
HAL Id: hal-00747375
https://hal.science/hal-00747375v1

Preprint submitted on 31 Oct 2012 (v1), last revised 16 Dec 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergent lower bounds for packing problems via
restricted dual polytopes

Daniel Cosmin Porumbel, François Clautiaux

To cite this version:
Daniel Cosmin Porumbel, François Clautiaux. Convergent lower bounds for packing problems via
restricted dual polytopes. 2012. �hal-00747375v1�

https://hal.science/hal-00747375v1
https://hal.archives-ouvertes.fr

Convergent Lower Bounds for Packing Problems

via Restricted Dual Polytopes

Daniel Cosmin Porumbel and François Clautiaux

Université d’Artois, LGI2A
Université de Lille 1, LIFL UMR 8022, INRIA Lille Nord Europe

daniel.porumbel@univ-artois.fr,francois.clautiaux@univ-lille1.fr

Abstract. Cutting-stock and bin-packing problems have been widely
studied in the operations research literature for their large range of indus-
trial applications. Many integer programming models have been proposed
for them. The most famous is from Gilmore and Gomory [5] and relies on
a column generation scheme. Column generation methods are known to
have convergence issues, and (when minimizing) no useful lower bounds
are produced before a possibly large number of iterations. We propose a
new approach that converges to the optimum through a series of dual-
feasible solutions, and therefore produces a series of iteratively improving
lower bounds. Each dual-feasible solution is obtained by optimizing over
an inner approximation of the dual polytope. This approximation is ob-
tained by linking groups of dual variables by linear constraints, leading
to a problem of smaller dimension. The inner approximation is iteratively
refined by splitting the groups into smaller groups until an optimal dual
solution is found.

Keywords: column generation, aggregation, cutting and packing, convergent
lower bounds

1 Introduction

This paper is about the cutting-stock problem and the famous model of Gilmore
and Gomory [5]. The column generation algorithm is a popular approach for
solving this model, as it is used for a large class of problems with a prohibitively
large number of variables.

A classical column generation approach typically applies the the following
algorithmic template: (i) reach the best dual solution inside the current dual
polytope (defined by a limited set of constraints), (ii) find a valid dual constraint
(primal column) that is violated by the current solution (report optimum if there
is no such violated constraint), and (iii) update the current polytope description
by adding a violated constraint (therefore refine the current description) and
repeat from (i). As such, the column generation method constructs at each step
an outer approximation of the dual polytope and optimizes over this polytope.
Column generation algorithms are known to have convergence issues: in many

2 D. Porumbel, F. Clautiaux

cases, one needs many steps before obtaining a valid lower bound for the problem.
Several works have been dedicated to the stabilization of the column generation
(reduction of the number of steps). See for example [4, 6, 8, 1, 3].

For the cutting-stock problem, a now classical approach of computing fast
lower bounds is based on so-called dual-feasible functions (DFF) ([7], see also [2]
for a survey of this subject). Those functions are related to valid dual solutions of
the . This approach provides excellent results for cutting-stock problems which
a regular structure, but is difficult to generalize, even for variants of the cutting-
stock. Furthermore, to our knowledge if the set of functions used does not contain
a function that yields the optimal dual solution, no convergent methods based
on DFF exist. Therefore, an alternative method for computing fast lower bounds
would be useful.

We propose a new method that can provide fast lower bounds for the cutting-
stock problem, while converging toward the optimum of the column-generation
model. The basic idea is to iteratively construct an inner approximation of the
dual polytope, whose structure is simpler, that is optimized, and then refined
until the optimum of the Gilmore-Gomory model is reached. This inner ap-
proximation of the polytope is obtained by adding additional non valid cuts
that link dual variables that are gathered into groups. The resulting polytope
has less faces and less variables, and so, it is more easily optimized; further-
more, it can be directly lifted to polytope included in the initial dual polytope.

�
�
��
�
��
�
�
	A
B
C
�
��
D
C

E

F

�

������A���	��������B��

Fig. 1. Our method uses an “inner approx-
imated dual polytope” that is iteratively re-
fined (P1, P2, P3, . . .) so as to reach the
optimum of an initial polytope P with pro-
hibitively many constraints. Each Pk has
fewer variables and fewer constraints then P
and it can be lifted to a polytope completely
included in P; the optimum of any intermedi-
ate Pk is a lower bound for the P optimum.

The added cuts enforce the dual coeffi-
cient in a group to be on a line. This allows
us to reformulate the simplified problem
with a new model whose variables are the
slope and y-intercept of each group.

The step-by-step algorithmic template
is the following: (i) construct the re-
stricted inner dual polytope (initial ap-
proximation); (ii) reach the best solution
inside the current restricted dual polytope
; (iii) find a non valid constraint in the re-
stricted polytope that is too tight ; (iv)
replace this constraint with a new weaker
constraint in the approximate polytope
(construct a refined restricted polytope)
and repeat from (ii). Fig. 1 presents an
intuitive illustration of this method.

The remainder is organized as follows: Section 2 describes the inner dual
polytope built at each iteration. Section 3 is devoted to the relations between the
knapsack polytope and our inner dual polytope, so as to explain how our linearity
relations lead to overly-tight constrains. Section 4 deals with the convergent
algorithm, and Section 5 contains a summary of our computational experiments,
followed by conclusions.

Title Suppressed Due to Excessive Length 3

2 The restricted dual polytope model

Let us first recall the well-known Gilmore-Gomory model [5] and introduce no-
tations. Consider n items of weights defined by vector w = [w1 w2 . . . wn]

T ∈
Zn
+. Given a capacity C, a cutting-pattern is an integer column vector a =

[a1 . . . an]
T ∈ Zn

+ such that aTw ≤ C. Without loss of generality, we consider

wi ≤ C, ∀i ∈ 1, C. The set K of all cutting-patterns is defined by the (expo-
nentially many) integer feasible solutions of a knapsack problem with capacity
C. The cutting-stock problem requires finding the minimum number of cutting-
patterns one can select so as to include each item i ∈ 1, n at least bi (bi ∈ Z+)
times. The dual of the linear relaxation of the model can be written using a vec-
tor y = [y1 y2 . . . yn]

T ∈ Rn
+ of decision variables and a (possibly exponential)

number of dual constraints (primal columns).

max bT y
aT y ≤ 1, ∀a ∈ K
yi ≥ 0, i ∈ 1, n

}

P
(2.1)

2.1 Formal description of our dual approximated polytope

We now describe our approach for computing a valid inner approximation of
model (2.1). The rationale behind our method is to enforce the dual solution to
have a certain shape, i.e., to follow a piecewise (groupwise) linear function. The
parameters of the different pieces of this function become decision variables.

We consider a partition of the set of items I = {1, 2 . . . n} into k groups
indexed by j ∈ 1, k. Constraints are added to the dual values in such a way that
dual values in a given group j satisfy a linearity constraint depending on a slope
αj and a y-intercept βj ; αj and βj will become decision variables in our model.
More precisely, if item i is in group j, then yi = αjwi + βj . We introduce the
following notations. Group j contains items Ij (nj = |Ij |); We denote by yj , wj ,
bj and aj the vectors related to dual variables, item sizes, demands of items and,
respectively, pattern variables in Ij . A dual solution [y1 . . . yn] can be rewritten
as concatenation of k group components: [y1 . . . yk].

Let us re-write (2.1) using only variables αj and βj . We first re-write the
objective function. For each group j, we consider yj as a linear function of wj

and 1nj
(vector [1 1 . . . 1]T with nj elements): yj = αjwj +βj1nj

. Observe that

bT y =

k
∑

j=1

(

bj
)T

yj =

k
∑

j=1

(

bj
)T (

αjwj + βj1nj

)

The constraint aggregation is a key step in reducing the number of con-

straints. Any P constraint from (2.1) can be written as
∑k

j=1

(

aj
)T

yj ≤ 1. Let
us focus on term j and observe that

(

aj
)T

yj =
(

aj
)T (

αjwj + βj1nj

)

= αj
(

(

aj
)T

wj
)

+ βj
(

(

aj
)T

1nj

)

(2.2)

4 D. Porumbel, F. Clautiaux

The coefficient of αj is cj = (aj)Twj and represents the total weight of the
Ij items selected by cutting-pattern a. The goal of the proposed model is to ag-
gregate all P constraints (aT y ≤ 1) for which (aj)Twj is equal to a given cj , for
any group j ∈ 1, k. Even when (aj)Twj is fixed, the coefficient of βj is not fixed

in (2.2), i.e., it is
(

aj
)T

1nj
=

∑

i∈Ij a
j
i . However, the variation of this value is

bounded by the maximum and minimum number of items of group j that fit ex-
actly each possible size c: M(j, c) = max

{
∑

i∈Ij xi :
∑

i∈Ij wixi = c, xi ∈ Z+

}

and m(j, c) = min
{
∑

i∈Ij xi :
∑

i∈Ij wixi = c, xi ∈ Z+

}

. If there is no feasible
solution for the subset-sum problem associated with size c and set Ij , we say
that the values M(j, c) and m(j, c) are undefined.

We are now ready to express model (2.1) with variables α and β only.

max
∑k

j=1

(

bj
)T

wjαj +
(

bj
)T

1nj
βj

∑k

j=1 c
jαj +M(j, cj)βj ≤ 1, ∀c1 . . . ck ∈ Z+ s.t.

∑k

j=1 c
j ≤ C

with M ∈ {M,m} defined on cj
αj ∈ R
βj ∈ R

Pk

(2.3)

This model has 2k real variables (αj and βj with j ∈ 1, k) that can be either
positive or negative. Since it is well-known that the dual solution of the standard
cutting-stock problem is non-decreasing (see, e.g., [1]), a non-compulsory con-
straint αj ≥ 0 can be added. The main Pk constraints (hereafter referred to as

capacity constraints) are generated from values c1, c2, . . . ck with
∑k

j=1 c
j ≤ C

such that M and m defined on all cj , ∀j ∈ 1, k. Such a constraint is only useful
if it uses M = M when βj ≥ 0 (positive βj side) and M = m when βj ≤ 0.

Let us first formally show that any solution of (2.3) corresponds with a valid
solution for (2.1).

Proposition 1. Any feasible Pk solution in above model (2.3) can be lifted on a
feasible solution of P in model (2.1). The lifted solution y ∈ P is directly obtained
by composing [y1 y2 . . . yn] as [y1 y2 . . . yk], with yj = αjwj

i + βj, ∀j ∈ 1, k.

Proof. Assume that the lifted solution y does not belong to P . There needs to exist
a valid pattern a such that

∑k

j=1

∑nj

i=1 a
j
iy

j
i > 1. By replacing yji with αjwj

i +βj,

we obtain
∑k

j=1

∑nj

i=1 a
j
i (α

jwj
i + βj) > 1. For each j, let cj =

∑nj

i=1 a
j
iw

j
i =

(

aj
)T

wj. The values M(j, cj) and m(j, cj) are defined, and m(j, cj) ≤
∑nj

i=1 a
j
i ≤

M(j, cj); as such,
∑nj

i=1 a
j
i (α

jwj
i + βj) ≤ cjαj +M(j, cj)βj, where M = M if

βj ≥ 0 and M = m if βj < 0. If follows that
∑k

j=1 c
jαj +M(j, cj)βj > 1, and

so, the Pk solution [α, β] is not valid. Therefore, if a Pk solution is lifted to a
non-feasible P solution, then the initial Pk solution can not be feasible in Pk.

The size of model (2.3) only depends on C and k, and not on n. Generally
speaking, the number of constraints may be exponentially large (in k). However,
if one only wants to generate fast lower bounds, one can consider k as a constant:
in this case, the number of constraints is limited by the pseudo-polynomial bound
O(Ck)—not always reached in practice due to dominance reasons presented next.

Title Suppressed Due to Excessive Length 5

2.2 Computing m and M values

A considerable part of the capacity constraints are redundant. Consider any
constraint generated by c1 . . . ck and focus on a group j. Any constraint generated
by replacing cj with a c′j < cj such that M(j, c′j) ≤ M(j, cj) (a reasonable and
frequent situation), decreases term j in the capacity constraints of Pk in (2.3).
Indeed, since αj ≥ 0 and the M terms only arise in constraints using positive
βj , it follows that αjc′j + βjM(j, c′j) ≤ αjcj + βjM(j, cj). As such, the new
constraint replacing (cj , M(j, c′j)) with (c′j , M(j, cj)) is redundant.

More generally, we show that, given a set of pairs (2-dimensional vectors)
(c′j ,M(j, c′j)) (with M ∈ {M,m} and c′j ≤ cj), non-dominated constraints
can be associated only to vertices of the convex hull of this set of pairs. The
proof results from the fact that any pair (c′j ,M(j, c′j)) that is not a vertex can
be written as a convex combination of other vertex pairs, i.e. (c′j ,M(j, c′j)) =
∑ℓ

i=1 λi · (c
j
i ,M(j, cji)) where λi ≥ 0, ∀i ∈ 1, ℓ and

∑ℓ

i=1 λi = 1. The same
multipliers λi can be applied to express any capacity constraint in which the
term j is αjc′j+βjM(j, c′j) as a convex combination of ℓ capacity constraints in
which the term j is associated to the above vertex pairs. The λ−weighted sum of
these ℓ constrains results in the initial constraint: (A) term j in the left-hand side
is αjc′j+βjM(j, c′j) (resulting from the convex expression of αjc′j+βjM(j, c′j)

and (B) the right-hand side is 1 (using
∑ℓ

i=1 λi = 1).
Finally, note that for a given set Ij , the dynamic program only has to be

run twice to compute all possible values M(j, c) and m(j, c), c = 1, . . . , C. Such
dynamic programs process one by one the items of Ij , and so, a part of the
numerical results (corresponding to a subset of Ij) can be re-used when Ij is
split (in Section 4).

2.3 Optimization of the model (2.3)

2.3.1 Classical optimization via full Pk construction for small k
For a small value of k, the model is rather small. The main optimization questions
regard the constraints. Given c1, . . . ck, there is no need to generate capacity
constraints using all (2k) combinations of M(j, cj) and m(j, cj) (∀j ∈ 1, k),
because term j can be written using M = M when βj ≥ 0, or M = m when
βj ≤ 0. To generate only the necessary M/m combinations, the optimization
method proceeds as follows. Given a initial solution α1, β1, . . . , αk, βk (0 in the
very first step), generate only the capacity constraints with the M/m functions
corresponding to the current βj values and optimize. If the resulting solution
changes certain βj sides, update the corresponding constraints as necessary (e.g.,
replace M by m for any initially positive βj that becomes strictly negative) and
re-optimize. The process is repeated while M/m changes are necessary.
2.3.2 Optimizing Pk for larger values of k
The number of constraints grows exponentially with the value of k. For larger
values of k, one needs to generate these constraints when needed, using a column
generation scheme; the (2.3) constraints are constructed by solving a pricing
problem. A main difference with the original column generation model is that

6 D. Porumbel, F. Clautiaux

the pricing problem is applied on the groups instead of on each item. One can
reuse the information obtained when values M(j, c) and m(j, c) are computed.

The objective of the pricing problem is to determine the values c1, . . . , ck

that maximise
∑k

j=1 α
jcj + βjM(j, cj) under the constraint

∑k

j=1 c
j ≤ C. This

problem can be formulated as a multiple-choice knapsack problem: for each group
j, and for each value cj where M(j, cj) is defined, create an item of size cj and
value M(j, cj). Then a dummy item of size cj = 0 and value 0 is added for each
group j. The objective is to select one item per group in such a way that the total
size does not exceed C. This problem can be solved by dynamic programming.

This scheme can be used to (more) rapidly determine the optimum of (2.3)
for fixed choices of M/m at each group. As in Sec. 2.3.1 above, the current
optimizer can be called several times, once for each necessary M/m change.

3 Constraints of the restricted dual polytope and the

knapsack polytope

This section explores certain theoretical properties of the dual approximated
polytope Pk, e.g., we investigate the impact of imposing linearity constraints
over the items of a group with respect to imposing equalities (as in classical dual
cuts). For this, we study the relations between Pk and the classical knapsack
polytope. This provides a better vision for certain ideas applied in the iterative
convergent method from Sec. 4. Let us precisely define the knapsack polytope K
as the convex hull of the set of integer solutions K of the knapsack problem:

K = Conv{K}, where
K = {a ∈ Zn

+ : wTa ≤ C}
(3.1)

Let us focus on the artificial dual cuts (or, equivalently, artificial cutting-
patterns) implicitly introduced in (2.1) by our linearity constraints. These lin-
earity constraints implicitly impose new dual cuts, which can also be seen as
exchange vectors (see [10]).

In the existing literature, exchange vector are of the form yi ≤ yj . Such
(in)equalities can be seen as exchange vectors in the sense that they can be
combined with existing cuts to generate new artificial cuts, e. g. if yi ≤ yj , any
cut involving yj implicitly generates a new cut by replacing yj by yi. In this
case, the direct replacements lead to artificial cuts with integer coefficients that
would be easy to detect. We show that our linearity-enforcing constrains lead
to non-valid artificial cuts that do not have integer coefficients. Furthermore,
the patterns associated to our cuts always belong to the fractional knapsack
polytope, which is not the case for simple yi = yj constraints. This means that
the degree of infeasibility of the artificial cuts generated from linearity constraints
is smaller than that generated by basic equalities between variables.

We now formally show these results in the following three propositions.

Proposition 2. A solution a ∈ Rn
+ belongs to K if and only if aT y ≤ 1 is a

valid constraint of P.

Title Suppressed Due to Excessive Length 7

Proof. The statement a ∈ K ⇒ aT y ≤ 1, ∀y ∈ P directly follows from the
definition (2.1) of P. While the inequalities of P are defined only using integer
solutions of P, any a ∈ K can be obtained as a convex combination of certain
integer solutions. This convex combination can also be applied on the inequalities
associated to the integer solutions, leading to a inequality that corresponds to a.

Next, it remains to prove that aT y ≤ 1, ∀y ∈ P ⇒ a ∈ K. For this, we will
show that for any solution â ∈ Rn

+ such that â /∈ K, one can construct y ∈ P
such that âT y > 1. For this, we will first generate y ∈ Rn such that âT y > 1 and
then we will show that y is a valid solution of P.

To generate y, let us first construct a solution a belonging to a K facet that
separates â from K. This solution a is obtained by simply “scaling” â down, i.
e., a = sâ, where s is the maximum scale factor s < 1 such that sâ ∈ K. This
maximum scale factor needs to be strictly positive, as â ≥ 0n and K contains the
polytope delimited by

∑n

i=1 ai ≤ 1 (recall that we only use items smaller than
C). Let us focus on the relation between a and K: since s is maximum, there
exists a facet that contains a and that cuts â from K. The facet equation could
not have the form yTa = 0, because such a facet would contain both a and â.
As such, the facet equation can be written as yTa = 1 for a certain y ∈ Rn not
necessarily positive; a belongs to this facet, i.e., aT y = 1. Since â = a

s
and s < 1,

we obtain âT y = yT â = yT a
s

> yTa = 1.
It remains to show that y is a valid P solution: we need to show that: (a)

y verifies the (2.1) knapsack inequalities of the form aT y ≤ 1, ∀a ∈ K, and
(b) y is non-negative. Regarding the knapsack inequalities, observe that, given
any a ∈ K, the inequality aT y ≤ 1 is valid, because y determines the K facet
yTa ≤ 1, ∀a ∈ K (verified with equality by the solutions of the facet). Finally, we
only need to check that y ∈ Rn

+. Assume there is yi < 0 and consider a solution
a′ of the facet (i.e., yTa′ = 1) such that a′i > 0. If no such a′ existed, the facet
equation could be written in the form a′i = 0 (recall K is fully dimensional), a
case already excluded. By decreasing a′i to 0, one could obtain a valid K solution
that would be separated by the facet, which is impossible. This shows that all
components of y are non-negative. Since y also verifies all P inequalities, y
needs to belong to P. We constructed for a given â /∈ K a solution y ∈ P such
that âT y > 1.

Proposition 3. Given any y ∈ Rn
+, then y ∈ P if and only if yTa ≤ 1 is a valid

cut of K.

Proof. The fact that all y ∈ P yield valid inequalities for K has already been
discussed in the literature [3]. Conversely, as already described above, if yTa ≤ 1,
∀a ∈ K, then, since y ∈ Rn

+, all constraints of (2.1) are satisfied by definition.

The above propositions lead us to the following conclusion.

Proposition 4. Any non-valid P cut âT y ≤ 1 (â ≥ 0n) that cuts off a solution
y ∈ P (i.e., âT y � 1) is an infeasible knapsack solution â /∈ K separated from K
by a valid knapsack cut yTa ≤ 1 and vice-versa.

8 D. Porumbel, F. Clautiaux

Proof. First, consider a non-valid P cut âT y ≤ 1. Since âT y > 1 for y ∈ P,
Proposition 3 states that y generates the valid K cut yTa ≤ 1, ∀a ∈ K; this cut
separates â from K. Conversely, if â /∈ K, using Proposition 2 we deduce that
âT y ≤ 1 cannot be a valid constraint for P, i.e., ∃y ∈ P such that âT y > 1,
yielding the non-valid P cut âT y ≤ 1 that separates y ∈ P.

The above proposition can be useful for evaluating the “infeasibility degree”
of an artificial non-valid dual cut. When introducing non-valid cuts, one might
be interested in the size of the P zone cut off by the non-valid cut, or, more
importantly, on the number of P vertices separated by this non-valid cut. Using
Proposition 4, we observe a bijection between the P solutions y that are cut off
by the non-valid cut âT y ≤ 1 and the valid knapsack cuts yTa ≤ 1 separating
â /∈ K. To evaluate the P zone cut off by the cut, one might evaluate the valid
knapsack cuts that separate â from K.

Let us compare the infeasible K solutions generated by linearity constraints
with respect to those obtained via equality constraints. The “exchange vectors”
of equality constraints are integer and they can directly generate infeasible K
solutions that are integer. A non-valid integer K solution cannot satisfy the main
knapsack inequality, i.e., it does not belong to the fractional knapsack polytope
{

y ∈ Rn
+ s.t. wT y ≤ C

}

. On the other hand, our approach does not lead to this
situation, as proved by below proposition.

Proposition 5. Any artificial cut resulting from our model (2.3) corresponds to
a solution a ∈ Zn

+ that belongs to the fractional knapsack polytope defined above.

Proof. Consider that the solution yw = w
C
is linear, and so, it belongs to P1,P2, . . . Pk.

As such, it satisfies any artificial constraint aT y ≤ 1 generated by our model. It
follows that aT w

C
≤ 1 is valid, and so, aTw ≤ C is satisfied.

4 A Convergent Method Using Inner Approximations

For a fixed value of k and a fixed group decomposition, the model (2.3) finds a
feasible solution of the dual polytope P. This solution may not be optimal for
model (2.1), since (2.3) introduces non-valid P cuts as described in Sec 3. To
obtain a method that converges toward the optimum of (2.1), it is necessary to
refine the approximation by relaxing non valid constraints. This can be done by
selecting one of the k groups to be split into several subgroups. In practice, the
split operation produces two new (sub-) groups, and so, Pk is refined to Pk+1.

The algorithmic template of the convergent method can be summarized as
follows: (i) determine a lower bound y using any method from Sec. 2.3; (ii) find
upper bound y∗ using a routine that takes y as input (optional, see Sec. 4.2), (iii)
select the group to split and the two new (sub-)groups (Sec. 4.2) and (iv) update
Pk to construct Pk+1 (Sec. 4.1) and repeat from (i). The stopping condition is
one of the following: (a) ⌈y⌉ = ⌈y∗⌉ or (b) each group has 2 items or less.

Title Suppressed Due to Excessive Length 9

4.1 Updating Pk constraints to Pk+1 constraints

We consider that group j with nj items is split into groups j1 (nj1 items) and
j2 (nj2 elements). Although the Pk description evolves considerably at Pk+1,
important information can be re-used to optimize Pk+1. We first present this
process for the classical optimization method from Sec 2.3.1, followed by the
column generation scheme from Sec 2.3.2. An important time gain is realized in
the second case, as one avoids solving many multiple-choice knapsack problems.

For the classical optimization method, each Pk constraint involving theM(j, cj)
term cjαj +M(j, cj)βj can arise in Pk+1 as a constraint involving a M(j1, c

j1)
term and a M(j2, c

j2) term. In fact, all these new constraints are derived from
the old ones by determining, for each cj , all cj1 and cj2 such that cj1 + cj2 = cj

and M(j1, c
j1)+M(j2, c

j2) = M(j, cj). In practice, one uses a O(nj1nj2) routine
to construct all sub-terms cj1 and cj2 for all cj values.

Regarding the column generation scheme, the lower bound of Pk can be ex-
pressed in the space of Pk+1 by considering αj1 = αj2 = αj and βj1 = βj2 = βj

and keeping the α and β values unchanged for the rest of groups. Recall that
the objective of the pricing problem is to find a constraint that is violated by
the current values α and β. We propose a first stage of the Pk+1 optimization
that does not solve this using the classical multi-choice knapsack problem (as
in Sec 2.3.2). Instead, the first stage of our extension retrieves all constraints
generated for Pk so as to “adapt” them to Pk+1. For each such Pk constraint,
one tries to generate the tightest Pk+1 constraint as follows: keep unchanged
any constraint term involving groups j′ 6= j and apply the multiple-choice knap-
sack algorithm only using the two groups j1 and j2 and a total capacity of

C −
(

∑

j′∈1,k,j′ 6=j c
j′αj′ +M(j′, cj

′

)βj′
)

. In many practical cases, the Pk+1 op-

timization is carried out almost instantly because: (1) there are few constraints
“inherited” from Pk and (2) these constraints lead to an upper bound for the
Pk+1 optimum that is equal to the Pk+1 lower bound (this Pk+1 lower bound is
simply the Pk optimum).

4.2 Upper bound and Group Split Decisions

Given a lower bound y ∈ Pk ⊆ P, our proposed upper bounding approach
optimizes a polytope Ps that is described using the same model (2.1) as P, but
only with a subset of the constrains of P. More exactly, Ps only uses y-saturated
constrains of P,i. e., classical knapsack constrains (aT y ≤ 1) of P such that
aT y = 1. Since P ⊆ Ps, the optimal solution y∗ of Ps yields an upper bound
of opt(P). The advantage of the proposed approach compared to other upper
bounds is twofold: (a) it indicates exactly whether or not y is a P optimum, (see
below) and (b) it can be very useful in guiding the group split selection.

Regarding the first aspect above, we show that the lower bound y is a P
optimal solution if and only if bT y∗ = bT y. We start by a clear implication:
if y is not optimal, then bT y∗ ≥opt(P)> bT y. Next, it is enough to show the
converse of this implication: if bT y∗ > bT y, then y is not optimal. Using the
fact that y∗ respects all y saturated constrains, one can show that the segment

10 D. Porumbel, F. Clautiaux

joining y and y∗ contains other feasible P solutions besides y. If only y would
belong to P, then all other solutions of this segment would be cut off from P
by a y-saturated constraint, which is impossible because y∗ satisfies all these
constrains. More formally, ∃ǫ > 0 such that the solution y+ ǫ(y∗− y) belongs to
P; the objective function value bT y + ǫ

(

bT y∗ − bT y
)

is strictly between of bT y
and bT y∗. If bT y > bT y∗, then y is not optimal as one can improve it by moving
towards y∗ (at least using a small ǫ > 0).

The optimization of Ps is carried out using a classical column generation
scheme that generates only constraints a that maximize aT y and, subject to
this, maximise aT y with respect to the current dual solution y.
Group Splitting Strategy In order to construct a (k + 1)-partition from a
k-partition, one needs to choose a group j to be split into two subgroups j1 and
j2. Our proposal is to assign the lightest nj1 items to group j1 and the remaining
nj2 items to group j2. As such, at each extension from k to k + 1, the goal is to
find the pair (j, nj1) ∈

{(

j′, nj′
1

)

: j′ ∈ 1, k, nj′
1
∈ 1, nj

}

that makes the iterative
method converge as fast as possible. The impact of certain early (low k) split
decisions over all future iterations is difficult to evaluate. Constructing a proven
globally optimal split strategy would increase dramatically the computational
burden. Therefore, we developed several heuristic indicators (impact score) that
rapidly evaluate the impact (lower bound increase potential) of a split choice
(j, nj1) at the next (k + 1) iteration.

Given a split decision (j, nj1), the impact score is based on : (A) criteria
related to the number of items in group j and their weight span, and (B) the
relation between y and the upper bound y∗ determined as above. The use of y∗

can be very useful: one can exploit the property that if bT y∗ > bT y, one can
find ǫ > 0 such that yǫ = y + ǫ(y∗ − y) belongs to P. Furthermore, this solution
yǫ cannot belong to Pk, as opt(Pk) = bT y < bT yǫ; y can only be separated
from Pk by the linearity constrains of certain groups. The most interesting case
is obtained when y∗ − y is negative over all items of the first (sub-)group and
positive over the second. Such a group split would allow the lower bound to
advance from y to y∗: the first nj1 items are allowed to decrease, and the last
nj2 can be increased.

5 Experimental Results

The goal of this section is to globally assess our Iterative Inner Dual Approxima-
tion (2IDA) in terms of: (i) quality of the iterative lower bounds with respect to
the value of column generation (CG), and (ii) the computational effort needed
to reach the optimum of model P. For comparison purposes, we use a classical
(non-stabilized) column generation algorithm using dynamic programming for
pricing the columns. We used classical cutting-stock instances of the literature
(i.e., VB 1 and VB 2 from [9], random instances with C = 10000 and respectively
n = 10 and n = 20), and three randomly generated instance sets from [2]: m01,
m20, 235 with n = 100 and C = 100, where the number in the instance name
corresponds with the minimum size of an item.

Title Suppressed Due to Excessive Length 11

Table 1 reports for each class of instances a comparison between the com-
puting effort of our method (2IDA) and that of the CG algorithm. More de-
tailed results, the source code and the instances are publicly available on-line at
http://www.lgi2a.univ-artois.fr/~porumbel/cs/. Note that our method is
executed without upper bounding on instances VDB 1. Since n = 10, the opti-
mality stopping condition is to have only groups with 1 or 2 elements. On all
other instances, our method uses upper bounding both for optimality testing
and for group split selection (Sec. 4.2).

Inst. Avg. CPU 2IDA vs CG LB MKP calls calls UB KP/CG KP
set 2IDA(LB+UB) CG ≺ ≃ ≻ min avg. max min avg. max

m35 252(131+121) 265 556 93 351 0 7 86 18/52 63/134 188/316
m20 940(647+293) 479 262 82 656 0 85 612 43/92 114/173 235/334
m01 1274(599+675) 675 236 65 699 0 24 703 59/93 159/191 322/361
VB1 1191(1191+0) 1881 19 0 1 0 20 100 –/11 –/21 –/31
VB2 74684(54693+19991) 21165 5 0 15 0 89 206 19/33 32/60 63/95
Table 1. The computing effort of reaching a solution with 2IDA and CG. Columns
“Avg. CPU” report the time (in ms.) for 2IDA (in parentheses the CPU time of the
lower and the upper bound) and for CG. Columns ”2IDA vs. CG” report the number
of times 2IDA is (1) faster than CG (column ≺), (2) roughly equally fast (difference
< 5%, column ≃), and (3) slower (column ≻). Columns “LB MKP Calls” provide the
number of multiple-choice knapsack algorithm calls required by the Pk optimization
(Section 2.3). The last three columns provide a comparison between the number of
columns generated by our upper bounding method (Section 4.2) and CG.

For instances m35 and VB1, 2IDA is better than CG in more cases than the
opposite. This is not the case for the other classes, where our method is less
competitive. The important computational burden of the upper bound explains
that our method may be slower. Note that the number of pricing subproblems
to solve remains smaller with 2IDA, even when the computing time is larger.

An important feature of our algorithm is that even when it is slower to
converge toward an optimal solution, it has the advantage to produce valid lower
bounds from the beginning of the search. This is summarized in Figure 2, where
we report the average gap with CG during the execution of CG.

From Figure 2, one can see that on average, our method returns a bound
close to the CG optimum within the computing time of CG. With the exception
of instances VB2, when roughly 40% of the time needed by CG is needed to
obtain a gap under 10%, 2IDA needs roughly 20% of the CG time to obtain 90%
of the CG value on average.

6 Conclusions and perspectives

We describe an iterative method for computing lower bounds for the cutting-
stock problem. This method converges toward the optimum of the Gilmore and
Gomory model by constructing an iterative inner approximation of the dual
polytope, instead of an outer approximation as usually done in classical column
generation algorithm. It has the advantage of producing good lower bounds in a
fast manner.

12 D. Porumbel, F. Clautiaux

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

%
a
g
e
C
G

va
lu
e

%age CG time

’m01’

++
+

+

+

+

+

+

+

+
+
+
++
++++++++++

++
’m20’

××
×

×

×

×

×

×

×

×

×

×

×
×
××
×××
××××××××××××

××××××××××××××××××××××
××

×

’m35’

∗∗
∗
∗

∗

∗

∗

∗

∗

∗
∗

∗

∗
∗
∗
∗
∗∗
∗∗
∗∗
∗∗∗∗

∗∗∗∗∗
∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗

’vb1’

�

�

�

�

�

�

�

��

�

’vb2’

◦

◦◦
◦◦

◦

◦

◦
◦
◦

◦◦◦

◦

Fig. 2. Evolution of the gap between our lower bound and the value of CG during the
(normalized) time needed by CG. These curves are obtained by computing the average
gap with CG obtained by 2IDA for 1, 2, . . . , 100% of the time needed by CG.

The method works by splitting the dual variables into k groups that are
aggregated using linear functions. The model obtained is pseudo-polynomial for
a given fixed value of k, i.e. it does not depend exponentially on the number of
items in the data.

It can be noted that certain ideas of the approach can be generalized for other
versions of cutting-stock/bin-packing problems, and even for other problems with
exponentially many columns—assuming that it is possible to aggregate columns
by grouping certain components.

References

1. J. Carvalho. Using extra dual cuts to accelerate column generation. INFORMS
Journal on Computing, 17(2):175–182, 2005.

2. F. Clautiaux, C. Alves, and J. Carvalho. A survey of dual-feasible and superaddi-
tive functions. Annals of Operations Research, 179(1):317–342, 2009.

3. F. Clautiaux, C. Alves, J. M. V. de Carvalho, and J. Rietz. New stabilization
procedures for the cutting stock problem. INFORMS Journal on Computing,
23(4):530–545, 2011.

4. O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column
generation. Discrete Mathematics, 194:229–237, 1999.

5. P. Gilmore and R. Gomory. A linear programming approach to the cutting stock
problem. 9:849–859, 1961.

6. M. Luebbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53:1007–1023, 2005.

Title Suppressed Due to Excessive Length 13

7. G. S. Lueker. Bin packing with items uniformly distributed over intervals [a,b].
In 24th Annual Symposium on Foundations of Computer Science, pages 289–297.
IEEE, Nov. 1983.

8. R. Marsten, W. Hogan, and J. Blankenship. The BOXSTEP method for large-scale
optimization. Operations Research, 23(3):389–405, 1975.

9. F. Vanderbeck. Computational study of a column generation algorithm for bin
packing and cutting stock problems. Mathematical Programming, 86(3):565–594,
1999.

10. F. Vanderbeck and M. Savelsbergh. A generic view of dantzig-wolfe decomposition
in mixed integer programming. Operations Research Letters, 34(3):296–306, 2006.

