ 1
2

}
. (5.5)

In particular, we have M ⊂ {(x, t); t ≥ d(x)} and, if d(x)<∞, then |v(x,d(x))| = 1
2

.
By the above and Lemma 5.1 5, we find that

ˆ
Sm×(0,∞)

|U]γ| ≤ C
ˆ
Sm

(ˆ +∞

t=d(x)
|dv(x, t)|k dt

)
dH m(x)≤ C

ˆ
Sm

(ˆ +∞

t=d(x)

dt
tk

)
dH m(x),

and thusˆ
Sm×(0,∞)

|U]γ| ≤ C
ˆ
Sm

1
d(x)k−1 dH m(x). (5.6)

For almost every x ∈Sm and for every t > 0 such that |v(x, t)| ≤ 1
2

we have

1. |v(x, t)−u(x)| ≥ 1
2

.

2. v(x, ·) ∈Wk/p,p(0,∞)⊂ C0,(k−1)/p(0,∞).

3. tr|t=0v(x, ·)= u(x).
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On the other hand, by the Morrey embeddings we have

|v(x, t)−u(x)| ≤ |v(x, ·)|C0,(k−1)/p(0,t)t
(k−1)/p ≤ C|v(x, ·)|Wk/p,p(0,t)t

(k−1)/p. (5.7)

Thus, for a.e. x ∈Sm we have

1
tk−1 ≤ C|v(x, ·)|pWk/p,p(0,t) if t ≥ d(x). (5.8)

By taking t = d(x) in (5.8) and using Lemma 5.1 2, this gives
ˆ
Sm

1
d(x)k−1 dH m(x)≤ C

ˆ
Sm

|v(x, ·)|pWk/p,p(0,∞)
≤ C|u|pW (k−1)/p,p(Sm)

. (5.9)

Lemma 5.3 1 is now a consequence of (5.6) and (5.9).
Finally, (5.7) implies

H m
({

x; |v(x, t)| ≤ 1
2

})
≤ C

ˆ
Sm

|v(x, t)−u(x)|p dH m(x)≤ Ctk−1|v|pWk/p,p(Sm×(0,t)).

This implies Lemma 5.3 2.

By Lemma 5.3, the following quantity is well-defined for every ς ∈W1,∞(Λm−kSm × [0,∞)):

〈Iu,ς〉 = (−1)m+1

ωk

ˆ
Sm×(0,∞)

(dς)∧U]d y. (5.10)

The final step in defining Tu is provided by the following lemma.

5.4 Lemma. Let ζ ∈W1,∞(Λm−kSm). Let i denote the canonical inclusion map

i :Sm →Sm × [0,∞), Sm 3 x i−→ (x,0) ∈Sm × [0,∞).

Let ς1,ς2 ∈W1,∞(Λm−k(Sm × [0,∞)) satisfy i]ς1 = i]ς2. Then 〈Iu,ς1〉 = 〈Iu,ς2〉.
Therefore, the map

〈Tu,ζ〉 := 〈Iu,ς〉, ∀ζ ∈W1,∞(Λm−kSm), ∀ς ∈W1,∞(Λm−kSm×[0,∞)) such that i]ς= ζ (5.11)

is well-defined.

Proof. Via a convenient partition of the unit, we may always assume that the forms we consider
are supported in Ω or Ω×[0,∞), where Ω is a domain of local coordinates on Sm. We denote the
coordinates on Ω×R by (y1, . . . , ym, t). If ς is an (m− k)-form supported in Ω×R, then we may
decompose it as ς= ςh+ςv, where ςh represents the horizontal part (which does not contain dt),
the part ςv representing the remaining, vertical, part. The hypothesis i]ς1 = i]ς2 is equivalent
to the fact that, restricted to Sm × {0}, the horizontal parts ςh

1 and ςh
2 coincide. Therefore, the

difference ς := ς1−ς2 can be approximated by a sequence (η j)⊂ C∞(Λm−kSm×[0,∞)), supported
in Ω× [0,∞), such that (η j) converges uniformly to η, ‖dη j‖L∞ ≤ C, (dη j) converges to dς a.e.
on Sm × (0,∞) and ηh

j vanishes in a neighborhood of Sm × {0}.
Fix some j ≥ 1. Since, by the chain rule, we have d(U]d y) = (U]d2 y) = 0 in Sm × (0,∞), and

since ηh
j = 0 on Sm × [0,ε] for small ε, we have by Stokes’ formula:

ˆ
Sm×(0,∞)

(dη j)∧(U]d y)=
ˆ
Sm×(ε,∞)

(dη j)∧(U]d y)= (−1)m−k+1
ˆ
Sm×(ε,∞)

η j∧d(U]dy)= 0. (5.12)

We then let j →+∞ and find, by dominated convergence, that

0=
ˆ
Sm×(0,∞)

(dς)∧ (U]d y)= 〈Iu,ς1〉−〈Iu,ς2〉.
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Proof of Theorem 1.1 3. When 0< s < 1 and p = k−1
s

, it follows from Lemma 5.3 1 and Lemma
5.4 that

|〈Tu,ζ〉| ≤ C|u|pW s,p‖dζ‖L∞ , ∀ζ ∈W1,∞(Λm−kSm).

Since we will establish later that Tu = Ju when u ∈W1,k−1(Sm;Sk−1), the above is exactly the
conclusion of Theorem 1.1 3 when 0< s < 1. The case s = 1 is clear from the definition of Ju.

Proof of Theorem 1.1 2. We have to establish the following fact: for k−1< p <∞, the map

T : W (k−1)/p,p(Sm;Sk−1)→ (W1,∞(Λm−kSm))∗, u T−→ Tu

is continuous.
Let (u j) ⊂ W (k−1)/p,p(Sm;Sk−1) be a sequence converging in W (k−1)/p,p to some u. For j ≥ 1,

let v j, U j =Φ(v j) and d j(x) be associated to u j as above, and similarly let v, U =Φ(v) and d(x)
be associated to u.

It suffices to prove that U]
jd y converges to U]d y in L1(Sm × (0,∞)). By Lemma 5.1 2, there

exists K ∈ L1(Sm) such that up, to a subsequence, we have

|v j(x, ·)|pWk/p,p(0,∞)
≤ K(x), ∀ j ≥ 1, H m a.e. x ∈Sm. (5.13)

As in the proof of Lemma 5.3, (5.13) leads to

1
d j(x)k−1 ≤ C|v j(x, ·)|pWk/p,p(0,∞)

≤ CK(x). (5.14)

Since (u j) converges to u in Lp(Sm), the proof of Lemma 5.1 implies that (dv j) converges to dv
a.e., and therefore U]

jdy converges to U]d y a.e.
By (5.14), we have

|U]
jd y|(x, t)≤

{
0, if t ≤ d j(x)
C0t−k, if t > d j(x)

≤ f (x, t) :=
{

0, if t ≤ (CK(x))−1/(k−1)

C0t−k, if t > (CK(x))−1/(k−1).

The function f belongs to L1(Sm×(0,∞)), since K ∈ L1(Sm×(0,∞)). By dominated convergence,
we find that U]

jd y→U]d y in L1(Sm × (0,∞)), possibly up to a subsequence. Uniqueness of the
limit implies that convergence occurs for the full sequence. This completes the proof of Theorem
1.1 2.

Proof of Theorem 1.1 1. We start by noting that Tu and Ju make sense for some classes of not
necessarily Sk−1-valued maps. To start with, Ju is defined for u ∈ W1,k−1 ∩L∞(Sm;Rk), and
u 7→ Ju is continuous wrt u in the following sense: if u j → u in W1,k−1 and ‖u j‖L∞ ≤ C, then
Ju j → Ju in (W1,∞(Λm−kSm))∗. On the other hand, Iu is defined for u ∈ W1−1/k,k(Sm;Rk) and
continuous from W1−1/k,k(Sm;Rk) into (W1,∞(Λm−kSm×[0,∞))∗. This follows from the fact that
by (5.3) we have

|U]d y| ≤ C|dU |k ≤ C|dv|k ∈ L1(Sm × (0,∞)).

The key observation is the following.

5.5 Lemma. Tu is well-defined and the mapping u 7→ Tu is continuous from W1−1/k,k(Sm;Rk)
into (W1,∞(Λm−k(Sm))∗.

In addition, for u ∈W1,k−1 ∩L∞∩W1−1/k,k(Sm;Rk), we have

Tu = Ju. (5.15)
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Proof. To start with, let u ∈ C∞. With ω0 the canonical volume form on Sk−1 given by (1.6) and

ζ, ς as in Lemma 5.4, we have dω0 = 1
ωk

d y, and thus

〈Iu,ς〉 = (−1)m+1

ωk

ˆ
Sm×(0,∞)

dς∧U]d y= (−1)m+1
ˆ
Sm×(0,∞)

dς∧U]dω0

= (−1)k
ˆ
Sm×(0,∞)

d(dς∧U]ω0)= (−1)m−k+1
ˆ
Sm

dζ∧u]ω0 = 〈Ju,ζ〉.

In the last line, we have used Stokes’ formula. In particular, this proves that 〈Iu,ς〉 does
not depend on ς, and thus Tu is well-defined and Tu = Ju. By a standard approximation
procedure, (5.15) remains true for a general u.

Finally, the continuity of u 7→ Tu is clear.

Proof of Theorem 1.1 1 completed: the case k ≥ 3. The Gagliardo-Nirenberg embedding

W1,k−1 ∩L∞ ⊂W (k−1)/q,q, ∀q ≥ k−1≥ 2

implies that

W1,k−1 ∩W (k−1)/p,p(Sm;Sk−1)=W1,k−1(Sm;Sk−1)

=W1,k−1 ∩W1−1/k,k(Sm;Sk−1), ∀ p > k−1.
(5.16)

The preceding lemma combined with (5.16) proves that the equality Tu = Ju holds for u ∈
W1,k−1(Sm;Sk−1).

Proof of Theorem 1.1 1 completed: the case k = 2. This follows from Lemma 5.5 and Lemma 5.6
below.

5.6 Lemma. Let p > 1. If u ∈W1,1 ∩W1/p,p(Sm;S1), then there exists a sequence

(u j)⊂W1,1 ∩W1/2,2 ∩W1/p,p(Sm;S1)

converging to u in W1,1 ∩W1/p,p.
More generally, we may pick u j such that u j ∈W1,q(Sm;S1), ∀1< q < 2.

Proof. The result is obtained by combining the arguments in [8, Section IV] and [9, Lemma 23,
Remark 5.1]. For the convenience of the reader, we sketch the proof. For a ∈ D, let πa be the
projection onto S1 with vertex at a. That is, πa(x) is the intersection with S1 of the half-line
from a to x.

Consider a regularized family (uε), so that uε→ u in W1,1 ∩W1/p,p and uε ∈ C∞(Sm;D). For
a generic a ∈D, the set u−1

ε (a) is a smooth manifold of dimension m−2 and consists of regular
points of uε. For any such a, the map va,ε := πa(uε) belongs to W1,q(Sm;S1), ∀1 ≤ q < 2; see [9,
Remark 5.1].

By [9, Lemma 23, Step 4], there exists a measurable set Aε ⊂ B(0,1/10) ⊂ R2 such that
|Aε| > |B(0,1/10)|/2 and for every aε ∈ Aε we have vaε,ε → u in W1/p,p(Sm;S1).23 On the other
hand, we may pick a measurable set Bε ⊂ B(0,1/10) such that |Bε| > |B(0,1/10)|/2 and for every
aε ∈ Bε we have vaε,ε → u in W1,1(Sm;S1) [8, Proof of Theorem 4].24 It then suffices to let
u j = va1/ j , j with a j ∈ A1/ j ∩B1/ j.

23The proof there is for p = 2, but the argument applies with no change to every p > 1.
24The map πa in [8] is not the same as ours, but this is not relevant for the proof.
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We now turn to the proof of Theorem 1.2.
Let u ∈ W (k−1)/p,p(Sm;Sk−1), and associate to u the maps v and U as above. By the coarea

formula, we haveˆ
Bk

H m−k+1(U−1(a))dH k(a)=
ˆ
Sm×(0,∞)

|U]d y|dH m+1.

Lemma 5.3 then impliesˆ
Bk

H m−k+1(U−1(a))dH k(a)≤ C|u|pW (k−1)/p,p(Sm)
.

Hence, for almost every a ∈ Bk we have H m−k+1(U−1(a))<∞ and we can find a large set of a’s
such that

H m−k+1(U−1(a))≤ C|u|pW (k−1)/p,p . (5.17)

We next establish a version of the coarea formula for differential forms.

5.7 Lemma. For a convenient orientation of U−1(y) and for every $ ∈ C0 ∩L∞(Λm−k+1Sm ×
[0,∞)) we haveˆ

Sm×(0,∞)
$∧ (U]d y)=

ˆ
Bk

(ˆ
U−1(y)

$

)
dH k(y). (5.18)

Proof. We first define the orientation of U−1(y). This is done according to the following general
principle. Let f be a linear map between two finite dimensional oriented vector spaces E and F.
We want to define the orientation of Ker f . Consider a positively oriented basis (ε1, . . . ,εr) of F.
Let G be any supplement of Ker f and let S := f|G : G → F. By convention, we say that a basis
(e1, . . . , e l) of Ker f is positively oriented if (e1, . . . , e l ,S−1ε1, . . . ,S−1εr) is a positively oriented
basis of E. It is easy to see that the definition of positively oriented bases of Ker f does not
depend on the choice of (ε1, . . . ,εr) or G. This procedure allows us to define an orientation on
U−1(y). Indeed, if x ∈U−1(y) is a regular point of U , then we have TxU−1(y)=Ker dU(x).

Let τ ∈ C∞(Λm+1S
m × (0,∞)) be the oriented unit (m+1)-vector on Sm × (0,∞) and set

f (x) :=


〈
$(x)∧ U]d y

|U]d y| (x),τ(x)
〉

, if |U]d y| 6= 0

0, otherwise
.

Let y ∈ Rk be a regular value of U and x ∈U−1(y). Let (e1, . . . , em−k+1) be a positively oriented
orthonormal basis of TxU−1(y) that we complete to a positively oriented orthonormal basis
(e1, . . . , em+1) of TxS

m × (0,∞). By the convention detailed above, this means that

(dU(x)(em−k+2), . . . ,dU(x)(em+1))

is a positively oriented basis of Rk. In particular, det
((

dU i(x)(e j)
) j∈Jm−k+2,m+1K

i∈J1,kK

)
> 0.

Moreover, we have τ(x)= e1∧ . . .∧ em+1, while σ(x) := e1∧ . . .∧ em+1−k is the unit (m+1−k)-
vector orienting TxU−1(y). We write

$(x)= ∑
1≤i1<...<im+1−k≤m+1

$i1,...,im+1−k (x)e∗i1
∧ . . .∧ e∗im+1−k

.

We have

(U]d y)(x)= (dU1 ∧ . . .∧dUk)(x)= det
((

dU i(x)(e j)
) j∈Jm−k+2,m+1K

i∈J1,kK

)
e∗m−k+2 ∧ . . .∧ e∗m+1.

This gives〈
$(x)∧ U]d y

|U]d y| (x),τ(x)
〉
=$1,...,m−k+1 sgn det

((
dU i(x)(e j)

) j∈Jm−k+2,m+1K
i∈J1,kK

)
=$1,...,m−k+1 = 〈$(x),σ(x)〉.
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Therefore, we have f (x)= 〈$(x),σ(x)〉. By the coarea formula, we find that
ˆ
Sm×(0,∞)

$∧ (U]dy)=
ˆ
Sm×(0,∞)

f (x)JS
m×(0,∞)

U dH m+1(x)

=
ˆ

Bk

(ˆ
U−1(y)

〈$(x),σ(x)〉dH m+1−k(x)
)

dH k(y)=
ˆ

Bk

(ˆ
U−1(y)

$

)
dH k(y).

We will also need the following

5.8 Lemma. Let γ ∈ C∞
c (Λk−1Bk). Then for every ς ∈ C1 ∩W1,∞(Λm−kSm × [0,∞)) we have

ˆ
Sm×(0,∞)

dς∧U]dγ= 0.

Proof. Let t > 0. Using the fact that γ is compactly supported in Bk, we find that U]γ vanishes
in the open set

{
x ∈Sm; |v(x, t)| > 1/2

}
, which is contained in the set {x ∈Sm; |U(x, t)| = 1}. As in

the proof of (5.12), we obtain∣∣∣∣ˆ
Sm×(t,∞)

dς∧U]dγ
∣∣∣∣= ∣∣∣∣ˆ

Sm×{t}
dς∧U]γ

∣∣∣∣
=

∣∣∣∣ˆ
{x∈Sm; |v(x,t)|≤1/2}×{t}

dς∧U]γ

∣∣∣∣≤ C
tk−1 H m

({
x ∈Sm; |v(x, t)| ≤ 1

2

})
.

This last quantity goes to 0 as t → 0 by Lemma 5.3 2. This implies
ˆ
Sm×(0,∞)

dς∧U]dγ= lim
t→0

ˆ
Sm×(t,∞)

dς∧U]dγ= 0.

We continue by presenting some consequences of Lemma 5.8. Let ρ ∈ C∞
(
B

k)
be such thatˆ

Bk
ρ = ωk and ρ = 1 in a neighborhood of Sk−1. Then there exists γ ∈ C∞

c (Λk−1Bk) such that

dγ = (1−ρ)d y [27, Lemma 7.5]. Hence, we can apply the above lemma to γ, which yields for
every ς ∈ C1 ∩W1,∞(Λm−kSm × [0,∞))

ˆ
Sm×(0,∞)

dς∧U]dγ= 0. (5.19)

Therefore, if we set, for every ρ as above and for ς ∈ C1 ∩W1,∞(Λm−kSm × [0,∞)),

I(ρ)= I(ρ,u,ς) :=
ˆ

Bk
ρ(y)

(ˆ
U−1(y)

dς
)

dH k(y),

then Lemma 5.7 applied to the form (1−ρ ◦U)dς combined with (5.19) implies

I(1)−I(ρ)=
ˆ
Sm×(0,∞)

((1−ρ◦U)dς)∧U]d y=
ˆ
Sm×(0,∞)

dς∧U]((1−ρ)d y)=
ˆ
Sm×(0,∞)

dς∧U]dγ= 0.

We have thus proved

5.9 Lemma. For ς ∈ W1,∞ ∩C1(Λm−kSm × [0,∞)), the quantity I(ρ) does not depend on the

function ρ ∈ C∞
(
B

k)
such that

ˆ
Bk
ρ =ωk and ρ = 1 in a neighborhood of Sk−1.

18



With ς fixed, let us denote by f the map y 7→
ˆ

U−1(y)
dς. By applying Lemma 5.9 with ρ =

1−σ, we find that, for every σ ∈ C∞
c (Bk) such that

ˆ
Bk
σ= 0, we have

ˆ
Bk
σ(y) f (y)dH k(y) = 0.

This implies that the function f is constant almost everywhere. Hence, for every ς, we have by
Lemma 5.7 with $= dς

ˆ
Sm×(0,∞)

dς∧U]d y=ωk

ˆ
U−1(y)

dς for a.e. y ∈ Bk. (5.20)

By the above, (5.17) and the separability of the space C1 ∩W1,∞(Sm × [0,∞)), we obtain the
following result.

5.10 Lemma. Let p > k−1 and u ∈ W (k−1)/p,p(Sm;Sk−1). Then we can find some a ∈ Bk such
that

1. U−1(a) is a smooth (m−k+1)-submanifold of Sm × (0,∞).

2. We have

H m−k+1(U−1(a))≤ C|u|pW (k−1)/p,p . (5.21)

3. For a.e. y ∈ Bk and for every ς ∈ C1 ∩W1,∞(Λm−kSm × [0,∞)) we have
ˆ

U−1(a)
dς=

ˆ
U−1(y)

dς. (5.22)

Proof of Theorem 1.2. By Remark 4.4, it suffices to establish items 1 and 2 for p > k−1 and
u ∈W (k−1)/p,p(Sm;Sk−1). We have to find an (m−k+1)-rectifiable current N such that Tu = ∂N.
We start by defining such a current living in Sm × (0,∞) (this is G given by (5.23)). This
construction is inspired by [22]. We next project G on Sm; the projection given by (5.25) has all
the required properties.

Consider a as in Lemma 5.10. Set M :=U−1(a), oriented as in the proof of Lemma 5.7, and
let

〈G,$〉 := (−1)m+1
ˆ

M

$, ∀$ ∈ C0 ∩L∞(Λm−k+1Sm × [0,∞)). (5.23)

Then G is an (m−k+1)-rectifiable current in Sm × (0,∞).
Next, let ζ ∈ C1(Λm−kSm) and let ς ∈ C1 ∩W1,∞(Λm−kSm × [0,∞)) be a Lipschitz extension

of ζ. By Lemma 5.7 and Lemma 5.10 item 3, we obtain

〈Tu,ζ〉 = (−1)m+1

ωk

ˆ
Sm×(0,∞)

dς∧U]d y= (−1)m+1

ωk

ˆ
Bk

(ˆ
U−1(y)

dς
)

dH k(y)

= (−1)m+1
ˆ

U−1(a)
dς= 〈G,dς〉 = 〈∂G,ς〉.

(5.24)

That is, as mentioned in the introduction, Tu is the boundary of a smooth (m−k+1)-rectifiable
current living in Sm × (0,∞).

Next, let π be the projection

π :Sm × [0,∞)→Sm, Sm × [0,∞) 3 (x, t) π−→ x ∈Sm

and set

N :=π]G. (5.25)

The conclusion of Theorem 1.2 follows by combining Lemma 5.10 2 with the definition of G and
with the following result.
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5.11 Lemma. N is an (m−k+1)-rectifiable current in Sm. Moreover, we have

M(N)≤ CM(G)= CH m−k+1(M ) (5.26)

and

∂N = Tu. (5.27)

Though the above lemma essentially follows from [21, p. 149, Section 2.4], we found useful
to present a compete proof clarifying some points only sketched in [21].

Proof. As it is easy to guess, we will prove that the support of N is contained in π(M ). In the
line of Section 3, in the first part of the proof of Lemma 5.11 we establish the fact that π(M )
is rectifiable, and give the orientation ξ and the multiplicity function θ on π(M ). We complete
the proof of the lemma by establishing (5.27).

We start by proving that π(M ) is (m− k+1)-rectifiable. Since H m−k+1(M ) < ∞ and π is
globally Lipschitz, we have

H m−k+1(π(M ))≤ CH m−k+1(M )<∞.

Let M0 := {
x ∈M ; JM

π (x)= 0
}
. By the area formula, we have H m−k+1(π(M0)) = 0. For every

x ∈M \M0, there exists an open neighborhood Ux ⊂M of x in M such that π is a C1 embedding
from Ux into Sm. It follows that π(Ux) is a C1 manifold of dimension m− k+1 in Sm. There
exists a countable covering of M \M0 with such open sets Ux j , j ∈N. This proves that π(M )=
π(M0)∪⋃

jπ(Ux j ) is (m−k+1)-rectifiable. In order to obtain a disjoint covering, we define

A0 :=π(Ux0), A j :=π(Ux j )\∪i< jπ(Uxi ), ∀ j ≥ 1,

and then we have π(M \M0)=tA j.
We next define an orientation ξ of π(M ); since π(M0) is an H m−k+1-null set, it suffices

to define ξ H m−k+1-a.e. in π(M \ M0). Let χ ∈ C∞(Λm+1−kM ) be the smooth orientation of
M defined in the proof of Lemma 5.7. For every x ∈ Ux j , dπ(x) maps TxM onto Tπ(x)π(Ux j ).
Then Λm−k+1dπ(x)(χ(x)) is an (m − k + 1)-vector in Tπ(x)π(Ux j ). The unit (m − k + 1)-vector
Λm−k+1dπ(x)(χ(x))
|Λm−k+1dπ(x)(χ(x))| gives an orientation of π(Ux j ). However, it may happen that for some y ∈
π(M \M0), there exist two antecedents z1, z2 ∈π−1(y) such that the corresponding unit vectors
Λm−k+1dπ(z j)(χ(z j))
|Λm−k+1dπ(z j)(χ(z j))|

, j = 1,2, do not define the same orientation. In order to define an orien-

tation on π(M \M0), for y ∈ A j we define the unit (m−k+1)-vector ξ(y)= Λm−k+1dπ(z)(χ(z))
|Λm−k+1dπ(z)(χ(z))| ,

where {z} = π−1(y)∩Ux j . Then ξ is a Borel measurable map with values into unit (m− k+1)-
vectors on π(M ).

For further use, let us note that the Cauchy-Binet formula implies that∣∣∣(Λm−k+1dπ(x))χ(x)
∣∣∣= JM

π (x), ∀x ∈M (5.28)

(where | · | denotes the Euclidean norm on the set of (m−k+1)-vectors, see (2.2)).
We next define the multiplicity function θ. By (3.1), for H m−k+1-a.e. y ∈π(M \M0) and for

every x ∈π−1(y)∩ (M \M0), there exists some ε(x) ∈ {±1} such that

ε(x)ξ(y)= Λm−k+1dπ(x)(χ(x))
|Λm−k+1dπ(x)(χ(x))| . (5.29)

For such y, we let θ(y) := (−1)m+1 ∑
x∈π−1(y)∩(M\M0)

ε(x). We start by noting that

|θ(y)| ≤ #[π−1(y)∩ (M \M0)].
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By the area formula, we have
ˆ
π(M )

#[π−1(y)∩ (M \M0)]dH m−k+1(y)=
ˆ

M

JM
π (x)dH m−k+1(x)≤ CH m−k+1(M ). (5.30)

This implies that θ is finite almost everywhere. We can write θ in an obvious way as a sum
of countably many Borel maps taking their values in {−1,0,1} and the above inequality also
shows that this sum converges almost everywhere. Hence, θ is Borel measurable as well. In
particular, the triple (π(M ),ξ,θ) defines an (m− k+ 1)-rectifiable current. In view of (5.30),
the estimate (5.26) follows if we prove that this current coincides with the current N given by
(5.25).

If ν ∈ C∞(Λm−k+1Sm), then

〈(π]ν)(x),χ(x)〉 = 〈ν(π(x)),Λm+1−kdπ(x)χ(x)〉.

Since by definition we have

〈N,ν〉 = 〈G,π]ν〉, ∀ν ∈ C∞(Λm−k+1Sm),

we obtain, by combining (5.28), (5.29) and the area formula:

〈N,ω〉 = (−1)m+1
ˆ

M\M0

〈
ω(π(x)),

(Λm−k+1dπ(x))χ(x)
|(Λm−k+1dπ(x))χ(x)|

〉
JM
π (x)dH m−k+1(x)

= (−1)m+1
ˆ
π(M )

〈
ω(y),

∑
x∈π−1(y)∩(M\M0)

(Λm−k+1dπ(x))χ(x)
|(Λm−k+1dπ(x))χ(x)|

〉
dH m−k+1(y)

=
ˆ
π(M )

〈ω,ξ〉θdH m−k+1;

that is, N is the current defined by the triple (π(M ),ξ,θ).
Finally, we establish (5.27). For every ζ ∈ C1(Λm−kSm) we have

〈∂N,ζ〉 = 〈∂(π]G),ζ〉 = 〈π]G,dζ〉 = 〈G,π]dζ〉 = 〈G,d(π]ζ)〉 = 〈∂G,π]ζ〉 = 〈Tu,ζ〉.

Here, we rely on (5.24) and on the fact that ς=π]ζ belongs to C1 ∩W1,∞(Λm−kSm × [0,∞)) and
satisfies (with the notations in Lemma 5.4)

i]ς= ζ. (5.31)

Here is a proof of (5.31). Since ς = π]ζ, we have i]ς = i]
(
π]ζ

) = (π◦ i)] ζ. It then suffices to
note that π◦ i = id|Sm , and thus (π◦ i)] ζ= ζ. This completes the proof Lemma 5.11 and thus of
Theorem 1.2.

5.12 Remark. An inspection of the proofs in this section shows that Theorems 1.1 and 1.2 still
hold in bounded open subsets Ω of Rm. It suffices to replace integration over Sm by integration
over Ω.

5.13 Remark. Let p = k−1 and s = 1. For these values of s and p, one of the results in [2]
asserts that Ju = ∂N, with M(N) ≤ Cp|u|pW s,p . In addition, the proof there shows that we may
build N from the rectifiable set N = u−1(y) for an appropriate y ∈ Sk−1.25 By the Gagliardo-

Nirenberg inequalities, the same holds when p ∈ [1,k− 1), with s = k−1
p

. We do not know

whether it is possible to take N as above when p > k−1 and s = k−1
p

.

6 Proof of Theorem 1.3
In view of Remark 4.4, it suffices to consider the cases p = 1 and k = 2.

25In the same way that G is built from M in the proof of Lemma 5.11.
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6.1 The case p = 1
In this case, we adapt the strategy of Alberti, Baldo and Orlandi [2]. Their approach consists
in combining the dipole construction of Brezis, Coron and Lieb [13] with Federer’s theorem on
the approximation of integral currents with polyhedral chains [19, Theorem 4.2.20].

We first prove Theorem 1.3 when Sm is replaced by a bounded open subset Ω of Rm. By
Remark 5.12, Ju makes sense for maps defined in Ω.

In Lemma 6.1 below, we describe the basic tool in the proof of Theorem 1.3: the dipole
construction. This construction was first introduced in [13] and was subsequently used in [2]
that we closely follow here. Since we need a dipole which is smooth (and not merely Lipschitz
continuous) outside its singular set, we present, for the convenience of the reader, a detailed
proof.

We say that a set E ⊂Rm is an oriented (m−k+1)-disc when E is an orientation preserving
isometric linear embedding of the unit ball Bm−k+1 × {0k−1} ⊂ Rm, endowed with the canonical
orientation. We will often write |E| =H m−k+1(E).

6.1 Lemma. Let E ⊂ Rm be an oriented (m− k+1)-disc with center x and radius r. Let σ > 0.
Then there exists u ∈Wk−1,1

loc (Rm;Sk−1)∩C∞(Rm \∂E) such that

1. Ju = ∂E.

2. There exists Y ∈Sk−1 such that u =Y in Rm \ B(x, r) and

|{y ∈Rm : u(y) 6=Y }| ≤σ. (6.1)

3. There exists Cσ > 0 such that∣∣∣D l u(y)
∣∣∣≤ Cσ

dist(y,∂E)l , ∀ y ∈Rm \∂E, ∀ l ∈N. (6.2)

4. There exists C > 0 such that∥∥∥D l u
∥∥∥

L1(Rm)
≤ C|E|(m−l)/(m−k+1), ∀ l ∈ J1,k−1K. (6.3)

Here, ∂E is the boundary of E considered as a manifold with boundary.

Proof. We start with a remark in the spirit of [2, Section 7.2]: if ϕ : Rm → Rm is a smooth
diffeomorphism, and if u ∈W1,k−1∩L∞, then ϕ]Ju = J

(
ϕ]u

)
. Indeed, for every ζ ∈ C∞

c (Λm−kRm)
we haveˆ

Rm
d(ϕ]ζ)∧u]ω0 =

ˆ
Rm
ϕ]

(
dζ∧ϕ]

(
u]ω0

))
=
ˆ
Rm

dζ∧
((
ϕ]u

)]
ω0

)
,

which is equivalent to
〈
ϕ]Ju,ζ

〉= 〈
J

(
ϕ]u

)
,ζ

〉
and implies that ϕ]Ju = J

(
ϕ]u

)
.

By taking ϕ an affine homothety, we see that in the proof of Lemma 6.1 we may assume
that E = Bm−k+1 × {0k−1}⊂Rm.

Let P : Bk−1 → Sk−1 be a smooth map of degree (−1)m−k+1 such that P is constant near
Sk−2 = ∂Bk−1. For instance, with | | standing for the Euclidean norm and µ ∈ (0,1/10) a fixed
parameter, a suitable P is given by

P(x) :=
(
f (sinπ|x|) x

|x| , (−1)mh(|x|)cos(π|x|)
)
,

where f : R+ → R+ is a smooth nondecreasing function which vanishes on (0,µ) and is equal to
the identity on (2µ,∞) and for r ∈ [0,1]

h(r) :=


(

1− ( f (sinπr))2

cos2πr

)1/2

, if r 6= 1
2

1, if r = 1
2

.
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Note that when |x| is close to 0, the first coordinate of P is 0, while the second one is equal to
(−1)m. Hence P is smooth despite the singularity of x 7→ |x| at the origin.

We claim that degP = (−1)m−k+1. Indeed, let x = (t,0, . . . ,0) ∈ Bk−1 be such that sinπt > 2µ.
Then P−1(P(x)) = {x}, and thus degP is given by the orientation of dxP. Since the orientation
of Sk−1 is given by ω0 and the one of Rk−1 by dx1 ∧ . . .∧dxk−1, and in addition we have (with x
as above)

P]ω0(x)= (−1)m−k+1(sinπt)k−2

kωk tk−2 πdx1 ∧ . . .∧dxk−1,

we find that degP = (−1)m−k+1, as claimed.
When |x| is close to 1, the first coordinate of P vanishes and the second one is equal

to (−1)m+1. Thus, P is constant on a neighborhood of Sk−2, where it takes the value Y :=(
0k−1, (−1)m+1)

. Let η> 0 be such that P(x)=Y when |x| > 1−η.
Let δ ∈ (0,1/2) to be specified later and let q : [0,1] → [0,δ] be a smooth nonincreasing func-

tion such that q(t)= δ on [0,1−2δ], q(t)= 1− t on [1−δ/2,1], q(t)≤ 1− t on [0,1]. Moreover, we
require that the derivatives of q(l) can be bounded independently of δ.

For every x ∈Rm, we write x = (x′, x′′) ∈Rm−k+1 ×Rk−1. We define

u(x) :=

P
(

x′′

q(|x′|)
)
, if |x′| < 1 and |x′′| < q(|x′|)

Y , otherwise
.

The map u is smooth in

Rm \∂E =Rm \
(
Sm−k × {0k−1}

)
and we have u =Y in the open set

V := {(x′, x′′); |x′| < 1, |x′′| > (1−η)q(|x′|)}∪ {(x′, x′′); |x′| > 1}, (6.4)

which is a neighborhood of Sm−1 \
(
Sm−k × {0k−1}

)
. Moreover, we have

|{x; u(x) 6=Y }| ≤ |{x = (x′, x′′); |x′′| < q(|x′|), |x′| < 1}| ≤ C0δ
k−1.

We choose δ> 0 such that C0δ
k−1 <σ. This implies (6.1).

Next, for every l ≥ 0 there exists Cl > 0 independent of δ such that∣∣∣D l u(x)
∣∣∣≤ Cl

q(|x′|)l , ∀x ∉Sm−k × {0k−1}. (6.5)

In view of the definition of q, this implies the item 3 and also the fact that u ∈Wk−1,1
loc (Rm;Sk−1).

As a consequence of (6.5), we have for every l ∈ J1,k−1K
ˆ
Rm

∣∣∣D l u(x)
∣∣∣ dx ≤ Cl

ˆ
Bm−k+1

(ˆ
|x′′|<q(|x′|)

dx′′
)

dx′

q(|x′|)l ≤ C′
lδ

k−l−1, (6.6)

which implies item 4.
It remains to prove item 1 which follows from the following explicit calculation.26 We intro-

duce, for ε ∈ (0,δ/2), the open set

T(ε) :=
{
(x′, x′′) ∈Rm−k+1 ×Rk−1; |1−|x′|| < ε, |x′′| < 2ε

}
.

Let ζ ∈ C∞
c (Λm−kRm). By dominated convergence, we have

〈Ju,ζ〉 = (−1)m−k+1 lim
ε→0

ˆ
Rm\T(ε)

dζ∧u]ω0.

26Alternatively, we could have invoked Jerrard and Soner [25, Theorem 1].
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In Rm \ T(ε), u is smooth and Sk−1-valued, so that d(u]ω0)= 0. Stokes’ formula then implies

〈Ju,ζ〉 = (−1)m−k lim
ε→0

ˆ
∂T(ε)

ζ∧u]ω0. (6.7)

Since u is constant in the open set V given by (6.4), we have
ˆ
∂T(ε)

ζ∧u]ω0 =
ˆ
∂T(ε)\V

ζ∧u]ω0. (6.8)

Let, in the remaining part of the proof, B
l
(x, r) denote the closed ball B(x, r) ⊂ Rl and set B

l
r =

B
l
(0, r); we use similar notation for the open balls. Observe that

∂T(ε)\V ⊂
{
((1−ε)x′, x′′); x′ ∈Sm−k, x′′ ∈ B

k−1
2ε

}
(6.9)

and that, on ∂T(ε)\V , u depends only on x′′. Using (6.5) and the properties of q, we find that

‖u]ω0‖L∞(∂T(ε)\V ) ≤ C/εk−1. (6.10)

Recall that, if M ⊂U (with M manifold and U open set), then we denote by ζ|M the pullback
i]ζ of a form on U ; here, i : M →U is the inclusion. With this notation and using the fact that,
on ∂T(ε)\V , u depends only on x′′, for every ((1−ε)x′, x′′) as in (6.9) we have

(ζ∧u]ω0)|∂T(ε)\V ((1−ε)x′, x′′)= ζ|(1−ε)Sm−k×{x′′} ∧
(
u]ω0

)
|{(1−ε)x′}×B

k−1
2ε

((1−ε)x′, x′′).

Assume for a moment that ζ|Sm−k×{0} = 0. By combining the estimate H m−k(∂T(ε)\V ) ≤ Cεk−1

with (6.10), we find that∣∣∣∣ˆ
∂T(ε)\V

ζ∧u]ω0

∣∣∣∣≤ C max
|x′|=1
|x′′|≤2ε

∣∣ζ|(1−ε)Sm−k×{x′′}(x
′, x′′)

∣∣ ,

which implies

lim
ε→0

ˆ
∂T(ε)\V

ζ∧u]ω0 = 0. (6.11)

We now turn to a general ζ ∈ C∞
c (Λm−kRm). If p is the projection

p :
(
Rm−k+1 \{0}

)
×Rk−1 →Sm−k,

(
Rm−k+1 \{0}

)
×Rk−1 3 x = (x′, x′′) p−→ x′

|x′| ∈S
m−k,

then we have(
ζ− p]

(
ζ|Sm−k×{0k−1}

))
|Sm−k×{0k−1}

= 0. (6.12)

In view of (6.11) and (6.12), we have

lim
ε→0

(ˆ
∂T(ε)\V

ζ∧u]ω0 −
ˆ
∂T(ε)\V

p]
(
ζ|Sm−k×{0k−1}

)∧u]ω0

)
= 0.

From the above, we may thus assume that ζ is of the form p]ζ̃ with ζ̃ ∈ C∞(Λm−kSm−k), which
we henceforth do.

Let us introduce the diffeomorphism ψ :
[
(1−ε)Sm−k

]
×Rk−1 →Sm−k ×Rk−1,

[
(1−ε)Sm−k

]
×Rk−1 3 x = (x′, x′′)

ψ−→
(

x′

|x′| , x′′
)
∈Sm−k ×Rk−1,

and the projection

π :Sm−k ×Rk−1 →Rk−1, Sm−k ×Rk−1 3 x = (x′, x′′) π−→ x′′ ∈Rk−1.
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Observe that the orientation of (1−ε)Sm−k × {0k−1} is defined by the orientation of ∂T(ε), while
Sm−k is endowed with its standard orientation. Hence, the maps p and π preserve the orien-
tation whereas ψ does not.

Let v(x′′)= P
(

x′′

ε

)
. Observe that

ˆ
Rk−1

v]ω0 = (−1)m−k+1. (6.13)

Moreover, we have ψ]u =π]v and ψ]ζ=
(
p]ζ̃

)
|Sm−k×Rk−1 .

By (6.13), the fact that u]ω0 = 0 in V and Fubini’s theorem for differential forms [27, Lemma
6.32] we have

ˆ
∂T(ε)\V

ζ∧u]ω0 =
ˆ

[(1−ε)Sm−k]×Rk−1
ζ∧u]ω0 =−

ˆ
Sm−k×Rk−1

ψ]

(
ζ∧

(
u]ω0

))
=−

ˆ
Sm−k×Rk−1

p]ζ̃∧π]
(
v]ω0

)
=−

ˆ
Sm−k

(ˆ
Rk−1

v]ω0

)
ζ̃= (−1)m−k

ˆ
Sm−k×{0k−1}

ζ.

In view of (6.7) and (6.8), this completes the proof of Lemma 6.1.

In order to proceed with the proof of Theorem 1.3, let us recall the following quantitative
version of Federer’s approximation theorem, devised by Alberti, Baldo and Orlandi [2, Corol-
lary 7.13].

6.2 Lemma. Let R be an (m−k+1)-rectifiable current in an open set Ω⊂Rm, and ρ a function
in Ω which is positive H m−k+1-a.e. Then there exist finitely many oriented (m− k+1)-discs E j
with centers x j and radii r j < ρ(x j) and an (m−k+1)-rectifiable current T such that

1. ∂R =∑
∂E j +∂T.

2.
∑ |E j| ≤ 1

2m−k M(R).

3. M(T)≤
(
1− 1

2m−k+2

)
M(R).

4. The balls B
m

(x j,2r j) are pairwise disjoint and contained in Ω.

6.3 Corollary. Let N be an (m−k+1)-rectifiable current inΩ⊂Rm. Then there exists a sequence
of finite families of oriented (m− k+1)-discs (E j,l) j∈J1,N(l)K, of centers x j,l and radii r j,l , such
that:

1. ∂N =∑
l

∑
j
∂E j,l .

2.
∑

j
|E j,l | ≤

1
2m−k

(
1− 1

2m−k+2

)l−1
M(N), ∀ l ≥ 1. In particular,

∑
l

∑
j
|E j,l | ≤ 4M(N).

3. For a fixed l, the balls B
m

(x j,l ,2r j,l) are pairwise disjoint and contained in Ω.

Proof. We first apply Lemma 6.2 with R = N. This yields a family (E j,1) and a reminder T1. We
next apply the lemma with R = T1 and obtain a family (E j,2), and so on. It is straightforward
that the families obtained by this procedure have all the required properties.

We obtain our next result by combining Lemma 6.1 and Lemma 6.2 and by adapting the
proof of [2, Theorem 5.6].

6.4 Lemma. Let R be an (m− k + 1)-rectifiable current in a bounded open set Ω ⊂ Rm. Let
u ∈Wk−1,1(Ω;Sk−1) be smooth in the complement of a closed set S ⊂Ω such that H m−k(S)<∞.
Then there exist an (m−k+1)-rectifiable current T in Ω and a map v ∈Wk−1,1(Ω;Sk−1), smooth
in the complement of a closed set S′ ⊂Ω such that H m−k(S′)<∞, satisfying:

1. Jv = Ju+∂R−∂T.
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2.
∥∥D l u−D lv

∥∥
L1(Ω) ≤ CM(R), ∀ l ∈ J0,k−1K.

3. M(T)≤
(
1− 1

2m−k+2

)
M(R).

Proof. For the convenience of the reader, we explain how the argument in [2, Proof of Theorem
5.6] adapts to our case. We divide the proof into several steps.

Step 1. Choice of ρ.
Since S is closed, for every x ∈Ω\ S we can find r = r(x) > 0 such that B

m
(x, r) ⊂Ω\ S. Since

u is smooth on the complement of S, D l u is bounded in Bm(x, r) for every integer l. We let
ρ :Ω→ [0,+∞) be defined by ρ(x)= 0 for x ∈ S and by

0< ρ(x)≤min

 r
2

,
(

1
ωm−k+1

)1/(m−k+1)
, min
1≤l≤k−1

1

8
∥∥D l u

∥∥1/l
L∞(Bm(x,r))

 , ∀ x ∈Ω\ S. (6.14)

We next apply Lemma 6.2 with the above ρ and obtain finitely many discs E j, with centers
x j ∈Ω\ S and radii r j < ρ(x j), and an (m−k+1)-rectifiable current T in Ω such that:

∂R =∑
∂E j +∂T, (6.15)

∑
j
|E j| ≤ 1

2m−k M(R), (6.16)

M(T)≤
(
1− 1

2m−k+2

)
M(R), (6.17)

and the balls B
m

(x j,2r j) are pairwise disjoint and contained in Ω.

Step 2. Construction of v.
For every j, we construct a dipole u j associated to E j as in Lemma 6.1 with the parameter
σ= 1. Thus Ju j = ∂E j, there exists Y j ∈Sk−1 such that u j =Y j in Rm \ Bm(x j, r j), and∣∣∣D l u j(x)

∣∣∣≤ Cl

dist(x,∂E j)l , ∀x ∈Rm \∂E j, ∀ l ∈N. (6.18)

Note that the choice of Y j is not relevant in the above construction. Therefore, we may assume
that Y j = u(yj) for some yj ∈ Bm(x j,2r j). Let θ ∈ C∞

c
(
Bm

2
)

be such that 0 ≤ θ ≤ 1 and θ ≡ 1 in

B
m
1 . Then we define θ j(x) := θ

( x− x j

r j

)
and

W :=
{
θ ju j + (1−θ j)u in Bm(x j,2r j)
u in Ω\∪ jBm(x j,2r j)

.

We have

‖u j −u‖L∞(Bm(x j ,2r j)\Bm(x j ,r j)) ≤ 4r j‖Du‖L∞(Bm(x j ,2r j)) <
1
2

. (6.19)

Here, we have used the fact that u j ≡Y j in Bm(x j,2r j)\Bm(x j, r j) and that u(yj)=Y j for some
yj ∈ Bm(x j,2r j), and also the inequality

r j < 1
8‖Du‖L∞(Bm(x j ,2r j))

.

In view of (6.19) and of the properties of θ, we have |W | ≥ 1/2 and thus we may define the

Sk−1-valued map v := W
|W | .
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Step 3. The map v has all the required properties.
On the one hand, v agrees with u j in Bm(x j, r j); on the other hand, we have u ∈Wk−1,1(Ω;Sk−1).
Therefore, the map v belongs to Wk−1,1(Ω;Sk−1). Next, v is smooth outside S′ := S ∪∪ j∂E j.
Moreover, since the Jacobian of u is supported in S, and since S∩∪ j∂E j =;, we have

Jv = Ju+∑
j

Ju j = Ju+∑
∂E j. (6.20)

The first equality in (6.20) is easily obtained using (1.7) and a partition of the unit. We obtain
items 1 and 3 by combining (6.15), (6.17) and (6.20).

It remains to prove item 2. For l ∈ J0,k−1K we have∥∥∥D l u−D lv
∥∥∥

L1(Ω)
=∑

j

∥∥∥D l u−D lv
∥∥∥

L1(Bm(x j ,2r j))
≤∑

j

(∥∥∥D l u
∥∥∥

L1(Bm(x j ,2r j))
+

∥∥∥D lv
∥∥∥

L1(Bm(x j ,2r j))

)
.

When l = 0, we have |v(x)| = |u(x)| = 1 a.e., and therefore

‖u−v‖L1(Ω) ≤ C
∑

j
rm

j ≤ C
∑

j
|E j|m/(m−k+1) ≤ C

∑ |E j| ≤ CM(R). (6.21)

Here, we have used (6.16) and the fact that (by (6.14)) we have |E j| ≤ 1.
We now assume that 1≤ l ≤ k−1. On the one hand, we have∥∥∥D l u

∥∥∥
L1(Bm(x j ,2r j))

≤ Crm
j

∥∥∥D l u
∥∥∥

L∞(Bm(x j ,2r j))
≤ Crm−l

j ≤ C|E j|(m−l)/(m−k+1),

by definition of ρ. As above, we find that
∥∥∥D l u

∥∥∥
L1(Bm(x j ,2r j))

≤ C|E j|, and thus

∑
j

∥∥∥D l u
∥∥∥

L1(Bm(x j ,2r j))
≤ CM(R). (6.22)

On the other hand, by the Faà-Di Bruno formula,∣∣∣D lv(x)
∣∣∣≤ C

l∑
s=1

∑
t1+...+ts=l

∣∣D t1W(x)
∣∣ . . .

∣∣D tsW(x)
∣∣ . (6.23)

For every t ∈ J1, lK and x ∈ Bm(x j,2r j), the Leibniz formula implies

∣∣D tW(x)
∣∣≤ ∣∣D tu(x)

∣∣+∣∣D t[θ j(u j −u)](x)
∣∣≤ ∣∣D tu(x)

∣∣+C
t∑

h=0

∣∣∣D t−hθ j(x)
∣∣∣[∣∣∣Dhu j(x)

∣∣∣+ ∣∣∣Dhu(x)
∣∣∣] .

In view of the definitions of θ j and ρ we obtain, via (6.18):

∣∣D tW(x)
∣∣≤ C

t∑
h=0

1
rt−h

j

[
1
rh

j

+
∣∣∣Dhu j(x)

∣∣∣]≤ C
t∑

h=0

1
rt−h

j

1
dist(x,∂E j)h .

Inserting this inequality into (6.23), we obtain∣∣∣D lv(x)
∣∣∣≤ C

l∑
s=1

∑
t1+...+ts=l

∑
0≤hp≤tp
∀ p∈J1,sK

1

rl−h1−...−hs
j

1
dist(x,∂E j)h1+...+hs

, ∀x ∈ Bm(x j,2r j).

By scaling, we easily find thatˆ
Bm(x j ,2r j)

dx
dist(x,∂E j)h1+...+hs

≤ Crm−h1−...−hs
j ,

and thusˆ
Bm(x j ,2r j)

∣∣∣D lv(x)
∣∣∣ dx ≤ Crm−l

j ≤ C|E j|(m−l)/(m−k+1) ≤ C|E j|.

Finally, with the help of (6.16) we have proved that∥∥∥D l u−D lv
∥∥∥

L1(Ω)
≤ C

∑
j
|E j| ≤ CM(R). (6.24)

Item 2 follows by combining (6.21) and (6.24). This completes the proof of Lemma 6.4.
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Using Lemma 6.4, we obtain the flat27 version of Theorem 1.3.

6.5 Lemma. Let Ω be a bounded open subset in Rm and let M be the boundary of an (m−k+1)-
rectifiable current N inΩ. Then there exists u ∈Wk−1,1(Ω;Sk−1) such that Ju = M and |u|Wk−1,1 ≤
CM(N).

This follows from Lemma 6.4 and an iterative procedure which is exactly the same as the
one in [2, proof of Theorem 5.6]; we omit the proof.

Proof of Theorem 1.3 when p = 1. In what follows, we denote by Sm
r the m-dimensional sphere

S(0, r)⊂Rm+1.
Let Ω := {

x ∈Rm+1;1/2< |x| < 3/2
}
. For every l ≥ 1, $ ∈ C∞

c (ΛlΩ), and r ∈ (1/2,3/2), we define
$>Sm

r ∈ C∞(Λl−1Sm) as follows:

$>Sm
r (x)(τ1, . . . ,τl−1)=$(rx)(τ1, . . . ,τl−1, x), ∀x ∈Sm, τ j ∈ TxS

m, j ∈ J1, l−1K.

If T is an (l−1)-current in Sm, then we define the l-current T×r

(
1
2

,
3
2

)
inΩ through the formula

〈
T ×r

(
1
2

,
3
2

)
,$

〉
:=
ˆ 3/2

1/2
rl−1 〈

T,$>Sm
r

〉
dr, ∀$ ∈ C∞

c (ΛlΩ).

Fix ρ ∈ C∞
c (1/2,3/2) such that

ˆ
ρ = 1. We introduce X (x) = x

|x| , ∀x ∈ Rm+1 \ {0}. For every

ζ ∈ C∞(Λm−kSm), we define α=α(ζ) ∈ C∞
c (Λm−k+1Ω) by

α(rx)= ρ(r)ζ̃(rx)∧dr, ∀x ∈Sm, r ∈ (1/2,3/2),

where ζ̃= X ]ζ. Then we claim that

(dα)>Sm
r = 1

rm−k+1ρ(r)dζ. (6.25)

Here is a proof of this fact. We start from the identity dα= 1
rm−1ρ(r)X ]dζ∧dr. If τ1, . . . ,τm−k+1 ∈

TxS
m, then

dα(rx)(τ1, . . . ,τm−k+1, x)= ρ(r)(dζ̃(rx)∧dr)(τ1, . . . ,τm−k+1, x)

= ρ(r)dζ̃(rx)(τ1, . . . ,τm−k+1)dr(x)

= 1
rm−k+1ρ(r)dζ(x)(τ1, . . . ,τm−k+1).

(6.26)

Indeed, in (6.26), the next to the last equality relies on the fact that dr(τ j)= 0, ∀ j ∈ J1,m−k+1K.
In order to justify the last equality in (6.26), observe that dX (rx)(τ j) =

τ j

r
(since 〈τ j, x〉 = 0).

This proves (6.25).

Let N be an (m−k+1)-rectifiable current in Sm. By Lemma 6.6 below, K := N×r

(
1
2

,
3
2

)
is an

(m− k+2)-rectifiable current in Ω, of mass comparable to the one of N. We apply Lemma 6.5
in Ω to the current (−1)m−k+2K . Then there exists v ∈ Wk−1,1(Ω;Sk−1) such that |v|Wk−1,1(Ω) ≤
CM(N) and such that for every $ ∈ C∞

c (Λm−k+1Ω),

ˆ
Ω

d$∧v]ω0 =
ˆ 3/2

1/2
rm−k+1 〈

N, (d$)>Sm
r

〉
dr. (6.27)

In the case where $=α, (6.25) and (6.27) give
ˆ
Ω

dα∧v]ω0 = 〈N,dζ〉. (6.28)

27I.e., with Sm replaced by Ω.
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We next note the following identity:28 if we let

hr(x)= rx, vr(x)= v(rx)= h]rv(x), ∀x ∈Sm, r ∈
(

1
2

,
3
2

)
,

then

dα∧v]ω0(rx)= (−1)m−k+1ρ(r)dr∧
(
dζ̃∧v]ω0

)
|Sm

r
(rx). (6.29)

Moreover,
ˆ
Sm

r

dζ̃∧v]ω0 =
ˆ
Sm

h]r(dζ̃∧v]ω0)=
ˆ
Sm

dζ∧v]rω0. (6.30)

By (6.28), (6.29) and the Fubini theorem for forms, we have

〈N,dζ〉 = (−1)m−k+1
ˆ 3/2

1/2
ρ(r)

(ˆ
Sm

dζ∧
(
(vr)]ω0

))
dr. (6.31)

The left-hand side of (6.31) does not depend on ρ. This proves that the function

(1/2,3/2) 3 r 7→
ˆ
Sm

dζ∧
(
(vr)]ω0

)
is constant a.e.

On the other hand, for a.e. r ∈ (1/2,3/2), v(r ·) belongs to Wk−1,1(Sm;Sk−1), and in addition
we may find a positive measure subset A ⊂ (1/2,3/2) such that |vr|Wk−1,1(Sm) ≤ CM(N) for every
r ∈ A. By the above and the separability of C1(Λm−kSm), one can find r ∈ A such that u := v(r ·)
satisfy

(−1)m−k+1
ˆ
Sm

dζ∧ (u]ω0)= 〈N,dζ〉 , ∀ζ ∈ C∞(Λm−kSm).

This u has all the required properties.

6.6 Lemma. Assume that N is an (l−1)-rectifiable current in Sm. Then K := N ×r

(
1
2

,
3
2

)
is an

l-rectifiable current in Ω and M(K)∼M(N).

Proof. Let (M ,ξ,θ) be the triple defining N. Define M̃ = {rx; x ∈M ,1/2< r < 3/2}. Then clearly
M̃ is an l-rectifiable part of Ω, and for H l−1-a.e. x ∈M and for every r ∈ (1/2,3/2)

TrxM̃ is spanned by the orthogonal spaces TxM and Rx. (6.32)

We also set, with r and x as above, ξ̃(rx)= ξ(x), θ̃(rx)= θ(x) and X (rx)= x
|x| .

With this notation, we have for $ ∈ C∞
c (ΛlΩ):

〈K ,$〉 =
ˆ 3/2

1/2
rl−1

ˆ
M

〈ξ̃(rx),$(rx)(·, x)〉θ(x)dH l−1(x)dr =
ˆ

M̃

〈
ξ̃∧ X ,$

〉
θ̃dH l .

In view of (6.32), the l-current K is given by the triple
(
M̃ , ξ̃∧ X , θ̃

)
, and we also have M(K) ∼

M(N).

28Whose proof is similar to the one of (6.25) and left to the reader.
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6.2 The case k = 2: geometrical approach
Given an (m−1)-rectifiable current N in Sm, we have to construct a map u ∈∩p≥1W1/p,p(Sm;S1)
such that Ju = ∂N and

|u|pW1/p,p ≤ CpM(N), ∀ p ≥ 1. (6.33)

This has to hold for every p ≥ 1. In view of Lemma 4.5, if u ∈W1/p,p(Sm;S1) for some p > 1 and if
(6.33) holds for this p, then for every q > p we have u ∈W1/q,q(Sm;S1) and (6.33) holds. There-
fore, it suffices to fix some p1 ∈ (1,2) and to construct u such that u ∈ ∩1≤p≤p1W1/p,p(Sm;S1)
and

|u|pW1/p,p ≤ CpM(N), ∀ p ∈ [1, p1]. (6.34)

We start by establishing the appropriate variant of Lemma 6.1.

6.7 Lemma. Let E ⊂Rm be an oriented (m−1)-disc with center x and radius r. Let σ> 0. Then
there exists u :Rm →S1 such that:

1. u−1 ∈∩p≥1W1/p,p(Rm)∩C∞(Rm \∂E).

2. Ju = ∂E.

3. u = 1 in Rm \ B(x, r) and

|{y ∈Rm : u(y) 6= 1}| ≤σ. (6.35)

4. We have

|u|pW1/p,p ≤ Cp|E|, ∀ p ≥ 1. (6.36)

Proof. In view of Lemma 6.1 and of its proof, it suffices to prove that the map u constructed
in that lemma (with Y = 1) satisfies item 4 when p > 1. By scaling, we may assume that the
diameter of E is 2, and thus u−1 is supported in B(x,1). Therefore, for q ≥ 1 we have

‖u−1‖W1,q ≤ Cq‖∇u‖Lq . (6.37)

Fix p > 1 and consider q ∈ (1,min{p,2}). Define r ∈ (q,∞) by the formula

p−1
r

+ 1
q
= 1. (6.38)

By Lemma 4.1 3 combined with (6.37), we have

|u|pW1/p,p ≤ C‖u−1‖W1,q‖u−1‖p−1
Lr ≤ CCq‖∇u‖Lq‖u−1‖p−1

Lr . (6.39)

Item 3 implies that

‖u−1‖Lr ≤ Cσ1/r. (6.40)

On the other hand, estimate (6.5) with l = 1 combined with the fact that q < 2 leads to29

‖∇u‖q
Lq ≤ Cσ1−q. (6.41)

We obtain item 4 by combining (6.38)-(6.41).

We next state and prove the remaining technical ingredients required to glue dipoles by
keeping control of the W1/p,p norm.

6.8 Lemma. Let u,v :Rm →S1 be such that u−1,v−1 ∈W1,1. Then J(uv)= Ju+ Jv.

29The argument is the same as the one used in the proof of (6.6).
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Proof. This follows by combining the definition (1.7) with the identity

(uv)]ω0 = u]ω0 +v]ω0.

6.9 Lemma. Let u,v :Rm →S1 be such that u−1,v−1 ∈W1,1∩W1/p,p(Rm) for some p > 1. Then

1. |uv−u|W1,1 ≤ |v|W1,1 +2|u|W1,1([v 6=1]).

2. |uv−u|W1/p,p ≤ |v|W1/p,p +2
(Ï

v(x) 6=1

|u(x)−u(y)|p
|x− y|m+1 dxdy

)1/p
.

Proof. Item 1 follows from

|∇(uv−u)| ≤ |∇v|+ |v−1||∇u| ≤ |∇v|+21[v 6=1]|∇u|.

Item 2 is a consequence of

|(u(x)v(x)−u(x))− (u(y)v(y)−u(y))| = |u(y)(v(x)−v(y))+ (u(x)−u(y))(v(x)−1)|
≤ |v(x)−v(y)|+ |v(x)−1||u(x)−u(y)|
≤ |v(x)−v(y)|+21[v(x)6=1]|u(x)−u(y)|.

6.10 Lemma. Let 1 < q < 2 and u : Rm → S1 be such that u−1 ∈ W1,q(Rm). Consider the Lq-
modulus of continuity of ∇u:

ω(δ) := sup
{‖∇u‖Lq(A); A ⊂Rm, |A| ≤ δ}

.

Then there are constants Cp, 1< p ≤ q, independent of u, such that

Ip(A) :=
Ï

x∈A

|u(x)−u(y)|p
|x− y|m+1 dxdy≤ Cp

(
|A|+ [ω(|A|)]p |A|(q−p)/q

)
, ∀A ⊂Rm. (6.42)

In particular, given ε > 0 there exists some δ > 0 such that, if |A| ≤ δ, then Ip(A) ≤ Cpε, ∀ p ∈
(1, q].

Proof. By a standard approximation argument, we may assume u smooth and bounded by 1
(but not necessarily circle-valued).

We split Ip(A)= Jp(A)+Kp(A), where

Jp(A)=
Ï

x∈A,|y−x|≥1
. . . , Kp(A)=

Ï
x∈A,|y−x|<1

. . .

On the one hand, we have

Jp(A)≤ 2p|A|
ˆ
|z|≥1

1
|z|m+1 dz = Cp|A|. (6.43)

On the other hand, the inequality

|u(x+ z)−u(x)|p ≤ |z|p
ˆ 1

0
|∇u(x+ tz)|p dt

leads to

Kp(A)≤
ˆ 1

0

ˆ
x∈A

ˆ
z∈Bm

|∇u(x+ tz)|p
|z|m−p+1 dzdxdt

≤
ˆ 1

0
t1−p

ˆ
w∈Bm

1
|w|m−p+1

ˆ
x∈w+A

|∇u(x)|p dxdzdt

≤ Cp sup
w

‖∇u‖p
Lp(w+A) ≤ Cp [ω(|A|)]p |A|(q−p)/q.

(6.44)

We obtain (6.42) by combining (6.43) with (6.44).
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6.11 Lemma. Let 1 < q < 2. Consider a finite collection (E j) of oriented (m−1)-discs of centers
x j and radii r j in Rm, such that the balls B

m
(x j,2r j) are pairwise disjoint. Let u : Rm →S1 be

such that u−1 ∈W1,q(Rm). Let ε> 0. Then there exists a map v :Rm →S1 such that:

1. v−1 ∈W1,r(Rm), ∀ r ∈ [1,2).

2. Jv =∑
∂E j.

3. |v|pW1/p,p ≤ Cp
∑ |E j|, ∀ p ∈ [1,2].

4. |uv−u|W1/p,p ≤ |v|W1/p,p +Cpε
1/p, ∀ p ∈ [1, q].

Proof. Associate to each j and σ> 0 a map v j,σ as in Lemma 6.7. We will take v =∏
v j,σ for a

convenient σ. Note that, by the proof of Lemma 6.7, v satisfies item 1. On the other hand, item
2 follows by combining Lemma 6.7 2 with Lemma 6.8.

We next turn to 3. Let A j,σ ⊂ B(x j, r j) denote the set of measure ≤ σ in which v j,σ 6= 1. Set

B j := B(x j,2r j). Let C := Rm \∪ jB j. Set also wp(x, y) = |v(x)−v(y)|p
|x− y|m+1 and f (x, y) = 1

|x− y|m+1 .

The identity

|v|pW1/p,p =
∑

j

Ï
B j×(B j∪C)

wp +
∑

j

Ï
A j,σ×(∪k 6= jBk)

wp +
∑

j

Ï
(B j\A j,σ)×(∪k 6= j Ak,σ)

wp

+
Ï

C×(∪ j A j,σ)
wp

leads to the estimate

|v|pW1/p,p ≤
∑

j
|v j,σ|pW1/p,p +2p+1 ∑

j

Ï
A j,σ×(C∪∪k 6= jBk)

f︸ ︷︷ ︸
L j,σ

.

We obtain item 3 via Lemma 6.7 4 combined with the fact that L j,σ→ 0 as σ→ 0.
Finally, item 4 with p > 1 follows from Lemma 6.10 combined with Lemma 6.9 2 and with

the fact that the set [v 6= 1] can be chosen arbitrarily small. The case p = 1 follows immediately
from Lemma 6.9 1.

First proof of Theorem 1.3 in Rm for k = 2. As explained at the beginning of this section, we fix
p1 ∈ (1,2). Consider the oriented (m−1)-discs E j,l as in Corollary 6.3. Let u0 ≡ 1. By Lemma
6.11, for every sequence (εl) of positive numbers we may construct inductively maps ul such
that ul −1 ∈W1,r(Rm), ∀1≤ r < 2, Jul =

∑
j
∂E j,l , |ul |pW1/p,p ≤ Cp

∑
j
|E j,l |, ∀ p ∈ [1,2], and

|u0 . . .ul −u0 . . .ul−1|W1/p,p ≤ |ul |W1/p,p +Cpε
1/p
l , ∀ p ∈ [1, p1].

Moreover,

‖u0 . . .ul −1‖p
Lp(Rm) ≤ C

∑
l

∑
j
|E j,l |m/(m−1) ≤ C(

∑
l

∑
j
|E j,l |)m/(m−1). (6.45)

Using Corollary 6.3 2 and choosing εl = 2−lM(N), we find that the product
∏

j u j converges in
W1/p,p

loc (Rm;S1), ∀ p ∈ [1, p1], to some u such that u−1 ∈ W1/p,p(Rm), Ju = ∂N and |u|pW1/p,p ≤
CpM(N).

Proof of Theorem 1.3 for k = 2. Let N be an (m − 1)-rectifiable current in Sm. Let Ω = {x ∈
Rm+1;1/2< |x| < 3/2} and K = N×r

(
1
2

,
3
2

)
. By the above, there exists a map v ∈∩p≥1W1/p,p(Ω;S1)

such that Jv = (−1)m∂K and

|v|pW1/p,p ≤ CpM(K)≤ C′
pM(N), ∀ p ≥ 1. (6.46)
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Let vr = v(r·), 1/2< r < 3/2. We have the following inequality:30

ˆ 3/2

1/2
|vr|pW s,p(Sm) dr ≤ Cs,p|v|pW s,p(Ω), ∀ s ≥ 0, ∀ p ∈ [1,∞). (6.47)

We will also use the following elementary fact: if ( fn)n≥0 is a sequence of non-negative inte-
grable functions in (a,b), then there exists a set A ⊂ (a,b) of measure ≥ (b− a)/2 such that

fn(t)≤ 2n+2
 b

a
fn, ∀n ∈N, ∀ t ∈ A. (6.48)

The proof of Theorem 1.3 for p = 1 implies that

Jvr = ∂N for a.e. r ∈ (1/2,3/2). (6.49)

Let p0 = 1 and consider a sequence (pn)n≥1 ⊂ (1,∞) such that pn ↘ 1. By (6.46)-(6.49),31 there
exists some r such that u := vr satisfies:

1. u ∈∩n≥0W1/pn,pn (Sm;S1).

2. Ju = ∂N.

3. |u|pn

W1/pn ,pn ≤ KnM(N), ∀n ∈N.

By combining item 3 with Lemma 4.5, we find that u has all the properties required by Theo-
rem 1.3.

6.3 The case k = 2: analytical approach
As explained in the previous section, it suffices to establish Theorem 1.3 in a bounded domain
Ω in an Euclidean space. The case of maps defined in Sm follows from this special case. Let
Ω⊂ Rm be smooth bounded. We consider a slightly larger smooth bounded open set, U , whose
role is to enable the definition of a convenient class of almost smooth maps. Let u ∈W1,1(Ω;S1).
By reflections across ∂Ω, we may extend u to U , with norm control. Using, in U , the density
result of Bethuel and Zheng [8, proof of Theorem 1], we obtain the following: the class

R =
{

u ∈ C∞(Ω\Σ(u))∩W1,1(Ω;S1);
∣∣∣D l u(x)

∣∣∣≤ Cl(u)
[δu(x)]l , ∀ l ∈N

}
is dense in W1,1(Ω). Here, Σ(u) is a smooth (m− 2)-submanifold of U , and δu denotes the
distance to Σ(u).

It will be convenient to consider the more general class R̃, defined as R, except that we
allow Σ(u) to be a finite union of (m−2)-submanifolds of U . It is clear that R̃ is an algebra; in
particular, the product of two maps in R belongs to R̃. Using the density of the class R and a
straightforward Cauchy sequences argument, we obtain the following result.

6.12 Lemma. Let u ∈W1,1(Ω;S1). Then there exists a sequence (v j) j≥0 ⊂ R̃ such that:

1. v1 . . .v j → u in W1,1 as j →∞.

2. ‖∇v j‖L1 ≤ 2− j‖∇u‖L1 , ∀ j ≥ 0.

By the above, we have Ju =∑
Jv j, the series being convergent in (W1,∞(Λm−2Ω))∗. We may

now explain our strategy for proving Theorem 1.3. Let N be a rectifiable (m−1)-current in Ω.
By [2, Theorem 5.6], we may find some u ∈W1,1(Ω;S1) such that Ju = ∂N and ‖∇u‖L1 ≤ CM(N).
Now comes the main idea (Lemma 6.15 below): we replace v j by some w j such that Jw j = Jv j
and such that the product

∏
j w j converges in W1/p,p for every p ≥ 1, with norm control. Note

the difference with Lemma 6.12 2, which provides control only for the W1,1 norm. Once Lemma
6.15 is established, we prove that the map w = ∏

j w j satisfies Jw = ∂N and all the required
estimates.

We now proceed to the proofs. We start by recalling the following result [2, Corollary 3.9].

30For the flat case, see [1, Example 7.27], [1, Lemma 7.44]. The argument there adapts to manifolds.
31Inequality (6.48) is applied with (a,b)= (1/2,3/2) and fn(r)= |vr|pn

W1/pn ,pn (Sm)
.
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6.13 Lemma. Let ϕ :S1 →S1 be Lipschitz. Let u ∈W1,1(Ω;S1). Then J(ϕ◦u)= degϕJu.

For ε ∈ (0,2π) and θ ∈R, we let

ϕε,θ :S1 →S1, ϕε,θ
(
eıψ)={

e2ıπ(ψ−θ)/ε, if ψ ∈ [θ,θ+ε]
1, if ψ ∈ [θ+ε,θ+2π]

.

We collect some straightforward properties of ϕε,θ.

6.14 Lemma. We have:

1. ϕε,θ is Lipschitz of constant 2π/ε and of degree 1.

2. If z1, z2 ∈S1 and p ∈ [1,∞), then
ˆ 2π

0
|ϕε,θ(z1)−ϕε,θ(z2)|p dθ ≤ Cp min

{
ε,

|z1 − z2|p
εp−1

}
. (6.50)

Proof. Only (6.50) requires a proof. Let Iε(z)= {w ∈S1; d(z,w)< ε}; here, d denotes the geodesic
distance in S1. If eıθ 6∈ Iε(z1)∪Iε(z2), then ϕε,θ(z1)=ϕε,θ(z2)= 1; therefore, the integral in (6.50)
has to be considered only over Iε(z1)∪ Iε(z2). On the other hand, we have

|ϕε,θ(z1)−ϕε,θ(z2)|p ≤min
{

2p,
2pπpdp(z1, z2)

εp

}
. (6.51)

We obtain the conclusion by integrating (6.51) over Iε(z1)∪ Iε(z2).

6.15 Lemma. Let v ∈ R̃ and δ> 0. Then there are constants Cp, ∀ p ∈ [1,∞), independent of v
and δ, and a Lipschitz map ϕ :S1 →S1 of degree 1 such that w :=ϕ◦v satisfies:

1. |w|pW1/p,p ≤ Cp‖∇v‖L1 .

2. |{w 6= 1}| ≤ δ.

A word about the conclusion of Lemma 6.15. Unlike the case k ≥ 3, one cannot rely on the
Gagliardo-Nirenberg inequalities. Indeed, the inclusion W1,1 ∩L∞ ⊂W1/p,p is wrong for every
p > 1.32 Lemma 6.15 essentially asserts the following unexpected result: let v : Ω→ S1 be
slightly better then W1,1. Then we may rearrange the values of v (that is, consider w = ϕ(v),
with ϕ a smooth homeomorphism of S1 into itself) such that the new map w is controlled in
W1/p,p for every p > 1, with a control depending only on p and ‖∇v‖L1 , but not on higher order
norms of v.33 By Lemma 6.13 and Lemma 6.14, we have Jw = Jv. Though we state and prove
Lemma 6.15 for circle-valued maps, it will be transparent from the proof that the target could
be any sphere.

Proof. Let ε ∈ (0,2π) and wε,θ :=ϕε,θ◦v. We will establish, for sufficiently small ε, the following
estimates:

ˆ 2π

0
|{wε,θ 6= 1}|dθ = ε|Ω|. (6.52)

ˆ 2π

0
|wε,θ|pW1/p,p dθ ≤ Kp

(
C(v)

p
ε+‖∇v‖L1

)
, ∀ p ∈ [1,∞). (6.53)

32This is well-known to the experts. Here is an explicit example. Let ρ = 1[−1/2,1/2]. If A ⊂ R is an interval, let Ã
define the interval with the same center as A and twice longer than A. Consider, in (0,1) and for sufficiently large j,

intervals A j such that the Ã j ’s are mutually disjoint and |A j| = 1/ j2. Let ε j = 1
j2 e−e j

. Then u :=∑ 1
j2 1A j ∗ρε j belongs

to W1,1(0,1), but to none of the spaces W1/p,p(0,1) with p > 1.
33The map ϕ considered in the proof of Lemma 6.15 is not a diffeomorphism, but it is easy to slightly modify it and

transform it into a diffeomorphism.
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Taking these two estimates for granted, we proceed as follows: for small ε we have C(v)
p
ε ≤

‖∇v‖L1 and ε<πδ/|Ω|. Consider such an ε. As at the end of the Section 6.2, estimate (6.52) and
estimate (6.53) applied along a sequence pn ↘ 1 combined with estimate (6.48) and with the
Gagliardo-Nirenberg inequalities imply that the conclusions of Lemma 6.15 hold with w =ϕε,θ
for appropriate ε and θ.

Step 1. Proof of (6.52). For z ∈S1, the set {θ; wε,θ(z) 6= 1} has measure ε, and thus

ˆ 2π

0
|{wε,θ 6= 1}|dθ =

ˆ
Ω
|{θ; wε,θ(v(x)) 6= 1}|dx = ε|Ω|.

Step 2. Proof of (6.53) when p = 1. We will actually prove that the term C(v)
p
ε is not needed

for p = 1. As in Step 1, using the fact that |ϕ′
ε,θ(z)| = 2π/ε if ϕε,θ(z) 6= 1 and that ϕ′

ε,θ(z) = 0 a.e.
otherwise, we find that

ˆ 2π

0
‖∇wε,θ‖L1 dθ = 2π‖∇v‖L1 . (6.54)

Step 3. Proof of (6.53) when p > 1. Using a second order Taylor expansion, it is easy to see
that the following inequality holds uniformly in x, y and ε< 1/4:

|v(x)−v(y)| ≤ |∇v(x)||x− y|+ K(v)
δ2

v(x)
|x− y|2 if |y− x| ≤p

εδv(x). (6.55)

On the other hand, we clearly have
ˆ
Ω

1
[δv(x)]q dx <∞, ∀q ∈ [1,2); (6.56)

here we see why we have to replaceΩ by U in the definition of R̃. In particular, (6.56) combined
with the definition of R̃ implies that

wε,θ ∈W1,q(Ω), ∀q ∈ [1,2), ε, θ ∈ (0,2π). (6.57)

We split

I :=
ˆ 2π

0
|wε,θ|pW1/p,p dθ =

ˆ 2π

0

ˆ
Ω

ˆ
Ω

|wε,θ(x)−wε,θ(y)|p
|x− y|m+1 dxdydθ = I1 + . . .+ I4, (6.58)

where I j corresponds to the integration over A j, ∀ j ∈ J1,4K, and:

A1 =
{
(x, y) ∈Ω2; |x− y| ≥p

εδv(x)
}
,

A2 =
{

(x, y) ∈Ω2;
ε

|∇v(x)| < |x− y| <p
εδv(x)

}
,

A3 =
{

(x, y) ∈Ω2;
√

ε

K(v)
δv(x)< |x− y| <p

εδv(x)
}

,

A4 =Ω2 \ (A1 ∪ A2 ∪ A3).

Step 4. Estimate of I1 and I3. By (6.50) and (6.56), we have

I1 ≤ Cpε

Ï
A1

1
|y− x|m+1 d ydx ≤ Cp

p
ε

ˆ
Ω

1
δv(x)

dx ≤ CpC(v)
p
ε. (6.59)

By the same argument, we obtain

I3 ≤ CpC(v)
√
εK(v). (6.60)
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Step 5. Estimate of I2. By (6.50), we have

I2 ≤ Cpε

Ï
A2

1
|y− x|m+1 d ydx ≤ Cp‖∇v‖L1 . (6.61)

Step 6. Estimate of I4. By combining (6.50) with (6.55), we find that

I4 ≤
Cp

εp−1

Ï
A4

|∇v(x)|p
|y− x|m+1−p d ydx︸ ︷︷ ︸

I5

+CpK p(v)
εp−1

Ï
A4

1

δ
2p
v (x)|y− x|m+1−2p

d ydx︸ ︷︷ ︸
I6

. (6.62)

Since |y− x| ≤ ε

|∇v(x)| when (x, y) ∈ A4, we find that

I5 ≤ Cpε
p−1‖∇v‖L1 . (6.63)

Similarly, the fact that |y− x| ≤
√

ε

K(v)
δv(x) in A4 leads to

I6 ≤ Cp

(
ε

K(v)

)p−1/2ˆ
Ω

1
δv(x)

dx. (6.64)

We complete the proof of (6.53) when p > 1 by combining (6.58)-(6.64).

6.16 Remark. The above construction is indeed, as stated in the introduction, a dipole con-
struction. Indeed, the support of w−1 can be chosen arbitrarily small, while Jw is prescribed.

Lemma 6.15 leads to the following straightforward variant of Lemma 6.11, whose proof is
left to the reader.

6.17 Lemma. Let 1 < q < 2 and let u ∈ W1,q(Ω). Let ε > 0 and v ∈ R̃. Then there exists w ∈ R̃

such that:

1. Jw = Jv.

2. |w|pW1/p,p ≤ Cp‖∇v‖L1 , ∀ p ∈ [1,∞).

3. |uw−u|W1/p,p ≤ |w|W1/p,p +Cpε
1/p, ∀ p ∈ [1, q].

Second proof of Theorem 1.3 when Ω⊂Rm is bounded. Let N be an (m−1)-rectifiable current
in Ω. Let u ∈ W1,1(Ω;S1) be such that Ju = ∂N and ‖∇u‖L1 ≤ CM(N). Let v j be as in Lemma
6.12. By applying inductively Lemma 6.17,34 we construct a sequence (w j) such that Jw j =
Jv j, |w j|pW1/p,p ≤ Cp2− jM(N) and

|w1 . . .w j+1 −w1 . . .w j|W1/p,p ≤ |w j+1|W1/p,p +Cp(2− jM(N))1/p, ∀ p ∈ [1,3/2].

By combining the above with Lemma 4.5, it is easy to see that the product
∏

j w j converges in
W1/p,p(Ω;S1), ∀ p ∈ [1,∞), to some w that has all the properties required in Theorem 1.3.

34Here, we use the fact that R̃ ⊂W1,q(Ω), ∀q ∈ [1,2), cf (6.57).
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7 Proof of Lemma 5.1
Let (U j)1≤ j≤2 be an open covering of Sm by domains of local charts, and let ϕ j : U j → B

m
be

the corresponding smooth diffeomorphisms. We denote by ϕ j the corresponding charts for
Sm × [0,∞): ϕ j(x, t) = (ϕ j(x), t) ∈ Rm ×R. Let (θ j)1≤ j≤2 be a partition of the unit subordinate to
the covering (U j)1≤ j≤2 of Sm. Thus θ j is compactly supported in U j and θ1+θ2 = 1. For 1≤ j ≤ 2,

we define h j :=ϕ j](θ ju), which is compactly supported in Bm with values into B
k
. Assume for

the moment that we can construct a map w j :Rm×[0,∞)→ B
k

which satisfies all the properties
enumerated in Lemma 5.1 when u is replaced by h j and Sm by Bm. Let η ∈ C∞

c (Bm) such that
η = 1 on ∪ jϕ j( supp θ j). We then define v(x, t) := ∑

jϕ j
](ηw j) = ∑

j η(ϕ j(x))w j(ϕ j(x), t). Clearly,
v ∈ C∞(Sm × (0,∞)). If, in addition, u is smooth, then

v(x,0)=∑
j
η(ϕ j(x))w j(ϕ j(x),0)=∑

j
η(ϕ j(x))h j(ϕ j(x))=∑

j
η(ϕ j(x))θ j(x)u(x).

Since η(ϕ j(x))= 1 when θ j(x) 6= 0, we find that v(x,0)= u(x). We shall prove that for j = 1,2 and
T > 0:

‖w j‖Lp(Rm×(0,T)) ≤ CT‖h j‖Lp(Rm) , |w j|Wk/p,p(Rm×(0,∞)) ≤ C|h j|W (k−1)/p,p(Rm). (7.1)

Moreover, we will see that if ‖u‖L∞ ≤ 1, then

|w j(x, t)|+ |dx w j(x, t)|+ |∂t w j(x, t)| ≤ C
t

. (7.2)

The chain rule easily implies that this v satisfies estimate (5.1) when the seminorms are re-
placed by norms. By applying the argument leading to Corollary 4.3, we finds (5.1) holds also
in its original form (with seminorms).35

If (7.1) holds true, then we obtain (5.2) as follows.
ˆ
Sm

|v(x, ·)|pWk/p,p((0,∞))
≤ C

∑
j

ˆ
Rm

|w j(x, ·)|pWk/p,p((0,∞))

≤ C
∑

j
|h j|pW (k−1)/p,p(Rm)

≤ C‖u‖p
W (k−1)/p,p(Sm)

.
(7.3)

We obtain (5.2) by applying (7.3) to u−
 
Sm

u.

Finally, Lemma 5.1 item 5 is a direct consequence of (7.2) above.
In conclusion of the above discussion, we only need to prove Lemma 5.1 when Sm is replaced

by Bm and u is compactly supported. In this case, we will prove that the standard extension
v of u has all the required properties, namely satisfy Lemma 5.1 items 1, 3 and 4 as well as
(7.1) and (7.2) (with w j replaced by v). Such an extension is defined as follows. We let ρ be a
standard mollifier36 and set

v(x, t)=
{

u∗ρt(x), if t > 0
u(x), if t = 0

. (7.4)

Clearly, items 1 and 4 in Lemma 5.1 hold true for this v. On the other hand, (7.2) is straight-
forward (when |u| ≤ 1). In addition, the mapping u 7→ v is linear. By standard trace theory,
this implies that items 2 and 4 yield item 3. In conclusion, we only need to prove (7.1). Before
proceeding to the proof, we note that, by a standard limiting procedure, we may also assume u
smooth and compactly supported in Bm.

The proof of Lemma 5.1 relies on Hardy’s inequality [39, Lemma 3.14] that we recall here.

35Indeed, an inspection of the proof below shows that when the map u in Lemma 5.1 is replaced by u−
 
Sm

u, then

the corresponding map v is replaced by v−
 
Sm

u.

36That is, ρ ∈ C∞
c (Bm), ρ ≥ 0 and

ˆ
ρ = 1.
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7.1 Lemma. Let p ≥ 1 and r > 1. If g ∈W1,1
loc ([0,∞)), then

ˆ ∞

0

|g(s)− g(0)|p
sr ds ≤

( p
r−1

)p
ˆ ∞

0

|g′(s)|p
sr−p ds. (7.5)

7.2 Corollary. Let p > 1 and r > m. If w ∈ C1(Rm), then
ˆ
|y−x|<ρ

|w(y)−w(x)|p
|y− x|r dy≤ C

ˆ
|y−x|<ρ

|∇w(y)|p
|y− x|r−p d y, ∀x ∈Rm, (7.6)

where C = C(p, r,m).

Proof. By replacing g′ with g′1[0,ρ], we see that (7.5) still holds when [0,∞) is replaced by [0,ρ].
We have

ˆ
|y−x|<ρ

|w(y)−w(x)|p
|y− x|r d y=

ˆ
Sm−1

(ˆ ρ

0
tm−r−1|w(x+ tθ)−w(x)|p dt

)
dH m−1

≤ C
ˆ
|y−x|<ρ

|∇w(y)|p
|y− x|r−p d y,

the last inequality following from (7.5) applied in [0,ρ] to s 7→ w(x+ sθ).

Proof of (7.1) when u ∈ C∞
c

(
Bm;Rk)

. Let v be given by (7.4).

Step 1. Pointwise estimates for the derivatives. The identity

∂ jv(x, t)= 1
t

u∗ (η j)t(x), ∀x ∈Rm, t > 0, j ∈ J1,m+1K,

where

η j = ∂ jρ, ∀ j ∈ J1,mK, ηm+1(x)=−div(xρ)(x),

combined with the fact that
ˆ
η j = 0, ∀ j ∈ J1,m+1K, leads to

|∇v(x, t)| ≤ C
tm+1

ˆ
|y−x|<t

|u(y)−u(x)|dy (7.7)

and thus

|∇v(x, t)|p ≤ C
tm+p

ˆ
|y−x|<t

|u(y)−u(x)|p d y. (7.8)

Similarly, for the second order derivatives we have

∣∣D2v(x, t)
∣∣≤ C

tm+2

ˆ
|x−y|<t

|u(y)−u(x)|d y (7.9)

and ∣∣D2v(x, t)
∣∣p ≤ C

tm+2p

ˆ
|y−x|<t

|u(y)−u(x)|p d y. (7.10)

Step 2. Lp estimate. By (7.4) and Hölder’s inequality, we have

|v(x, t)−u(x)|p ≤
ˆ
|y−x|<t

|u(y)−u(x)|pρt(x− y)d y≤ C
tm

ˆ
|y−x|<t

|u(y)−u(x)|p d y. (7.11)
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This implies
ˆ ∞

0

ˆ
Rm

|v(x, t)−u(x)|p dx dt ≤ C
ˆ ∞

0

1
tm

ˆ ˆ
|y−x|<t

|u(y)−u(x)|p d ydxdt

≤ C
ˆ
Rm

ˆ
Rm

|u(y)−u(x)|p
ˆ ∞

|y−x|
dt
tm dxdy

= C
ˆ
Rm

ˆ
Rm

|u(y)−u(x)|p
|y− x|m−1 dxdy≤ C|u|pW (k−1)/p,p ;

(7.12)

the last estimate relies on Poincaré’s inequality ‖u‖W (k−1)/p,p ≤ C|u|W (k−1)/p,p .
Hence, for every T > 0 we have

‖v‖Lp(Rm×(0,T)) ≤ CT |u|W (k−1)/p,p . (7.13)

Step 3. W1,p estimate. As in the previous step, when k ≥ p (7.7) combined with Hölder’s
inequality implies

‖∇v‖p
Lp ≤ C

ˆ ∞

0

ˆ
Rm

(ˆ
|y−x|<t

|u(y)−u(x)|dy
)p

dx
dt

t(m+1)p

≤ C
ˆ ∞

0

ˆ ˆ
|y−x|<t

|u(y)−u(x)|p dydx
dt

tm+p = C
ˆ
Rm

ˆ
Rm

|u(y)−u(x)|p
|y− x|m+p−1 d ydx.

Using again Poincaré’s inequality, we find that

‖∇v‖p
Lp ≤ C|u|pW (k−1)/p,p . (7.14)

In particular, we have (by combining (7.13) with (7.14))

‖v‖W1,p(Rm×(0,T)) ≤ CT |u|W (k−1)/p,p , (7.15)

and the case where k = p is completely settled.
For further use, let us note that the proof of (7.14) leads to

ˆ ∞

0

ˆ
Rm

|∇v(x, t)|p
tk−p dxdt ≤ C|u|pW (k−1)/p,p . (7.16)

In order to estimate |v|Wk/p,p when k 6= p, we consider two different cases: p > k and p ∈
(k−1,k).

Step 4. Estimate of |v|Wk/p,p when p > k. We start from the following semi-norms equivalence,
valid for 1≤ p <∞ and 0<σ< 1:37

|v|pWσ,p(Rm×(0,∞)) ∼
ˆ ∞

0

ˆ
Rm

ˆ
Rm

|v(y, t)−v(x, t)|p
|y− x|m+σp d ydxdt

+
ˆ
Rm

ˆ ∞

0

ˆ ∞

0

|v(x, s+ t)−v(x, t)|p
s1+σp dsdtdx.

(7.17)

This leads to

|v|pWk/p,p ∼ I + J+K , (7.18)

where

I :=
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|<t

|v(y, t)−v(x, t)|p
|y− x|m+k d ydxdt,

J :=
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|≥t

|v(y, t)−v(x, t)|p
|y− x|m+k d ydxdt,

37As for (6.47), this is obtained by combining [1, Example 7.27] with [1, Lemma 7.44].
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K :=
ˆ
Rm

ˆ ∞

0

ˆ ∞

0

|v(x, s+ t)−v(x, t)|p
s1+k dsdtdx.

Using successively Corollary 7.2 and (7.8), we find that

I ≤ C
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|<t

|∇v(y, t)|p
|y− x|m+k−p d ydxdt

≤ C
ˆ ∞

0

1
tm+p

ˆ
Rm

ˆ
|y−x|<t

1
|y− x|m+k−p

ˆ
|z−y|<t

|u(z)−u(y)|p dzdydxdt

= C
ˆ
Rm

ˆ
Rm

ˆ ∞

|z−y|
1

tm+p

ˆ
|x−y|<t

1
|x− y|m+k−p dxdt |u(z)−u(y)|p dzdy

= C
ˆ
Rm

ˆ
Rm

|u(z)−u(y)|p
|z− y|m+k−1 dzdy= |u|pW (k−1)/p,p .

(7.19)

The last two lines use Fubini’s theorem. Similar calculations appear in the estimates of J and
K and will not be detailed.

We next estimate J. Starting from

|v(y, t)−v(x, t)| ≤ |v(y, t)−u(y)|+ |u(y)−u(x)|+ |v(x, t)−u(x)|
and using (7.11), we find that

J ≤ C(J1 + J2), (7.20)

where

J1 =
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|≥t

|u(y)−u(x)|p
|y− x|m+k d ydxdt = |u|pW (k−1)/p,p (7.21)

and

J2 =
ˆ ∞

0

1
tm

ˆ
Rm

ˆ
|y−x|≥t

1
|y− x|m+k

ˆ
|z−x|<t

|u(z)−u(x)|p dzdydxdt = C|u|pW (k−1)/p,p . (7.22)

Finally, we estimate K by using successively (7.5) applied with g(s) = v(x, s+ t) and (7.8). We
find that

K ≤ C
ˆ
Rm

ˆ ∞

0

ˆ ∞

0

|∇v(x, s+ t)|p
s1+k−p dsdtdx

≤ C
ˆ
Rm

ˆ ∞

0

1
s1+k−p

ˆ ∞

0

1
(s+ t)m+p

ˆ
|y−x|<s+t

|u(y)−u(x)|p dydsdtdx = C|u|pW (k−1)/p,p .
(7.23)

We complete the case where p > k by combining (7.18)-(7.23).
Step 5. Estimate of |v|Wk/p,p when p ∈ (k−1,k). Starting from |v|Wk/p,p = |∇v|Wk/p−1,p and (7.17),
we find that

|v|pWk/p,p ∼ Ĩ + J̃+ K̃ , (7.24)

where

Ĩ :=
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|<t

|∇v(y, t)−∇v(x, t)|p
|y− x|m+k−p d ydxdt,

J̃ :=
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|≥t

|∇v(y, t)−∇v(x, t)|p
|y− x|m+k−p dydxdt,

K̃ :=
ˆ
Rm

ˆ ∞

0

ˆ ∞

0

|∇v(x, s+ t)−∇v(x, t)|p
s1+k−p dsdtdx.

In order to estimate the quantities Ĩ and K̃ , we proceed as for I and K , but use (7.10) instead
of (7.8). Finally, using (7.16) we obtain

J̃ ≤ C
ˆ ∞

0

ˆ
Rm

ˆ
|y−x|≥t

|∇v(x, t)|p
|y− x|m+k−p d ydxdt = C

ˆ ∞

0

ˆ
Rm

|∇v(x, t)|p
tk−p dxdt ≤ C|u|pW (k−1)/p,p .

This completes the proof of Lemma 5.1.
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