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Uniqueness of vortexless Ginzburg-Landau type
minimizers in two dimensions

Alberto Farina∗ Petru Mironescu†

November 3, 2011

Abstract

In a simply connected two dimensional domain Ω, we consider Ginzburg-Landau minimiz-
ers u with zero degree Dirichlet boundary condition g ∈ H1/2(∂Ω;S1). We prove uniqueness of u
whenever either the energy or the Ginzburg-Landau parameter are small. This generalizes a
result of Ye and Zhou requiring smoothness of g. We also obtain uniqueness when Ω is multi-
ply connected and the degrees of the vortexless minimizer u are prescribed on the components
of the boundary, generalizing a result of Golovaty and Berlyand for annular domains. The
proofs rely on new global estimates connecting the variation of |u| to the Ginzburg-Landau en-
ergy of u. These estimates replace the usual global pointwise estimates satisfied by ∇u when
g is smooth, and apply to fairly general potentials. In a related direction, we establish new
uniqueness results for critical points of the Ginzburg-Landau energy.

1 Introduction
The aim of this paper is to generalize and unify several known existence results for minimizers
or critical points of the simplified Ginzburg-Landau (GL, in short) energy

Eε(u)= 1
2

∫
Ω
|∇u|2 + 1

4ε2

∫
Ω

(1−|u|2)2.

Here,

a) Ω⊂R2 is a C1 bounded domain.

b) u :Ω→C.

c) ε> 0 is a (not necessarily small) parameter.

We will consider two types of boundary conditions:

a) Dirichlet boundary condition: given g : ∂Ω→S1, we prescribe u = g on ∂Ω.

b) Degree boundary condition: let Γ j, j ∈ J0,kK, be the components of ∂Ω. Given the integers
d j, we prescribe |u| = 1 on ∂Ω and deg(u,Γ j)= d j, j ∈ J0,kK.

In the case of the Dirichlet boundary condition, uniqueness holds for ε> 1p
λ1

, where λ1 is the

first eigenvalue of −∆ in H1
0(Ω). Uniqueness need not hold for small ε [4]. However, Ye and

Zhou [26] proved the following
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1.1 Theorem ([26]). Assume that Ω is a smooth bounded simply connected domain and that g
is smooth and of zero degree.

a) For small ε, Eε has only one minimizer with Dirichlet boundary condition g.

b) If, in addition, g is sufficiently close to a constant,1 then uniqueness holds for each ε.

The proof in [26] relies on global pointwise estimates on the gradients of minimizers.2 In
particular, some smoothness is required on g. However, the natural space for g is H1/2(∂Ω;S1),
and for such g minimizers u need not satisfy uniform gradient estimates up to the boundary.
Our first result is the following

1.2 Theorem. Assume that Ω is C1 and simply connected. Let g ∈ H1/2(∂Ω;S1) have zero
degree.

a) For small ε, Eε has only one minimizer with Dirichlet boundary condition g.

b) There is some explicit universal constant δ such that if g has an S1-valued extension v to

Ω satisfying
∫
Ω
|∇v|2 ≤ δ, then the minimizers of Eε with Dirichlet boundary condition g

are unique for each ε.

Item b) will be discussed in more detail in Section 8. For the moment, let us simply mention
that the condition on v is a smallness condition on the H1/2 seminorm of g, and thus b) in
Theorem 1.2 generalizes b) in Theorem 1.1.

1.3 Remark. In the above theorem, we may take δ = 0.04518303544. . . The same holds for
Theorem 1.5.

We next turn to the case of prescribed degrees. Before proceeding further, let us note that
minimizers with prescribed degrees are never unique: if u is a minimizer, then so it αu, for
each α ∈ S1. Thus, at best, we can hope uniqueness modulo S1. Our starting point is the
following result of Golovaty and Berlyand [14].

1.4 Theorem ([14]). Let Ω = {z ∈ C;1 < |z| < R}. Let d ≥ 1 be an integer. Then there is some
Rd > 1 such that, for 1 < R < Rd and for each ε, Eε has, modulo S1, a unique minimizer with
prescribed degrees d and d on the two circles of ∂Ω.

Our result is the following.

1.5 Theorem. Let M be the infimum of the energy Eε with given prescribed degrees.3 There
is some explicit universal constant δ such that, if M< δ, then the infimum is attained and the
minimizer is unique (modulo S1).

We emphasize the fact that existence of minimizers of Eε is part of the statement; in gen-
eral, M is not attained [1, Example 1].

Our result is related to Theorem 1.4 as follows: consider, as a test function in the setting

of Theorem 1.4, the map z 7→ zd

|z|d . This gives M ≤ πd2 lnR. Thus M ≤ δ for R close to 1, and

Theorem 1.4 follows from Theorem 1.5.
The proof of Theorem 1.5 is completely different in nature from the one of Theorem 1.4

in [14]. In [14], the authors use in an essential way a geometric property of circular annuli,
property which need not hold for arbitrary domains. Instead, we develop here an approach
based on some new global estimates, estimates which do not see the geometry of the domain.
The main tool in the proof of Theorems 1.2 and 1.5 is Theorem 3.6, which is of independent
interest. Theorem 3.6 gives a lower bound for the energy required, for a GL minimizer u, to
move from |u| ≡ 1 on the boundary to its minimum value in Ω. Here is a striking special case
of Theorem 3.6.

1The precise condition in [26] is
∫
∂Ω

(∣∣∣∣∂g
∂τ

∣∣∣∣+ ∣∣∣∣∂2 g
∂τ2

∣∣∣∣)≤ δ, where δ= δ(Ω) is sufficiently small.
2It is common knowledge in the GL community that |u| close to 1 plus global pointwise estimates lead to unique-

ness.
3Thus M depends on Ω, on ε and on the degrees.
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1.6 Theorem. Let Ω be simply connected. Let u minimize Eε with respect to its own boundary

condition g ∈ H1/2(∂Ω;S1). If u vanishes somewhere in Ω, then
∫
Ω
|∇u|2 ≥ 2π.

The value 2π is sharp.

We emphasize the fact that this is not a statement about H1 maps. H1 maps can move from
1 to 0 at almost zero cost. The above property is specific to GL minimizers.

Heuristics and outline of the proofs. Let us first consider, in a simply connected domain
Ω, the minimization problem

min
{

1
2

∫
Ω
|∇u|2; u :Ω→S1

}
,

with, say, Dirichlet boundary condition g : ∂Ω→S1. This nonlinear problem is equivalent to a
linear one. Indeed, each test function u may be written as u = eıϕ, with tr ϕ given (in function
of g) on ∂Ω [9], and the minimization problem becomes

min
{

1
2

∫
Ω
|∇ϕ|2; ϕ :Ω→R

}
,

with a Dirichlet boundary condition. Uniqueness of a u-minimizer follows now from the strict
convexity of the ϕ-energy.4 In contrast, there is no similar trick transforming the Ginzburg-
Landau energy Eε into a strictly convex one. However, it is possible to obtain a sort of log-
convexity of Eε in a neighborhood of a minimizer of modulus close to 1. When the boundary
condition is smooth, this is hidden in the proof of Ye and Zhou [26] and explained in [22].
Our results cover the case of an arbitrary boundary datum, respectively the case of a multiply
connected domain. The assumptions of the main results (Theorems 1.2 and 1.5) guarantee
precisely the fact that minimizers have modulus close to 1.5 In each of these results, the plan
of the proof is

1. Prove that a minimizer uε has modulus close to 1.

2. Prove the following substitute to log-convexity: if vε is another minimizer, then Eε(vε) >
Eε(uε) unless vε = uε.6

When the energy Eε(uε) is small, Step 1. is obtained via Theorem 3.6, which basically asserts
precisely that small energy GL minimizers have modulus close to 1. When the energy is not
supposed to be small, we complete Step 1. under the assumption that ε is small. In this case
we use a clearing out technique; this well-known approach [4, 23, 17, 18, 5] is revisited in the
special case we are interested in in Section 7.
Unlike the approach in [26], where Step 2. is obtained via pointwise estimates,7 our approach
relies on global estimates. These estimates are either the Wente estimates [25] used in their
sharp form derived by Bethuel and Ghidaglia [6] (used for small energy solutions), or asymp-
totic versions of the Wente estimates (used for arbitrary energy solutions); a typical such result
is Lemma 4.3.
The main auxiliary result, Theorem 3.6, is proved according to the following lines. Consider a
minimizer uε of Eε, and let t =min |u|.

1. Assume first that the level line [|u| = m], with m > t, is connected. Then we prove that
this line is "not too short", for otherwise |u| has no reason to reach the value t. This
implies that the variation of |u| on this level line is "not too small". Integrating over m
the lower bound of the energy on the level line [|u| = m] and using the co-area formula,
we obtain a lower bound for the energy.

2. In general, the level line [|u| = m] has no reason to be connected. However, if this line is
"not too small", then we still obtain the same conclusion as above.

4In other words, the initial u-energy is log-convex.
5 In particular, our results do not apply to the case where minimizers do have zeros. In this case, uniqueness need

not hold [4], and, even if it holds, the proof of uniqueness requires completely different arguments [20, 22].
6It is known to experts that a similar approach is useful in the proof of Krasnosel’skii’s uniqueness result [15].
7 Such estimates need not hold under the assumptions of Theorems 1.2 and 1.5.
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3. It remains to treat the case where this line is "small". In this case, we are able to fall back
into Step 1. above and conclude again. The tool allowing this is an origami style result
(the Contraction Lemma) asserting the existence of a convenient folding of the plane.

Our paper is organized as follows. In Section 2, we prove the Contraction Lemma (Lemma
2.1) crucial in the proof of Theorem 3.6. Section 3 is devoted to the proof of Theorem 3.6. In
Section 4, we recall the sharp Wente estimates of Bethuel and Ghidaglia [6] and establish some
new related estimates, which will be used in the proof of Theorem 1.2. Section 5 collects some
standard results about lifting and degree. In Section 6, we prove Theorem 1.5. Clearing out
results required in the proof of Theorem 1.2 are gathered in Section 7. The proof of Theorem
1.2 is presented in Section 8. Finally, in Section 9, we will discuss other uniqueness results, in
the spirit of [12] or [1]. This relies on some additional clearing out results, established at the
beginning of the section.

Acknowledgment. The authors thank the anonymous referee for his careful reading of the
proof and useful suggestions.

1.1 Notation, definitions
a) D(z, r) is the open disc of center z and radius r. Dr =D(0, r), and D=D1 is the unit disc.

b) C(z, r) is the circle of center z and radius r. Cr = C(0, r), and S1 = C1.

c) `(I) is the length of the (smooth) curve I.

d) A contraction is a 1-Lipschitz (i.e., non dilating) map.

e) If A,B ∈S1 are such that B 6= −A, then �AB denotes the smallest arc of S1 with endpoints
A and B. If B =−A, then �AB is one of the two half circles with endpoints A and B.

f) Let s, t ≥ 0. We denote by As,t the area of {z ∈ Dt; Re z > s} and by `s,t the length of
{z ∈ Ct; Re z > s}.

g) 〈 , 〉 denotes the scalar product in R2. In particular, 〈reıθ, seıϕ〉 = rscos(θ−ϕ).

h) If a,b ∈Z, then Ja,bK= {n ∈Z;a ≤ n ≤ b}.

i) ∧ denotes the vector product of vectors in R2 (or complex numbers): (a1,a2)∧ (b1,b2) =
a1b2 −a2b1. If u = u1 + ıu2 is a function of two-variables, then we set u∧∇u = u1∇u2 −
u2∇u1.

j) Jac denotes the Jacobian determinant (in R2): Jac(g,h)=∇g∧∇h.

k) The interior of a simple closed plane curve γ is the domain enclosed by γ.
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2 Contraction lemma
This section is devoted to the proof of the following

2.1 Lemma (Contraction lemma). Let I1, . . . , I l be arcs of Cρ such that
∑
`(I j)≤πρ. Then there

is a map P :R2 →R2 such that:

a) Restricted to each I j, P acts like a rotation R j.

b) P is a contraction.

c) P(I1 ∪ . . .∪ I l) is connected.

d) |P(z)| = |z|, ∀ z ∈R2.

Proof. We may assume ρ = 1. We may also assume that the I j ’s are mutually disjoint.
It suffices to construct a map V :S1 →S1 such that

a) Restricted to each I j, V is a rotation.

b) V is a contraction.

c) V(I1 ∪ . . .∪ I l) is connected.

Indeed, assume that such V exists. We may then take

P(z)= |z|V(z/|z|), ∀ z ∈C\{0}, P(0)= 0, (2.1)

and conclude via the following

2.2 Lemma. Let V :S1 →S1 be a contraction and let P be defined by (2.1). Then P is a contrac-
tion.

Proof of Lemma 2.2. Since V is a contraction, we have |V (ω)−V(η)|2 ≤ |ω−η|2, and thus

−〈V(ω),V(η)〉 ≤−〈ω,η〉, ∀ω,η ∈S1.

If r, s ≥ 0 and ω,η ∈S1, then

|P(rω)−P(sη)|2 = r2 + s2 −2rs〈V(ω),V(η)〉 ≤ r2 + s2 −2rs〈ω,η〉 = |rω− sη|2.

Proof of Lemma 2.1 continued. We establish the existence of V by induction on l, the case l = 1
being obvious. Assuming the cases 1, . . . , l −1 settled, it suffices to construct some T :S1 →S1

such that:

a) Restricted to each I j, T is a rotation.

b) T is a contraction.

c) T(I1 ∪ . . .∪ I l) has at most l−1 connected components.

Indeed, assume such T exists. Apply the induction hypothesis to the components of T(I1∪ . . .∪
I l), and let Y be the corresponding contraction. Then V=Y◦T has all the desired properties.

Before constructing T, let us gather some elementary considerations, stated as Lemmata
2.3-2.6. The first one is straightforward.

2.3 Lemma. Let A,B, A′,B′ ∈S1. Then

|A′−B′| ≤ |A−B|⇐⇒ `(�A′B′)≤ `(�AB). (2.2)
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2.4 Lemma. Write S1 = I∪J, where I, J are closed arcs with disjoint interiors. Let T :S1 →S1.
Then T is a contraction on S1 if and only if T is a contraction on I and on J, .

Proof of Lemma 2.4. It suffices to prove the if part. This amounts to the inequality

|T(A)−T(B)| ≤ |A−B| if A ∈ I and B ∈ J. (2.3)

By continuity, we may further assume that B 6= −A. By (2.2), inequality (2.3) amounts to
`(�T(A)T(B)) ≤ `(�AB). Let C ∈ ∂I = ∂J be such that �AB = �AC∪�CB. Since A,C ∈ I and B,C ∈ J,
we find that

`(�T(A)T(B))≤ `(�T(A)T(C))+`(�T(C)T(B))≤ `(�AC)+`(�CB)= `(�AB).

2.5 Lemma. Let B :R→R be a 2π-periodic contraction. Let T :S1 →S1, T(eıθ) = eıB(θ). Then T
is a contraction.

Proof of Lemma 2.5. Let ω,η ∈S1. We may write ω= eıθ, η= eıϕ, with |θ−ϕ| ≤ π. Since B is a
contraction, we have B(θ)−B(ϕ)= t(θ−ϕ) for some t ∈ [−1,1]. We find that

|T(ω)−T(η)|2 = 2−2cos(B(θ)−B(ϕ))= 2−2cos(t(θ−ϕ))≤ 2−2cos(θ−ϕ)= |ω−η|2.

2.6 Lemma. Let L1, . . . ,L l be closed intervals on the real line, with disjoint interiors and such
that their union is an interval, say L = L1∪. . .∪L l = [a,b]. Set ` j = `(L j), j ∈ J1, lK. Let M ⊂ J1, lK
be a non empty set of indices and let α,β ∈R.

The following are equivalent:

a) There is a contraction X : L → R such that X(a) = α, X(b) = β and, restricted to each L j
with j ∈ M, X is a translation.

b) It holds that∑
j∈M

` j −
∑
j 6∈M

` j ≤β−α≤ ∑
j∈M

` j +
∑
j 6∈M

` j. (2.4)

Proof of Lemma 2.6. a)=⇒b) We may assume that L j = [x j, x j+1], with x1 = a and xl+1 = b.
Then

β−α=X(xl+1)−X(x1)=∑
(X(x j+1)−X(x j))

= ∑
j∈M

(X(x j+1)−X(x j))+
∑
j 6∈M

(X(x j+1)−X(x j))

= ∑
j∈M

` j +
∑
j 6∈M

(X(x j+1)−X(x j)) ∈
[ ∑

j∈M
` j −

∑
j 6∈M

` j,
∑
j∈M

` j +
∑
j 6∈M

` j

]
.

b)=⇒a) Let t ∈ [−1,1] be such that β−α= ∑
j∈M

` j+ t
∑
j 6∈M

` j. Then the continuous piecewise linear

map X satisfying X(a) =α and having, in L j, slope 1 if j ∈ M, respectively slope t if j 6∈ M, has
all the required properties.

Proof of Lemma 2.1 completed. We consider, on S1, the direct orientation with respect to D. We
may assume that, with respect to this orientation, the arcs I j are ordered I1, . . . , I l . Let M j be
the arc of S1 placed after I j and before I j+1 (with the convention I l+1 = I1). Equivalently, the
initial point of M j is the final point of I j, and the final point of M j is the initial point of I j+1.
Let ` j = `(I j) and q j = `(M j).

Our purpose is to construct, for a value of k ∈ J1, lK to be determined later, a contraction
T :S1 →S1 such that:

a) T is the identity on Ik+1.
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b) T is a rotation on each I j.

c) T(Ik) intersects Ik+1.

Indeed, assume that, for at least a value k ∈ J1, lK, such a T exists. Then T(I1 ∪ . . .∪ I l) has at
most l−1 connected components. As explained before the statement of Lemma 2.3, this allows
us to complete the proof of Lemma 2.1.
Let us first derive a necessary and sufficient condition for the existence of such T when k = 1;
we next transpose this condition to the other values of k. The final argument will imply that
this is possible for at least a value of k in J1, lK.

We may assume that I1 starts at z = 1. In view of Lemmata 2.5, 2.6, and of the fact that
the exponential map changes translations into rotations, existence of T is equivalent to the
existence of a contraction B : [0,2π]→R such that:

a) B(0)=B(2π).

b) B is the identity on {`1 +q1}+ [0,`2].

c) B is of the form θ 7→ θ+a j on each segment
{∑

n< j(`n +qn)
}+ [0,` j+1].

d) B([0,`1]) intersects {`1 +q1}+ [0,`2].

Let x = B(0) = B(2π). In view of Lemma 2.6, existence of B satisfying a)-c) on [0,`1 +`2 +q1] is
equivalent to

`1 +`2 −q1 ≤ `1 +`2 +q1 − x ≤ `1 +`2 +q1,

i.e., to

0≤ x ≤ 2q1. (2.5)

On the other hand, condition d) is equivalent to

q1 ≤ x ≤ `1 +`2 +q1. (2.6)

Finally, existence of B satisfying a)-c) on [`1 +`2 +q1,2π] together with B(2π)= x amounts to∑
j 6=1,2

` j −
∑
j 6=1

q j ≤ x− (`1 +`2 +q1)≤ ∑
j 6=1,2

` j +
∑
j 6=1

q j,

which is equivalent to∑
` j −

∑
q j +2q1 ≤ x ≤ 2π. (2.7)

In view of inequalities (2.5)-(2.7), existence of B for some k is equivalent to

max
{
0,qk,

∑
` j −

∑
q j +2qk

}≤min {2qk,`k +`k+1 +qk,2π}

or, equivalently, to

max
{
qk,

∑
` j −

∑
q j +2qk

}≤min {2qk,`k +`k+1 +qk} . (2.8)

Inequality (2.8) amounts to four inequalities. It is easy to see that two of them are automati-
cally satisfied, and that the two others are∑

` j −
∑

q j +2qk ≤ 2qk, (2.9)

respectively∑
` j −

∑
q j +2qk ≤ `k +`k+1 +qk. (2.10)

Inequality (2.9) is satisfied for each k, since by hypothesis we have
∑
`(I j)=

∑
` j ≤π, and thus∑

` j −
∑

q j =
∑
` j −

(
2π−∑

` j
)≤ 0.

On the other hand, we claim that (2.10) holds for at least one k. Indeed, argue by con-
tradiction: if

∑
` j −

∑
q j +2qk > `k +`k+1 +qk for each k, then we obtain by summation that

(l−2)
∑
` j > (l−1)

∑
q j. But this is impossible, since

∑
` j ≤

∑
q j.

The proof of Lemma 2.1 is complete.
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3 Lower bounds for the energy of rotational mini-
mizers
Let Ω be an open set in R2. All results in this section apply to potentials of the form F(x, |u|2),
where

a) F :Ω×R+ →R+.

b) F(x,1)= 0, ∀x ∈Ω.

c) [0,1] 3 t 7→ F(x, t) is non increasing, ∀x ∈Ω.

d) F ∈ C1(Ω× [0,1]).

Unless stated otherwise, in all the results in this section we assume that a)-d) hold.
The energy associated to F is

E(u)= 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω

F(x, |u|2), ∀u ∈ H1(Ω;C).

3.1 Examples. We have in mind two typical examples:

a) F ≡ 0, leading to harmonic functions.

b) F(x, t) = 1
2ε2 w(x)(1 − t)2, with w ∈ C1(Ω;R+). This corresponds, e.g., to the standard

Ginzburg-Landau potential (when w ≡ 1) possibly after a conformal change of variables
(in which case w is the Jacobian of the conformal representation).

3.2 Lemma. Let F :Ω×R+ →R+ satisfy

a) F(x,1)= 0, ∀x ∈Ω.

b) F ∈ C1(Ω× [0,1]).

Let Ω be Lipschitz and let g ∈ H1/2(∂Ω;C) satisfy |g| ≤ 1. If u minimizes E in H1
g(Ω;C), then

|u| ≤ 1.
In particular, we have u ∈ C1,α

loc(Ω), 0<α< 1.

Proof. We have E(u) ≤ E(Π ◦ u), where Π is the nearest point projection onto D. Since the
differential of Π satisfies

|dΠ(z)ξ| < |ξ|, ∀ξ ∈R2 \{0}, ∀ z ∈C\D,

we find that ∇u = 0 a.e. in the set {x ∈Ω; |u(x)| > 1}, so that |u| ≤ 1 a.e.
The second part of the lemma follows from the boundedness of −∆u.

3.3 Definition. Let Ω ⊂ R2 be a bounded C1 domain. Let Γ j, j ∈ J0,kK, be the components of
∂Ω, with Γ0 enclosing Ω.

The map u ∈ H1(Ω;C) is a rotational minimizer8 if: for each α0, . . . ,αk ∈ S1 and for each
v ∈ H1(Ω;C) such that v =α ju on Γ j, j ∈ J0,kK, we have E(u)≤ E(v).

3.4 Remarks. In view of the specific form of the potential F, it is easy to see that:

a) When Ω is simply connected, rotational minimizer is the same as minimizer of E with
respect to its own boundary condition.

b) In general, the fact that u is a rotational minimizer is equivalent to: if v =α ju on Γ j with
j ≥ 1 (with α j as above), then E(u)≤ E(v).

3.5 Examples.

a) A prescribed degrees minimizer is a rotational minimizer.

8With respect to E, but this will not be specified.
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b) A more involved example: let Ω be simply connected. Let u minimize E with respect
to its own boundary condition. Assume that p < essinf

∂Ω
|u| is a regular value of |u|. Let

ω = {x ∈Ω; |u(x)| < p}. Then u is a rotational minimizer on ω. To see this, we first note
that ω⊂Ω (this follows from the proof of (3.3) below). Let γ j, j ∈ J0, lK, be the components
of ∂ω, with γ0 enclosing ω. Let v ∈ H1(ω) be such that v = u on γ0, v =α ju on γ j, j ∈ J1, lK,
with α j ∈S1. Let ω j be the interior of γ j, j ∈ J0, lK. Let

w(x)=


u(x), in Ω\ω0

v(x), in ω

α ju(x), if x ∈ω j for some j ≥ 1

.

The inequality E(u)≤ E(w) (in Ω) implies E(u)≤ E(v) (in ω).

c) Let Ω be simply connected. Let u minimize E with respect to its own boundary condition.
Let ω ⊂ Ω be a C1 domain such that either ω ⊂ Ω or ∂Ω ⊂ ∂ω. Then u is a rotational
minimizer in ω. The argument is the same as in the previous item.

3.6 Theorem. Let u be a rotational minimizer. Assume that t ≤ |u| ≤ 1 on ∂Ω. Let s = inf
Ω

|u|.
Then (with As,t as in Section 1.1 f))∫

Ω
|∇u|2 ≥ 4As,t, (3.1)

and in particular

E(u)≥ 2As,t. (3.2)

3.7 Corollary. Let u be a rotational minimizer. Assume that |u| = 1 on ∂Ω and that u vanishes

at some point. Then
∫
Ω
|∇u|2 ≥ 2π.

The conclusion of the corollary is optimal: take Ω=D, F ≡ 0 and u(z)≡ z.

3.8 Remark. There is a simple proof of Corollary 3.7 when F ≡ 0 and Ω is simply connected.
Indeed, after a conformal change of variables we may assume that Ω=D and u(0) = 0. Write,
on S1, u = ∑

aneınθ. Condition u(0) = 0 reads a0 = 0. Condition |u| ≡ 1 on S1 implies 2π =∫
S1

|u|2 = 2π
∑ |an|2. On the other hand, it is easy to see that

∫
D
|∇u|2 = 2π

∑ |n||an|2. We find

that ∫
D
|∇u|2 = 2π

∑ |n||an|2 ≥ 2π
∑
n 6=0

|an|2 = 2π
∑ |an|2 = 2π.

3.9 Remark. By Remark 3.4 a), in a simply connected domain Theorem 3.6 applies to a min-
imizer u of E with respect to its own boundary condition. However, if, in a multiply connected
domain, we replace, in Theorem 3.6, the assumption that u is a rotational minimizer with the
weaker assumption that u minimizes E with respect to its own boundary condition, then the
conclusion of Theorem 3.6 need not hold anymore. Here is an example. Let Ω = D\Dt, with

0 < t < 1, F ≡ 0 and g(z) =
{

1, if |z| = 1
−1, if |z| = t

. Then the minimizer of E with datum g is the har-

monic extension of g, which vanishes on a circle. However, we have, by a direct calculation,
E(u)→ 0 as t ↘ 0.

Proof of Theorem 3.6. We may assume that s < t, for otherwise there is nothing to prove. We
start by noting that

lim
ε→0

inf {|u(x)|; x ∈Ω,dist(x,∂Ω)< ε}≥ t. (3.3)
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This can be obtained (via some arguments developed in [10, 11]) as follows. The map g = u|∂Ω
is in H1/2, and thus in VMO (since, in one dimension, we have H1/2 ,→VMO [10, Example 2, p.
201]). Since g is in VMO and takes its values into the closed set F = {z ∈ C; |z| ≥ t}, it follows
that for x near ∂Ω the harmonic extension g̃ of g takes its values near F [11, Theorem A.3.2,
p. 357]; in particular, (3.3) holds when u is replaced with g̃. On the other hand the map u− g̃
vanishes on ∂Ω and (using the equation satisfied by u) belongs to C1,α(Ω) for each 0 < α < 1.
This easily implies (3.3).

We find that, for 0 < s ≤ m < t, the level lines Cm = {x ∈Ω; |u(x)| = m} are compact. Since
u ∈ C1(Ω), Sard’s lemma implies that, for a.e. m, Cm is a finite union of C1 disjoint simple
closed curves.

We fix a point x0 ∈Ω such that |u(x0)| = s.

3.10 Lemma. Let s < m < t be a regular value of |u|. Let ω be the connected component of the
set {x ∈Ω; |u(x)| < m} containing x0. Then:
Either

a) `(u(∂ω))>πm.
Or

b) There is some contraction P preserving the modulus such that v = P ◦ u is a rotational
minimizer and such that v(∂ω) is connected.

Proof of Lemma 3.10. We may write ∂ω = γ0 ∪ . . .∪γl , where the components γ j are disjoint
and γ0 encloses ω. Assume that `(u(∂ω)) ≤ πm. Since u(∂ω) ⊂ Cm, Lemma 2.1 applied to the
arcs u(γ j), j ∈ J0, lK, implies the existence of a contraction P :R2 →R2 such that P preserves the
modulus and such that P is a rotation on each u(γ j). We may clearly assume that P restricted
to u(γ0) is the identity. Let, for j ≥ 1, R j be a rotation satisfying P=R j on u(γ j). Let, for j ≥ 0,
ω j be the intersection of Ω with the interior of γ j. Set

v(x)=


u(x), if x ∈Ω\ω0

P(u(x)), if x ∈ω
R j(u(x)), if x ∈ω j for some j ≥ 1

.

Let Γn, n ∈ J0,kK, be the components of ∂Ω. Then, for each n, there is some αn ∈ S1 such

that v =αnu on each Γn. In addition, we clearly have
∫
Ω

F(x, |v|2) =
∫
Ω

F(x, |u|2) and
∫
Ω
|∇v|2 ≤∫

Ω
|∇u|2. Therefore, E(v)≤ E(u). To summarize: on each component Γn of ∂Ω, we have v =αnu,

with αn ∈S1, and E(v) ≤ E(u). Since u is a rotational minimizer, we find that so is v. Finally,
v(∂ω) is connected by construction.

3.11 Lemma. Let s < m < t be a regular value of |u|. Then∫
{|u|=m}

|∇(u/|u|)| ≥ 2`s,m/m. (3.4)

Recall that `s,m is the length of Cm ∩ {Re z > s}.

Proof of Lemma 3.11. We use the notation in the statement and proof of Lemma 3.10. Let ω be
the connected component of the set {x ∈Ω; |u(x)| < m} containing x0. We write ∂ω= γ0 ∪ . . .∪γl .
We start by proving that∫

γ j

|∇(u/|u|)| ≥
∫
γ j

|∂τ(u/|u|)| = 1
m

∫
γ j

|∂τu| ≥ 2`(u(γ j))/m; (3.5)

here, ∂τ stands for the tangential derivative on γ j.
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(3.5) is obtained as follows. Let A,B ∈ γ j be such that the endpoints of u(γ j) are u(A) and
u(B).9 Let Cp, p = 1,2, be the two arcs of γ j with endpoints A and B. Write, on each Cp,
u = meıϕp . Since |ϕp(A)−ϕp(B)| = `(u(γ j))/m, p = 1,2, we find that∫

γ j

|∂τ(u/|u|)| =∑
p

∫
Cp

|∂τϕp| ≥
∑
p
|ϕp(A)−ϕp(B)| ≥ 2`(u(γ j))/m.

In particular, the conclusion of Lemma 3.11 holds if `(u(∂ω))>πm.
Consider now the case where `(u(∂ω)) ≤ πm. Let v be as in Lemma 3.10. Since v = P ◦ u,

with P contraction preserving the modulus, we find that∫
{|u|=m}

|∇(u/|u|)| ≥
∫

{|u|=m}
|∂τ(u/|u|)| ≥

∫
{|u|=m}

|∂τ(v/|v|)| =
∫

{|v|=m}
|∂τ(v/|v|)| ,

so that it suffices to prove that∫
∂ω

|∂τ(v/|v|)| ≥ 2`s,m/m. (3.6)

This is proved by contradiction. Assume that∫
∂ω

|∂τ(v/|v|)| < 2`s,m/m. (3.7)

By combining (3.5) (applied to v) with (3.7) and with the fact that v(∂ω) is connected, we find
that v(∂ω) is contained in an arc C ⊂ Cm of length < `s,m. Without loss of generality, we
may assume that C is centered at m.10 Condition `(C ) < `s,m implies that there exists some
q ∈ (s,m) such that

C ⊂ S = {z ∈D; Re z ≥ q}. (3.8)

We next note that v is, in ω, a minimizer of E with respect with its own boundary condition,
and that |v(x0)| = s, so that v(x0) 6∈ S. Property v(x0) 6∈ S combined with (3.8) contradicts our
next result. This completes the proof of Lemma 3.11.

3.12 Lemma. Let S be as in (3.8). Let u minimize E in some Lipschitz domain ω with respect
with its own boundary datum g ∈ H1/2 ∩C0(∂ω;C). If g(∂ω)⊂ S, then u(ω)⊂ S.

Special cases of this result appear in [2, Lemma 8] and [13, Lemma 2]. However, the argu-
ments there do not cover the case F ≡ 0.

Proof of Lemma 3.12. We may assume that ω is connected. By Lemma 3.2, we have |u| ≤ 1 in
ω and u is continuous in ω.

Let g = u|∂ω. The map v = |Re u|+ ıIm u equals g on ∂ω and has the same energy as u. Thus
v minimizes E. In particular, v is continuous. Therefore, if we prove that v(ω)⊂ S, then we will
also have u(ω)⊂ S. In conclusion, we reduced the problem to the case where Re u ≥ 0.

Let Π be the orthogonal projection on S. When z ∈D∩ {Re z ≥ 0}, we have (with q given by
(3.8))

Π(z)=


z, if Re z ≥ q
q+ ıIm z, if |Im z| ≤

√
1− q2 and Re z < q

q+ ı(sgn Im z)
√

1− q2, if |Im z| >
√

1− q2 and Re z < q

. (3.9)

The following inequality is straightforward and left to the reader.

|z| ≤ |Π(z)| ≤ 1 for z ∈D∩ {Re z ≥ 0}. (3.10)

9The argument developed below holds under the assumption that each u(γ j) is strictly included in Cm; indeed,
u(γ j) is supposed to have endpoints. In the case where one of these arcs, say u(γ0), coincides with Cm, the proof of

(3.5) yields the inequality
∫
γ0

|∇(u/|u|)| ≥ 2π. In this case, the conclusion of Lemma 3.11 is clear.
10Here, m is identified with the complex number m+ ı0.
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Set w = Π ◦ u, which equals g on ∂ω. Since Π is a contraction, we have |∇w| ≤ |∇u|. This
fact combined with (3.10), with the fact that u minimizes E, and with property c) satisfied
by the potential F, implies that w is a minimizer of E with boundary data g. Actually, a bit
more can be said. Indeed, by combining the minimality of u with the fact that |∇w| ≤ |∇u|
and with the inequality F(x, |w|2) ≤ F(x, |u|2), we come up with the equalities |∇w| = |∇u| and
F(x, |w|2)= F(x, |u|2).11

Consider now the open set

V = {x ∈ω;u(x) ∉ S}= {x ∈ω;Re u < q}.

Our aim is to prove that V is empty. Let Π=Π1 + ıΠ2 and set

F = {z ∈D\ S; Re z ≥ 0}.

If z ∈ F, then Π1(z) = q and Π2(z) depends only on Im z. Moreover, it is clear, from the specific
form of Π2, that

|Π2(z)−Π2(ξ)| ≤ |Im z− Im ξ|, ∀ z,ξ ∈ F.

This implies at once that ∇(Re w)= 0 and |∇(Im w)| ≤ |∇(Im u)| a.e. in V . These facts combined
with the property |∇w| = |∇u| a.e. imply ∇(Re u)= 0 a.e. in V , and thus Re u is locally constant
in V .

Assuming, by contradiction, that V is not empty, we claim that Re u = q on ∂V . Indeed,
let V0 be a connected component of V . If x ∈ ∂V0, then either u(x) ∈ S, or x ∈ ∂ω. In the first
case, the definition of V implies Re u(x) = q; in the latter, we obtain the same conclusion via
the fact that g ∈ C0(∂ω;C). Since Re u is locally constant in V , we find that Re u = q in V . This
contradiction completes the proof of Lemma (3.12).

Proof of Theorem 3.6 completed. Write, locally in the set U = {x ∈ Ω;u(x) 6= 0}, u in the form
u = ρeıϕ, with ρ = |u| and ϕ real-valued and C1. On the one hand, we have

|∇u|2 = |∇ρ|2 +ρ2|∇ϕ|2 ≥ 2ρ|∇ϕ||∇ρ| in U . (3.11)

On the other hand, the conclusion of Lemma 3.11 can be written as∫
{ρ=m}

∣∣∇ϕ∣∣≥ 2`s,m/m. (3.12)

By combining (3.11) with (3.12) and applying twice the co-area formula, we find that

1
2

∫
Ω
|∇u|2 ≥

∫
U
ρ|∇ϕ||∇ρ| =

∫ t

s

(∫
{ρ=m}

m|∇ϕ|
)

dm ≥ 2
∫ t

s
`s,m dm = 2As,t.

4 Wente estimates and applications
Throughout this section, Ω is a C1 bounded domain in R2.

The standard Wente estimates [25] apply to solutions u vanishing at infinity of the equation
−∆u = Jac(g,h) in R2. A sharp form of these estimates in domains has been found by Bethuel
and Ghidaglia [6] and is recalled below.

4.1 Theorem ([6]). Let f ∈ H1
0(Ω), g,h ∈ H1(Ω). Let u ∈ W1,1

0 (Ω) be the solution of −∆u =
Jac(g,h). Then

a) u ∈ L∞(Ω) and

‖u‖L∞ ≤ 2‖∇g‖L2‖∇h‖L2 . (4.1)

11All these equalities are to be understood in the a.e. sense.
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b) u ∈ H1
0(Ω) and

‖∇u‖L2 ≤
p

2‖∇g‖L2‖∇h‖L2 . (4.2)

c) We have∣∣∣∣∫
Ω

f Jac(g,h)
∣∣∣∣≤p

2‖∇ f ‖L2‖∇g‖L2‖∇h‖L2 . (4.3)

As a consequence of (4.3), the map

(H1(Ω))2 3 (g,h) 7→ Jac(g,h) ∈ H−1(Ω)

is continuous. A stronger property is given by the following

4.2 Lemma. Let g ∈ H1(Ω). Then the map

H1(Ω) 3 h 7→ Jac(g,h) ∈ H−1(Ω)

is compact.

Proof. Compactness from H1(Ω) into D′(Ω) is a special case compensated compactness [21,
Théorème 1]. However, compactness from H1(Ω) into H−1(Ω) requires an additional argument.
We have to prove that, if hn * 0 in H1(Ω), then Jac(g,hn) → 0 in H−1(Ω). Equivalently, if
un ∈ H1

0(Ω) solves −∆un = Jac(g,hn), we have to prove that un → 0 in H1(Ω). By compensated
compactness, we know that un → 0 in D′(Ω). Since, on the one hand, (un) is bounded in H1

0(Ω)
(by (4.2)) and, on the other hand, un → 0 in D′(Ω), the Rellich-Kondratchov theorem implies
that un → 0 in L2(Ω). By (4.1), we have |un| ≤ C. Consequently, we have un∇g → 0 in L2(Ω).
We find that∫

Ω
|∇un|2 =

∫
Ω

un(−∆un)=
∫
Ω

(un∇g)∧∇hn → 0,

so that un → 0 in H1(Ω).

The above lemma is useful in establishing a crucial estimate, Lemma 4.4 below. For the
convenience of the reader, we start by stating and proving a baby estimate, Lemma 4.3 below.
Lemma 4.4 is a more involved variant of Lemma 4.3.

4.3 Lemma. Let (gn), (hn) ⊂ H1(Ω). Assume that gn → g in H1(Ω). Let (an) be a sequence of
bounded nonnegative measurable functions in Ω satisfying an →∞ a.e. Let un ∈ H1

0(Ω) be the
solution of

−∆un +anun = Jac(gn,hn). (4.4)

Then

‖∇un‖L2 = o
(‖∇hn‖L2

)
as n →∞.

Proof. We may assume that ‖∇hn‖L2 = 1; in this case, we have to prove that ‖∇un‖L2 → 0. By
a standard argument, it suffices to establish this property along a subsequence. Therefore, we
may further assume that hn * h in H1(Ω). Let Fn = Jac(gn,hn) and F = Jac(g,h). By (4.2) and
Lemma 4.2, we have Fn → F in H−1(Ω).

If we multiply (4.4) by un and use (4.3), we find that∫
Ω
|∇un|2 ≤

∫
Ω

unFn ≤
p

2‖∇un‖L2‖∇gn‖L2‖∇hn‖L2 ,

13



so that (un) is bounded in H1(Ω). On the other hand, we have (again, by multiplying (4.4)

by un)
∫
Ω

anu2
n ≤

∫
Ω

unFn, so that the quantity
∫
Ω

anu2
n is uniformly bounded. We find that∫

Ω
u2

n → 0.12

To summarize: we proved that (up to a subsequence) un * 0 in H1(Ω). Finally, we have∫
Ω
|∇un|2 ≤

∫
Ω

unFn → 0

(since un * 0 in H1(Ω) and Fn → F in H−1(Ω)), so that un → 0 in H1(Ω).

4.4 Lemma. Let gn,hn,an be as in Lemma 4.3. Assume that vn ∈ H1
0(Ω) satisfies

−∆vn +anvn = Jac(gn,hn)+divRn +vnSn +Tn, (4.5)

where

‖Rn‖L2 = o
(‖∇vn‖L2

)
, ‖Sn‖L2 =O

(‖∇hn‖L2
)
, ‖Tn‖L1 =O

(‖∇hn‖2
L2

)
. (4.6)

Assume, in addition,

vn → 0 uniformly in Ω as n →∞. (4.7)

Then

‖∇vn‖L2 = o
(‖∇hn‖L2

)
as n →∞.

Proof. We start as in the proof of Lemma 4.3: we assume that hn * h, and let Fn = Jac(gn,hn),
F = Jac(g,h). If we multiply (4.5) by vn, we find that∫

Ω
|∇vn|2 ≤

∫
Ω

Fnvn −
∫
Ω

Rn ·∇vn +‖vn‖2
L∞

∫
Ω
|Sn|+‖vn‖L∞

∫
Ω
|Tn|. (4.8)

Using (4.6) and (4.7), we find that (vn) is bounded in H1(Ω). Since (using again (4.5)) we have∫
Ω

anv2
n ≤

∫
Ω

Fnvn −
∫
Ω

Rn ·∇vn +‖vn‖2
L∞

∫
Ω
|Sn|+‖vn‖L∞

∫
Ω
|Tn|,

we find that
∫
Ω

anv2
n is bounded uniformly in n, and thus (as in the proof of Lemma 4.3) vn * 0

in H1(Ω). Using (4.8), we obtain that vn → 0 in H1(Ω).13

5 Degree, lifting, and the Ginzburg-Landau equation
For the convenience of the reader, we gather here some known facts used in the proofs of
Theorems 1.2 and 1.5. The references for this section are: for the degree, [10], [11], [8], [9]; for
lifting, [7], [9]; for GL, [4], [16], [1].

Let Γ be a smooth simple planar curve. A map g ∈ H1/2(Γ;S1) has a well-defined degree
(winding number), denoted deg(g,Γ). This degree is defined as follows: smooth maps are dense
in H1/2(Γ;S1), and the degree is continuous with respect the H1/2 convergence. Thus we may
define

deg(g,Γ)= limdeg(gn,Γ)

12The abstract fact we use is the following: if (un) is compact in L2, an ≥ 0 and an → ∞ a.e., and if
∫

anu2
n is

bounded, then un → 0 in L2.
13Here, we use: vn * 0 in H1(Ω) and Fn → F in H−1(Ω) for the first integral on the right-hand side, vn * 0 in H1(Ω)

for the second one, and ‖vn‖L∞ → 0 combined with (4.6) for the two last ones.
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for some sequence (gn)⊂ C∞(Γ;S1) such that gn → g dans H1/2. The degree defined in this way
does not depend on the choice of the sequence (gn) and is continuous with respect to the H1/2

convergence.
The degree of H1/2 maps inherits some well-known properties of the degree of continuous

maps:

a) deg(gh,Γ)= deg(g,Γ)+deg(h,Γ).

b) deg(g/h,Γ)= deg(g,Γ)−deg(h,Γ).

c) deg(g,Γ)= 0⇐⇒ g = eıϕ for some ϕ ∈ H1/2(Γ;R).
Moreover,

d) If g ∈ C∩H1/2(Γ;S1), then the degree of g in the sense H1/2 maps is the same as the degree
of g in the sense of continuous maps.

We consider, for H1/2 maps defined on Γ, the following semi-norm:

|g|2H1/2 =
∫
Ω
|∇u|2;

here, Ω is the interior of Γ and u is the harmonic extension of g. This semi-norm is invariant
with respect to conformal representations; therefore, we will consider, in what follows, only the
case Γ=S1 and Ω=D; the general case reduces to this one, by the Riemann mapping theorem.

If g :S1 →C, and if we write g =∑
aneınθ, then

e) |g|2H1/2 = 2π
∑ |n||an|2.

f) If, in addition, g is S1-valued, then deg(g,S1)=∑
n|an|2.

In particular, if |g|2H1/2 < 2π, then deg(g,Γ) = 0, and thus we may write g = eıϕ for some ϕ ∈
H1/2(Γ;R). The next property asserts that, when |g|H1/2 is sufficiently small, we may control ϕ.

g) There is some δ > 0 such that, if |g|H1/2 < δ, then we may write g = eıϕ, with |ϕ|H1/2 ≤
C|g|H1/2 .

h) In particular, if |g|H1/2 < δ, then g has an extension v ∈ H1(Ω;S1) such that
∫
Ω
|∇v|2 ≤

C2δ2.14

Another important property of S1-valued maps is the following:

i) Let Ω⊂ R2 be a C1 bounded domain. Let g ∈ H1/2(∂Ω;S1). Let u be the harmonic exten-
sion of g. Then

lim
x→∂Ω

|u(x)| = 1 uniformly in x. (5.1)

The same property holds for a minimizer of Eε with boundary datum g or, more generally,
for solutions of{

∆u ∈ L∞(Ω) in Ω
u = g on ∂Ω

. (5.2)

We next consider S1-valued maps in domains. Let u ∈ H1(Ω;S1), where Ω is a bounded domain
in R2. Then we may write, locally in Ω, u = eıϕ, with ϕ ∈ H1. If Ω is simply connected, then we
may choose a global phase ϕ. However, when Ω is multiply connected, it is not always possible
to pick a global ϕ. As in the case of continuous maps, we have the following equivalence:

j) Let Ω ⊂ R2 be a C1 bounded domain. Let u ∈ H1(Ω;S1). We may write, globally in Ω,
u = eıϕ, with ϕ ∈ H1(Ω;R), if and only if deg(u,Γ)= 0 for each component Γ of ∂Ω.15 16

14Indeed, consider v = eıψ, where ψ is the harmonic extension of ϕ.
15Note that u|Γ ∈ H1/2(Γ;S1), so that deg(u,Γ) makes sense.
16In the special case where Ω is simply connected, this condition is always satisfied, and the global lifting ϕ exists.
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Similar results hold for maps which are far away from zero. More specifically, consider a map
u ∈ H1(Ω;C) such that

0<α≤ |u| ≤β<∞ in Ω. (5.3)

Then we may write, locally in Ω, u = |u|eıϕ, with ϕ ∈ H1. In this context, the analog of j) is
given by

k) Let Ω ⊂ R2 be a C1 bounded domain. Let u satisfy (5.3). We may write, globally in Ω,
u = |u|eıϕ, with ϕ ∈ H1(Ω;R), if and only if deg(u/|u|,Γ)= 0 for each component Γ of ∂Ω.

In simply connected domains, there is a connection between phases of S1-valued maps and
phases of their traces.

l) LetΩ⊂R2 be a C1 bounded simply connected domain. Let u ∈ H1(Ω;S1) and set g = u|∂Ω ∈
H1/2(∂Ω;S1). Write u = eıϕ and g = eıϕ0 , where ϕ ∈ H1 and ϕ0 ∈ H1/2. Then ϕ|∂Ω = ϕ0
modulo a constant multiple of 2π. Similar result if we assume (5.3).
Easy consequences of this fact are given in the next item.

m) Let Ω be smooth bounded simply connected. Let g ∈ H1/2(∂Ω;S1). Write g = eıϕ0 , where
ϕ0 ∈ H1/2. Consider the class

C = {u ∈ H1(Ω;S1), u|∂Ω = g}.

Then

C = {eıϕ; ϕ ∈ H1(Ω;R), ϕ|∂Ω =ϕ0}.

If, in addition, Φ is the harmonic extension of ϕ0, then u0 = eıΦ is the only minimizer of

C 3 u 7→
∫
Ω
|∇u|2.

We next turn to the question of the form of the GL equation in polar coordinates.
Consider first the case of Dirichlet boundary condition in a simply connected domain, with

boundary datum g of zero degree. If u is a critical point of Eε such that essinf |u| > 0, then we
may write (globally) u = ρeıϕ, with ρ = |u| and ϕ ∈ H1. In addition, we may write g = eıϕ0 , with
ϕ0 ∈ H1/2(∂Ω;R), and then (possibly after subtracting a suitable multiple of 2π from ϕ) we have
the system

div(ρ2∇ϕ)= 0 in Ω

−∆ρ = 1
ε2ρ(1−ρ2)−ρ|∇ϕ|2 in Ω

ρ = 1 on ∂Ω

ϕ=ϕ0 on ∂Ω

. (5.4)

The first equation, together with the fact that Ω is simply connected, allows to define a poten-
tial H satisfying

∂H
∂x

= ρ2 ∂ϕ

∂y
,
∂H
∂y

=−ρ2 ∂ϕ

∂x
,

∫
Ω

H = 0, (5.5)

div
(

1
ρ2∇H

)
= 0. (5.6)

Consider now a second critical point, v, satisfying also essinf |v| > 0. Then we may write v =
ρηeı(ϕ+ψ), where η= |v|/|u|, w = 1−η and ψ satisfy

div(ρ2η2∇ψ)= div(ρ2(1−η2)∇ϕ) in Ω
−∆w+aw = Jac(2H,w)+divR+wS+T in Ω
ψ= 0 on ∂Ω

w = 0 on ∂Ω

; (5.7)
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here,

a = 1
ε2ρ

4η(1+η), R =−(1−ρ2)∇w, S =−2ρ2∇ϕ ·∇ψ, T = ρ2η|∇ψ|2. (5.8)

We next present the analogs of (5.4)-(5.8) in the case of prescribed degrees in a (possibly mul-
tiply connected) domain. If u is a non vanishing critical point, then it may not be possible to
write, globally, u = ρeıϕ. However, the vector field ∇ϕ= (u/|u|)∧∇(u/|u|) is globally-defined, and
(5.4) becomes

div(ρ2∇ϕ)= 0 in Ω

−∆ρ = 1
ε2ρ(1−ρ2)−ρ|∇ϕ|2 in Ω

ρ = 1 on ∂Ω

∇ϕ ·ν= 0 on ∂Ω

. (5.9)

Thanks to the last equation in (5.9), the global potential H satisfying (5.5) and (5.6) still exists,
in this case.

If we consider another non vanishing critical point v, then we may write globally v = uηeıψ,
and (5.7) becomes

div(ρ2η2∇ψ)= div(ρ2(1−η2)∇ϕ) in Ω
−∆w+aw = Jac(2H,w)+divR+wS+T in Ω
∂ψ

∂ν
= 0 on ∂Ω

w = 0 on ∂Ω

. (5.10)

In both cases (i.e., Dirichlet boundary condition or prescribed degrees condition) there is a
formula relating Eε(v) to Eε(u):

Eε(v)=Eε(u)+ 1
2

∫
Ω

[
ρ2|∇η|2 +ρ2η2|∇ψ|2 + (η2 −1)Jac(2H,ψ)

]
+ 1

2

∫
Ω

1
2ε2ρ

4(1−η2)2.
(5.11)

Finally, for further use we discuss the analog of the above formulae when the GL energy is
replaced, more generally, by an energy of the form

E(u)= 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω

F(x, |u|2);

here, F ∈ C1. Let G(x, t)= ∂F
∂t

(x, t). Then (5.4) becomes
div(ρ2∇ϕ)= 0 in Ω
−∆ρ =−ρG(x,ρ2)−ρ|∇ϕ|2 in Ω
ρ = 1 on ∂Ω

ϕ=ϕ0 on ∂Ω

; (5.12)

(5.9) is affected similarly. Existence of H still holds, both in the case of Dirichlet and degrees
boundary condition.

On the other hand, (5.7) and (5.10) are still valid, with only one change in (5.8): R, S, T are
unchanged, while a is given by

a = ρ2 η

η−1
(G(x,ρ2η2)−G(x,ρ2)). (5.13)

Finally, (5.11) becomes

E(v)=E(u)+ 1
2

∫
Ω

[
ρ2|∇η|2 +ρ2η2|∇ψ|2 + (η2 −1)Jac(2H,ψ)

]
+ 1

2

∫
Ω

[
F(x,ρ2η2)−F(x,ρ2)−ρ2(η2 −1)G(x,ρ2)

]
.

(5.14)
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6 Proof of Theorem 1.5
We consider an energy of the form

E(u)= 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω

F(x, |u|2),

where F ∈ C1 is as in Section 3.
Let Ω⊂R2 be a C1 bounded domain. Denote by Γ j, j ∈ J0,kK, the components of ∂Ω, with Γ0

enclosing Ω. For prescribed degrees d j on the Γ j ’s, we let

M= inf{E(u);u has the prescribed degrees}.

In the definition of M it suffices to consider only maps u such that |u| ≤ 1. Indeed, we have
E(v) ≤ E(u), where v minimizes E with boundary condition u|∂Ω. By Lemma 3.2, we have
|v| ≤ 1.

6.1 Lemma. Let (un) be a minimizing sequence for M, satisfying |un| ≤ 1. If (possibly after
extracting a subsequence) un * u in H1(Ω), then

liminfE(un)≥ E(u)+π
k∑

j=0
|deg(un,Γ j)−deg(u,Γ j)|. (6.1)

Proof. This result was established in [1, Lemma 1] for the GL energy (without the assump-
tion |un| ≤ 1). Under the additional assumption |un| ≤ 1, the proof in [1] applies to general
nonlinearities.

6.2 Corollary. Assume that M<π. Then M is attained.17

Proof. Consider a minimizing sequence (un) satisfying |un| ≤ 1. Let, possibly after passing to
a subsequence, un * u in H1(Ω). By Lemma 6.1, we have

π>M≥ E(u)+π
k∑

j=0
|deg(un,Γ j)−deg(u,Γ j)|.

Thus u has the prescribed degrees and minimal energy.

We next state and prove a generalization of Theorem 1.5.

6.3 Theorem. Let F ∈ C1(Ω×R+;R+) satisfy

a) F(x,1)= 0, ∀x ∈Ω.

b) [0,1] 3 t 7→ F(x, t) is convex, ∀x ∈Ω.

Then there is some universal18 constant δ > 0 such that, if M < δ, then M is attained by a
minimizer unique modulo S1.

Before proceeding to the proof of Theorem 6.3, we note that F(x, t)= 1
2ε2 (1− t)2 satisfies the

hypotheses of Theorem 6.3, and thus Theorem 6.3 implies Theorem 1.5.

17The value π is sharp: if Ω is simply connected and we prescribe the degree 1 on the boundary, then M=π and (at
least for GL) M is not attained [1, Example 1].

18That is, independent of Ω, of the d j ’s, and of F.
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Proof. Assumption a) and b) imply that [0,1] 3 t 7→ F(x, t) is non increasing. In particular, we
may apply Theorem 3.6 to F. Let 0 < s < 1. Let, with the notations in Theorem 3.6, δ= δ(s) =
2As,1. If M≤ δ, then M is attained and, if u minimizes E, then |u| ≥ s in Ω.19 Let v be another
minimizer of u. The convexity of F for fixed x implies

F(x,ab)−F(x,b)−b(a−1)
∂F
∂t

(x,b)≥ 0, ∀x ∈Ω,∀b,ab ∈ [0,1]. (6.2)

By combining (6.2) with (5.14), we find that

E(v)≥ E(u)+ 1
2

∫
Ω

[
ρ2|∇η|2 +ρ2η2|∇ψ|2 + (η2 −1)Jac(2H,ψ)

]
. (6.3)

Using (6.3), the fact that s ≤ ρ,ρη≤ 1 and (4.3), we obtain

E(v)≥ E(u)+ s2

2

∫
Ω
|∇η|2 + s2

2

∫
Ω
|∇ψ|2 − 2

p
2

s
‖∇η‖L2‖∇H‖L2‖∇ψ‖L2 . (6.4)

By combining (5.5) with the identity |∇u|2 = ρ2|∇ϕ|2 +|∇ρ|2, we find that

‖∇H‖L2 = ‖ρ2∇ϕ‖L2 ≤ ‖ρ∇ϕ‖L2 ≤ ‖∇u‖L2 ≤
p

2M≤
p

2δ,

and thus

E(v)≥ E(u)+ s2

2

∫
Ω
|∇η|2 + s2

2

∫
Ω
|∇ψ|2 − 4

p
δ

s
‖∇η‖L2‖∇ψ‖L2 . (6.5)

Noting that δ decreases with s and that δ(1)= 0, we find that the equation

4
p
δ(s)
s

= s2 (6.6)

has exactly one solution.20 For this s, we find that

E(v)≥ E(u). (6.7)

By minimality, we must have E(v)= E(u). If we examine the equality case in (6.7) and use the
fact that M < δ, we find that equality can occur only if ∇ψ = 0 or ∇η = 0. Going back to (6.4),
this implies that we must have both ∇ψ= 0 and ∇η= 0. Thus v/u is constant.

7 Clearing out
In the GL jargon, clearing out means absence of vortices, i.e. of zeros. The usual arguments

leading to clearing out make use of the global estimate |∇u| ≤ C
ε

, 0< ε< 1, valid if the boundary

datum g is smooth and fixed [3]. Such an estimate need not hold if g is merely H1/2. The result
we present below holds for natural boundary datum and for general nonlinearities.

7.1 Proposition. Let Ω⊂R2 be a C1 bounded simply connected domain.
Let Fε :Ω×R+ →R+ satisfy

a) Fε(x,1)= 0, ∀x ∈Ω, ∀ε> 0.

b) [0,1] 3 t 7→ F(x, t) is non increasing, ∀x ∈Ω.

c) Fε ∈ C1(Ω× [0,1]), ∀ε> 0.

d) lim
ε→0

Fε(x, t)=∞, ∀x ∈Ω, ∀ t ∈ [0,1).

19This follows by combining Theorem 3.6 and Example 3.5 a) with Corollary 6.2.
20Maple® gives δ= 0.04518303544 . . .
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Let g ∈ H1/2(∂Ω;S1) have zero degree. Let

Eε(u)= 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω

Fε(x, |u|2).

If uε minimizes Eε with boundary datum g, then |uε|→ 1 uniformly in Ω as ε→ 0.

During the proof, we will use the following elementary fact.

7.2 Lemma. Assume that f , g are non negative measurable functions such that∫ µ

0

f (r)
r

dr < δ and
∫ µ

0
rg(r)dr < δ.

Then there is some r ∈ (0,µ) such that

f (r)< 4δ and g(r)< 4
δ

µ2 .

Proof of Lemma 7.2. We have∫ µ

0

(
f (r)

r
+ rg(r)

)
dr < 2δ=

∫ µ

0

4δr
µ2 dr.

From the mean value theorem, there exists some r such that
f (r)

r
+ rg(r) < 4δr

µ2 . It is easy to

see that this r has all the required properties.

Proof of Proposition 7.1. In the first part of the proof, we establish the H1-convergence of the
family (uε). We follow essentially [3, Proposition 1]. Since deg(g,∂Ω)= 0, we may write g = eıϕ0 ,
with ϕ0 ∈ H1/2(∂Ω;R) (Section 5 c)). Let Φ be the harmonic extension of ϕ0 and set u0 = eıΦ.
Then u0 is the unique minimizer of

{u ∈ H1(Ω;S1);u|∂Ω = g} 3 u 7→ 1
2

∫
Ω
|∇u|2

(Section 5 m)).
Since Eε(uε)≤ Eε(u0)= C0, we find that

∫
Ω

Fε(x, |uε|2)≤ 2C0. This inequality combined with

the fact that |uε| ≤ 1 (by Lemma 3.2) and with property d) of Fε implies that |uε|→ 1 a.e. As in
the proof of [3, Proposition 1], this implies that uε→ u0 in H1(Ω). As a byproduct, we obtain

lim
ε→0

∫
Ω

Fε(x, |uε|2)= 0.

Next, we prove that |uε|→ 1 uniformly possibly except a small boundary layer. This part of the
proof is partly inspired by the approach in [24].

Let d :Ω→R+ be a regularized distance to ∂Ω. More specifically, we assume that d ∈ C∞(Ω),
and

1
2

dist(x,∂Ω)≤ d(x)≤ dist(x,∂Ω), ∀x ∈Ω.

Let δ> 0 to be fixed later. Since uε→ u0 in H1(Ω), there are µ> 0 and ε0 > 0 such that∫
D(x,µ)

|∇uε|2 < δ, ∀x ∈Ω,∀ε< ε0 (7.1)

and ∫
{x∈Ω;dist(x,∂Ω)<µ}

|∇uε|2 < δ, ∀ε< ε0. (7.2)
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In addition, we may also assume that∫
Ω

Fε(x, |uε|2)< δ, ∀ε< ε0. (7.3)

By Sard’s lemma, we may also assume that µ has the following property: the set

ωµ = {x ∈Ω; d(x)<µ}

is smooth, with boundary ∂Ω∪Γµ, where

Γµ = {x ∈Ω; d(x)=µ}. (7.4)

Let x ∈Ω\ωµ. For ε< ε0, (7.1) and (7.3) combined with Lemma 7.2 applied with

f (r)= r
∫

C(x,r)
|∇uε|2, g(r)= 1

r

∫
C(x,r)

Fε(y, |uε|2)

imply the existence of an r ∈ (0,µ) such that

1
2π

(∫
C(x,r)

|∇uε|
)2

≤ r
∫

C(x,r)
|∇uε|2 < 4δ (7.5)

and

2π min
C(x,r)

Fε(y, |uε|2)≤ 1
r

∫
C(x,r)

Fε(x, |uε|2)< 4δ. (7.6)

We fix now some t ∈ (0,1). If ε0 and
δ

µ
are sufficiently small,21 then (7.6) combined with prop-

erties b) and d) of Fε implies that for some y ∈ C(x, r) we have (possibly after rotating uε)

uε(y) ∈R and uε(y)> 2+ t
3

. (7.7)

On the other hand, (7.5) implies that

|uε(y)−uε(z)| ≤
√

8πδµ2, ∀ z ∈ C(x, r).

This fact combined with (7.7) implies that

uε(C(x, r))⊂
{

z ∈C; Re z≥ 1+ t
2

}
,

provided ε0, δ and
δ

µ
are sufficiently small. We are now in position to invoke Theorem 3.6 to

infer that

uε(D(x, r))⊂
{

z ∈C; Re z≥ 1+ t
2

}
.

In particular, we have

|uε(x)| ≥ 1+ t
2

∀x ∈Ω\ωµ,∀ε< ε0. (7.8)

We next rule out the case of the boundary layer. In view of (7.4) and (7.8), we have

|uε| ≥ 1+ t
2

on ∂ωµ, ∀ε< ε0. (7.9)

By combining (7.9) with Example 3.5 c), (7.2) and with Theorem 3.6, we find that |uε| ≥ t in ωµ,
provided δ is sufficiently small.

Finally, for ε< ε0 we have |uε| ≥ t in Ω. The proof of Proposition 7.1 is complete.

21Smallness depending on t, not on x or ε.
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8 Proof of Theorem 1.2
Throughout this section, Ω⊂R2 is a C1 bounded simply connected domain.

We start with a slight generalization of Theorem 1.2 b).

8.1 Theorem. Let F ∈ C1(Ω×R+;R+) satisfy

a) F(x,1)= 0, ∀x ∈Ω.

b) [0,1] 3 t 7→ F(x, t) is convex, ∀x ∈Ω.

Let

E(u)= 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω

F(x, |u|2).

Let g ∈ H1/2(∂Ω;S1) have zero degree.
There is some universal constant δ > 0 such that, if |g|H1/2(∂Ω) < δ, then E has a unique

minimizer with Dirichlet datum g.

Proof. By Section 5 h), for small δ there is some v ∈ H1(Ω;S1) such that v|∂Ω = g and
∫
Ω
|∇v|2 <

C2δ2. In particular, if

M=min{E(u);u = g on ∂Ω},

then M≤ E(v) < C2δ2. Let 0 < s < 1. By Theorem 3.6 and Remark 3.4 a), we have |u| ≥ s in Ω,
provided δ is sufficiently small. We may now argue as in the proof of Theorem 6.3.

We continue with a more general form of Theorem 1.2 a).

8.2 Theorem. Let Fε ∈ C1(Ω×R+;R+) satisfy

a) Fε(x,1)= 0, ∀x ∈Ω.

b) [0,1] 3 t 7→ Fε(x, t) is convex, ∀x ∈Ω, ∀ε> 0.

c) lim
ε→0

essinf
t∈[s,1]

∂2Fε

∂t2 (x, t)=∞, ∀x ∈Ω, ∀ s ∈ [0,1).

Let

Eε(u)= 1
2

∫
Ω
|∇u|2 + 1

2

∫
Ω

Fε(x, |u|2).

Let g ∈ H1/2(∂Ω;S1) have zero degree. Then, for small ε, Eε has a unique minimizer with
Dirichlet datum g.

Proof. Let us start by noting that properties a)-c) of Fε imply

d) lim
ε→0

Fε(x, t)=∞, ∀x ∈Ω, ∀ t ∈ [0,1).

e) lim
ε→0

inf
ρ,ρη∈[s,1]

ρ2 η

η−1

(
∂Fε

∂t
(x,ρ2η2)− ∂Fε

∂t
(x,ρ2)

)
=∞, ∀x ∈Ω, ∀ s ∈ [0,1).

Write g = eıϕ0 , with ϕ0 ∈ H1/2(∂Ω;R) (cf Section 5 c)). Let Φ be the harmonic extension of ϕ0.
Let u = uε, v = vε be minimizers of Eε.

By Proposition 7.1, we have

|u|→ 1 uniformly in Ω as ε→ 0. (8.1)

By Section 5 j), we may write, for small ε, u = ρeıϕ, with ρ = ρε = |u| ∈ H1(Ω) and ϕ=ϕε ∈ H1(Ω)
satisfy ρ→ 1 uniformly in Ω as ε→ 0 and ϕ|∂Ω =ϕ0. We claim that

ϕ→Φ in H1(Ω) as ε→ 0. (8.2)
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Indeed, this follows from (8.1) combined with the equation{
div(ρ2∇(ϕ−Φ))= div((1−ρ2)∇Φ) in Ω
ϕ−Φ= 0 on ∂Ω

satisfied by ϕ−Φ, cf (5.4).
Let H = Hε be defined by (5.5). By (8.2), we have

H → H0 in H1(Ω), (8.3)

where H0 is defined by

∂H0

∂x
= ∂Φ

∂y
,
∂H0

∂y
=−∂Φ

∂x
,

∫
Ω

H0 = 0.

Write, for small ε, v = uηeıψ, with η= ηε, ψ=ψε and w = wε = 1−ηε satisfying

w → 0 uniformly in Ω as ε→ 0 (8.4)

and (5.10). Property e) of Fε implies that a = aε given by (5.13) satisfies

a(x)→∞ as ε→ 0, ∀x ∈Ω. (8.5)

Thanks to (5.8), (5.10), (8.3), (8.4) and (8.5), we are in position to apply Lemma 4.4 in order to
obtain

‖∇η‖L2 = ‖∇w‖L2 = o
(‖∇ψ‖L2

)
as ε→ 0. (8.6)

As noted in the proof of Theorem 6.3, property b) of Fε used in conjunction with (5.14) implies
that

Eε(v)≥ Eε(u)+ 1
2

∫
Ω

[
ρ2|∇η|2 +ρ2η2|∇ψ|2 + (η2 −1)Jac(2H,ψ)

]
. (8.7)

In turn, (8.7) combined with (4.3) implies that, for a fixed s ∈ (0,1) and sufficiently small ε,

Eε(v)≥ Eε(u)+ s2

2

∫
Ω
|∇η|2 + s2

2

∫
Ω
|∇ψ|2 − 2

p
2

s
‖∇η‖L2‖∇H‖L2‖∇ψ‖L2 . (8.8)

By combining (8.3), (8.6) and (8.8) we find that, for small ε, we have

Eε(v)≥ Eε(u)+ s2

2

∫
Ω
|∇η|2. (8.9)

The minimality of u and v combined with (8.9) implies that η= 1, and thus, going back to (8.7),
that u = v.

9 More

9.1 GL critical points with Dirichlet boundary condition
Our result here is

9.1 Theorem. LetΩ⊂R2 be a C1 bounded simply connected domain. Let g ∈ H1/2(∂Ω;S1) have
zero degree. Let u = uε be a critical point of the GL energy with datum g. Assume that:

Either
a) |u| ≥ c, with c ∈ (0,1) independent of small ε.

Or
b) Eε(u)≤ C, with C > 0 independent of small ε.
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Then, for sufficiently small ε, u is the minimizer of Eε with datum g.

When g is smooth, Theorem 9.1 was proved in [12]. The approach there relies on global
pointwise estimates for ∇u and does not apply to our case.

Proof of Theorem 9.1. The plan is to prove the following:

a)=⇒ b)=⇒ |u|→ 1 uniformly in Ω as ε→ 0. (9.1)

Indeed, assume (9.1) proved, for the moment. In other words, we have established the validity
of (8.1) for a critical point satisfying a) or b). Since (8.1) also holds (by Proposition 7.1) for a
minimizer v = vε of Eε with datum g, we are in position to repeat the proof of Theorem 8.2 and
conclude that, for small ε, we have u = v. It thus remains to prove (9.1).

Step 1 in the proof of (9.1): a)=⇒ b). As in Section 5 c), write g = eıϕ0 , with ϕ0 ∈ H1/2(∂Ω;R).
By Section 5 k), we may write u = ρeıϕ, with ρ = ρε = |u|, c ≤ ρ ≤ 1, while ϕ = ϕε ∈ H1(Ω)
satisfies ϕ|∂Ω =ϕ0. Then

Eε(u)= 1
2

∫
Ω
ρ2|∇ϕ|2 + 1

2

∫
Ω
|∇ρ|2 + 1

4ε2

∫
Ω

(1−ρ2)2. (9.2)

Using (5.4) and the fact that c ≤ ρ ≤ 1, we find that

‖∇ϕ‖L2 ≤ C; (9.3)

in particular, the first integral in (9.2) is uniformly bounded. (9.3) also implies that H = Hε

given by (5.5) satisfies

‖∇H‖L2 ≤ C. (9.4)

Let ζ= ζε = 1−ρ. We rewrite the second equation in (5.4) in the equivalent form−∆ζ+ ρ(1+ρ)
ε2 ζ= 1

1−ζJac(H,ϕ) in Ω

ζ= 0 on ∂Ω
. (9.5)

If we multiply (9.5) by ζ and use (4.3) combined with (9.3) and (9.4) and with the inequality∥∥∥∥∇(
ζ

1−ζ
)∥∥∥∥

L2
≤ C‖∇ζ‖L2 = C‖∇ρ‖L2 ,

we find that∫
Ω
|∇ρ|2 + 1

ε2

∫
Ω

(1−ρ2)2 ≤
∫
Ω
|∇ζ|2 +C

∫
Ω

ρ(1+ρ)
ε2 ζ2 ≤ C‖∇ρ‖L2 . (9.6)

Inequality (9.6) implies that the second and the third integral in (9.2) are uniformly bounded,
and thus b) holds.

Step 2 in the proof of (9.1): b)=⇒ |u|→ 1 uniformly in Ω as ε→ 0. We rely on the following

9.2 Lemma ([19]). Let C > 0 and t ∈ (0,1). There exists some ε0 = ε0(C, t) such that, if ε < rε0
and u : D(z, r) → C is a critical point of GL in D(z, r) satisfying |u| ≤ 1 and Eε(u) ≤ C, then
|u(z)| ≥ t.

9.3 Lemma. We have

|∇u(x)| ≤ C max
{

1
ε

,
1

dist(x,∂Ω)

}
, ∀x ∈Ω, ∀ε> 0. (9.7)
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Proof of Lemma 9.3. Let u0 be the harmonic extension of g and set v = u−u0. By Lemma 3.2,
we have |u| ≤ 1, and thus v satisfies|∆v| ≤ 1

ε2 in Ω

v = 0 on ∂Ω
. (9.8)

We obtain (9.7) by combining the straightforward estimate

|∇u0(x)| ≤ C
dist(x,∂Ω)

, ∀x ∈Ω,

with the following Gagliardo-Nirenberg type estimate valid for solutions of (9.8) [3]

|∇v(x)| ≤ C max
{

1,
1
ε

}
, ∀x ∈Ω, ∀ε> 0.

Proof of Step 2 continued. Let t ∈ (0,1) be fixed. With C as in b), let ε0 be given by Lemma 9.2.
Let x ∈Ω be such that dist(x,∂Ω) > ε/ε0. By Lemma 9.2, we have |u(x)| ≥ t. We complete

Step 2 if we prove that, for small ε and for x ∈Ω such that dist(x,∂Ω)≤ ε/ε0, we have |u(x)| ≥ t.
Argue by contradiction and assume that there are sequences εn → 0 and xn such that:

|uεn (xn)| < t, dist(xn,∂Ω)=λn
εn

ε0
, λn →λ ∈ [0,1]. (9.9)

We rule out (9.9) via a blow up analysis. We let yn be a projection of xn onto ∂Ω. After rotation

and translation, we may assume that yn = 0 and that xn = ıλn
εn

ε0
. Set vn(z)= uεn

(
λn

εn

ε0
z
)
. Let

µ= λ2

ε2
0

. By (9.7), b) and the fact that the boundary datum of uεn is fixed (and thus the blow up

of the boundary datum is constant), we find that (vn) converges, possibly up to a subsequence,
uniformly on compacts of

U = {z ∈C; Im z > 0}

to a map v : U →C satisfying

−∆v =µv(1−|v|2) in U , (9.10)

∫
U
|∇v|2 +µ

∫
U

(1−|v|2)2 <∞, (9.11)

|v(ı)| ≤ t < 1 (9.12)

and

v|R =α ∈S1. (9.13)

We complete the proof of Step 2, and thus of Theorem 9.1, with the help the next result.

9.4 Lemma. Let v satisfy (9.10), (9.11) and (9.13). Then v =α.
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Proof of Lemma 9.4. By (9.11), there is a sequence Rn →∞ such that

lim
n→∞Rn

∫
CRn∩U

[|∇v|2 +µ(1−|v|2)2]= 0. (9.14)

Consider first the case where µ> 0. Pohozaev’s identity yields

µ

2

∫
DRn∩U

(1−|v|2)2 + Rn

2

∫
CRn∩U

∣∣∣∣∂v
∂r

∣∣∣∣2 =µRn

4

∫
CRn∩U

(1−|v|2)2

+ Rn

2

∫
CRn∩U

∣∣∣∣∂v
∂τ

∣∣∣∣2 .
(9.15)

By letting n →∞, we find that |v| = 1. In turn, this implies (using (9.10)),

0=∆|v|2 = 2|∇v|2,

so that v =α.
Assume next that µ= 0. Set w = v−α. Using the fact that w(R) = 0, w(−R) = 0, the scaled

version of Poincaré’s inequality gives∫
CR∩U

|w|2 ≤ CR2
∫

CR∩U
|∇w|2. (9.16)

Thus ∫
DRn∩U

|∇w|2 =
∫

CRn∩U
w · ∂w

∂r
≤ CRn

∫
CRn∩U

|∇w|2 = CRn

∫
CRn∩U

|∇v|2.

By letting n →∞, we find that w is constant, and thus v =α.

9.2 GL critical points with prescribed degrees
Our main result in this section concerns uniqueness of GL critical points with prescribes de-
grees and small energy. Unlike in Theorem 1.5, the notion of smallness we consider depends
on the geometric properties of the domain.

More specifically, let s > 1. For x ∈Ω, we consider the following set:

Ax =
{
θ ∈ [0,2π]; the segment {x+ teıθ; dist(x,∂Ω)≤ t ≤ sdist(x,∂Ω)} intersects R2 \Ω

}
.

Let a ∈ (0,π). We say that Ω⊂ R2 has the property (Ps,a) if the measure of Ax is at least a, for
each x ∈Ω.22 Intuitively, this property measures at the same time the flatness of ∂Ω and the
width of Ω: if Ω has the property (Ps,a) for s close to 1 and a close to π, then ∂Ω is almost flat
and Ω is thin. In particular, let us note that, given s > 1 and a ∈ (0,π), the circular annulus
DR\D satisfies (Ps,a) provided R is sufficiently close to 1. Therefore, our next result generalizes,
to critical points, Theorem 1.4 obtained in [14] for minimizers.

9.5 Theorem. Let Ω be a C1 bounded domain. Let u be a critical point of Eε with prescribed
degrees d j, j ∈ J0,kK, on the components Γ j, j ∈ J0,kK, of ∂Ω. There is some δ= δ(s,a) such that,
if Eε(u)< δ, then u is the unique (modulo 2π) minimizer of Eε with these prescribed degrees.

Proof. If we take a look at the proof of Theorem 6.3, we see that it suffices to prove that |u| ≥ 1
2

in Ω, provided δ is sufficiently small.
We note that |u| ≤ 1, by the maximum principle [3].23 Let δ≤ 1 to be fixed later. By Lemma

9.2, there is some ε (independent of δ ≤ 1) such that |u(x)| ≥ 1
2

provided dist(x,∂Ω) ≥ ε

ε0
. It

22This definition is inspired by the proof of the main result in [14]. So is the proof of Theorem 9.5.
23There, u|∂Ω is supposed smooth, but the proof applies to a general boundary datum.
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remains to prove that |u(x)| ≥ 1
2

provided dist(x,∂Ω) < ε

ε0
. This is obtained by contradiction:

assume the existence of an x satisfying

|u(x)| < 1
2

and dist(x,∂Ω)< ε

ε0
.

By Lemma 9.3, there is some C ∈ (0,1/2) (again, independent of δ ≤ 1) such that |u(y)| ≤ 3
4

provided |x− y| ≤ C dist(x,∂Ω). In particular, we have∣∣∣u (
x+C dist(x,∂Ω)eıθ

)∣∣∣≤ 3
4

, ∀θ ∈ [0,2π].

Let now θ ∈ Ax. For such θ, we have
∣∣u (

x+ teıθ)∣∣= 1 for some

t = t(θ) ∈ [dist(x,∂Ω), s dist(x,∂Ω)]

such that
(
x, x+ teıθ

)
⊂Ω. We find that

∫ t

C dist(x,∂Ω)

∣∣∣∇u
(
x+ reıθ

)∣∣∣ dr ≥ 1
4

.

Consequently, we have∫ t

Cdist(x,∂Ω)
r
∣∣∣∇u

(
x+ reıθ

)∣∣∣2 dr ≥ 1
16ln(t/Cdist(x,∂Ω))

≥ K , (9.17)

for some constant K > 0 independent of x and θ ∈ Ax.
If we integrate (9.17) with respect to θ ∈ Ax, we find that

2δ≥ 2Eε(u)≥
∫
Ω
|∇u|2 ≥

∫
Ax

(∫ t

Cdist(x,∂Ω)
r
∣∣∣∇u

(
x+ reıθ

)∣∣∣2 dr
)

dθ ≥ aK .

This is impossible for small δ. This contradiction completes the proof of Theorem 9.5.
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