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Two-dimensional Derivative Estimation
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INSA of Lyon, F-69621 FRANCE ( e-mail: lilia.sidhom@insa-lyon.fr).

Abstract: The higher order sliding modes is some of recent technique which is used for the
derivatives noisy signals estimation. In fact, this technique is well known mostly to elaborate
the control laws and is also shown a good results in the synthesis of the rth order robust
differentiators. In this paper, an extension of such technique to the two-dimensional case is
investigated. In effect, the higher order sliding modes differentiators are used as a novel approach
of edge finding in a gray scale image. The proposed algorithm use an adaptive mechanism for
tuning up its parameters in real time, in order to increase the efficiency of basic scheme. Finally,
to validate the efficiency of this new algorithm, some comparative study with a conventional
edge detectors is performed.

Keywords: Adaptive higher order sliding modes, differentiator, two-dimensional signal, edge
detection, Gradient and Laplacian operator, Canny filter.

1. INTRODUCTION

Digital images play an important role in daily life appli-
cations such as satellite television as well as in areas of
research and technology. For each particular application,
some problems can be treated such as the denoising, the
compression and the edge detection problem. This last
one, is a fundamental tool mostly used in image process-
ing applications. Information obtained from the edges is
considered as a precursor step to feature an extraction
and an object segmentation. Edge detection refers to the
process of identifying and locating sharp discontinuities in
an image. The discontinuities are abrupt changes in pixel
intensity, [Chanda, B. and Majumdar, D.D., 2004].
There are many ways to perform edge detection. In tradi-
tional case, edge detection is implemented by convolving
the signal with some form of linear filter, [Argyle, E.
, 1971]. There are some filter which are based on the
differential methods. These methods may be grouped into
two categories, gradient and Laplacian method, [Argyle,
E. , 1971], [Gonzalez, R.C., and Woods, R.E., 2002].
The gradient method detects the edges by looking for
local extrema of the gradient of the intensity function.
Examples of gradient-based edge detectors are Roberts,
Prewitt, and Sobel operators, [Koplowitz, J. and Greco,
V., 1994], [Ando, S., 2000]. The Laplacian method searches
for zero crossings in the second derivative of the image
in order to find edges, [Huertas, A. and Medioni, G. ,
1986], such as the Marr-Hildreth operator, [Marr, D. and
Hildreth, E., 1980].
A large number of edge detectors are available in the image
processing which each one is designed to be sensitive to
certain types of edges. Despite the popularity of the dif-
ferential methods of edge detection, these detectors suffer
from some number of problems. The main problem is a
sensitive of such algorithm to the noise. According to the
characteristics noise of the image, the result of detection

edge can widely varies. In effect, the edge detection is a
hard task with the noisy images which due to the high-
frequency content of the both noise and edges. Indeed, for
Gradient-based scheme, the size of the kernel filter and
coefficients are fixed and can not be adapted to a given
image. The noise derivative can mask the real maxima that
indicate edges. This sensitivity to noise is of course more
accentuated for the methods based on second derivative.
To remedy of this drawback, other methods are developed
in the literature. Some examples can be cited: Canny
filter [Canny, J. , 1986], Deriche filter [Bourennane, E.,
Gouton, P., Truchetet, F., and Paindavoine, M., 1993].
Recently, robust method based on algebraic approach is
proposed [Fliess, M., Join, C., Mboup, M., Sedoglavic, A. ,
2005], [Riachy, S., Bachalany, Y., Mboup, M., and Richard,
J.P., 2008]. Based on a truncated Taylor expansion, nth or-
der derivatives are obtained through iterative integrations
on the input signal. In [Fliess, M., Join, C., Mboup, M.,
Sedoglavic, A. , 2005], estimation of the derivatives of a
multidimensional signal was considered. In the last one,
an application to the edge detection is also performed.
Higher Order Sliding Modes (HOSM) is applied in many
application for the one-dimensional analysis, then this
theory can be carried over to the two-dimensional domain
(2D). The main objective of the current article consists to
extend a new version of the robust differentiator defined
in Levant, A. [2003] to the 2D context. This proposed
algorithm adds the adaptive aspect to the classical scheme
defined in order to improve the performance of this last
one.
This paper is organized as follows. Section 2 presents the
new version of the rth order robust algorithm already
defined in Levant, A. [2003]. Section 3 is dedicated to
implement the first and the second order algorithm of
the proposed scheme in order to estimate respectively the
gradient and the Laplacian of a considered image. Then, a
comparative study is shown with a classic methods. In this



study, some criteria are chosen to evaluate the performance
of each edge detector.

2. ADAPTIVE SLIDING MODE DIFFERENTIATOR

To design a differentiator scheme, some features of the
signal and the noise must be considered, [Krener, A.,
1980]. However, in some cases the structure of the signal
may be unknown except some differential inequalities. In
such case, the sliding mode technique can be used [Utkin,
V.I., Guldner, J., and Shi, J. , 1999]. The main features
of this last approach is its robustness to variation in
system parameters, external disturbances and modeling
errors with respect to the matching condition, [Utkin, V.I.,
Guldner, J., and Shi, J. , 1999]. As well as for the con-
trollers synthesis [Smaoui, M., Brun, X., and Thomasset,
D., 2005a], [Laghrouche, S., Smaoui, M., Plestan, F., and
Brun, X., 2006] the sliding mode technique shows good re-
sults in the synthesis of robust differentiators [Smaoui, M.,
Brun, X., and Thomasset, D., 2005b], such as the Super
Twisting (ST) algorithm [Levant, A., 1998]. In practice,
the major problem associated this algorithm is the tuning
up of its gains convergence. The accuracy of this differen-
tiator depends on the choice of these parameters, [Smaoui,
M., Brun, X., and Thomasset, D., 2005b].
In fact, the number of gains to be tuned is equal to
(r + 1), for the rth order differentiator. So the choice of
these parameters become a difficult task when the order
of differentiator is increased. Furthermore their choices
are not to be too large in order not to be differentiating
the noise. Moreover it is not always easy to determine
these gains for a given bandwidth of the input signal. A
simple modification of the spectral content of the input
signal or its amplitude can cause a significant error in the
estimation of the derivative. In fact, the parameters of the
algorithm strongly depend on the Lipschitz constant of
the nth derivative of the input signal and generally this
constant is not accurately known beforehand.
This problem can be resolved with adding an adaptive law
to the gains of the basic algorithm. The adaptive tuning
law ensures a convergence of the output signal toward the
derivative input signal of the differentiator, in Lyapunov’s
sense. In [Suzuki, S., Furuta, K., Shiratori, S., 2003], the
authors propose the adaptive form of the ST algorithm.
Inspired from this work, a new version of an arbitrary order
adaptive sliding mode differentiator is proposed. Indeed,
the defined differentiator presents a simple form and easy
design to use it in real-time.
Firstly, all the theory of the proposed algorithm is given
on the one-dimensional domain (1D).
Let the input signal of differentiator f(t) be a function
defined on [0,∞[ measurable in Lebesgues sense. This
signal is considered as the sum of two terms:

f(t) = f0(t) + ξ(t) (1)

f0(t) is an unknown base signal with the nth derivative
having a known Lipschitz constant C > 0. ξ(t) is a
bounded Lebesgue-measurable noise with unknown fea-
tures, defined by: ξ(t) < ε , with ε is sufficiently small.
In [Levant, A., 2003], an arbitrary higher order sliding
modes differentiator is defined. In this paper, we proposed
a new version of this rth order differentiator in order
to adjust on line the gains algorithm. The form of the

proposed differentiator is given for any i ∈ {1, · · · , n− 1}
by: 

˙̂xi = x̂i+1 − λ̂i |si|(
n+1−i
n+2−i )

sign(si)−Kisi
˙̂xn = λ̂n+1x̂n+1 − λ̂n |sn|

1
2 sign(sn)−Knsn

˙̂xn+1 = −sign(sn)

(2)

Where s1 = x̂1 − f and si = x̂i − ˙̂xi−1, (i = 2, · · · , n)
are the sliding functions defining the estimation errors
for each derivative order. Ki are positive gains ensure the
convergence of the proposed algorithm.

λ̂i (i = 1, · · · , n−1) are the dynamic gains of (2) computed
in real time with using on the following adaptive laws:

d
dt λ̂i = |si|(

n+1−i
n+2−i )sign(si)si, (i = 1, · · · , n− 1),

d
dt

[
λ̂n λ̂n+1

]T
=
[
|sn|

1
2 sign(sn)sn

∫
R sign(sn)dtsn

]T
(3)

With the equations (3), the system (2) is an rth order
adaptive robust differentiator. The used function sign(.) is
defined as following:

sign(.) =

{
1, if (.) ≥ 0

−1, if (.) < 0
(4)

At initial time (t = 0), one has x̂1(0) = f(0) and x̂i(0) =
˙̂xi−1(0) with i = {2, · · · , n+ 1}.
After the convergence time, the estimations of ḟ0(t),

f̈0(t), · · · , f (n)
0 (t) are an exact ones in the absence of mea-

surement noises.

• Convergence proof of the proposed algorithm

The first step of the convergence proof consists to show
that the estimation error relative to the first iteration
(i = 1) tends to zero.
For i = 1, the first equation of (2) becomes:

˙̂x1 = x̂2 − λ̂1 |s1|(
n

n+1 )
sign(s1)−K1s1 (5)

The first derivative of the estimation error s1 is given by:

ṡ1 = ˙̂x1 − ḟ (6)

Define a true value λ∗1 which is fixed one and verifies the
following expression:

ḟ = x̂2 − λ∗1 |s1|(
n

n+1 )
sign(s1) (7)

Indeed, this expression is derived from the non-adaptive
differentiator form given in [Levant, A., 2003]. So this
gain value ensures to obtain an exact estimate of the first
derivative of the input signal.
Substituting (5) and (7) in (6):

ṡ1 = −λ̃1 |s1|(
n

n+1 )
sign(s1)−K1s1 (8)

With λ̃1 = λ̂1 − λ∗1. Define a first Lyapunov function as:

V1 =
1

2

(
s2

1 + λ̃2
1

)
(9)

The derivative along the trajectory of the function V1 is
given by:

V̇1 = s1ṡ1 + λ̃1
˙̃
λ1

= s1

[
−λ̃1 |s1|(

n
n+1 )

sign(s1)
]
−K1s

2
1 + λ̃1

˙̃
λ1

=−K1s
2
1 + λ̃1

[
− |s1|(

n
n+1 )

sign(s1)s1 +
˙̂
λ1

]
(10)



With the below adaptive law:

˙̂
λ1 = |s1|(

n
n+1 )sign(s1)s1 (11)

Substituting (11) in (10):

V̇1 = −K1s
2
1 (12)

Consequently s1 → 0 ⇒ ˙̂x1 = x̂2 = ḟ .
To prove the algorithm convergence for any iterations
i = {2, · · · , n}, it is sufficient to perform relatively in the
same way and whenever it is necessary to consider the
result obtained in the previous iteration.
In the general case and for any j ∈ {2, · · · , n − 1}, let’s
start by defining the true values λ∗j by:

f (j) = x̂j+1 − λ∗j |sj |
( n+1−j
n+2−j )sign(sj), ∀j ∈ {2, · · · , n− 1}.

(13)
The role of these trues values gains is identical to the λ∗1
which is defined previously.
Let’s define a Lyapunov function for the iteration j:

Vj =
1

2

(
s2
j + λ̃2

j

)
(14)

The derivative of the above equation can be written by:

V̇j = sj ṡj + λ̃j
˙̂
λj

= sj

[
˙̂xj − ¨̂xj−1

]
+ λ̃j

˙̂
λj (15)

For the system (2), the term of ˙̂xj is replaced by its
expression, then we have:

V̇j = sj

[
x̂j+1 − λ∗j |sj |

( n+1−j
n+2−j )sign(sj)− ¨̂xj−1

]
−Kjs

2
j

(16)
Or in the iteration (j − 1), the following result is already
obtained:

˙̂xj−1 = f (j−1) (17)

Then this last equation leads to:

¨̂xj−1 = f (j) (18)

With the equations (18) and (16), the following one is
resulted:

V̇j = sj

[
x̂j+1 − λ∗j |sj |

( n+1−j
n+2−j )sign(sj)− f (j)

]
−Kjs

2
j

(19)
But reference to (13), this expression is deduced:

x̂j+1 − λ∗j |sj |
( n+1−j
n+2−j )sign(sj)− f (j) = 0 (20)

Consequently sj → 0 ⇒ ˙̂xj = x̂j+1 = f (j), ∀j ∈
{2, · · · , n− 1}.
For the last iteration (i = n), the convergence is proved
exactly as the previous method except that the term of
˙̂xn is differently expressed. In effect, from the two last
equations of (2), the expression of ˙̂xn becomes:

˙̂xn = −λ̂n+1

∫
R
sign(sn)dt− λ̂n|sn|

1
2 sign(sn)−Knsn

(21)
The true values λ∗n and λ∗n+1 of the last iteration are
defined in order to verify the following equation:

f (n) = −λ∗n+1

∫
R
sign(sn)dt− λ∗n|sn|

1
2 sign(sn) (22)

We have sn = x̂n − ˙̂xn−1, so it is evident to write:

ṡn = ˙̂xn − ¨̂xn−1 (23)

Or in the previous iteration the following equality holds
˙̂xn−1 = f (n−1). Indeed (23) becomes:

ṡn = ˙̂xn − f (n) (24)

Substituting (21) and (22) in (24):

ṡn = −λ̃n+1

∫
R
sign(sn)dt− λ̃n|sn|

1
2 sign(sn)−knsn (25)

Where λ̃n = λ̂n−λ∗n and λ̃n+1 = λ̂n+1−λ∗n+1. In this case
the Lyapunov function is chosen as:

Vn =
1

2

(
s2
n + λ̃2

n + λ̃2
n+1

)
(26)

The derivative of (26):

V̇n = snṡn + λ̃n
˙̃
λn + λ̃n+1

˙̃
λn+1 (27)

This last one can be rewritten as:

V̇n =−Kns
2
n + λ̃n

[
−|sn|

1
2 sign(sn)sn +

˙̃
λn

]
+ λ̃n+1[

−
∫
R
sign(sn)dtsn +

˙̃
λn+1

]
(28)

By choosing the terms of
˙̃
λn and

˙̃
λn+1 by their expression

which are defined by (3). Then V̇n = −Kns
2
n and the

convergence of sn is ensured: sn → 0 ⇒ ˙̂xn = f (n). The
including of this adaptive mechanism on this algorithm can
emphasize the convergence of estimation error and it does
not necessarily guarantee that the adaptive gains approach
to their true values. Note that the gains Ki, (i = 1, · · · , n)
are initialized only once.
To estimate the gradient and the Laplacian of the two-
dimensional signal, only the first and the second order of
the differentiator will be used. It suffices to replace n in the
system (2) by 1 and 2 to obtain respectively the dynamic
model of the used algorithms. A frequency responses of the
two-order adaptive algorithm is done with different values
of the convergence gains in [ Sidhom, L., Pham, M.T.,
Thevenoux, F., and Gautier, M., 2010].

3. IMPLEMENTATION OF ALGORITHM IN
TWO-DIMENSIONAL DOMAIN

In this paper, only the grayscale images (monochromatic)
are considered. The image can be represented by a matrix
or by a real function of two variables g(x, y) defined in
(R× R)→ R+.
Where:
(x, y): are spacial coordinates of a pixel in the image.
The value of g at spatial coordinates (x, y) is a positive
scalar quantity which represent a measure of the luminous
intensity of a pixel.
The discretization of the used algorithm is made with
basing on the explicit Euler method with sampling step
equal to 10−3 second.
In the conventional approaches, the gradient or the Lapla-
cian are computed by using a mask method, such as the
Prewitt mask. However, the gradient and/or the Lapla-
cian computation is done pixel by pixel for the proposed
algorithm. In fact, this adaptive algorithm is initialized
by the first pixel intensity value of the matrix g(.). So
the algorithm starts with a zero estimation error. Then a
prediction of the intensity of the next pixel is made by ap-
plying the proposed differentiator to approximate the gra-
dient and/or the Laplacian of the some input function g(.).



Thereafter, the new value of the error will be considered
which is defined by the difference between the predicted
value and the true value recovered by the input matrix g.
These steps are repeated for each row and column of the
treated matrix. In other words, the discrete algorithm can
be described by two loops where the luminous intensity
of the next pixel is always predicted. For the second-
order algorithm, the computation of the gradient and the
Laplacian of g(.) is performed in parallel, at the same
loop. It is true that in the case of an image, the prediction
seems unnecessary because all information can be retrieved
directly from the input matrix. However, this application
allows us to have an idea about the effectiveness of such
algorithm for an image in order to extend the work to an
image sequence. Indeed, it is much more interesting for the
image sequence to predict the motion of each pixel in the
sequence.

4. SIMULATION RESULTS

In order to show the effectiveness of the proposed algo-
rithm, a comparative analysis with a classical methods
is presented. In effect, four different edge detectors were
selected for comparison: mask gradient, mask Prewitt,
Canny filter and Laplacian operator. For this last one,
the comparison is made with the Second Order Algorithm
(SOA).
The mask gradient consists to combine at each pixel the
convolution of the image with the two rectangular follow-
ing masks [−1, 1] and [−1, 1]T , according to the considered
direction. These kernels are designed to respond maximally
to edges running horizontally and vertically relative to
the pixel grid. These kernels can be applied separately
to the input image, to produce separate measurements
of the gradient component in each orientation. These can
then be combined together to find the absolute magnitude
of the gradient at each point. Typically, an approximate
magnitude can computed using:

|G| = |∇g(x, y)| ≈
√

(G2
x +G2

y). (29)

Where Gx = ∂xg(x, y) and Gy = ∂yg(x, y) are respectively
the vertical and the horizontal gradient of the initial image.
The Perwitt operator consists to convolve the input matrix
by the 3× 3 kernels as shown in Figure 1. So the gradient
computation is conducted through these two masks, the
first one performing the horizontal gradient, the second
one the vertical gradient. One mask is simply the other
rotated by 90. Compared to the gradient operator, the
Prewitt mask have the advantage of producing two effects.
Furthermore the gradient computation in one direction,
these masks perform also smoothing in the orthogonal
direction. This smoothing makes these masks somewhat
less sensitive to noise than the gradient mask. Therefore,
the Prewitt kernels are based on the idea of the central
difference:

∂g

∂x
≈ [g(x+ 1, y)− g(x− 1, y)] /2. (30)

The third edge detector used in this study is the Canny
filter. This last one is the result of solving an optimiza-
tion problem with some constraints. The imposed crite-
ria are sensibility, localization and local unicity, [Canny,
J. , 1986], [Muralidharan, R., and Chandrasekar, Dr.C.,
2010]. This popular method for detecting edges begins by

(a) Prewitt mask for
horizontal direc-

tion

(b) Prewitt mask
for vertical

direction

Fig. 1. Prewitt masks.

smoothing an image by convolving it with a Gaussian of
a given δ value. With this smoothed image, derivatives in
both x and y direction are computed. Thereafter, these
derivatives are used to compute the gradient magnitude
of the intensity image. In effect, the gradient is calcu-
lated using the derivative of the Gaussian filter. For a
white noise, the Canny algorithm is known as the optimal
edge detector, [Canny, J. , 1986]. This filter requires one
adjustment parameter δ. With choosing a value of δ, x
and y derivative masks are generated as outputs of the
filter. The resulted masks are applied to the images using
convolution.
As known, another alternative edge finding is to locate
the zeros in the second derivative. The second derivative
at any point in an image is obtained by using the Laplacian
operator. The Laplacian of an image highlights regions of
rapid intensity change and is therefore often used for edge
detection. Denote the Laplacian operator by ∇2g which is
given by:

∇2g =≈
∂2g

∂x2
+
∂2g

∂y2
. (31)

Since the input image is represented as a set of discrete
pixels, we have to find a discrete convolution kernel that
can approximate the second derivatives in the definition
of the Laplacian. The commonly used small kernels are
shown in Fig.2.
In order to extract the edge strength computed by one of

(a) Laplacian mask
for horizontal

direction

(b) Laplacian mask
for vertical di-

rection

Fig. 2. Laplacian operator convolution mask

the cited methods, the next stage is to apply a threshold,
to decide whether edges are present or not at an image
point. The easiest way is to threshold the gradient image,
assuming that all pixels having a local gradient above the
threshold must represent an edge. When the threshold
is low then more lines will be detected, and the results
become increasingly susceptible to noise which conducts to
picking out irrelevant features from the image. Conversely
a high threshold may miss subtle lines, or segmented lines.
The selection of a threshold value is an important design
decision that depends on a number of factors, such as
image brightness, contrast, level of noise, and even edge
direction. Typically, the threshold is selected following an



analysis of the gradient image histogram. So, selection
of threshold is an important parameter to get better
performance for considered noisy images. The output of
the thresholding stage is extremely sensitive and there are
no automatic procedure that determines a valid threshold
for all type of image.
Thus, in our simulation, the global thresholding histogram
is used, so the thresholding is just applied to the gradient
magnitude image. In effect, the threshold value S is
determined by taking into account the distribution of
the different values of the pixels in the image of the
gradient module. The idea is to select a percentage of the
most significant edges. In reality, with using this kind of
thresholding method, the obtained edges will in general
be thick. In our case no post-processing will be performed
on the simulation results. The aim is to compare all
algorithms with the same thresholding method.

4.1 Simulation results without noise

To validate the efficiency of the different edge detectors,
simulation has been carried out using MATLAB image
processing Toolbox. In the first time, a standard gray scale
image ”Lena” of size (256×256) (see Fig. 3(a)) is selected
for simulation study.
Firstly, the image is processed without any noise. With
the First Order Algorithm (FOA), the vertical and the
horizontal gradient (see Fig. 3(b),3(c)) of the input matrix
are estimated with imposed the convergence gain to K1 =
500. Finally the gradient magnitude is normalized (see
Fig. 4(a)))and threshold to find the edge in the image (see
Fig. 4(b)).
Afterward, the Second Order Algorithm (SOA) is used to
estimate the Laplacian relative to the initial image. The
results are given by Figure 6. It seemed unnecessary to
provide the first output of SOA because it is relatively
identical to the output of FOA.
Therefore, we just present the results of FOA for the
gradient computation.
In reality, it is very hard to determine the difference
between each edge detectors, the obtained results are
relatively the same (see Fig. 4(b) and 5). In fact, the
absence of the truth edge map reveals some difficulties
to compare the quality of the resulted edge maps.

4.2 Simulation results with noise

Then the evidence for the best detector is judged by
studying the edge maps relative to some synthetic image.
The edge of this last one is exactly known. This edge is so
used as a reference for the comparison study. Corrupted an
image with noise allows us to test the resistance of an edge
detector operator to noise and assess the performance of
various noise filters. Consequently, this test image was got
corrupted with three different kinds of noise, generated
using in MATLAB environment. Then for each of the
three noisy images, the performance of the different edge
detector was examined.
The test image is prone to different types of noises. Noise
arises as a result of unmodeled processes going on in the
production and capture of real signal. It may be caused by
a wide range of sources: variation in the detector sensitiv-
ity, environmental variations, transmission or quantization

(a) Initial gray image: im-
age 1

(b) Gx of image 1

(c) Gy of image 1

Fig. 3. horizontal Gx and Vertical Gy gradient of image 1:
with FOA.

(a) Normalized magnitude of
image 1

(b) Edge of image 1

Fig. 4. Edge of image 1: with FOA.

errors...
The noise can be described by an additive noise model,
where the recorded image, i(m,n) is the sum of the true
image t(m,n) and the noise n(m,n):

i(m,n) = t(m,n) + n(m,n). (32)

In this study, different types of noise are considered:
- Gaussian noise which has a zero-mean Gaussian distri-
bution and is described by its standard deviation σn or
variance, [Chang, S.G., Bin, Y., and Vetterli, M., 2006],
- Salt & Pepper noise is an idealized form of impulse noise
model. The pixels values in grayscale image corrupted by
various impulse noise models are generally replaced by
values equal to or near the maximum or minimum of the
allowable range. The strength of impulse noise is very high
as compared to the strength of image signal,[ Wang, Z.,
and Hang, D., 1999]. In fact, the noise impulses can be of
negative or positive type. The negative impulses appear
as black (pepper) points and positive impulses appear as
white (salt) points in the image. An image contaminated
by this kind of noise degrades by sharp and sudden dis-



(a) Result of Gradient op-
erator

(b) Result of Prewitt oper-
ator

(c) Result of Canny filter:
with δ = 0.8

Fig. 5. Edge detection by Gradient mask, Prewitt mask
and Canny filter.

(a) Normalized Laplacian of
image 1

(b) Normalized Laplacian af-
ter thresholding

Fig. 6. Results with SOA: Laplacian estimation.

turbances in the image signal and it appears as randomly
scattered white and black pixels over the image with some
density d,
- Speckle noise is a multiplicative noise which adds to
the image i using the equation J = i + nsi, where ns
is uniformly distributed random noise with zero-mean and
a variance σns

, [Gagnon, L. and Smaili, F.D., 1996].
In [Abdou, I. E., and Pratt, W. K., 1979], [Heath, M.,
Sarkar, S., Sanocki, T., and Bowyer, K., 1998], [Maini,
R. and Sohal, J.S., 2006], [Juneja, M., and Sandhu., P.
S., 2009], different methods of comparative study for edge
detectors were presented. To assess the quality of the edge
maps of the exploited detectors, two kind of criteria are se-
lected in our case: qualitative criteria such as complexity of
the method, settings parameter... and quantitative criteria
such as the parameters Mean Magnitude Error (MME),
Mean Edge Error (MEE) and the computation time.
The MME indicates the average difference of the pixels
between the exact magnitude of the image test and the
estimated one. The MEE represents the error between the

exact edge (see Fig. 7(b))and the obtained one. A higher
MME and MEE indicates a greater difference between the
desired and the processed image.
Upon the simulation tests, the MME and the MEE values

(a) Initial image: test image (b) Exact edge of the test im-
age

Fig. 7. Test image

for each kind of noise are summarized in Tables 1,2 and 3.
The results of edge detection are shown in Fig. 9,11 and 13.
It has been observed that the FOA works well both with
the Gaussian, the Salt & Pepper as well as Speckle noise
corrupted test image. Especially for the Salt & Pepper
noise, the proposed algorithm does not amplify the noise
in the resulted image, which is not the case for the others
methods.
The performance of the Gradient mask is much superior
in Speckle noise corrupted image as compared to the other
noises. In effect, the Gradient mask is considered just as
a high pass filter so it has not a smoothing action, which
can explain the amplification of the noise, especially for
the Salt & Pepper noise, (see Fig.11(a)).
However, the Prewitt filter and the Canny filter can esti-
mate the Gradient of the input matrix with smoothing it,
which explains the decrease of the noise on the edge de-
tector image (see Fig. 11(b),11(c)). However, Prewitt mask
presents the worst result for Salt & Pepper noise corrupted
image compared to other methods. In fact, Prewitt edge
detector makes an averaging of neighboring pixels. Since
the Salt Pepper noise pixel values are often very different
from the surrounding values, they tend to distort signif-
icantly the calculated average pixel by the averaging of
neighboring pixels. Therefore the average value calculated
will be significantly different from the true value. Then,
performance of Prewitt edge detector decreases sharply
for salt & pepper noise.
The performance of the Canny algorithm depends heavily
on the adjustable parameter δ, which is the standard devi-
ation for the Gaussian filter. δ also controls the size of the
Gaussian filter. The bigger the value for this parameter,
the larger the size of the Gaussian filter becomes. This
implies more blurring, necessary for noisy images, as well
as detecting larger edges. Smaller values of δ imply a
smaller Gaussian filter which limits the amount of blurring
and maintains finer edges in the image. The user can tailor
the algorithm by adjusting this parameter to adapt to
different type of image. In our case, the δ is fixed to 0.8.
The presence of a smooth action in the Prewitt mask and
the Canny filter may add a slight phase shift that may
well distort the estimate of the gradient. For the adaptive
higher order algorithm, the reduction of the amplification
noise and the differentiation action are combined and are



done simultaneously.
For the tables 1,2 and 3, it has been noticed that for the

Fig. 8. Test image corrupted by Gaussian white noise with
σn = 0.01

(a) Result from Gradient
mask

(b) Result from Prewitt
mask

(c) Result from Canny filter (d) Result from FOA (K1 =
550)

Fig. 9. Edge detection of the corrupted image by the
Gaussian white noise.

Gaussian noise, the Canny filter presented the lowest value
of the MEE. It is normally to have such result because the
Canny filter is the optimal one for the such noise, [Canny,
J. , 1986].
It is important to note that the obtained result can be

Table 1. Comparative table of errors: Gaussian
white noise

Method MME MEE

Gradient mask 0.0574 0.0038

Prewitt mask 0.0709 0.0128

Canny filter 0.0579 0.0049

FOA(K1 = 550) 0.0468 0.0024

improved by changing the thresholding method already
used. Then the MEE depends strongly on the choice of the
threshold, then it is better to consider the second indicator

Table 2. Comparative table of errors: Salt &
Pepper noise

Method MME MEE

Gradient mask 0.031 0.0135

Prewitt mask 0.0339 0.0144

Canny filter 0.0124 0.0177

FOA(K1 = 400) 0.0028 0.0033

MME. For improve the results of the MEE, other thresh-
olding method can be used such hysteresis. Hysteresis is
used to track along the remaining pixels that have not been
suppressed. However such algorithm must be imposed two
thresholds, so it must add two other paramaters to adjust.
From the MME values, FOA performance is better for
image corrupted with Salt & Pepper noise as compared
to Gaussian noise or Speckle one.

In figure 14, the impact of the Salt & Pepper noise on

Fig. 10. Test image corrupted by Salt & Pepper noise with
density d = 0.01

(a) Result from Gradient
mask

(b) Result from Prewitt
mask

(c) Result from Canny filter (d) Result from FOA (K1 =
400)

Fig. 11. Edge detection of the test image corrupted by Salt
& Pepper noise.

the image ”Lena” is often described the true image and
the recorded one for each methods.



Table 3. Comparative table of errors: Speckle
noise

Method MME MEE

Gradient mask 0.0288 0.0019

Prewitt mask 0.0465 0.0157

Canny filter 0.0112 0.000471

FOA(K1 = 400) 0.0235 0.000261

The figures 14(e), 14(f) show the importance of choice of
the convergence gain of FOA on the rate of amplification
noise in the resulted image. Indeed, increasing the value
of the gain K1, the amplifier noise reduction decreases. So
this value does not be chosen so large. The same remark
is valid for SOA, where two gains must be chosen in this
case.

Table 4 summarizes the Elapsed time in second of

Fig. 12. Test image corrupted by Gaussian white with
σns

= 0.01

(a) Result from Gradient
mask

(b) Result from Prewitt
mask

(c) Result from Canny filter (d) Result from FOA (K1 =
400)

Fig. 13. Edge detection of the corrupted image by Speckle
noise.

the used methods for different size of the input image.
From these results, the convolution operation with one
of the Gradient or Prewitt mask or with the derivative
of a Gaussian for the Canny filter is less cumbersome

Table 4. Elapsed time (s) for different size of
image

Image size

Method (50 ∗ 50) (125 ∗ 255) (256 ∗ 256)

Gradient mask 0.00057 0.0017 0.0098

Prewitt mask 0.0011 0.0023 0.0040

Canny filter 0.0043 0.0064 0.0150

FOA 0.0410 0.2556 1.0863

Laplacian Operator 0.009 0.0138 0.0166

SOA 0.0624 0.3930 1.6825

in calculation than the imbricated loops of the adaptive
algorithms which the computation is done pixel by pixel.
The proposed algorithm (FOA or SOA) is computationally
more expensive compared to the other methods and the
Elapsed time is quickly increases with the size of the image.

Although the proposed algorithm shows good results

(a) Image 1 corrupted by
Salt & Pepper noise with

density d = 0.01.

(b) Result from Gradient
mask

(c) Result from Prewitt
mask

(d) Result from Canny filter

(e) Result from FOA(K1 =
650)

(f) Result from FOA(K1 =
350)

Fig. 14. Edge detection of the corrupted image 1 by the
Salt & Pepper noise.

compared to conventional methods, but it presents certain
number of parameters to adjust and more lines to write for
the implementation.



5. CONCLUSION

In this work various classic edge detection techniques were
implemented and compared to the adaptive higher order
sliding mode algorithms. The convergence proof of the
proposed algorithm is carried out. The novelty of this
paper concerns the implementation of the adaptive higher
orders sliding modes to the application of processing im-
age. The advantages of applying such algorithm as an
edge detector can be summarized in two essential points:
i) its use for different orientation (vertical, horizontal,
diagonal), it is sufficient to change the gradient approx-
imation that is used, ii) the proposed algorithms works
quite well for digital images corrupted with Gaussian noise,
Salt & Pepper noise and the Speckle noise. Due to pixel
by pixel computation, the adaptive differentiator presents
a more bigger computation time than the conventional
methods which represents a limit of this algorithm. The
results of this study are quite promising especially for
video applications where the movement of a pixel can
be estimated throughout the sequence. For future work,
this algorithm can be used to predict the optical flow on
the image sequence as the Kalman filter commonly used
for this type of application. For optical flow estimation
using the proposed algorithm, a compression of a sequence
images can then be made.
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