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Prescribing the Jacobian in critical spaces

We consider the Sobolev space X = W s,p (S m ; S k-1 ). We prove the existence of a robust distributional Jacobian Ju for u ∈ X provided sp ≥ k -1; this generalizes a result of Bourgain, Brezis and the second author [10], where the case m = k is considered. In the critical case where sp = k -1, we identify the image of the map X u → Ju. This extends a result of Alberti, Baldo and Orlandi [2] for s = 1 and p = k -1. We also present a new, analytical, dipole construction method.

Introduction

In general, one cannot approximate manifold-valued Sobolev maps with manifold-valued smooth maps. This contrasts with the case of scalar maps. Here is a simple example, with D the unit disc in R 2 : the map u 0 : D → S 1 , u 0 (z) = z |z| , belongs to W 1,1 , but cannot be approximated in W 1,1 with smooth S 1 -valued maps [37]. Beyond the approximation problem, singularities occur in the regularity theory of manifold-valued maps (developed by Schoen and Uhlenbeck [37, 38] and extended by Hardt and Lin [24]): unlike the scalar case, manifold-valued minimizers of the Dirichlet integral ˆ|∇u| 2 or more generally of ˆ|∇u| p are not smooth, but have a (small) singular set. In the case of sphere-valued maps, Brezis, Coron and Lieb [13] generalized a calculation of Ball [4] and discovered the possibility of detecting the singularities of maps via the distributional Jacobian. We will recall below the definition of the distributional Jacobian in the general case, but for the time being let us consider the case of maps u : D → S 1 . If u ∈ C 1 , then the Jacobian determinant Jac u satisfies Jac u = 0.

(1.1) Indeed, by differentiating the identity |u| 2 ≡ 1 we find that u • ∂ j u ≡ 0, j = 1, 2, and thus ∂ 1 u ∥ ∂ 2 u. Therefore Jac u = 0. Ball [4] discovered that for less smooth maps the Jacobian, when defined properly, need not vanish. Indeed, consider the distribution Ju = 1 2π ∂ 1 (u∧∂ 2 u)+

1 2π ∂ 2 (∂ 1 u ∧ u), 1 which makes sense if u is merely W 1,1 ∩ L ∞ . If u ∈ C 2 , then Ju = 1 π Jac u.
Therefore, if u is in addition circle-valued, then Ju vanishes as above. With more work, one may prove that the same holds if u is less smooth, for example if u ∈ W 1,2 . However, the above u 0 belongs to W 1,p , p < 2, and it is easy to see that Ju = δ 0 [4]. [START_REF] Alberti | Functions with prescribed singularities[END_REF] More generally, if u ∈ W 1,1 (D; S 1 ) is smooth outside a finite set A(u), then [13] Ju = a∈A(u)

deg(u, a)δ a .

(1.2)

Here, deg(u, a) is the winding number (degree) of u computed on a small circle around a. [START_REF] Almgren | Co-area, liquid crystals, and minimal surfaces[END_REF] It is still possible to compute the distribution Ju for an arbitrary u ∈ W 1,1 (D; S 1 ), but this requires additional ingredients.

1. First ingredient: the class R of circle-valued maps u smooth outside some finite set A(u) is dense in W 1,1 (D; S 1 ). This is a result of Bethuel and Zheng [8].

2. Second ingredient: for u ∈ R, it is possible to rearrange the singularities of u and write Ju = (δ P j -δ N j ), with P j , N j ∈ D and

|P j -N j | ≤ 1 2π ∇u L 1 ;
this was proved by Brezis, Coron and Lieb [13].

By combining the above, a straightforward Cauchy sequences argument leads to the representation Ju = (δ P j -δ N j ), with P j , N j ∈ D and |P j -N j | ≤ 1 2π ∇u L 1 ; (1.3) this time, the sum may contain an infinite number of terms. A remarkable fact is that there is a "converse" to (1.3): given sequences (P j ), (N j ) ⊂ D such that j |P j -N j | < ∞, there exists some u ∈ W 1,1 (D; S 1 ) such that Ju = (δ P j -δ N j ). The ingredients of the proof of this fact are already in [13], but the result was explicitly formulated much later; see [2] and also [16].

A similar approach can be followed for maps in W 1,k-1 (B k ; S k-1 ), k ≥ 2. [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF] However, for applications this functional setting is not sufficient. Indeed, the distributional Jacobian plays a crucial role e.g. in approximation problems [5, 34] or in the study of the Ginzburg-Landau equation [26, 9]. In these contexts, the natural functional setting need not be the one of W 1,k-1 (B k ; S k-1 ). For example, the trace space W 1/2,2 (S 2 ; S 1 ) is related to the study of the Ginzburg-Landau equation [9]. The above suggests the following general program in the Sobolev space X = W s,p (Ω; S k-1 ), with s > 0, 1 ≤ p < ∞ and Ω an open set in R m or an mdimensional manifold: Task 1. Prove density in X of a suitable class R of S k-1 -valued maps u smooth except on a small set A(u).

Here, ∧ stands for the vector product of complex numbers:

a ∧ b = a 1 b 2 -a 2 b 1 .
Here, δ 0 is the Dirac mass at the origin. By invariance of the degree by homotopy, this integer is independent of the circle.

Here, B k is the open unit ball in R k . The closed unit ball is denoted B k .

Task 2. Define (possibly by density starting from maps in R) the distributional Jacobian Ju of a map u ∈ X .

Task 3. Determine the range of the map X u → Ju.

Our paper presents new results concerning Tasks 2 and 3. Additional directions, though not discussed in the present paper, are equally interesting. An example: Bethuel [5] proved that the equality Ju = 0 characterizes the "absence of singularities": a map u ∈ W 1,2 (B 3 ; S 2 ) satisfies Ju = 0 if and only if u is in the strong W 1,2 -closure of smooth S 2 -maps; see also [7, 11, 35]. The generalization of this result to different Sobolev regularities has not been obtained in full generality.

The above program has not been completely realized; we present below the state-of-the-art in these directions. To start with, let us define properly the class R. From the pioneering work of Bethuel [6], the good candidate is known to be the class

R = u ∈ W s,p (Ω; S k-1 ) ∩ C ∞ (Ω \ A(u)); dim A(u) = m -[sp] -1 ,
where A(u) is a finite union of Lipschitz manifolds (depending on u). Bethuel [6] proved density of R when s = 1 and the target is an arbitrary compact oriented manifold. [START_REF] Bethuel | A characterization of maps in H 1 (B 3 , S 2 ) which can be approximated by smooth maps[END_REF] Very recently, Ponce, Van Schaftingen and the first author [12] extended this result for s = 2, 3, . . . On the other hand, density of R (for arbitrary targets) when s < 1 was obtained by Brezis and the second author [15]. Another essentially known case is the one where k-1 ≤ sp < k. This case can be tackled by adapting the projection method of Federer and Fleming [20]. The idea of using this method for manifold-valued maps goes back to Hardt, Kinderlehrer and Lin [23]. The projection method was used to prove density of the class R in the following cases: [36]. c) When s < 1 and k -1 ≤ sp < k in [9]. [START_REF] Bethuel | The approximation problem for Sobolev maps between two manifolds[END_REF] d) When s ≥ 1, 1 ≤ sp < 2 and k = 2 in [11].

a) When s = 1, k -1 ≤ p < k in [8]. b) When s = 1/2, p = 2, k = 1, m = 2 in
Though the case where k -1 ≤ sp < k does not appear anywhere in full generality, the subcase s = 1 is already in [8], the subcase s < 1 is contained in [15], and the subcase s > 1 is very likely to follow from the arguments in [11]. However, we emphasize the fact that, even though this special case is under control and even if the case of spheres is simpler than the one of arbitrary compact targets, density of R for sphere-valued maps and for arbitrary m, k, s and p is not known.

Task 2 concerns the possibility of defining Ju. Some cases are to be discarded from the beginning: a) When sp < k -1, smooth maps are dense in W s,p (Ω; S k-1 ) [28]. In this case, it is natural to let Ju = 0 for each u.

b) Same holds when sp ≥ m = dim Ω. This goes back essentially to [37]; see also [17].

By the above, we may always assume that

k -1 ≤ sp < m, (1.4) 
and we see that the limiting cases are the ones where sp = k -1. When m = k, s = 1 and p = k -1, the distributional Jacobian Ju is defined as the divergence of an L 1 -vector field:

Ju = div 1 kω k (det(u, ∂ 2 u, . . . , ∂ k u), det(∂ 1 u, u, ∂ 3 u, . . . , ∂ k u), . . . , det(∂ 1 u, . . . , ∂ k-1 u, u)); (1.5)
here, ω k is the volume of B k . This definition can be adapted to the case where m > k, s = 1 and p = k -1 [3, 25, 2]. We explain the procedure e.g. when Ω = S m . [START_REF] Bethuel | A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds[END_REF] We consider the volume form on S k-1 ,

ω 0 := 1 kω k k i=1
(-1) i-1 y i d y 1 ∧ ... ∧ d y i ∧ ... ∧ d y k (1.6) (with the convention that denotes a missing term). For every u ∈ W 1,k-1 (S m ; S k-1 ), we define the (mk)-current Ju by its action on the space W 1,∞ (Λ m-k S m ) of Lipschitz (mk)-forms in S m :

〈Ju, ζ〉 := (-1) m-k+1 ˆSm dζ ∧ (u ω 0 ), ∀ ζ ∈ W 1,∞ (Λ m-k S m ).

(1.7)

Here, u ω 0 stands for the pullback

u ω 0 = 1 kω k k i=1 (-1) i-1 u i du 1 ∧ ... ∧ du i ∧ ... ∧ du k .
The formula (1.7) is a generalization of (1.5) when m > k. It is clear that Ju is well-defined as an element of the dual of W 1,∞ (Λ m-k S m ), and that the map

W 1,k-1 (S m ; S k-1 ) u → Ju ∈ (W 1,∞ (Λ m-k S m )) * (1.8)
is continuous. Similarly, the distribution Ju is continuous wrt u in the space W s,p (S m ; S k-1 ) provided s ≥ 1 and sp ≥ k-1. This follows from the embedding W s,p ∩L ∞ → W 1,k-1 , valid when s ≥ 1 and sp ≥ k -1. Existence of Ju is less clear when s < 1 and sp ≥ k -1. A first result in this direction was obtained by Hang and Lin [22]. These authors were able to define Ju for u ∈ W s,p (S k ; S k-1 ) provided s ≥ 1 -1/k and sp ≥ k -1. This result was completed in [10]; there, it is proved that there is a natural way of defining Ju in the spaces W s,p (S k ; S k-1 ) when s < 1 and sp = k -1. This is obtained as follows: first, the class W 1,k-1 ∩ W s,p (S k ; S k-1 ) is dense in W s,p (S k ; S k-1 ). [START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF] Next, the key step in [10] consists in proving that u → Ju, initially defined for maps in W 1,k-1 ∩ W s,p (S k ; S k-1 ), is continuous wrt the W s,p -norm. This gives a (unique) natural notion of Ju for u ∈ W s,p (S k ; S k-1 ), provided sp ≥ k -1. Our first result is a generalization of the above to higher dimensions m.

Theorem.

There exists a (unique) map

J : 0<s≤1 p=(k-1)/s W s,p (S m ; S k-1 ) → (W 1,∞ (Λ m-k S m )) * such that: 1. For u ∈ W 1,k-1 (S m ; S k-1
), Ju coincides with the distributional Jacobian defined by (1.7).

2. The restriction of J to every W s,p (S m ; S k-1 ) with 0 < s < 1 and p = (k -1)/s is continuous.

3. In addition, for s and p as above the following estimate holds:

|〈Ju, ζ〉| ≤ C p |u| p W s,p dζ L ∞ .
(1.9)

Here | | W s,p stands for the standard semi-norm in W s,p ; for the convenience of the reader, its formula will be recalled in Section 2.

Task 2 is completed.

We next turn to Task 3: characterize the set Ju; u ∈ W s,p (Ω; S k-1 ) . This requires establishing the analog of (1.3) and of its "converse". A first hint is given by [13]. There, it is proved that inf ˆR3

|∇u| 2 ; Ju = k j=1 (δ P j -δ N j ) = 8π inf σ∈S k k j=1 |P j -N σ( j) |, (1.10) 
the sum in the right-hand side of (1.10) being the length of the shortest curve connecting the P j 's to the N j 's. It was conjectured in [13] that when, say, m = 4 and k = 3, the minimal Dirichlet energy required to create a Jacobian supported by a simple closed curve M ⊂ R 4 equals 8π min {M(N); N is a 2 -rectifiable current such that ∂N = M} .

Here, M(N) stands for the mass of N. For polygonal lines, this conjecture 9 has been confirmed by Almgren, Browder and Lieb [3]. Far reaching extensions of this result were obtained by Alberti, Baldo and Orlandi [2]. Their results are the following: on the one hand,

Ju; u ∈ Ẇ1,k-1 (R m ; S k-1 ) = {∂N; N is an (m -k + 1) -dimensional rectifiable current} . (1.11)
Here, Ẇ1,k-1 stands for the homogeneous Sobolev space. On the other hand, inf ˆRk

|∇u| k ; Ju = M ∼ inf {M(N); N is rectifiable and ∂N = M} . (1.12)
Very recently, by combining the arguments in [3] and [2], Molnar [31] improved the conclusion (1.12) to inf ˆRk

|∇u| k ; Ju = M = (k -1) (k-1)/2 kω k inf {M(N); N rectifiable, ∂N = M} . (1.13)
A crucial point in [13, 3, 2] is the dipole construction discovered in [13]. Let us give an example: for S 1 -valued maps in R 2 , a dipole with a positive singularity P 1 and a negative singularity N 1 is a map u : R 2 → S 1 such that Ju = δ P 1 -δ N 1 which is, in addition, constant outside an arbitrarily small set B(u). For arbitrary s and p, one cannot control both the W s,p -semi-norm of u and the size of B(u). However, this is possible in W 1,1 : for every ε > 0, it is possible to construct u such that ∇u

L 1 ≤ 2π|P 1 -N 1 | + ε and |B(u)| ≤ ε.
An inspection of the dipole construction in [13] leads to the conclusion that this construction can be adapted to the critical spaces W s,p (Ω; S k-1 ) characterized by the equality sp = k -1. Our next results extend the results in [2] to the full scale of critical spaces.

1.2 Theorem. Let 0 < s ≤ k -1 and p ≥ 1 be such that sp = k -1. Assume that m ≥ k. Let u ∈ W s,p (S m ; S k-1 ). Then there exists an (mk + 1)-rectifiable current N in S m such that

1. ∂N = Ju. 2. M(N) ≤ C p |u| p W s,p .
1.3 Theorem. Let M be the boundary of an (mk + 1)-rectifiable current N in S m . Then there exists u ∈ sp=k-1 W s,p (S m ; S k-1 ) such that:

1. Ju = M. 2. |u| p W s,p ≤ C p M(N) if sp = k -1.
Let us discuss how Theorems 1.2 and 1.3 compare to the corresponding results in [2]. When k ≥ 3, the critical spaces are nested: if the couples (s 1 , p 1 ) and (s 2 , p 2 ) are critical and s 1 > s 2 , then we have the Gagliardo-Nirenberg type embeddings W s 1 ,p 1 (S m ; S k-1 ) → W s 2 ,p 2 (S m ; S k-1 ). Therefore, Theorem 1.3 follows from the special case s = k-1, p = 1 combined with the Gagliardo-Nirenberg inequalities. In turn, we prove this special case by adapting the techniques in [2]. As explained in the course of the proof, the new technical difficulties 10 arise from the fact that we need smooth (and not merely Lipschitz) dipoles and from the fact that we work on S m instead of R m . 11 However, the case k = 2 does not follow from the above strategy. This is due to the fact that the corresponding Gagliardo-Nirenberg embeddings are wrong: e.g., we do not have [START_REF] Bourgain | H 1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation[END_REF] And its generalization to arbitrary m and k. [START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF] When compared to [2]. [START_REF] Bousquet | Topological singularities in W s,p (S N , S 1 )[END_REF] Our proof adapts also to the case of a bounded domain in R m . W 1,1 (S m ; S 1 ) → W 1/2,2 (S m ; S 1 ). In this case, we present two proofs. One of them is "geometric": it relies on a dipole construction with control of several norms combined with a Cauchy sequences argument. The second one is purely "analytical": by an averaging argument reminiscent of the projection method of Federer and Fleming [20], we associate to each function u a "better" function with the same singular set. [START_REF] Bousquet | Density in W m[END_REF] We think that this second approach is of independent interest and may serve in other situations. The proof of Theorem 1.2 is very much in the spirit of Almgren, Browder and Lieb [3], who were the first to use the coarea formula in the proof of estimates for sphere-valued maps. Later, Hang and Lin [22] and Alberti, Baldo and Orlandi [2] used a similar approach in order to establish special cases of Theorem 1.2. Our approach is similar to the one in [22], but we had to face new technical difficulties. A final remark about the coarea formula setting. The content of Theorem 1.2 is that Ju is the boundary of a rectifiable current N. The main idea of [3] is to take N = u -1 (a) for some appropriate a ∈ S k-1 ; this idea is also at the heart of [2]. This leads, in general, to a nonsmooth N. [START_REF] Brezis | Harmonic maps with defects[END_REF] It turns out that it is possible to write Ju = ∂M with smooth M provided we let M live in the higher dimensional space S m × [0, ∞); this is how our construction goes. [START_REF] Brezis | Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces[END_REF] We next land on S m by letting N be the projection of M. Technically, this leads us to the use of the standard coarea formula, as opposed to its Sobolev spaces version required in [2].

Task 3 is thus completed in the scale of critical spaces. However, little is known about the non critical spaces. To give an example, the characterization of the space Ju; u ∈ W 1,p (S 3 ; S 2 , with 2 < p < 3, is not known. The situation is completely understood only for circle-valued maps. The space Ju; u ∈ W s,p (S m ; S 1 , with 1 < sp < 2, has been characterized in [11] when s ≥ 1 and in [30] when s < 1. [START_REF] Brezis | Density in W s[END_REF] However, the proofs there rely heavily on the fact that the target space is S 1 . The case where the target is S k-1 with k ≥ 3 is widely open.

Our paper is organized as follows: in Sections 2, 3 and 4 we recall, for the convenience of the reader, the main analytical tools required in the proofs. In Section 5, we establish Theorems 1.1 and 1.2. The proof of Theorem 1.1 relies on a technical lemma, Lemma 5.1, whose long proof is postponed to Section 7. Section 6 is devoted to the proof of Theorem 1.3.

Sobolev spaces of currents and forms

Our presentation follows essentially [21, Chapters 2, 3]. Let H be a subspace of the Euclidean space R m , m ≥ 1. For 0 ≤ l, we denote by Λ l H the vector space of l-vectors in H and by Λ l H = Λ l H * the vector space of l-covectors in H. The duality pairing between Λ l H and Λ l H is defined in terms of simple vectors and covectors as follows:

If h = h 1 ∧ . . . ∧ h l ∈ Λ l H, h j ∈ H and θ = θ 1 ∧ . . . θ l ∈ Λ l H, θ i ∈ H * , then 〈h, θ〉 = 〈θ, h〉 = det (θ i (h j )).
The inner product of vectors and covectors (which only depends on the inner product defined on R m ) is defined as follows. Let (e i ) denote an orthonormal basis in R m , e * i be the dual basis, and set 

I(l, m) = {(i 1 , . . . , i l ); 1 ≤ i 1 < ... < i l ≤ m}.
The key result is Lemma 6.15. This is due to the fact that Ju need not be the boundary of a smooth N. See the discussion in [2, p. 277]. This approach is inspired by [22]. The results in [30] are described in [29].

|ξ| = I |ξ I | 2 1/2 , |α| = I |α I | 2 1/2 . (2.2)
The above quantities do not depend on the choice of the orthonormal basis (e i ).

A linear map L : H → K induces the morphism

Λ l L : Λ l H → Λ l K, Λ l H v 1 ∧ ... ∧ v l Λ l L --→ Lv 1 ∧ ... ∧ Lv l ∈ Λ l K,
and its adjoint Λ l L :

Λ l K → Λ l H.
Let Ω ⊂ R m be an open set. For 0 ≤ l ≤ m, we denote by C ∞ (Λ l Ω) (an abbreviation for C ∞ (Ω; Λ l R m )) the set of smooth l-forms in Ω. Similarly, C ∞ c (Λ l Ω) is the set of smooth l-forms compactly supported in Ω. The differential of a form ω is denoted by dω. An l-current T ∈ (C ∞ c (Λ l Ω)) * , l ≥ 0, is a continuous linear form on the set C ∞ c (Λ l Ω) endowed with the topology of distributions. The boundary of an l-current T, l ≥ 1, is the (l

-1)-current ∂T ∈ (C ∞ c (Λ l-1 Ω)) * defined by 〈∂T, ω〉 = 〈T, dω〉 , ∀ ω ∈ C ∞ c (Λ l-1 Ω).
For 0 < s < ∞, 1 ≤ p < ∞, we denote by W s,p (Λ l Ω) the set of l-forms such that

ω W s,p := k≤[s] D k ω L p + D [s] ω W σ,p < ∞,
where [s] is the integer part of s, σ := s -[s] and for ω = ω I dx I ,

dx I = dx i 1 ∧ ... ∧ dx i l , D k ω L p := I |α|=k ˆΩ ∂ α ω I ∂x α (x) p dx 1/p D [s] ω W σ,p :=          I |α|=[s]
ˆΩ ˆΩ

∂ α ω I ∂x α (x) - ∂ α ω I ∂x α (y) p |x -y| m+σp dx d y          1/p .
The definition extends, with the obvious modification, to the case p = ∞.

We next turn to the definition of Sobolev spaces of forms on manifolds. This requires defining the pullback of forms. Let ϕ : Ω 1 ⊂ R m 1 → Ω 2 ⊂ R m 2 be a smooth map between two open sets Ω 1 and Ω 2 . The pullback ϕ ω of a measurable l-form ω in Ω 2 is defined by

(ϕ ω)(x)(η 1 , ..., η l ) = ω(ϕ(x))(dϕ(x)(η 1 ), ..., dϕ(x)(η l )), ∀ x ∈ Ω 1 , η 1 , ..., η l ∈ R m 1 .
Then ϕ ω is a measurable l-form on Ω 1 , and, if ω is smooth, then we have the chain rule

dϕ ω = ϕ dω. Let ϕ : Ω 1 ⊂ R m 1 → Ω 2 ⊂ R m 2 be
a smooth proper map between two open sets Ω 1 and Ω 2 . Then we define the pushforward ϕ T of an l-current T ∈ (C ∞ c (Λ l Ω 1 )) * as the following l-current on Ω 2 :

〈ϕ T, ω〉 = 〈T, ϕ ω〉 , ∀ ω ∈ C ∞ c (Λ l Ω 2 ).
In the special case where ϕ : Ω 1 → Ω 2 is a diffeomorphism, we may define two additional objects: ϕ ω = (ϕ -1 ) ω and ϕ T = (ϕ -1 ) T, whenever ω is a form on Ω 1 and T is a current on Ω 2 .

We are now in position to define the Sobolev spaces of forms on manifolds. Consider a smooth oriented compact m-dimensional boundaryless submanifold M of R m+n . The set

Λ l M := x∈M ({x} × Λ l T x M) has a natural differential structure. Same for Λ l M := x∈M ({x} × Λ l T x M).
The set of smooth compactly supported l-forms in M is denoted by C ∞ c (Λ l M). This set reduces to the set C ∞ (Λ l M) of smooth l-forms on M when M is compact. In order to simplify the presentation, we further assume that either M is compact, or M = N × ω, with N compact and t-dimensional and ω ⊂ R l (this will indeed be the case of all the submanifolds considered later). The definition of W s,p (Λ l M) follows from that of W s,p (Λ l Ω) via a finite covering of M by domains of local coordinates. Let (ϕ j ,U j , V j ) be a finite atlas of M, where:

a) If M is compact, then ϕ j : U j ⊂ M → V j ⊂ R m is a smooth diffeomorphism. b) If M = N × ω, then ϕ j = η j ⊗ Id, with η j : W j ⊂ N → X j ⊂ R t is a smooth diffeomorphism.
Here, (W j ) is a covering of N with domains of local coordinates.

Consider maps θ j : M → [0, 1], such that: a) If M is compact, then (θ j ) is a partition of the unit subordinated to the covering (U j ).

b) If M = N ×ω, then θ j = ψ j ⊗Id, with (ψ j ) partition of the unit subordinated to the covering (W j ) of N.

For s ≥ 0 and p ≥ 1, we let

ω W s,p = ω W s,p (Λ l M) = j ϕ j (θ j ω) W s,p (Λ l V j ) .
Two different choices of finite coverings lead to the same space W s,p (Λ l M), with equivalent norms. Let 0 < s and 1 ≤ p ≤ ∞. When ω ∈ W s,p loc (Λ 0 M), [START_REF] Brezis | W 1,1 -maps with values into S 1 . In Geometric analysis of PDE and several complex variables[END_REF] we define the seminorm |ω| W s,p (M) ∈ [0, ∞] as follows.

|ω| p W s,p (M) =              ˆM ˆM |ω(x) -ω(y)| p d(x, y) m+sp dx d y, if s < 1 ˆM |dω| p , if s = 1 dω W s-1,p , if s > 1 ,
with the obvious modification when p = ∞. Here, d(x, y) is the geodesic distance between x and y.

An equivalent semi-norm is given by ω -

M ω W s,p
. Alternatively, one can consider the standard norm on the quotient space W s,p /R. [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] Other (equivalent) semi-norms will be introduced in the next sections.

We next identify currents defined in M with currents defined in R m+n . This goes as follows. If ϕ is a smooth map defined on M with values into some other manifold, then one may define the pullback and the pushforward by ϕ as above. Let U be an open neighborhood of M in R m+n and

i : M → U, M x i - → x ∈ U
be the canonical inclusion. Given an l-form ω on U, we denote by ω |M the form on M defined by i ω. We say that

1. A form ω ∈ C ∞ c (Λ l U) is null at M if i ω = 0, 2. An l-current T ∈ (C ∞ c (Λ l U)) * is a current along M if 〈T, ω〉 = 0 for every ω ∈ C ∞ c (Λ l U) which is null at M.
One can easily see that T → i T is an isomorphism between the space of l-currents defined in M and the space of l-currents along M. [START_REF] Cohen | Harmonic analysis of the space BV[END_REF] 

Rectifiability, area and coarea

We follow [19, Chapters 2, 3]; see also [21, Chapter 2] and [32, Chapters 3, 4].

An m-rectifiable set M ⊂ R m+n is a set of the form M = M 0 ∪ ∞ j=1 M j , where 1.
stands for a disjoint union.

In this case, ω is identified to a function. We will apply this with ω an R k -valued map. In this case, the quotient space is (W s,p (Λ 0 M)) k /R k .

Here, the spaces of currents are endowed with the usual topologies.

2. H m (M 0 ) = 0.

3. For j ≥ 1, every M j is a Borel subset of an m-dimensional C 1 -submanifold N j of R m+n .

The total measure H

m (M ) = ∞ j=1 H m (M j ) is finite. Let M be m-rectifiable. An m-dimensional subspace P of R m+n is the approximate tangent space of M at x ∈ R m+n if lim λ→0 + ˆ(M -x)/λ g(y) dH m (y) = ˆP g(y) dH m (y), ∀ g ∈ C ∞ c (R m+n ).
If it exists, such a P is unique and is denoted by T x M . An m-rectifiable set M admits H m -a.e. on M an approximate tangent space [21, Section 2.1.4], and moreover

T x M = T x N j , H m -a.e. x ∈ M j . (3.1)
An m-rectifiable current [START_REF] Federer | Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften[END_REF] in the open set U ⊂ R m+n is defined via a triple (M , ξ, θ), where

1. M ⊂ U is an m-rectifiable set. 2. ξ : M → Λ m R m+n is a Borel measurable map such that |ξ| = 1 and ξ(x) ∈ Λ m T x M for H m -a.e.
x. [START_REF] Federer | Normal and integral currents[END_REF] 3. θ : M → Z is a Borel locally H m -summable function. [START_REF] Giaquinta | Cartesian currents in the calculus of variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] The m-rectifiable current associated to this triple acts through the formula

〈T, ω〉 = ˆM 〈ξ, ω〉θ dH m , ∀ ω ∈ C ∞ c (Λ m U).
Clearly, such a T acts on the space of compactly supported m-forms with continuous coefficients, and thus it may be identified with a (vector-valued) measure. As a measure, the total variation (mass) of T is given by

M(T) := ˆM |θ| dH m .
We end this section by recalling the area and coarea formulae.

Let M be a smooth m-dimensional submanifold of an Euclidean space. Let f ∈ Li p loc (M; R k ). We define the Jacobian of f at x ∈ M by

J M f (x) := (det(d f (x)) * (d f (x))) 1/2 , if k ≥ m (det(d f (x))(d f (x)) * ) 1/2 , if k ≤ m .
Here, the differential d f (x) :

T x M → R k of f at x is defined for a.e.
x. The area formula and coarea formula read as follows [21, Section 2.1.5]. Let f : M → R k be locally Lipschitz.

Let A ⊂ M be an H m -measurable set. Then for any nonnegative Borel measurable function

u : M → R, we have 1. (Area formula) If k ≥ m, then ˆA u(x)J M f (x) dH m (x) = ˆf (A) f -1 (y)∩A u(x) dH m (y). 2. (Coarea formula) If k < m, then ˆA u(x)J M f (x) dH m (x) = ˆf (A) ˆf -1 (y)∩A u dH m-k (x) dH k (y).
Sometimes refered as an integer multiplicity m-rectifiable current. ξ is a Borel measurable orientation. θ is the multiplicity function. By changing ξ if necessary, one may assume that θ takes only nonnegative values.

Interpolation inequalities

We start by recalling the following Gagliardo- 

∈ (0, 1), a > 0, p ≥ 1, 1 < q ≤ ∞. Let r satisfy 1 r = θ p + 1 -θ q . The inequality u W θa,r ≤ C u θ W a,p u 1-θ L q , ∀ u ∈ C ∞ c (R m ) (4.1)
is true in the following cases.

1. a is not an integer.

2. a and θa are integers.

3. a is an integer and p > 1 .

As a consequence, we have 4.2 Lemma. For every p ≥ 1 and k ≥ 3, there exists

C = C(p, m) > 0 such that u W (k-1)/p,p (S m ) ≤ C u 1/p W k-1,1 (S m ) u 1-1/p L ∞ (S m ) , ∀ u ∈ C ∞ (S m ). (4.2) Proof. It suffices to prove (4.2) for u ∈ C ∞ c (B m
). Indeed, assume that (4.2) holds in this case. Consider a covering of S m with finitely many open subsets U j such that U j is diffeomorphic to the closed ball B m . We denote by ϕ j : U j → B m the corresponding diffeomorphisms, and by (θ j ) a partition of the unit subordinated to the covering (U j ). Then, for every u ∈ C ∞ (S m ) we have

u W (k-1)/p,p (S m ) ∼ j (ϕ j ) (θ j u) W (k-1)/p,p (B m ) ≤ C j (ϕ j ) (θ j u) 1/p W k-1,1 (B m ) (ϕ j ) (θ j u) 1-1/p L ∞ (B m ) ≤ C u 1-1/p L ∞ (S m ) j (ϕ j ) (θ j u) 1/p W k-1,1 (B m ) ≤ C u 1-1/p L ∞ (S m ) u 1/p W k-1,1 (S m ) , as claimed. Let u ∈ C ∞ c (B m ). Since (4.
2) is trivially true for p = 1, we may assume that p > 1. By item 2 in Lemma 4.1, we have

u W j,(k-1)/ j ≤ C u j/(k-1) W k-1,1 u 1-j/(k-1) L ∞ , ∀ j ∈ 1, ..., k -1 . ( 4.3) 
We claim that (4.2) is a consequence of the following inequality:

u W s,p ≤ C u s W 1,1 u 1-s L q , ∀ s ∈ (0, 1), q ∈ (1, ∞), u ∈ C ∞ c (R m ), (4.4) 
where p is defined by

1 p = s + 1 -s q .
Indeed, assume for a moment that (4.4) is true. Then we are able to complete the proof of (4.2) by considering three different cases.

Case 1. k -1 p ∈ (k -2, k -1).
By (4.3), we have

u W k-2,(k-1)/(k-2) ≤ C u (k-2)/(k-1) W k-1,1 u 1-(k-2)/(k-1) L ∞ . (4.5)
By combining this estimate with (4.4) applied to the map

D k-2 u, to q = k -1 k -2 and to s = k -1 p - (k -2), we obtain D k-2 u W (k-1)/p-(k-2),p ≤ C D k-2 u (k-1)/p-(k-2) W 1,1 D k-2 u 1-(k-1)/p+k-2 L (k-1)/(k-2)
≤ (by (4.5))

≤ C D k-2 u (k-1)/p-(k-2) W 1,1 u (k-2)/(k-1) W k-1,1 u 1/(k-1) L ∞ 1-(k-1)/p+k-2 ≤ C u 1/p W k-1,1 u 1-1/p L ∞ .
(4.6) [START_REF] Hang | A remark on the Jacobians[END_REF] The results in [14] are stated only for p > 1, but the arguments still hold when p = 1.

Using Rellich's theorem, one may prove by contradiction that there exists some C > 0 such that the following Poincaré type inequality holds:

u W (k-1)/p,p ≤ C D k-2 u W (k-1)/p-k+2,p , ∀ u ∈ C ∞ c (B m ). (4.7)
We obtain (4.2) by combining (4.6) and (4.7).

Case 2. k -1 p is an integer.

This case follows from item 2 in Lemma 4.1.

Case 3. k -1 p ∈ (l -1, l) for some integer l ∈ 1, k -2 .
In this case, we have

u W (k-1)/p,p ≤ C u (k-1)/(pl) W l,(k-1)/l u 1-(k-1)/(pl) L ∞
(by (4.1))

≤ C u l/(k-1) W k-1,1 u 1-l/(k-1) L ∞ (k-1)/(pl) u 1-(k-1)/(pl) L ∞ (by (4.3)) ≤ C u 1/p W k-1,1 u 1-1/p L ∞ ; that is (4.2) holds.
It remains to prove (4.4). Let ε ∈ (0, s). By [18, Theorem 1.5], we have

u W s,p ≤ C u θ ε W 1,1 u 1-θ ε W ε,r , (4.8) 
where

θ ε = s -ε 1 -ε and r is defined by 1 p = θ ε + 1 -θ ε r .
By (4.1), we have

u W ε,r ≤ C u η ε L q u 1-η ε W s,p , (4.9) 
where

η ε = 1 - ε s satisfies 1 r = η ε q + 1 -η ε p .
We obtain (4.2) by combining (4.8) with (4.9). The proof of Lemma 4.2 is complete.

Corollary.

For every p ≥ 1 and k ≥ 3, there exists C = C(p, m) > 0 such that

|u| W (k-1)/p,p (S m ) ≤ C|u| 1/p W k-1,1 (S m ) u 1-1/p L ∞ (S m ) , ∀ u ∈ C ∞ (S m ). (4.10)
Proof. Apply Lemma 4.2 to u -S m u.

Remark.

In the proof of Theorem 1.2, item 2, it suffices to consider the case where p > k -1. Indeed, assume that the conclusion of Theorem 1.2 holds when p > k -1. Let u ∈ W (k-1)/p,p (S m ; S k-1 ) for some p ≤ k -1. Assume first that p > 1. Let s ∈ (0, 1). By Lemma 4.1, we have u ∈ W s,(k-1)/s (S m ; S k-1 ) and the argument leading to Corollary 4.3 yields

|u| W s,(k-1)/s (S m ) ≤ C|u| (sp)/(k-1) W (k-1)/p,p (S m ) u 1-(sp)/(k-1) L ∞ (S m )
. By Theorem 1.2, there exists some (mk + 1)-rectifiable current N in S m such that Ju = ∂N and

M(N) ≤ C|u| (k-1)/s W s,(k-1)/s (S m ) ≤ C|u| p W (k-1)/p,p (S m
) . When p = 1, Lemma 4.1 combined with the argument leading to Corollary 4.3 implies

|u| W 1,k-1 (S m ) ≤ C|u| 1/(k-1) W k-1,1 (S m ) u 1-1/(k-1) L ∞ (S m ) .
In this case, it suffices to invoke Theorem 1.2 in the space W 1,k-1 (Ω; S k-1 ), which was proved in For further use, we note the following special case of Lemma 4.1.

Lemma

. Let 1 < p 0 < p < ∞. Then we have u W 1/p,p ≤ C u p 0 /p W 1/p 0 ,p 0 u 1-p 0 /p L ∞ , ∀ u ∈ C ∞ (S m ) and |u| W 1/p,p ≤ C|u| p 0 /p W 1/p 0 ,p 0 u 1-p 0 /p L ∞ , ∀ u ∈ C ∞ (S m ).

Proof of Theorems 1.1 and 1.2

In the definition of Ju beyond the space W 1,k-1 (S m ; S k-1 ), we rely on the following quantitative version of the trace theory.

Lemma. For p

> k -1 and u ∈ W (k-1)/p,p S m ; R k , there exists a map v : S m × [0, ∞) → R k satisfying: 1. v ∈ C ∞ (S m × (0, ∞)).
2. For T > 0, we have v ∈ W k/p,p (S m × (0, T); R k ) and in addition

|v| W k/p,p (S m ×(0,T)) ≤ C T |u| W (k-1)/p,p (S m ) (5.1)
and

ˆSm |v(x, •)| p W k/p,p (0,∞) dH m (x) ≤ C|u| p W (k-1)/p,p (S m ) .
(5.2)

3. tr |S m ×{0} v = u. 4. If u ∈ C ∞ , then v ∈ C ∞ (S m × [0, ∞)) and v(•, 0) = u. 5. If |u| ≤ 1 a.e. then |v(x, t)| ≤ 1 and |dv(x, t)| ≤ C t , ∀ (x, t) ∈ S m × (0, ∞).
Finally, we may choose v such that the correspondence u → v is linear and, in addition, v does not depend on p.

Here,

|u| p W (k-1)/p,p (S m ) = ˆSm ˆSm |u(x) -u(x )| p d(x, x ) m+k-1 dH m (x)dH m (x ),
and the semi-

norm |v(x, •)| p W k/p,p (0,∞) is given by 1. ˆ∞ 0 ˆ∞ 0 |v(x, t) -v(x, t )| p |t -t | 1+k dtdt , if p > k.
2.

ˆ∞ 0 |∂ t v(x, t)| p dt, if k = p.
3.

ˆ∞ 0 ˆ∞ 0 ∂ t v(x, t) -∂ t v(x, t ) p |t -t | 1+k-p dtdt , if k -1 < p < k.
The above result is well-known to experts, but seems difficult to find in the literature. For the convenience of the reader, we present a proof of Lemma 5.1 in Section 7.

Remark.

When p = k, we recover the classical result that any map in W 1-1/k,k is the trace of a map in W 1,k . More precisely, the proof of Lemma 5.1 shows that

|dv| L k (S m ×(0,∞)) ≤ C|u| W 1-1/k,k (S m ) .
(5.

3

)
In what follows, it will be convenient to denote by u → T u the distributional Jacobian whose existence we want to establish (to be distinguished of the already existent map u → Ju). Thus the conclusion of Theorem 1.1 1 reads T u = Ju if u ∈ W 1,k-1 , and similarly Theorems 1.2 and 1.3 can be rephrased in terms of T u.

We now fix p > k -1 and u ∈ W (k-1)/p,p (S m ; S k-1 ) and proceed to defining

T u. Let Φ ∈ C ∞ R k ; B k be such that Φ(X ) = X |X | if |X | ≥ 1 2 .
(5.4)

Let v be given by Lemma 5.1 and set U := Φ•v, which is defined in S m ×[0, ∞), and whose trace on

S m × {0} is u. Clearly, U ∈ C ∞ S m × (0, ∞); B k and |U(x, t)| = 1 for every (x, t) ∈ G ,
where

G := (y, s) ∈ S m × (0, ∞); |v(y, s)| > 1 2 .
As in the proof of (1.1), we find that

U γ = 0 on G for every γ ∈ C ∞ (Λ k R k ); in particular, this holds for γ = d y.
The key estimates in the proof of Theorems 1.1 and 1.2 are given by the following lemma, reminiscent of similar results in [10, Lemma 1, Lemma 2].

Lemma. Let

γ ∈ C ∞ c (Λ k R k ). Then 1. U γ ∈ L 1 (S m × (0, ∞)) and U γ L 1 (S m ×(0,∞)) ≤ C|u| p W (k-1)/p,p (S m ) . 2. H m x; |v(x, t)| ≤ 1 2 = o t k-1 as t → 0. Proof. Since |U γ| ≤ C|dv| k , we have ˆSm ×(0,∞) |U γ| = ˆM |U γ| ≤ C ˆM |dv| k ,
where

M := (S m × (0, ∞)) \ G . For x ∈ S m , we define d(x) := inf t ∈ (0, ∞); |v(x, t)| ≤ 1 2 .
(5.5)

In particular, we have

M ⊂ {(x, t); t ≥ d(x)} and, if d(x) < ∞, then |v(x, d(x))| = 1 2 .
By the above and Lemma 5.1 5, we find that

ˆSm ×(0,∞) |U γ| ≤ C ˆSm ˆ+∞ t=d(x) |dv(x, t)| k dt dH m (x) ≤ C ˆSm ˆ+∞ t=d(x) dt t k dH m (x),
and thus

ˆSm ×(0,∞) |U γ| ≤ C ˆSm 1 d(x) k-1 dH m (x).
(5.6)

For almost every x ∈ S m and for every t > 0 such that |v(x, t)| ≤ 1 2 we have

1. |v(x, t) -u(x)| ≥ 1 2 . 2. v(x, •) ∈ W k/p,p (0, ∞) ⊂ C 0,(k-1)/p (0, ∞). 3. tr |t=0 v(x, •) = u(x).
On the other hand, by the Morrey embeddings we have

|v(x, t) -u(x)| ≤ |v(x, •)| C 0,(k-1)/p (0,t) t (k-1)/p ≤ C|v(x, •)| W k/p,p (0,t) t (k-1)/p . (5.7)
Thus, for a.e. x ∈ S m we have

1 t k-1 ≤ C|v(x, •)| p W k/p,p (0,t) if t ≥ d(x).
(5.8)

By taking t = d(x) in (5.8) and using Lemma 5.1 2, this gives

ˆSm 1 d(x) k-1 dH m (x) ≤ C ˆSm |v(x, •)| p W k/p,p (0,∞) ≤ C|u| p W (k-1)/p,p (S m ) .
(5.9) Lemma 5.3 1 is now a consequence of (5.6) and (5.9). Finally, (5.7) implies

H m x; |v(x, t)| ≤ 1 2 ≤ C ˆSm |v(x, t) -u(x)| p dH m (x) ≤ Ct k-1 |v| p W k/p,p (S m ×(0,t)) .
This implies Lemma 5.3 2.

By Lemma 5.3, the following quantity is well-defined for every

ς ∈ W 1,∞ (Λ m-k S m × [0, ∞)): 〈I u, ς〉 = (-1) m+1 ω k ˆSm ×(0,∞) (dς) ∧U d y.
(5.10)

The final step in defining T u is provided by the following lemma.

Lemma. Let

ζ ∈ W 1,∞ (Λ m-k S m ). Let i denote the canonical inclusion map i : S m → S m × [0, ∞), S m x i - → (x, 0) ∈ S m × [0, ∞). Let ς 1 , ς 2 ∈ W 1,∞ (Λ m-k (S m × [0, ∞)) satisfy i ς 1 = i ς 2 . Then 〈I u, ς 1 〉 = 〈I u, ς 2 〉.
Therefore, the map

〈T u, ζ〉 := 〈I u, ς〉, ∀ ζ ∈ W 1,∞ (Λ m-k S m ), ∀ ς ∈ W 1,∞ (Λ m-k S m ×[0, ∞)) such that i ς = ζ (5.11)
is well-defined.

Proof. Via a convenient partition of the unit, we may always assume that the forms we consider are supported in Ω or Ω×[0, ∞), where Ω is a domain of local coordinates on S m . We denote the coordinates on Ω × R by (y 1 , . . . , y m , t). If ς is an (mk)-form supported in Ω × R, then we may decompose it as ς = ς h +ς v , where ς h represents the horizontal part (which does not contain dt), the part ς v representing the remaining, vertical, part. The hypothesis i ς 1 = i ς 2 is equivalent to the fact that, restricted to S m × {0}, the horizontal parts ς h 1 and ς h 2 coincide. Therefore, the difference ς := ς 1 -ς 2 can be approximated by a sequence (η ), such that (η j ) converges uniformly to η, dη j L ∞ ≤ C, (dη j ) converges to dς a.e. on S m × (0, ∞) and η h j vanishes in a neighborhood of S m × {0}. Fix some j ≥ 1. Since, by the chain rule, we have d(U d y) = (U d 2 y) = 0 in S m × (0, ∞), and since η h j = 0 on S m × [0, ε] for small ε, we have by Stokes' formula:

j ) ⊂ C ∞ (Λ m-k S m ×[0, ∞)), supported in Ω × [0, ∞
ˆSm ×(0,∞) (dη j )∧(U d y) = ˆSm ×(ε,∞) (dη j )∧(U d y) = (-1) m-k+1 ˆSm ×(ε,∞) η j ∧d(U d y) = 0. (5.12)
We then let j → +∞ and find, by dominated convergence, that

0 = ˆSm ×(0,∞) (dς) ∧ (U d y) = 〈I u, ς 1 〉 -〈I u, ς 2 〉.
Proof of Theorem 1.1 3. When 0 < s < 1 and p = k -1 s , it follows from Lemma 5.3 1 and Lemma 5.4 that

|〈T u, ζ〉| ≤ C|u| p W s,p dζ L ∞ , ∀ ζ ∈ W 1,∞ (Λ m-k S m ).
Since we will establish later that T u = Ju when u ∈ W 1,k-1 (S m ; S k-1 ), the above is exactly the conclusion of Theorem 1.1 3 when 0 < s < 1. The case s = 1 is clear from the definition of Ju.

Proof of Theorem 1.1 2. We have to establish the following fact: for k -1 < p < ∞, the map

T : W (k-1)/p,p (S m ; S k-1 ) → (W 1,∞ (Λ m-k S m )) * , u T -→ T u is continuous. Let (u j ) ⊂ W (k-1)/p,p (S m ; S k-1
) be a sequence converging in W (k-1)/p,p to some u. For j ≥ 1, let v j , U j = Φ(v j ) and d j (x) be associated to u j as above, and similarly let v, U = Φ(v) and d(x) be associated to u.

It suffices to prove that U j d y converges to U d y in L 1 (S m × (0, ∞)). By Lemma 5.1 2, there exists K ∈ L 1 (S m ) such that up, to a subsequence, we have

|v j (x, •)| p W k/p,p (0,∞) ≤ K(x), ∀ j ≥ 1, H m a.e. x ∈ S m . (5.13)
As in the proof of Lemma 5.3, (5.13) leads to 1

d j (x) k-1 ≤ C|v j (x, •)| p W k/p,p (0,∞) ≤ CK(x). (5.14) 
Since (u j ) converges to u in L p (S m ), the proof of Lemma 5.1 implies that (dv j ) converges to dv a.e., and therefore U j d y converges to U d y a.e. By (5.14), we have [START_REF] Adams | Sobolev spaces[END_REF] .

|U j d y|(x, t) ≤ 0, if t ≤ d j (x) C 0 t -k , if t > d j (x) ≤ f (x, t) := 0, if t ≤ (CK(x)) -1/(k-1) C 0 t -k , if t > (CK(x)) -1/(k-
The function f belongs to L 1 (S m ×(0, ∞)), since K ∈ L 1 (S m ×(0, ∞)). By dominated convergence, we find that U j d y → U d y in L 1 (S m × (0, ∞)), possibly up to a subsequence. Uniqueness of the limit implies that convergence occurs for the full sequence. This completes the proof of Theorem 1.1 2.

Proof of Theorem 1.1 1. We start by noting that T u and Ju make sense for some classes of not necessarily S k-1 -valued maps. To start with, Ju is defined for

u ∈ W 1,k-1 ∩ L ∞ (S m ; R k ), and u → Ju is continuous wrt u in the following sense: if u j → u in W 1,k-1 and u j L ∞ ≤ C, then Ju j → Ju in (W 1,∞ (Λ m-k S m )) * . On the other hand, I u is defined for u ∈ W 1-1/k,k (S m ; R k ) and continuous from W 1-1/k,k (S m ; R k ) into (W 1,∞ (Λ m-k S m ×[0, ∞)) * .
This follows from the fact that by (5.3) we have

|U d y| ≤ C|dU| k ≤ C|dv| k ∈ L 1 (S m × (0, ∞)).
The key observation is the following. 

Lemma. T u is well-defined and the mapping u

→ T u is continuous from W 1-1/k,k (S m ; R k ) into (W 1,∞ (Λ m-k (S m )) * . In addition, for u ∈ W 1,k-1 ∩ L ∞ ∩ W 1-1/k,k (S m ; R k ),
〈I u, ς〉 = (-1) m+1 ω k ˆSm ×(0,∞) dς ∧U d y = (-1) m+1 ˆSm ×(0,∞) dς ∧U dω 0 = (-1) k ˆSm ×(0,∞) d(dς ∧U ω 0 ) = (-1) m-k+1 ˆSm dζ ∧ u ω 0 = 〈Ju, ζ〉.
In the last line, we have used Stokes' formula. In particular, this proves that 〈I u, ς〉 does not depend on ς, and thus T u is well-defined and T u = Ju. By a standard approximation procedure, (5.15) remains true for a general u.

Finally, the continuity of u → T u is clear.

Proof of Theorem 1.1 1 completed: the case k ≥ 3. The Gagliardo-Nirenberg embedding

W 1,k-1 ∩ L ∞ ⊂ W (k-1)/q,q , ∀ q ≥ k -1 ≥ 2 implies that W 1,k-1 ∩ W (k-1)/p,p (S m ; S k-1 ) = W 1,k-1 (S m ; S k-1 ) = W 1,k-1 ∩ W 1-1/k,k (S m ; S k-1 ), ∀ p > k -1.
(5.16)

The preceding lemma combined with (5.16) proves that the equality T u = Ju holds for u ∈ W 1,k-1 (S m ; S k-1 ).

Proof of Theorem 1.1 1 completed: the case k = 2. This follows from Lemma 5.5 and Lemma 5.6 below.

Lemma.

Let p > 1. If u ∈ W 1,1 ∩ W 1/p,p (S m ; S 1 ), then there exists a sequence

(u j ) ⊂ W 1,1 ∩ W 1/2,2 ∩ W 1/p,p (S m ; S 1 ) converging to u in W 1,1 ∩ W 1/p,p .
More generally, we may pick u j such that u j ∈ W 1,q (S m ; S 1 ), ∀ 1 < q < 2.

Proof. The result is obtained by combining the arguments in [8, Section IV] and [9, Lemma 23, Remark 5.1]. For the convenience of the reader, we sketch the proof. For a ∈ D, let π a be the projection onto S 1 with vertex at a. That is, π a (x) is the intersection with S 1 of the half-line from a to x. Consider a regularized family (u ε ), so that

u ε → u in W 1,1 ∩ W 1/p,p and u ε ∈ C ∞ (S m ; D). For a generic a ∈ D, the set u -1
ε (a) is a smooth manifold of dimension m -2 and consists of regular points of u ε . For any such a, the map v a,ε := π a (u ε ) belongs to W 1,q (S m ; S 1 ), ∀ 1 ≤ q < 2; see [9, Remark 5.1].

By [9, Lemma 23, Step 4], there exists a measurable set A ε ⊂ B(0, 1/10) ⊂ R 2 such that |A ε | > |B(0, 1/10)|/2 and for every a ε ∈ A ε we have v a ε ,ε → u in W 1/p,p (S m ; S 1 ). [START_REF] Hardt | Stable defects of minimizers of constrained variational principles[END_REF] On the other hand, we may pick a measurable set B ε ⊂ B(0, 1/10) such that |B ε | > |B(0, 1/10)|/2 and for every [START_REF] Hardt | Mappings minimizing the L p norm of the gradient[END_REF] It then suffices to let u j = v a 1/ j , j with a j ∈ A 1/ j ∩ B 1/ j .

a ε ∈ B ε we have v a ε ,ε → u in W 1,1 (S m ; S 1 ) [8, Proof of Theorem 4].
We now turn to the proof of Theorem 1.2. Let u ∈ W (k-1)/p,p (S m ; S k-1 ), and associate to u the maps v and U as above. By the coarea formula, we have ˆBk

H m-k+1 (U -1 (a)) dH k (a) = ˆSm ×(0,∞) |U d y| dH m+1 . Lemma 5.3 then implies ˆBk H m-k+1 (U -1 (a)) dH k (a) ≤ C|u| p W (k-1)/p,p (S m ) .
Hence, for almost every a ∈ B k we have H m-k+1 (U -1 (a)) < ∞ and we can find a large set of a's such that

H m-k+1 (U -1 (a)) ≤ C|u| p W (k-1)/p,p .
(5.17

)
We next establish a version of the coarea formula for differential forms.

Lemma.

For a convenient orientation of U -1 (y) and for every

∈ C 0 ∩ L ∞ (Λ m-k+1 S m × [0, ∞)) we have ˆSm ×(0,∞) ∧ (U d y) = ˆBk ˆU-1 (y)
dH k (y).

(5.18)

Proof. We first define the orientation of U -1 (y). This is done according to the following general principle. Let f be a linear map between two finite dimensional oriented vector spaces E and F. We want to define the orientation of Ker f . Consider a positively oriented basis (ε 1 , . . . , ε r ) of F.

Let G be any supplement of Ker f and let S := f |G : G → F. By convention, we say that a basis (e 1 , . . . , e l ) of Ker f is positively oriented if (e 1 , . . . , e l , S -1 ε 1 , . . . , S -1 ε r ) is a positively oriented basis of E. It is easy to see that the definition of positively oriented bases of Ker f does not depend on the choice of (ε 1 , . . . , ε r ) or G. This procedure allows us to define an orientation on U -1 (y). Indeed, if x ∈ U -1 (y) is a regular point of U, then we have T x U -1 (y) = Ker dU(x).

Let τ ∈ C ∞ (Λ m+1 S m × (0, ∞)) be the oriented unit (m + 1)-vector on S m × (0, ∞) and set

f (x) :=      (x) ∧ U d y |U d y| (x), τ(x) , if |U d y| = 0 0, otherwise .
Let y ∈ R k be a regular value of U and x ∈ U -1 (y). Let (e 1 , . . . , e m-k+1 ) be a positively oriented orthonormal basis of T x U -1 (y) that we complete to a positively oriented orthonormal basis (e 1 , . . . , e m+1 ) of T x S m × (0, ∞). By the convention detailed above, this means that

(dU(x)(e m-k+2 ), . . . , dU(x)(e m+1 ))
is a positively oriented basis of R k . In particular, det dU i (x)(e j ) j∈ m-k+2,m+1 i∈ 1,k > 0. Moreover, we have τ(x) = e 1 ∧ . . . ∧ e m+1 , while σ(x) := e 1 ∧ . . . ∧ e m+1-k is the unit (m + 1 -k)vector orienting T x U -1 (y). We write

(x) = 1≤i 1 <...<i m+1-k ≤m+1 i 1 ,...,i m+1-k (x)e * i 1 ∧ . . . ∧ e * i m+1-k .
We have

(U d y)(x) = (dU 1 ∧ . . . ∧ dU k )(x) = det dU i (x)(e j ) j∈ m-k+2,m+1 i∈ 1,k e * m-k+2 ∧ . . . ∧ e * m+1 .
This gives

(x) ∧ U d y |U d y| (x), τ(x) = 1,...,m-k+1 sgn det dU i (x)(e j ) j∈ m-k+2,m+1 i∈ 1,k = 1,...,m-k+1 = 〈 (x), σ(x)〉.
Therefore, we have f (x) = 〈 (x), σ(x)〉. By the coarea formula, we find that

ˆSm ×(0,∞) ∧ (U d y) = ˆSm ×(0,∞) f (x)J S m ×(0,∞) U dH m+1 (x) = ˆBk ˆU-1 (y) 〈 (x), σ(x)〉 dH m+1-k (x) dH k (y) = ˆBk ˆU-1 (y)
dH k (y).

We will also need the following

5.8 Lemma. Let γ ∈ C ∞ c (Λ k-1 B k ). Then for every ς ∈ C 1 ∩ W 1,∞ (Λ m-k S m × [0, ∞)) we have ˆSm ×(0,∞)
dς ∧U dγ = 0.

Proof. Let t > 0. Using the fact that γ is compactly supported in B k , we find that

U γ vanishes in the open set x ∈ S m ; |v(x, t)| > 1/2 , which is contained in the set {x ∈ S m ; |U(x, t)| = 1}.
As in the proof of (5.12), we obtain

ˆSm ×(t,∞) dς ∧U dγ = ˆSm ×{t} dς ∧U γ = ˆ{x∈S m ; |v(x,t)|≤1/2}×{t} dς ∧U γ ≤ C t k-1 H m x ∈ S m ; |v(x, t)| ≤ 1 2 .
This last quantity goes to 0 as t → 0 by Lemma 5.3 2. This implies

ˆSm ×(0,∞) dς ∧U dγ = lim t→0 ˆSm ×(t,∞) dς ∧U dγ = 0.
We continue by presenting some consequences of Lemma 5.8. Let ρ ∈ C ∞ B k be such that Lemma 7.5]. Hence, we can apply the above lemma to γ, which yields for

ˆBk ρ = ω k and ρ = 1 in a neighborhood of S k-1 . Then there exists γ ∈ C ∞ c (Λ k-1 B k ) such that dγ = (1 -ρ)d y [27,
every ς ∈ C 1 ∩ W 1,∞ (Λ m-k S m × [0, ∞)) ˆSm ×(0,∞) dς ∧U dγ = 0. (5.19)
Therefore, if we set, for every ρ as above and for ς ∈

C 1 ∩ W 1,∞ (Λ m-k S m × [0, ∞)), I(ρ) = I(ρ, u, ς) := ˆBk ρ(y) ˆU-1 (y)
dς dH k (y), then Lemma 5.7 applied to the form (1 -ρ • U)dς combined with (5.19) implies

I(1)-I(ρ) = ˆSm ×(0,∞) ((1-ρ•U)dς)∧U d y = ˆSm ×(0,∞) dς∧U ((1-ρ)d y) = ˆSm ×(0,∞)
dς∧U dγ = 0.

We have thus proved 5.9 Lemma.

For ς ∈ W 1,∞ ∩ C 1 (Λ m-k S m × [0, ∞))
, the quantity I(ρ) does not depend on the

function ρ ∈ C ∞ B k such that ˆBk ρ = ω k and ρ = 1 in a neighborhood of S k-1 .
With ς fixed, let us denote by f the map y → ˆU-1 (y)

dς. By applying Lemma 5.9 with ρ = 1 -σ, we find that, for every σ ∈ C ∞ c (B k ) such that ˆBk σ = 0, we have

ˆBk σ(y) f (y) dH k (y) = 0.
This implies that the function f is constant almost everywhere. Hence, for every ς, we have by Lemma 5.7 with = dς ˆSm ×(0,∞)

dς ∧U d y = ω k ˆU-1 (y)
dς for a.e. y ∈ B k .

(5.20)

By the above, (5.17) and the separability of the space

C 1 ∩ W 1,∞ (S m × [0, ∞))
, we obtain the following result.

5.10 Lemma. Let p > k -1 and u ∈ W (k-1)/p,p (S m ; S k-1 ). Then we can find some a ∈ B k such that

1. U -1 (a) is a smooth (m -k + 1)-submanifold of S m × (0, ∞).
2. We have

H m-k+1 (U -1 (a)) ≤ C|u| p W (k-1)/p,p .
(5.21)

3. For a.e. y ∈ B k and for every

ς ∈ C 1 ∩ W 1,∞ (Λ m-k S m × [0, ∞)) we have ˆU-1 (a) dς = ˆU-1 (y)
dς.

(5.22)

Proof of Theorem 1.2. By Remark 4.4, it suffices to establish items 1 and 2 for p > k -1 and u ∈ W (k-1)/p,p (S m ; S k-1 ). We have to find an (m-k+1)-rectifiable current N such that T u = ∂N. We start by defining such a current living in S m × (0, ∞) (this is G given by (5.23)). This construction is inspired by [22]. We next project G on S m ; the projection given by (5.25) has all the required properties. Consider a as in Lemma 5.10. Set M := U -1 (a), oriented as in the proof of Lemma 5.7, and let

〈G, 〉 := (-1) m+1 ˆM , ∀ ∈ C 0 ∩ L ∞ (Λ m-k+1 S m × [0, ∞)).
(5.23)

Then G is an (m -k + 1)-rectifiable current in S m × (0, ∞). Next, let ζ ∈ C 1 (Λ m-k S m ) and let ς ∈ C 1 ∩ W 1,∞ (Λ m-k S m × [0, ∞))
be a Lipschitz extension of ζ. By Lemma 5.7 and Lemma 5.10 item 3, we obtain

〈T u, ζ〉 = (-1) m+1 ω k ˆSm ×(0,∞) dς ∧U d y = (-1) m+1 ω k ˆBk ˆU-1 (y) dς dH k (y) = (-1) m+1 ˆU-1 (a)
dς = 〈G, dς〉 = 〈∂G, ς〉.

(5.24)

That is, as mentioned in the introduction, T u is the boundary of a smooth (m-k+1)-rectifiable current living in S m × (0, ∞).

Next, let π be the projection

π : S m × [0, ∞) → S m , S m × [0, ∞) (x, t) π -→ x ∈ S m
and set

N := π G.
(5.25)

The conclusion of Theorem 1.2 follows by combining Lemma 5.10 2 with the definition of G and with the following result. Though the above lemma essentially follows from [21, p. 149, Section 2.4], we found useful to present a compete proof clarifying some points only sketched in [21].

Proof. As it is easy to guess, we will prove that the support of N is contained in π(M ). In the line of Section 3, in the first part of the proof of Lemma 5.11 we establish the fact that π(M ) is rectifiable, and give the orientation ξ and the multiplicity function θ on π(M ). We complete the proof of the lemma by establishing (5.27).

We start by proving that π(M ) is (mk + 1)-rectifiable. Since H m-k+1 (M ) < ∞ and π is globally Lipschitz, we have

H m-k+1 (π(M )) ≤ CH m-k+1 (M ) < ∞. Let M 0 := x ∈ M ; J M π (x) = 0 .
By the area formula, we have H m-k+1 (π(M 0 )) = 0. For every x ∈ M \M 0 , there exists an open neighborhood

U x ⊂ M of x in M such that π is a C 1 embedding from U x into S m . It follows that π(U x ) is a C 1 manifold of dimension m -k + 1 in S m . There exists a countable covering of M \ M 0 with such open sets U x j , j ∈ N. This proves that π(M ) = π(M 0 ) ∪ j π(U x j ) is (m -k + 1)-rectifiable.
In order to obtain a disjoint covering, we define

A 0 := π(U x 0 ), A j := π(U x j ) \ ∪ i< j π(U x i ), ∀ j ≥ 1,
and then we have π(M \ M 0 ) = A j .

We next define an orientation ξ of π(M ); since π(M 0 ) is an H m-k+1 -null set, it suffices to define ξ H m-k+1 -a.e. in π(M \ M 0 ). Let χ ∈ C ∞ (Λ m+1-k M ) be the smooth orientation of M defined in the proof of Lemma 5.7. For every x ∈ U x j , dπ(x) maps T x M onto T π(x) π(U x j ). Then Λ m-k+1 dπ(x)(χ(x)) is an (mk + 1)-vector in T π(x) π(U x j ). The unit (mk + 1)-vector Λ m-k+1 dπ(x)(χ(x))

|Λ m-k+1 dπ(x)(χ(x))|
gives an orientation of π(U x j ). However, it may happen that for some y ∈ π(M \M 0 ), there exist two antecedents z 1 , z 2 ∈ π -1 (y) such that the corresponding unit vectors Λ m-k+1 dπ(z j )(χ(z j ))

|Λ m-k+1 dπ(z j )(χ(z j ))| , j = 1, 2, do not define the same orientation. In order to define an orientation on π(M \ M 0 ), for y ∈ A j we define the unit (mk + 1)-vector ξ(y) = Λ m-k+1 dπ(z)(χ(z))

|Λ m-k+1 dπ(z)(χ(z))| ,
where {z} = π -1 (y) ∩ U x j . Then ξ is a Borel measurable map with values into unit (mk + 1)vectors on π(M ). For further use, let us note that the Cauchy-Binet formula implies that

(Λ m-k+1 dπ(x))χ(x) = J M π (x), ∀ x ∈ M (5.28)
(where | • | denotes the Euclidean norm on the set of (mk + 1)-vectors, see (2.2)).

We next define the multiplicity function θ. By (3.1), for H m-k+1 -a.e. y ∈ π(M \ M 0 ) and for every x ∈ π -1 (y) ∩ (M \ M 0 ), there exists some ε(x) ∈ {±1} such that

ε(x)ξ( y) = Λ m-k+1 dπ(x)(χ(x)) |Λ m-k+1 dπ(x)(χ(x))| . ( 5.29) 
For such y, we let θ(y) := (-1) m+1

x∈π -1 (y)∩(M \M 0 ) ε(x). We start by noting that

|θ(y)| ≤ #[π -1 (y) ∩ (M \ M 0 )].
By the area formula, we have

ˆπ(M) #[π -1 (y) ∩ (M \ M 0 )] dH m-k+1 (y) = ˆM J M π (x) dH m-k+1 (x) ≤ CH m-k+1 (M ). (5.30)
This implies that θ is finite almost everywhere. We can write θ in an obvious way as a sum of countably many Borel maps taking their values in {-1, 0, 1} and the above inequality also shows that this sum converges almost everywhere. Hence, θ is Borel measurable as well. In particular, the triple (π(M ), ξ, θ) defines an (mk + 1)-rectifiable current. In view of (5.30), the estimate (5.26) follows if we prove that this current coincides with the current N given by (5.25).

If ν ∈ C ∞ (Λ m-k+1 S m ), then 〈(π ν)(x), χ(x)〉 = 〈ν(π(x)), Λ m+1-k dπ(x)χ(x)〉.
Since by definition we have

〈N, ν〉 = 〈G, π ν〉, ∀ ν ∈ C ∞ (Λ m-k+1 S m ),
we obtain, by combining (5.28), (5.29) and the area formula:

〈N, ω〉 = (-1) m+1 ˆM\M 0 ω(π(x)), (Λ m-k+1 dπ(x))χ(x) |(Λ m-k+1 dπ(x))χ(x)| J M π (x) dH m-k+1 (x) = (-1) m+1 ˆπ(M) ω(y), x∈π -1 (y)∩(M \M 0 ) (Λ m-k+1 dπ(x))χ(x) |(Λ m-k+1 dπ(x))χ(x)| dH m-k+1 (y) = ˆπ(M) 〈ω, ξ〉θ dH m-k+1 ;
that is, N is the current defined by the triple (π(M ), ξ, θ). Here, we rely on (5.24) and on the fact that ς = π ζ belongs to

C 1 ∩ W 1,∞ (Λ m-k S m × [0, ∞))
and satisfies (with the notations in Lemma 5.4)

i ς = ζ. (5.31)
Here is a proof of (5.31). Since ς = π ζ, we have

i ς = i π ζ = (π • i) ζ.
It then suffices to note that π • i = id |S m , and thus (π

• i) ζ = ζ.
This completes the proof Lemma 5.11 and thus of Theorem 1.2.

5.12

Remark. An inspection of the proofs in this section shows that Theorems 1.1 and 1.2 still hold in bounded open subsets Ω of R m . It suffices to replace integration over S m by integration over Ω.

Remark.

Let p = k -1 and s = 1. For these values of s and p, one of the results in [2] asserts that Ju = ∂N, with M(N) ≤ C p |u| p W s,p . In addition, the proof there shows that we may build N from the rectifiable set N = u -1 (y) for an appropriate y ∈ S k-1 . [START_REF] Jerrard | Functions of bounded higher variation[END_REF] By the Gagliardo-Nirenberg inequalities, the same holds when p ∈ [1, k -1), with s = k -1 p . We do not know whether it is possible to take N as above when p > k -1 and s = k -1 p .

The case p = 1

In this case, we adapt the strategy of Alberti, Baldo and Orlandi [2]. Their approach consists in combining the dipole construction of Brezis, Coron and Lieb [13] with Federer's theorem on the approximation of integral currents with polyhedral chains [19, Theorem 4.2.20]. We first prove Theorem 1.3 when S m is replaced by a bounded open subset Ω of R m . By Remark 5.12, Ju makes sense for maps defined in Ω.

In Lemma 6.1 below, we describe the basic tool in the proof of Theorem 1.3: the dipole construction. This construction was first introduced in [13] and was subsequently used in [2] that we closely follow here. Since we need a dipole which is smooth (and not merely Lipschitz continuous) outside its singular set, we present, for the convenience of the reader, a detailed proof.

We say that a set E ⊂ R m is an oriented (mk + 1)-disc when E is an orientation preserving isometric linear embedding of the unit ball B m-k+1 × {0 k-1 } ⊂ R m , endowed with the canonical orientation. We will often write |E| = H m-k+1 (E).

6.1 Lemma. Let E ⊂ R m be an oriented (mk + 1)-disc with center x and radius r. Let σ > 0. Then there exists u

∈ W k-1,1 loc (R m ; S k-1 ) ∩ C ∞ (R m \ ∂E) such that 1. Ju = ∂E.

There exists Y

∈ S k-1 such that u = Y in R m \ B(x, r) and |{y ∈ R m : u(y) = Y }| ≤ σ. ( 6 

.1)

3. There exists C σ > 0 such that

D l u(y) ≤ C σ dist(y, ∂E) l , ∀ y ∈ R m \ ∂E, ∀ l ∈ N. ( 6 

.2)

4. There exists C > 0 such that

D l u L 1 (R m ) ≤ C|E| (m-l)/(m-k+1) , ∀ l ∈ 1, k -1 . (6.3)
Here, ∂E is the boundary of E considered as a manifold with boundary.

Proof. We start with a remark in the spirit of [2, Section 7.2]: if ϕ : R m → R m is a smooth diffeomorphism, and if

u ∈ W 1,k-1 ∩L ∞ , then ϕ Ju = J ϕ u . Indeed, for every ζ ∈ C ∞ c (Λ m-k R m ) we have ˆRm d(ϕ ζ) ∧ u ω 0 = ˆRm ϕ dζ ∧ ϕ u ω 0 = ˆRm dζ ∧ ϕ u ω 0 , which is equivalent to ϕ Ju, ζ = J ϕ u , ζ and implies that ϕ Ju = J ϕ u .
By taking ϕ an affine homothety, we see that in the proof of Lemma 6.1 we may assume that

E = B m-k+1 × {0 k-1 } ⊂ R m .
Let P : B k-1 → S k-1 be a smooth map of degree (-1) m-k+1 such that P is constant near S k-2 = ∂B k-1 . For instance, with | | standing for the Euclidean norm and µ ∈ (0, 1/10) a fixed parameter, a suitable P is given by

P(x) := f (sin π|x|) x |x| , (-1) m h(|x|) cos(π|x|) ,
where f : R + → R + is a smooth nondecreasing function which vanishes on (0, µ) and is equal to the identity on (2µ, ∞) and for r ∈ [0, 1]

h(r) :=        1 -( f (sin πr)) 2 cos 2 πr 1/2 , if r = 1 2 1, if r = 1 2
.

Note that when |x| is close to 0, the first coordinate of P is 0, while the second one is equal to (-1) m . Hence P is smooth despite the singularity of x → |x| at the origin. We claim that deg P = (-1) m-k+1 . Indeed, let x = (t, 0, . . . , 0) ∈ B k-1 be such that sin πt > 2µ. Then P -1 (P(x)) = {x}, and thus deg P is given by the orientation of d x P. Since the orientation of S k-1 is given by ω 0 and the one of R k-1 by dx 1 ∧ . . . ∧ dx k-1 , and in addition we have (with x as above)

P ω 0 (x) = (-1) m-k+1 (sin πt) k-2 kω k t k-2 πdx 1 ∧ . . . ∧ dx k-1 ,
we find that deg P = (-1) m-k+1 , as claimed.

When |x| is close to 1, the first coordinate of P vanishes and the second one is equal to (-1) m+1 . Thus, P is constant on a neighborhood of S k-2 , where it takes the value Y := 0 k-1 , (-1) m+1 . Let η > 0 be such that

P(x) = Y when |x| > 1 -η.
Let δ ∈ (0, 1/2) to be specified later and let q : [0, 1] → [0, δ] be a smooth nonincreasing function such that q(t)

= δ on [0, 1 -2δ], q(t) = 1 -t on [1 -δ/2, 1], q(t) ≤ 1 -t on [0, 1]
. Moreover, we require that the derivatives of q (l) can be bounded independently of δ.

For every x ∈ R m , we write

x = (x , x ) ∈ R m-k+1 × R k-1 . We define u(x) :=      P x q(|x |) , if |x | < 1 and |x | < q(|x |) Y , otherwise .
The map u is smooth in

R m \ ∂E = R m \ S m-k × {0 k-1 }
and we have u = Y in the open set

V := {(x , x ); |x | < 1, |x | > (1 -η)q(|x |)} ∪ {(x , x ); |x | > 1}, (6.4) which is a neighborhood of S m-1 \ S m-k × {0 k-1 } . Moreover, we have |{x; u(x) = Y }| ≤ |{x = (x , x ); |x | < q(|x |), |x | < 1}| ≤ C 0 δ k-1 .
We choose δ > 0 such that C 0 δ k-1 < σ. This implies (6.1). Next, for every l ≥ 0 there exists C l > 0 independent of δ such that

D l u(x) ≤ C l q(|x |) l , ∀ x ∉ S m-k × {0 k-1 }. (6.5)
In view of the definition of q, this implies the item 3 and also the fact that

u ∈ W k-1,1 loc (R m ; S k-1
). As a consequence of (6.5), we have for every l ∈ 1, k -

1 ˆRm D l u(x) dx ≤ C l ˆBm-k+1 ˆ|x |<q(|x |) dx dx q(|x |) l ≤ C l δ k-l-1 , (6.6)
which implies item 4.

It remains to prove item 1 which follows from the following explicit calculation. [START_REF] Jerrard | The Jacobian and the Ginzburg-Landau energy[END_REF] We introduce, for ε ∈ (0, δ/2), the open set

T(ε) := (x , x ) ∈ R m-k+1 × R k-1 ; |1 -|x || < ε, |x | < 2ε . Let ζ ∈ C ∞ c (Λ m-k R m )
. By dominated convergence, we have

〈Ju, ζ〉 = (-1) m-k+1 lim ε→0 ˆRm \T(ε) dζ ∧ u ω 0 .
In R m \ T(ε), u is smooth and S k-1 -valued, so that d(u ω 0 ) = 0. Stokes' formula then implies

〈Ju, ζ〉 = (-1) m-k lim ε→0 ˆ∂T(ε) ζ ∧ u ω 0 . (6.7)
Since u is constant in the open set V given by (6.4), we have

ˆ∂T(ε) ζ ∧ u ω 0 = ˆ∂T(ε)\V ζ ∧ u ω 0 . (6.8)
Let, in the remaining part of the proof, B l (x, r) denote the closed ball B(x, r) ⊂ R l and set B l r = B l (0, r); we use similar notation for the open balls. Observe that

∂T(ε) \ V ⊂ ((1 -ε)x , x ); x ∈ S m-k , x ∈ B k-1 2ε (6.9)
and that, on ∂T(ε) \ V , u depends only on x . Using (6.5) and the properties of q, we find that

u ω 0 L ∞ (∂T(ε)\V ) ≤ C/ε k-1 . (6.10)
Recall that, if M ⊂ U (with M manifold and U open set), then we denote by ζ |M the pullback i ζ of a form on U; here, i : M → U is the inclusion. With this notation and using the fact that, on ∂T(ε) \ V , u depends only on x , for every ((1 -ε)x , x ) as in (6.9) we have

(ζ ∧ u ω 0 )| ∂T(ε)\V ((1 -ε)x , x ) = ζ |(1-ε)S m-k ×{x } ∧ u ω 0 |{(1-ε)x }×B k-1 2ε ((1 -ε)x , x ). Assume for a moment that ζ |S m-k ×{0} = 0. By combining the estimate H m-k (∂T(ε) \ V ) ≤ Cε k-1
with (6.10), we find that

ˆ∂T(ε)\V ζ ∧ u ω 0 ≤ C max |x |=1 |x |≤2ε ζ |(1-ε)S m-k ×{x } (x , x ) , which implies lim ε→0 ˆ∂T(ε)\V ζ ∧ u ω 0 = 0. (6.11) We now turn to a general ζ ∈ C ∞ c (Λ m-k R m ). If p is the projection p : R m-k+1 \ {0} × R k-1 → S m-k , R m-k+1 \ {0} × R k-1 x = (x , x ) p -→ x |x | ∈ S m-k , then we have ζ -p ζ |S m-k ×{0 k-1 } |S m-k ×{0 k-1 } = 0. (6.12)
In view of (6.11) and (6.12), we have

lim ε→0 ˆ∂T(ε)\V ζ ∧ u ω 0 - ˆ∂T(ε)\V p ζ |S m-k ×{0 k-1 } ∧ u ω 0 = 0.
From the above, we may thus assume that ζ is of the form

p ζ with ζ ∈ C ∞ (Λ m-k S m-k ), which we henceforth do. Let us introduce the diffeomorphism ψ : (1 -ε)S m-k × R k-1 → S m-k × R k-1 , (1 -ε)S m-k × R k-1 x = (x , x ) ψ -→ x |x | , x ∈ S m-k × R k-1 ,
and the projection

π : S m-k × R k-1 → R k-1 , S m-k × R k-1 x = (x , x ) π -→ x ∈ R k-1 .
Observe that the orientation of (1 -ε)S m-k × {0 k-1 } is defined by the orientation of ∂T(ε), while S m-k is endowed with its standard orientation. Hence, the maps p and π preserve the orientation whereas ψ does not.

Let v(x

) = P x ε . Observe that ˆRk-1 v ω 0 = (-1) m-k+1 . (6.13) Moreover, we have ψ u = π v and ψ ζ = p ζ |S m-k ×R k-1 .
By (6.13), the fact that u ω 0 = 0 in V and Fubini's theorem for differential forms [27, Lemma 6.32] we have

ˆ∂T(ε)\V ζ ∧ u ω 0 = ˆ[(1-ε)S m-k ]×R k-1 ζ ∧ u ω 0 = - ˆSm-k ×R k-1 ψ ζ ∧ u ω 0 = - ˆSm-k ×R k-1 p ζ ∧ π v ω 0 = - ˆSm-k ˆRk-1 v ω 0 ζ = (-1) m-k ˆSm-k ×{0 k-1 } ζ.
In view of (6.7) and (6.8), this completes the proof of Lemma 6.1.

In order to proceed with the proof of Theorem 1.3, let us recall the following quantitative version of Federer's approximation theorem, devised by Alberti, Baldo and Orlandi [2, Corollary 7.13].

Lemma.

Let R be an (mk + 1)-rectifiable current in an open set Ω ⊂ R m , and ρ a function in Ω which is positive H m-k+1 -a.e. Then there exist finitely many oriented (mk + 1)-discs E j with centers x j and radii r j < ρ(x j ) and an (mk + 1)-rectifiable current T such that 1. ∂R = ∂E j + ∂T.

2.

|E j | ≤ 1 2 m-k M(R).

M(T)

≤ 1 - 1 2 m-k+2 M(R).
4. The balls B m (x j , 2r j ) are pairwise disjoint and contained in Ω.

Corollary.

Let N be an (m-k+1)-rectifiable current in Ω ⊂ R m . Then there exists a sequence of finite families of oriented (mk + 1)-discs (E j,l ) j∈ 1,N(l) , of centers x j,l and radii r j,l , such that:

1. ∂N = l j ∂E j,l . 2. j |E j,l | ≤ 1 2 m-k 1 - 1 2 m-k+2 l-1 M(N), ∀ l ≥ 1. In particular, l j |E j,l | ≤ 4M(N).
3. For a fixed l, the balls B m (x j,l , 2r j,l ) are pairwise disjoint and contained in Ω.

Proof. We first apply Lemma 6.2 with R = N. This yields a family (E j,1 ) and a reminder T 1 . We next apply the lemma with R = T 1 and obtain a family (E j,2 ), and so on. It is straightforward that the families obtained by this procedure have all the required properties.

We obtain our next result by combining Lemma 6.1 and Lemma 6.2 and by adapting the proof of [2, Theorem 5.6].

Lemma. Let R be an

(m -k + 1)-rectifiable current in a bounded open set Ω ⊂ R m . Let u ∈ W k-1,1 (Ω; S k-1 ) be smooth in the complement of a closed set S ⊂ Ω such that H m-k (S) < ∞.
Then there exist an (mk + 1)-rectifiable current T in Ω and a map v ∈ W k-1,1 (Ω; S k-1 ), smooth in the complement of a closed set S ⊂ Ω such that H m-k (S ) < ∞, satisfying:

2. D l u -D l v L 1 (Ω) ≤ CM(R), ∀ l ∈ 0, k -1 . 3. M(T) ≤ 1 - 1 2 m-k+2 M(R).
Proof. For the convenience of the reader, we explain how the argument in [2, Proof of Theorem 5.6] adapts to our case. We divide the proof into several steps.

Step 1. Choice of ρ.

Since S is closed, for every x ∈ Ω \ S we can find r = r(x) > 0 such that B m (x, r) ⊂ Ω \ S. Since u is smooth on the complement of S, D l u is bounded in B m (x, r) for every integer l. We let ρ : Ω → [0, +∞) be defined by ρ(x) = 0 for x ∈ S and by

0 < ρ(x) ≤ min    r 2 , 1 ω m-k+1 1/(m-k+1) , min 1≤l≤k-1 1 8 D l u 1/l L ∞ (B m (x,r))    , ∀ x ∈ Ω \ S. (6.14)
We next apply Lemma 6.2 with the above ρ and obtain finitely many discs E j , with centers x j ∈ Ω \ S and radii r j < ρ(x j ), and an (mk + 1)-rectifiable current T in Ω such that:

∂R = ∂E j + ∂T, ( 6.15) 
j |E j | ≤ 1 2 m-k M(R), (6.16 
)

M(T) ≤ 1 - 1 2 m-k+2 M(R), (6.17) 
and the balls B m (x j , 2r j ) are pairwise disjoint and contained in Ω.

Step 2. Construction of v.

For every j, we construct a dipole u j associated to E j as in Lemma 6.1 with the parameter σ = 1. Thus Ju j = ∂E j , there exists Y j ∈ S k-1 such that u j = Y j in R m \ B m (x j , r j ), and

D l u j (x) ≤ C l dist(x, ∂E j ) l , ∀x ∈ R m \ ∂E j , ∀ l ∈ N. (6.18) 
Note that the choice of Y j is not relevant in the above construction. Therefore, we may assume that Y j = u(y j ) for some y j ∈ B m (x j , 2r j ). Let θ ∈ C ∞ c B m 2 be such that 0 ≤ θ ≤ 1 and θ ≡ 1 in B m 1 . Then we define θ j (x) := θ xx j r j and

W := θ j u j + (1 -θ j )u in B m (x j , 2r j ) u in Ω \ ∪ j B m (x j , 2r j ) .
We have

u j -u L ∞ (B m (x j ,2r j )\B m (x j ,r j )) ≤ 4r j Du L ∞ (B m (x j ,2r j )) < 1 2 . ( 6.19) 
Here, we have used the fact that u j ≡ Y j in B m (x j , 2r j ) \ B m (x j , r j ) and that u(y j ) = Y j for some y j ∈ B m (x j , 2r j ), and also the inequality

r j < 1 8 Du L ∞ (B m (x j ,2r j ))
.

In view of (6.19) and of the properties of θ, we have |W| ≥ 1/2 and thus we may define the

S k-1 -valued map v := W |W| .
Step 3. The map v has all the required properties.

On the one hand, v agrees with u j in B m (x j , r j ); on the other hand, we have u ∈ W k-1,1 (Ω; S k-1 ). Therefore, the map v belongs to W k-1,1 (Ω; S k-1 ). Next, v is smooth outside S := S ∪ ∪ j ∂E j . Moreover, since the Jacobian of u is supported in S, and since S ∩ ∪ j ∂E j = , we have

Jv = Ju + j Ju j = Ju + ∂E j . (6.20) 
The first equality in (6.20) is easily obtained using (1.7) and a partition of the unit. We obtain items 1 and 3 by combining (6.15), (6.17) and (6.20). It remains to prove item 2. For l ∈ 0, k -1 we have

D l u -D l v L 1 (Ω) = j D l u -D l v L 1 (B m (x j ,2r j )) ≤ j D l u L 1 (B m (x j ,2r j )) + D l v L 1 (B m (x j ,2r j ))
.

When l = 0, we have |v(x)| = |u(x)| = 1 a.e., and therefore

u -v L 1 (Ω) ≤ C j r m j ≤ C j |E j | m/(m-k+1) ≤ C |E j | ≤ CM(R). (6.21) 
Here, we have used (6.16) and the fact that (by (6.14)) we have

|E j | ≤ 1.
We now assume that 1 ≤ l ≤ k -1. On the one hand, we have

D l u L 1 (B m (x j ,2r j )) ≤ Cr m j D l u L ∞ (B m (x j ,2r j )) ≤ Cr m-l j ≤ C|E j | (m-l)/(m-k+1) ,
by definition of ρ. As above, we find that D l u L 1 (B m (x j ,2r j ))

≤ C|E j |, and thus

j D l u L 1 (B m (x j ,2r j )) ≤ CM(R). (6.22) 
On the other hand, by the Faà-Di Bruno formula,

D l v(x) ≤ C l s=1 t 1 +...+t s =l D t 1 W(x) . . . D t s W(x) . (6.23) 
For every t ∈ 1, l and x ∈ B m (x j , 2r j ), the Leibniz formula implies

D t W(x) ≤ D t u(x) + D t [θ j (u j -u)](x) ≤ D t u(x) +C t h=0 D t-h θ j (x) D h u j (x) + D h u(x) .
In view of the definitions of θ j and ρ we obtain, via (6.18):

D t W(x) ≤ C t h=0 1 r t-h j 1 r h j + D h u j (x) ≤ C t h=0 1 r t-h j 1 dist(x, ∂E j ) h .
Inserting this inequality into (6.23), we obtain

D l v(x) ≤ C l s=1 t 1 +...+t s =l 0≤h p ≤t p ∀ p∈ 1,s 1 r l-h 1 -...-h s j 1 dist(x, ∂E j ) h 1 +...+h s , ∀ x ∈ B m (x j , 2r j ).
By scaling, we easily find that

ˆBm (x j ,2r j ) dx dist(x, ∂E j ) h 1 +...+h s ≤ Cr m-h 1 -...-h s j
, and thus

ˆBm (x j ,2r j ) D l v(x) dx ≤ Cr m-l j ≤ C|E j | (m-l)/(m-k+1) ≤ C|E j |.
Finally, with the help of (6.16) we have proved that

D l u -D l v L 1 (Ω) ≤ C j |E j | ≤ CM(R). (6.24) 
Item 2 follows by combining (6.21) and (6.24). This completes the proof of Lemma 6.4.

We next note the following identity: [START_REF] Escobedo | Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions[END_REF] if we let

h r (x) = rx, v r (x) = v(rx) = h r v(x), ∀ x ∈ S m , r ∈ 1 2 , 3 2 , then dα ∧ v ω 0 (rx) = (-1) m-k+1 ρ(r)dr ∧ d ζ ∧ v ω 0 |S m r (rx). (6.29) Moreover, ˆSm r d ζ ∧ v ω 0 = ˆSm h r (d ζ ∧ v ω 0 ) = ˆSm dζ ∧ v r ω 0 . (6.30) 
By (6.28), (6.29) and the Fubini theorem for forms, we have

〈N, dζ〉 = (-1) m-k+1 ˆ3/2 1/2 ρ(r) ˆSm dζ ∧ (v r ) ω 0 dr. (6.31) 
The left-hand side of (6.31) does not depend on ρ. This proves that the function

(1/2, 3/2) r → ˆSm dζ ∧ (v r ) ω 0 is constant a.e.
On the other hand, for a.e. r ∈ (1/2, 3/2), v(r •) belongs to W k-1,1 (S m ; S k-1 ), and in addition we may find a positive measure subset A ⊂ (1/2, 3/2) such that |v r | W k-1,1 (S m ) ≤ CM(N) for every r ∈ A. By the above and the separability of

C 1 (Λ m-k S m ), one can find r ∈ A such that u := v(r •) satisfy (-1) m-k+1 ˆSm dζ ∧ (u ω 0 ) = 〈N, dζ〉 , ∀ ζ ∈ C ∞ (Λ m-k S m ).
This u has all the required properties. Proof. Let (M , ξ, θ) be the triple defining N. Define M = {rx; x ∈ M , 1/2 < r < 3/2}. Then clearly M is an l-rectifiable part of Ω, and for H l-1 -a.e. x ∈ M and for every r ∈ (1/2, 3/2)

T rx M is spanned by the orthogonal spaces T x M and Rx. (

We also set, with r and x as above, ξ(rx

) = ξ(x), θ(rx) = θ(x) and X (rx) = x |x| .
With this notation, we have for ∈ C ∞ c (Λ l Ω):

〈K, 〉 = ˆ3/2 1/2 r l-1 ˆM 〈 ξ(rx), (rx)(•, x)〉θ(x) dH l-1 (x)dr = ˆ M ξ ∧ X , θ dH l .
In view of (6.32), the l-current K is given by the triple M , ξ ∧ X , θ , and we also have M(K) ∼ M(N).

The case k = 2: geometrical approach

Given an (m-1)-rectifiable current N in S m , we have to construct a map u ∈ ∩ p≥1 W 1/p,p (S m ; S 1 ) such that Ju = ∂N and

|u| p W 1/p,p ≤ C p M(N), ∀ p ≥ 1. (6.33) 
This has to hold for every p ≥ 1. In view of Lemma 4.5, if u ∈ W 1/p,p (S m ; S 1 ) for some p > 1 and if (6.33) holds for this p, then for every q > p we have u ∈ W 1/q,q (S m ; S 1 ) and (6.33) holds. Therefore, it suffices to fix some p 1 ∈ (1, 2) and to construct u such that u ∈ ∩ 1≤p≤p 1 W 1/p,p (S m ; S 1 ) and

|u| p W 1/p,p ≤ C p M(N), ∀ p ∈ [1, p 1 ]. (6.34) 
We start by establishing the appropriate variant of Lemma 6.1.

Lemma

. Let E ⊂ R m be an oriented (m -1)-disc with center x and radius r. Let σ > 0. Then there exists u : R m → S 1 such that:

1. u -1 ∈ ∩ p≥1 W 1/p,p (R m ) ∩ C ∞ (R m \ ∂E).
2. Ju = ∂E.

3. u = 1 in R m \ B(x, r) and |{y ∈ R m : u(y) = 1}| ≤ σ. ( 6.35) 
4. We have

|u| p W 1/p,p ≤ C p |E|, ∀ p ≥ 1. (6.36) 
Proof. In view of Lemma 6.1 and of its proof, it suffices to prove that the map u constructed in that lemma (with Y = 1) satisfies item 4 when p > 1. By scaling, we may assume that the diameter of E is 2, and thus u -1 is supported in B(x, 1). Therefore, for q ≥ 1 we have u -1 W 1,q ≤ C q ∇u L q . (6.37)

Fix p > 1 and consider q ∈ (1, min{p, 2}). Define r ∈ (q, ∞) by the formula

p -1 r + 1 q = 1. (6.38) 
By Lemma 4.1 3 combined with (6.37), we have

|u| p W 1/p,p ≤ C u -1 W 1,q u -1 p-1 L r ≤ CC q ∇u L q u -1 p-1 L r . (6.39) Item 3 implies that u -1 L r ≤ Cσ 1/r . (6.40)
On the other hand, estimate (6.5) with l = 1 combined with the fact that q < 2 leads to [START_REF] Mironescu | S 1 -valued Sobolev mappings[END_REF] ∇u q L q ≤ Cσ 1-q . (6.41)

We obtain item 4 by combining (6.38)-(6.41).

We next state and prove the remaining technical ingredients required to glue dipoles by keeping control of the W 1/p,p norm.

6.8 Lemma. Let u, v : R m → S 1 be such that u -1, v -1 ∈ W 1,1 . Then J(uv) = Ju + Jv. [START_REF] Mironescu | S 1 -valued Sobolev mappings[END_REF] The argument is the same as the one used in the proof of (6.6).

Proof. This follows by combining the definition (1.7) with the identity (uv) ω 0 = u ω 0 + v ω 0 .

6.9 Lemma. Let u, v : R m → S 1 be such that u -1, v -1 ∈ W 1,1 ∩W 1/p,p (R m ) for some p > 1. Then

1. |uv -u| W 1,1 ≤ |v| W 1,1 + 2|u| W 1,1 ([v =1]) . 2. |uv -u| W 1/p,p ≤ |v| W 1/p,p + 2 v(x) =1 |u(x) -u(y)| p |x -y| m+1 dxd y 1/p . Proof. Item 1 follows from |∇(uv -u)| ≤ |∇v| + |v -1||∇u| ≤ |∇v| + 21 [v =1] |∇u|.
Item 2 is a consequence of

|(u(x)v(x) -u(x)) -(u(y)v(y) -u(y))| = |u(y)(v(x) -v(y)) + (u(x) -u(y))(v(x) -1)| ≤ |v(x) -v(y)| + |v(x) -1||u(x) -u(y)| ≤ |v(x) -v(y)| + 21 [v(x) =1] |u(x) -u(y)|.
6.10 Lemma. Let 1 < q < 2 and u : R m → S 1 be such that u -1 ∈ W 1,q (R m ). Consider the L qmodulus of continuity of ∇u:

ω(δ) := sup ∇u L q (A) ; A ⊂ R m , |A| ≤ δ .
Then there are constants C p , 1 < p ≤ q, independent of u, such that

I p (A) := x∈A |u(x) -u(y)| p |x -y| m+1 dxd y ≤ C p |A| + [ω(|A|)] p |A| (q-p)/q , ∀ A ⊂ R m . (6.42)
In particular, given ε > 0 there exists some δ > 0 such that, if |A| ≤ δ, then I p (A)

≤ C p ε, ∀ p ∈ (1, q].
Proof. By a standard approximation argument, we may assume u smooth and bounded by 1 (but not necessarily circle-valued). We split I p (A) = J p (A) + K p (A), where (6.44)

We obtain (6.42) by combining (6.43) with (6.44).

6.11 Lemma. Let 1 < q < 2. Consider a finite collection (E j ) of oriented (m -1)-discs of centers x j and radii r j in R m , such that the balls B m (x j , 2r j ) are pairwise disjoint. Let u : R m → S 1 be such that u -1 ∈ W 1,q (R m ). Let ε > 0. Then there exists a map v : R m → S 1 such that:

1. v -1 ∈ W 1,r (R m ), ∀ r ∈ [1, 2).
2. Jv = ∂E j .

|v|

p W 1/p,p ≤ C p |E j |, ∀ p ∈ [1, 2]. 4. |uv -u| W 1/p,p ≤ |v| W 1/p,p + C p ε 1/p , ∀ p ∈ [1, q].
Proof. Associate to each j and σ > 0 a map v j,σ as in Lemma 6.7. We will take v = v j,σ for a convenient σ. Note that, by the proof of Lemma 6.7, v satisfies item 1. On the other hand, item 2 follows by combining Lemma 6.7 2 with Lemma 6.8.

We next turn to 3. Let A j,σ ⊂ B(x j , r j ) denote the set of measure ≤ σ in which v j,σ = 1. Set 

w p + j A j,σ ×(∪ k = j B k ) w p + j (B j \A j,σ )×(∪ k = j A k,σ ) w p + C×(∪ j A j,σ )
w p leads to the estimate

|v| p W 1/p,p ≤ j |v j,σ | p W 1/p,p + 2 p+1 j A j,σ ×(C∪∪ k = j B k ) f L j,σ
.

We obtain item 3 via Lemma 6.7 4 combined with the fact that L j,σ → 0 as σ → 0. Finally, item 4 with p > 1 follows from Lemma 6.10 combined with Lemma 6.9 2 and with the fact that the set [v = 1] can be chosen arbitrarily small. The case p = 1 follows immediately from Lemma 6.9 1.

First proof of Theorem 1.3 in R m for k = 2. As explained at the beginning of this section, we fix p 1 ∈ (1, 2). Consider the oriented (m -1)-discs E j,l as in Corollary 6.3. Let u 0 ≡ 1. By Lemma 6.11, for every sequence (ε l ) of positive numbers we may construct inductively maps u l such that u l - [START_REF] Adams | Sobolev spaces[END_REF] . (6.45) Using Corollary 6.3 2 and choosing ε l = 2 -l M(N), we find that the product j u j converges in Let v r = v(r•), 1/2 < r < 3/2. We have the following inequality:30 

1 ∈ W 1,r (R m ), ∀ 1 ≤ r < 2, Ju l = j ∂E j,l , |u l | p W 1/p,p ≤ C p j |E j,l |, ∀ p ∈ [1, 2], and |u 0 . . . u l -u 0 . . . u l-1 | W 1/p,p ≤ |u l | W 1/p,p + C p ε 1/p l , ∀ p ∈ [1, p 1 ]. Moreover, u 0 . . . u l -1 p L p (R m ) ≤ C l j |E j,l | m/(m-1) ≤ C( l j |E j,l |) m/(m-
ˆ3/2 [START_REF] Molnar | Prescribed singularities with weights[END_REF] there exists some r such that u := v r satisfies:

1. u ∈ ∩ n≥0 W 1/p n ,p n (S m ; S 1 ).

2. Ju = ∂N.

|u|

p n W 1/pn ,pn ≤ K n M(N), ∀ n ∈ N. By combining item 3 with Lemma 4.5, we find that u has all the properties required by Theorem 1.3.

The case k = 2: analytical approach

As explained in the previous section, it suffices to establish Theorem 1.3 in a bounded domain Ω in an Euclidean space. The case of maps defined in S m follows from this special case. Let Ω ⊂ R m be smooth bounded. We consider a slightly larger smooth bounded open set, U, whose role is to enable the definition of a convenient class of almost smooth maps. Let u ∈ W 1,1 (Ω; S 1 ). By reflections across ∂Ω, we may extend u to U, with norm control. Using, in U, the density result of Bethuel and Zheng [8, proof of Theorem 1], we obtain the following: the class

R = u ∈ C ∞ (Ω \ Σ(u)) ∩ W 1,1 (Ω; S 1 ); D l u(x) ≤ C l (u) [δ u (x)] l , ∀ l ∈ N is dense in W 1,1 (Ω).
Here, Σ(u) is a smooth (m -2)-submanifold of U, and δ u denotes the distance to Σ(u).

It will be convenient to consider the more general class R, defined as R, except that we allow Σ(u) to be a finite union of (m -2)-submanifolds of U. It is clear that R is an algebra; in particular, the product of two maps in R belongs to R. Using the density of the class R and a straightforward Cauchy sequences argument, we obtain the following result.

6.12 Lemma. Let u ∈ W 1,1 (Ω; S 1 ). Then there exists a sequence (v j ) j≥0 ⊂ R such that:

1. v 1 . . . v j → u in W 1,1 as j → ∞. 2. ∇v j L 1 ≤ 2 -j ∇u L 1 , ∀ j ≥ 0.
By the above, we have Ju = Jv j , the series being convergent in (W 1,∞ (Λ m-2 Ω)) * . We may now explain our strategy for proving Theorem 1.3. Let N be a rectifiable (m -1)-current in Ω. By [2, Theorem 5.6], we may find some u ∈ W 1,1 (Ω; S 1 ) such that Ju = ∂N and ∇u L 1 ≤ CM(N). Now comes the main idea (Lemma 6.15 below): we replace v j by some w j such that Jw j = Jv j and such that the product j w j converges in W 1/p,p for every p ≥ 1, with norm control. Note the difference with Lemma 6.12 2, which provides control only for the W 1,1 norm. Once Lemma 6.15 is established, we prove that the map w = j w j satisfies Jw = ∂N and all the required estimates.

We now proceed to the proofs. We start by recalling the following result [2, Corollary 3.9].

6.13 Lemma. Let ϕ : S 1 → S 1 be Lipschitz. Let u ∈ W 1,1 (Ω; S 1 ). Then J(ϕ • u) = deg ϕ Ju.

For ε ∈ (0, 2π) and θ ∈ R, we let

ϕ ε,θ : S 1 → S 1 , ϕ ε,θ e ıψ = e 2ıπ(ψ-θ)/ε , if ψ ∈ [θ, θ + ε] 1, if ψ ∈ [θ + ε, θ + 2π] .
We collect some straightforward properties of ϕ ε,θ .

6.14 Lemma. We have:

1. ϕ ε,θ is Lipschitz of constant 2π/ε and of degree 1. A word about the conclusion of Lemma 6.15. Unlike the case k ≥ 3, one cannot rely on the Gagliardo-Nirenberg inequalities. Indeed, the inclusion W 1,1 ∩ L ∞ ⊂ W 1/p,p is wrong for every p > 1. [START_REF] Morgan | Geometric measure theory[END_REF] Lemma 6.15 essentially asserts the following unexpected result: let v : Ω → S 1 be slightly better then W 1,1 . Then we may rearrange the values of v (that is, consider w = ϕ(v), with ϕ a smooth homeomorphism of S 1 into itself) such that the new map w is controlled in W 1/p,p for every p > 1, with a control depending only on p and ∇v L 1 , but not on higher order norms of v. [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] By Lemma 6.13 and Lemma 6.14, we have Jw = Jv. Though we state and prove Lemma 6.15 for circle-valued maps, it will be transparent from the proof that the target could be any sphere.

If z

1 , z 2 ∈ S 1 and p ∈ [1, ∞), then ˆ2π 0 |ϕ ε,θ (z 1 ) -ϕ ε,θ (z 2 )| p dθ ≤ C p min ε, |z 1 -z 2 | p ε p-1 . ( 6 
Proof. Let ε ∈ (0, 2π) and w ε,θ := ϕ ε,θ •v. We will establish, for sufficiently small ε, the following estimates:

ˆ2π 0 |{w ε,θ = 1}| dθ = ε|Ω|. (6.52) ˆ2π 0 |w ε,θ | p W 1/p,p dθ ≤ K p C(v) ε + ∇v L 1 , ∀ p ∈ [1, ∞). ( 6 
.53) [START_REF] Morgan | Geometric measure theory[END_REF] This is well-known to the experts. Here is an explicit example

. Let ρ = 1 [-1/2,1/2] . If A ⊂ R is an interval, let A
define the interval with the same center as A and twice longer than A. Consider, in (0, 1) and for sufficiently large j, intervals A j such that the A j 's are mutually disjoint and |A j | = 1/ j 2 . Let ε j = 1 j 2 e -e j . Then u := 1 j 2 1 A j * ρ ε j belongs to W 1,1 (0, 1), but to none of the spaces W 1/p,p (0, 1) with p > 1. [START_REF] Nirenberg | On elliptic partial differential equations[END_REF] The map ϕ considered in the proof of Lemma 6.15 is not a diffeomorphism, but it is easy to slightly modify it and transform it into a diffeomorphism.

Taking these two estimates for granted, we proceed as follows: for small ε we have C(v) ε ≤ ∇v L 1 and ε < πδ/|Ω|. Consider such an ε. As at the end of the Section 6.2, estimate (6.52) and estimate (6.53) applied along a sequence p n 1 combined with estimate (6.48) and with the Gagliardo-Nirenberg inequalities imply that the conclusions of Lemma 6.15 hold with w = ϕ ε,θ for appropriate ε and θ.

Step 1. Proof of (6.52). For z ∈ S 1 , the set {θ; w ε,θ (z) = 1} has measure ε, and thus

ˆ2π 0 |{w ε,θ = 1}| dθ = ˆΩ |{θ; w ε,θ (v(x)) = 1}| dx = ε|Ω|.
Step 2. Proof of (6.53) when p = 1. We will actually prove that the term C(v) ε is not needed for p = 1. As in Step 1, using the fact that |ϕ ε,θ (z)| = 2π/ε if ϕ ε,θ (z) = 1 and that ϕ ε,θ (z) = 0 a.e. otherwise, we find that

ˆ2π 0 ∇w ε,θ L 1 dθ = 2π ∇v L 1 .
(6.54)

Step 3. Proof of (6.53) when p > 1. Using a second order Taylor expansion, it is easy to see that the following inequality holds uniformly in x, y and ε < 1/4:

|v(x) -v(y)| ≤ |∇v(x)||x -y| + K(v) δ 2 v (x) |x -y| 2 if |y -x| ≤ εδ v (x). ( 6 

.55)

On the other hand, we clearly have

ˆΩ 1 [δ v (x)] q dx < ∞, ∀ q ∈ [1, 2); (6.56) 
here we see why we have to replace Ω by U in the definition of R. In particular, (6.56) combined with the definition of R implies that w ε,θ ∈ W 1,q (Ω), ∀ q ∈ [1, 2), ε, θ ∈ (0, 2π). (6.57)

We split

I := ˆ2π 0 |w ε,θ | p W 1/p,p dθ = ˆ2π 0 ˆΩ ˆΩ |w ε,θ (x) -w ε,θ (y)| p |x -y| m+1 dxd ydθ = I 1 + . . . + I 4 , (6.58) 
where I j corresponds to the integration over A j , ∀ j ∈ 1, 4 , and:

A 1 = (x, y) ∈ Ω 2 ; |x -y| ≥ εδ v (x) , A 2 = (x, y) ∈ Ω 2 ; ε |∇v(x)| < |x -y| < εδ v (x) , A 3 = (x, y) ∈ Ω 2 ; ε K(v) δ v (x) < |x -y| < εδ v (x) , A 4 = Ω 2 \ (A 1 ∪ A 2 ∪ A 3 ).
Step 4. Estimate of I 1 and I 3 . By (6.50) and (6.56), we have

I 1 ≤ C p ε A 1 1 |y -x| m+1 d ydx ≤ C p ε ˆΩ 1 δ v (x) dx ≤ C p C(v) ε. (6.59)
By the same argument, we obtain

I 3 ≤ C p C(v) εK(v).
(6.60)

Step 5. Estimate of I 2 . By (6.50), we have

I 2 ≤ C p ε A 2 1 |y -x| m+1 d ydx ≤ C p ∇v L 1 .
(6.61)

Step 6. Estimate of I 4 . By combining (6.50) with (6.55), we find that 

I 4 ≤ C p ε p-1 A 4 |∇v(x)| p |y -x| m+1-p d ydx I 5 + C p K p (v) ε p-1 A 4 1 δ 2p v ( 
K(v) δ v (x) in A 4 leads to I 6 ≤ C p ε K(v) p-1/2 ˆΩ 1 δ v (x) dx. (6.64)
We complete the proof of (6.53) when p > 1 by combining (6.58)-(6.64).

6.16 Remark. The above construction is indeed, as stated in the introduction, a dipole construction. Indeed, the support of w -1 can be chosen arbitrarily small, while Jw is prescribed. Lemma 6.15 leads to the following straightforward variant of Lemma 6.11, whose proof is left to the reader.

6.17 Lemma. Let 1 < q < 2 and let u ∈ W 1,q (Ω). Let ε > 0 and v ∈ R. Then there exists w ∈ R such that:

1. Jw = Jv.

|w|

p W 1/p,p ≤ C p ∇v L 1 , ∀ p ∈ [1, ∞). 3. |uw -u| W 1/p,p ≤ |w| W 1/p,p + C p ε 1/p , ∀ p ∈ [1, q].
Second proof of Theorem 1.3 when Ω ⊂ R m is bounded. Let N be an (m -1)-rectifiable current in Ω. Let u ∈ W 1,1 (Ω; S 1 ) be such that Ju = ∂N and ∇u L 1 ≤ CM(N). Let v j be as in Lemma 6.12. By applying inductively Lemma 6.17, [START_REF] Pakzad | Weak density of smooth maps for the Dirichlet energy between manifolds[END_REF] we construct a sequence (w j ) such that Jw

j = Jv j , |w j | p W 1/p,p ≤ C p 2 -j M(N) and |w 1 . . . w j+1 -w 1 . . . w j | W 1/p,p ≤ |w j+1 | W 1/p,p + C p (2 -j M(N)) 1/p , ∀ p ∈ [1, 3/2].
By combining the above with Lemma 4.5, it is easy to see that the product j w j converges in W 1/p,p (Ω; S 1 ), ∀ p ∈ [1, ∞), to some w that has all the properties required in Theorem 1.3.

Proof of Lemma 5.1

Let (U j ) 1≤ j≤2 be an open covering of S m by domains of local charts, and let ϕ j : U j → B m be the corresponding smooth diffeomorphisms. We denote by ϕ j the corresponding charts for S m × [0, ∞): ϕ j (x, t) = (ϕ j (x), t) ∈ R m × R. Let (θ j ) 1≤ j≤2 be a partition of the unit subordinate to the covering (U j ) 1≤ j≤2 of S m . Thus θ j is compactly supported in U j and θ 1 +θ 2 = 1. For 1 ≤ j ≤ 2, we define h j := ϕ j (θ j u), which is compactly supported in B m with values into B k . Assume for the moment that we can construct a map w j : R m ×[0, ∞) → B k which satisfies all the properties enumerated in Lemma 5.1 when u is replaced by h j and S m by B m . Let η ∈ C ∞ c (B m ) such that η = 1 on ∪ j ϕ j ( supp θ j ). We then define v(x, t) := j ϕ j (ηw j ) = j η(ϕ j (x))w j (ϕ j (x), t). Clearly, v ∈ C ∞ (S m × (0, ∞)). If, in addition, u is smooth, then v(x, 0) = j η(ϕ j (x))w j (ϕ j (x), 0) = j η(ϕ j (x))h j (ϕ j (x)) = j η(ϕ j (x))θ j (x)u(x).

Since η(ϕ j (x)) = 1 when θ j (x) = 0, we find that v(x, 0) = u(x). We shall prove that for j = 1, 2 and T > 0: w j L p (R m ×(0,T)) ≤ C T h j L p (R m ) , |w j | W k/p,p (R m ×(0,∞)) ≤ C|h j | W (k-1)/p,p (R m ) .

( The chain rule easily implies that this v satisfies estimate (5.1) when the seminorms are replaced by norms. By applying the argument leading to Corollary 4.3, we finds (5.1) holds also in its original form (with seminorms). [START_REF] Ponce | Closure of smooth maps in W 1,p (B 3 ; S 2 )[END_REF] If (7.1) holds true, then we obtain (5.2) as follows. Finally, Lemma 5.1 item 5 is a direct consequence of (7.2) above.

In conclusion of the above discussion, we only need to prove Lemma 5.1 when S m is replaced by B m and u is compactly supported. In this case, we will prove that the standard extension v of u has all the required properties, namely satisfy Lemma 5.1 items 1, 3 and 4 as well as (7.1) and (7.2) (with w j replaced by v). Such an extension is defined as follows. We let ρ be a standard mollifier [START_REF] Rivière | Dense subsets of H 1/2 (S 2 , S 1 )[END_REF] Clearly, items 1 and 4 in Lemma 5.1 hold true for this v. On the other hand, (7.2) is straightforward (when |u| ≤ 1). In addition, the mapping u → v is linear. By standard trace theory, this implies that items 2 and 4 yield item 3. In conclusion, we only need to prove (7.1). Before proceeding to the proof, we note that, by a standard limiting procedure, we may also assume u smooth and compactly supported in B m . The proof of Lemma 5.1 relies on Hardy's inequality [39, Lemma 3.14] that we recall here. [START_REF] Ponce | Closure of smooth maps in W 1,p (B 3 ; S 2 )[END_REF] Indeed, an inspection of the proof below shows that when the map u in Lemma 5.1 is replaced by u - Proof of (7.1) when u ∈ C ∞ c B m ; R k . Let v be given by (7.4).

Step 1. Pointwise estimates for the derivatives. The identity

∂ j v(x, t) = 1 t u * (η j ) t (x), ∀ x ∈ R m , t > 0, j ∈ 1, m + 1 ,
where η j = ∂ j ρ, ∀ j ∈ 1, m , η m+1 (x) = -div (xρ)(x), combined with the fact that ˆη j = 0, ∀ j ∈ 1, m + 1 , leads to Step 4. Estimate of |v| W k/p,p when p > k. We start from the following semi-norms equivalence, valid for 1 ≤ p < ∞ and 0 < σ < 1:37 The last two lines use Fubini's theorem. Similar calculations appear in the estimates of J and K and will not be detailed. We next estimate J. In order to estimate the quantities I and K, we proceed as for I and K, but use (7.10) instead of (7.8). Finally, using (7.16) we obtain This completes the proof of Lemma 5.1.

  If we sete I = e i 1 ∧ ... ∧ e i l , e * I = e * i 1 ∧ ... ∧ e * i l , ∀ I ∈ I(l, m), then, for ξ = I ξ I e I , ξ = I ξ I e I , α = I α I e * I , α = I α I e * I , we define 〈ξ, ξ 〉 = I ξ I ξ I , 〈α, α 〉 = I α I α I ,

[ 2 ,

 2 Theorem 3.8]. Here, Ω ⊂ R m is an open set, and not S m as we want; however, it is easy to transfer results from open sets to spheres (or, more generally, embedded manifolds); see the proof of Theorem 1.3 at the end of the Section 6.1.Similarly, in the proof of Theorem 1.3 it suffices to consider the cases p = 1 and k ≥ 3 (by Corollary 4.3), respectively k = 2 and p ≥ 1.

  we have T u = Ju. (5.15) Proof. To start with, let u ∈ C ∞ . With ω 0 the canonical volume form on S k-1 given by (1.6) and ζ, ς as in Lemma 5.4, we have dω 0 = 1 ω k d y, and thus

5. 11

 11 Lemma. N is an (mk + 1)-rectifiable current in S m . Moreover, we haveM(N) ≤ CM(G) = CH m-k+1 (

Finally, we establish ( 5 .

 5 27). For every ζ ∈ C 1 (Λ m-k S m ) we have 〈∂N, ζ〉 = 〈∂(π G), ζ〉 = 〈π G, dζ〉 = 〈G, π dζ〉 = 〈G, d(π ζ)〉 = 〈∂G, π ζ〉 = 〈T u, ζ〉.

6. 6

 6 Lemma. Assume that N is an (l -1)-rectifiable current in S m . Then K := N × r current in Ω and M(K) ∼ M(N).

0 t 1 -p ˆw∈B m 1 |w|

 011 J p (A) = x∈A,|y-x|≥1 . . . , K p (A) = x∈A,|y-x|<1 . . . On the one hand, we have J p (A) ≤ 2 p |A| ˆ|z|≥1 1 |z| m+1 dz = C p |A|. (6.43) On the other hand, the inequality |u(x + z) -u(x)| p ≤ |z| p ˆ1 0 |∇u(x + tz)| p dt leads to K p (A) ≤ ˆ1 0 ˆx∈A ˆz∈B m |∇u(x + tz)| p |z| m-p+1 dzdxdt ≤ ˆ1 m-p+1 ˆx∈w+A |∇u(x)| p dxdzdt ≤ C p sup w ∇u p L p (w+A) ≤ C p [ω(|A|)] p |A| (q-p)/q .

  B j := B(x j , 2r j ). Let C := R m \ ∪ j B j . Set also w p (x, y) = |v(x) -v(y)| p |x -y| m+1 and f (x, y) = 1 |x -y| m+1 . The identity |v| p W 1/p,p = j B j ×(B j ∪C)

W 1 /, 3 2 .

 12 p,p loc (R m ; S 1 ), ∀ p ∈ [1, p 1 ], to some u such that u -1 ∈ W 1/p,p (R m ), Ju = ∂N and |u| p W 1/p,p ≤ C p M(N). Proof of Theorem 1.3 for k = 2. Let N be an (m -1)-rectifiable current in S m . Let Ω = {x ∈ R m+1 ; 1/2 < |x| < 3/2} and K = N× r 1 2 By the above, there exists a map v ∈ ∩ p≥1 W 1/p,p (Ω; S 1 ) such that Jv = (-1) m ∂K and |v| p W 1/p,p ≤ C p M(K) ≤ C p M(N), ∀ p ≥ 1. (6.46)

W( 7 . 3 )

 73 (k-1)/p,p (R m ) ≤ C u p W (k-1)/p,p (S m ) .We obtain (5.2) by applying (7.3) to u -

  the corresponding map v is replaced by v -S m u. 36 That is, ρ ∈ C ∞ c (B m ), ρ ≥ 0 and ˆρ = 1.

7. 1

 1 Lemma. Let p ≥ 1 and r > 1. If g ∈ W Let p > 1 and r > m. If w ∈ C 1 (R m ), then ˆ|y-x|<ρ |w(y) -w(x)| p |y -x| r d y ≤ C ˆ|y-x|<ρ |∇w(y)| p |y -x| r-p d y, ∀ x ∈ R m , (7.6) where C = C(p, r, m). Proof. By replacing g with g 1 [0,ρ] , we see that (7.5) still holds when [0, ∞) is replaced by [0, ρ]. We have ˆ|y-x|<ρ |w(y) -w(x)| p |y -x| r d y = ˆSm-1 ˆρ 0 t m-r-1 |w(x + tθ) -w(x)| p dt dH m-1 ≤ C ˆ|y-x|<ρ |∇w(y)| p |y -x| r-p d y, the last inequality following from (7.5) applied in [0, ρ] to s → w(x + sθ).

  |∇v(x, t)| ≤ C t m+1 ˆ|y-x|<t |u(y) -u(x)| d y (7.7) and thus |∇v(x, t)| p ≤ C t m+p ˆ|y-x|<t |u(y) -u(x)| p d y. (7.8)Similarly, for the second order derivatives we haveD 2 v(x, t) ≤ C t m+2 ˆ|x-y|<t |u(y) -u(x)Step 2. L p estimate. By (7.4) and Hölder's inequality, we have|v(x, t) -u(x)| p ≤ ˆ|y-x|<t |u(y) -u(x)| p ρ t (xy) d y ≤ C t m ˆ|y-x|<t |u(y) -u(x)| p d y.(7.11)This impliesˆ∞ 0 ˆRm |v(x, t) -u(x)| p dx dt ≤ C relies on Poincaré's inequality u W (k-1)/p,p ≤ C|u| W (k-1)/p,p . Hence, for every T > 0 we havev L p (R m ×(0,T)) ≤ C T |u| W (k-1)/p,p .(7.13)Step 3. W 1,p estimate. As in the previous step, when k ≥ p (7.7) combined with Hölder's inequality implies ∇v p L p ≤ C ˆ∞ 0 ˆRm ˆ|y-x|<t |u(y) -u(x)| d y p dx dt t (m+1)p ≤ C ˆ∞ 0 ˆˆ|y-x|<t |u(y) -u(x)| p d ydx dt t m+p = C ˆRm ˆRm |u(y) -u(x)| p |y -x| m+p-1 d ydx.Using again Poincaré's inequality, we find that∇v p L p ≤ C|u| p W (k-1)/p,p .(7.14)In particular, we have (by combining (7.13) with (7.14))v W 1,p (R m ×(0,T)) ≤ C T |u| W (k-1)/p,p ,(7.15)and the case where k = p is completely settled. For further use, let us note that the proof of (7.14) leads to ˆ∞ 0 ˆRm |∇v(x, t)| p t k-p dxdt ≤ C|u| p W (k-1)/p,p . (7.16) In order to estimate |v| W k/p,p when k = p, we consider two different cases: p > k and p ∈ (k -1, k).

C ˆ∞ 0 1 t m+p ˆRm ˆ|y-x|<t 1 |y- 1 t m+p ˆ|x-y|<t 1 |x-

 1111 p (R m ×(0,∞)) ∼ ˆ∞ 0 ˆRm ˆRm |v(y, t) -v(x, t)| p |y -x| m+σp d ydxdt + ˆRm ˆ∞ 0 ˆ∞ 0 |v(x, s + t) -v(x, t)p,p ∼ I + J + K,(7.18)whereI := ˆ∞ 0 ˆRm ˆ|y-x|<t |v(y, t) -v(x, t)| p|y -x| m+k d ydxdt, J := ˆ∞ 0 ˆRm ˆ|y-x|≥t |v(y, t) -v(x, t)| p |y -x| m+k d ydxdt, K := ˆRm ˆ∞ 0 ˆ∞ 0 |v(x, s + t) -v(x, t)| p s 1+k dsdtdx. Using successively Corollary 7.2 and (7.8), we find that I ≤ C ˆ∞ 0 ˆRm ˆ|y-x|<t |∇v(y, t)| p |y -x| m+k-p d ydxdt ≤ x| m+k-p ˆ|z-y|<t |u(z) -u(y)| p dzd ydxdt = C ˆRm ˆRm ˆ∞ |z-y| y| m+k-p dxdt |u(z) -u(y)| p dzd y = C ˆRm ˆRm |u(z) -u(y)| p |z -y| m+k-1 dzd y = |u| p W (k-1)/p,p . (7.19)

1 = 1 |y-ˆ∞ 0

 110 Starting from |v(y, t) -v(x, t)| ≤ |v(y, t) -u(y)| + |u(y) -u(x)| + |v(x, t) -u(x)|and using(7.11), we find thatJ ≤ C(J 1 + J 2 ),(7.20)whereJ ˆ∞ 0 ˆRm ˆ|y-x|≥t |u(y) -u(x)| p |y -x| m+k d ydxdt = |u| x| m+k ˆ|z-x|<t |u(z) -u(x)| p dzd ydxdt = C|u| p W (k-1)/p,p .(7.22)Finally, we estimate K by using successively (7.5) applied with g(s) = v(x, s + t) and (7.8). We find thatK ≤ C ˆRm ˆ∞ 0 ˆ∞ 0 |∇v(x, s + t)t) m+p ˆ|y-x|<s+t |u(y) -u(x)| p d ydsdtdx = C|u| p W (k-1)/p,p .(7.23)We complete the case where p > k by combining (7.18)-(7.23).Step 5. Estimate of |v| W k/p,p when p ∈ (k -1, k). Starting from |v| W k/p,p = |∇v| W k/p-1,p and (7.17), we find that |v| p W k/p,p ∼ I + J + K, ˆRm ˆ|y-x|<t |∇v(y, t) -∇v(x, t)| p |y -x| m+k-p d ydxdt, J := ˆ∞ 0 ˆRm ˆ|y-x|≥t |∇v(y, t) -∇v(x, t)| p |y -x| m+k-p d ydxdt, K := ˆRm ˆ∞ 0 ˆ∞ 0 |∇v(x, s + t) -∇v(x, t)| p s 1+k-p dsdtdx.

J ≤ C ˆ∞ 0

 0 ˆRm ˆ|y-x|≥t |∇v(x, t)| p |y -x| m+k-p d ydxdt = C ˆ∞ 0 ˆRm |∇v(x, t)| p t k-p dxdt ≤ C|u| p W (k-1)/p,p .

  We will also use the following elementary fact: if ( f n ) n≥0 is a sequence of non-negative integrable functions in (a, b), then there exists a set A ⊂ (a, b) of measure ≥ (ba)/2 such that Let p 0 = 1 and consider a sequence (p n ) n≥1 ⊂ (1, ∞) such that p n 1. By (6.46)-(6.49),

	1/2	|v r | W s,p (S m ) dr ≤ C s,p |v| p W s,p (Ω) , ∀ s ≥ 0, ∀ p ∈ [1, ∞). p	(6.47)
		b	
	f n (t) ≤ 2 n+2	f n , ∀ n ∈ N, ∀ t ∈ A.	(6.48)
		a	
	The proof of Theorem 1.3 for p = 1 implies that
	Jv r = ∂N for a.e. r ∈ (1/2, 3/2).	(6.49)

  .50) Proof. Only (6.50) requires a proof. Let I ε (z) = {w ∈ S 1 ; d(z, w) < ε}; here, d denotes the geodesic distance in S 1 . If e ıθ ∈ I ε (z 1 )∪I ε (z 2 ), then ϕ ε,θ (z 1 ) = ϕ ε,θ (z 2 ) = 1; therefore, the integral in (6.50) has to be considered only over I ε (z 1 ) ∪ I ε (z 2 ). On the other hand, we have|ϕ ε,θ (z 1 ) -ϕ ε,θ (z 2 )| p ≤ min 2 p , 2 p π p d p (z 1 , z 2 )

	ε p	.	(6.51)

We obtain the conclusion by integrating (6.51) over I ε (z 1 ) ∪ I ε (z 2 ).

6.15 Lemma. Let v ∈ R and δ > 0. Then there are constants C p , ∀ p ∈ [1, ∞), independent of v and δ, and a Lipschitz map ϕ : S 1 → S 1 of degree 1 such that w := ϕ • v satisfies:

1. |w| p W 1/p,p ≤ C p ∇v L 1 . 2. |{w = 1}| ≤ δ.

  7.1)Moreover, we will see that if u L ∞ ≤ 1, then|w j (x, t)| + |d x w j (x, t)| + |∂ t w j (x, t)| ≤

	C t	.	(7.2)

  and set v(x, t) = u * ρ t (x), if t > 0

	u(x),	if t = 0	.	(7.4)

The proof there is for special values of s and p, but works without changes in the general case.

All our results are stated for Ω = S m , but it will be transparent from the proofs that Ω could be any bounded open set in R m or m-dimensional compact manifold.

This is proved in the same way as the density of the class R.

The proof there is for p = 2, but the argument applies with no change to every p > 1.

The map π a in[START_REF] Bethuel | Density of smooth functions between two manifolds in Sobolev spaces[END_REF] is not the same as ours, but this is not relevant for the proof.

Proof of Theorem 1.3In view of Remark 4.4, it suffices to consider the cases p = 1 and k = 2.[START_REF] Jerrard | Functions of bounded higher variation[END_REF] In the same way that G is built from M in the proof of Lemma 5.11.

Alternatively, we could have invoked Jerrard and Soner [25, Theorem 1].

Jv = Ju + ∂R -∂T.

Whose proof is similar to the one of (6.25) and left to the reader.

For the flat case, see [1, Example 7.27], [1, Lemma 7.44]. The argument there adapts to manifolds.

Inequality (6.48) is applied with (a, b) = (1/2, 3/2) and f n (r) = |v r | p n W 1/pn ,pn (S m ).

Here, we use the fact that R ⊂ W 1,q (Ω), ∀ q ∈ [1, 2), cf (6.57).

As for (6.47), this is obtained by combining [1, Example 7.27] with [1, Lemma 7.44].

Using Lemma 6.4, we obtain the flat [START_REF] Lafontaine | Introduction aux variétés différentiables[END_REF] version of Theorem 1.3.

Lemma.

Let Ω be a bounded open subset in R m and let M be the boundary of an (m-k +1)rectifiable current N in Ω. Then there exists u ∈ W k-1,1 (Ω; S k-1 ) such that Ju = M and |u| W k-1,1 ≤ CM(N).

This follows from Lemma 6.4 and an iterative procedure which is exactly the same as the one in [2, proof of Theorem 5.6]; we omit the proof.

Proof of Theorem 1.3 when p = 1. In what follows, we denote by S m r the m-dimensional sphere S(0, r) ⊂ R m+1 .

Let Ω := x ∈ R m+1 ; 1/2 < |x| < 3/2 . For every l ≥ 1, ∈ C ∞ c (Λ l Ω), and r ∈ (1/2, 3/2), we define

If T is an (l-1)-current in S m , then we define the l-current T× r 1 2 , 3 2 in Ω through the formula

Here is a proof of this fact. We start from the identity dα = 1 r m-1 ρ(r)X dζ∧dr. If τ 1 , . . . , τ m-k+1 ∈ T x S m , then

Indeed, in (6.26), the next to the last equality relies on the fact that dr(τ j ) = 0, ∀ j ∈ 1, m-k+1 .

In order to justify the last equality in (6.26), observe that d X (rx)(τ j ) = τ j r (since 〈τ j , x〉 = 0).

This proves (6.25).

Let N be an (m-k+1)-rectifiable current in S m . By Lemma 6.6 below,

(mk + 2)-rectifiable current in Ω, of mass comparable to the one of N. We apply Lemma 6.5 in Ω to the current (-1) m-k+2 K. Then there exists v ∈ W k-1,1 (Ω; S k-1 ) such that |v| In the case where = α, (6.25) and (6.27) give ˆΩ dα ∧ v ω 0 = 〈N, dζ〉.

(6.28) [START_REF] Lafontaine | Introduction aux variétés différentiables[END_REF] I.e., with S m replaced by Ω.