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This paper describes an approach to improve the performance of sampling-based multilingual alignment on translation tasks by investigating the distribution of n-grams in the translation tables. This approach consists in enforcing the alignment of n-grams. The quality of phrase translation tables output by this approach and that of MGIZA++ is compared in statistical machine translation tasks. Significant improvements for this approach are reported. In addition, merging translation tables is shown to outperform state-of-the-art techniques.

Introduction

Phrase translation tables play an important role in the process of building machine translation systems. The quality of translation table, which identifies the relations between words or phrases in the source language and those in the target language, is crucial for the quality of the output of most machine translation systems. Currently, the most widely used state-of-the-art tool to generate phrase translation tables is GIZA++ [START_REF] Och | A systematic comparison of various statistical alignment models[END_REF], which trains the ubiquitous IBM models [START_REF] Brown | The mathematics of statistical machine translation: Parameter estimation[END_REF] and the HMM introduced by [START_REF] Vogel | Hmm-based word alignment in statistical translation[END_REF], in combination with the Moses toolkit [START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF]. MGIZA++, a multi-threaded word aligner based on GIZA++, is proposed by [START_REF] Gao | Parallel implementations of word alignment tool[END_REF].

In this paper, we investigate a different approach to the production of phrase translation tables: the sampling-based approach (Lardilleux and Lepage, 2009b). This approach is implemented in a free open-source tool called Anymalign. 1 Being in line with the associative alignment trend illustrated by [START_REF] Gale | Identifying word correspondences in parallel texts[END_REF][START_REF] Melamed | Models of translational equivalence among words[END_REF][START_REF] Moore | Association-based bilingual word alignment[END_REF], it is much simpler than the models implemented in MGIZA++, which are in line with the estimating trend illustrated by [START_REF] Brown | Aligning sentences in parallel corpora[END_REF][START_REF] Och | A systematic comparison of various statistical alignment models[END_REF][START_REF] Liang | Alignment by agreement[END_REF]. In addition, it is capable of aligning multiple languages simultaneously; but we will not use this feature here as we will restrain ourselves to bilingual experiments in this paper.

In sampling-based alignment, only those sequences of words sharing the exact same distribution (i.e., they appear exactly in the same sentences of the corpus) are considered for alignment.

The key idea is to make more words share the same distribution by artificially reducing their frequency in multiple random subcorpora obtained by sampling. Indeed, the smaller a subcorpus, the less frequent its words, and the more likely they are to share the same distribution; hence the higher the proportion of words aligned in this subcorpus. In practice, the majority of these words turn out to be hapaxes, that is, words that occur only once in the input corpus. Hapaxes have been shown to safely align across languages (Lardilleux and Lepage, 2009a).

The subcorpus selection process is guided by a probability distribution which ensures a proper coverage of the input parallel corpus:

p(k) = -1 k log(1 -k/n) (to be normalized) (1)
where k denotes the size (number of sentences) of a subcorpus and n the size of the complete input corpus. Note that this function is very close to 1/k2 : it gives much more credit to small subcorpora, which happen to be the most productive (Lardilleux and Lepage, 2009b). Once the size of a subcorpus has been chosen according to this distribution, its sentences are randomly selected from the complete input corpus according to a uniform distribution. Then, from each subcorpus, sequences of words that share the same distribution are extracted to constitute alignments along with the number of times they were aligned. 2 Eventually, the list of alignments is turned into a full-fledged translation table, by calculating various features for each alignment. In the following, we use two translation probabilities and two lexical weights as proposed by [START_REF] Koehn | Statistical phrase-based translation[END_REF], as well as the commonly used phrase penalty, for a total of five features.

One important feature of the sampling-based alignment method is that it is implemented with an anytime algorithm: the number of random subcorpora to be processed is not set in advance, so the alignment process can be interrupted at any moment. Contrary to many approaches, after a very short amount of time, quality is no more a matter of time, however quantity is: the longer the aligner runs (i.e. the more subcorpora processed), the more alignments produced, and the more reliable their associated translation probabilities, as they are calculated on the basis of the number of time each alignment was obtained. This is possible because high frequency alignments are quickly output with a fairly good estimation of their translation probabilities. As time goes, their estimation is refined, while less frequent alignments are output in addition.

Intuitively, since the sampling-based alignment process can be interrupted without sacrificing the quality of alignments, it should be possible to allot more processing time for n-grams of similar lengths in both languages and less time to very different lengths. For instance, a source bigram is much less likely to be aligned with a target 9-gram than with a bigram or a trigram. The experiments reported in this paper make use of the anytime feature of Anymalign and of the possibility of allotting time freely.

This paper is organized as follows: Section 2 describes a preliminary experiment on the sampling-based alignment approach implemented in Anymalign baseline and provides the experimental results from which the problem is defined. In Section 3, we propose a variant in order to improve its performance on statistical machine translation tasks. Section 4 introduces standard normal distribution of time to bias the distribution of n-grams in phrase translation tables. Section 5 describes the effects of pruning on the translation quality. Section 6 presents the merge of two aligners' phrase translation tables. Finally, in Section 7, conclusions and possible directions for future work are presented.

Preliminary Experiment

In order to measure the performance of the sampling-based alignment approach implemented in Anymalign in statistical machine translation tasks, we conducted a preliminary experiment and compared with the standard alignment setting: symmetric alignments obtained from MGIZA++. Although Anymalign and MGIZA++ are both capable of parallel processing, for fair comparison in time, we run them as single processes in all our experiments.

Experimental Setup

A sample of the French-English parts of the Europarl parallel corpus was used for training, tuning and testing. A detailed description of the data used in the experiments is given in Table 1.

The training corpus is made of 100k sentences. The development set contains 500 sentences, and 1,000 sentences were used for testing. To perform the experiments, a standard statistical machine translation system was built for each different alignment setting, using the Moses decoder [START_REF] Koehn | Moses: Open source toolkit for statistical machine translation[END_REF], MERT (Minimum Error Rate Training) to tune the parameters of translation tables (Och, 2003), and the SRI Language Modeling toolkit [START_REF] Stolcke | SRILM-an extensible language modeling toolkit[END_REF] to build the target language model.

As for the evaluation of translations, four standard automatic evaluation metrics were used: mWER [START_REF] Nießen | An evaluation tool for machine translation: Fast evaluation for machine translation research[END_REF], BLEU [START_REF] Papineni | BLEU: a method for automatic evaluation of machine translation[END_REF], NIST [START_REF] Doddington | Automatic evaluation of machine translation quality using N-gram co-occurrence statistics[END_REF], and TER [START_REF] Snover | A study of translation edit rate with targeted human annotation[END_REF]. 

Problem Definition

In a first setting, we evaluated the quality of translations output by the Moses decoder using the phrase table obtained by making MGIZA++'s alignments symmetric in a second setting. This phrase table was simply replaced by that produced by Anymalign. Since Anymalign can be stopped at any time, for a fair comparison it was run for the same amount of time as MGIZA++: seven hours in total. The experimental results are shown in Table 2.

Table 2: Evaluation results on a statistical machine translation task using phrase tables obtained from MGIZA++ and Anymalign (baseline).

mWER BLEU NIST TER MGIZA++ 0.5714 0.2742 6.6747 0.6170 Anymalign 0.6186 0.2285 6.0764 0.6634

In order to investigate the differences between MGIZA++ and Anymalign phrase translation tables, we analyzed the distribution of n-grams of both aligners, The distributions are shown in Table 7 (a) andTable 7 (b). In Anymalign's phrase translation table, the number of alignments is 8 times that of 1 × 1 n-grams in MGIZA++ translation table, or twice the number of 1 × 2 n-grams or 2 × 1 n-grams in MGIZA++ translation table. Along the diagonal (m × m n-grams), the number of alignments in Anymalign table is more than 10 times less than in MGIZA++ table. This confirms the results given in (Lardilleux et al., 2009) that the sampling-based approach excels in aligning unigrams, which makes it better at multilingual lexicon induction than, e.g., MGIZA++. However, its phrase tables do not reach the performance of symmetric alignments from MGIZA++ on translation tasks. This basically comes from the fact that Anymalign does not align enough long n-grams (Lardilleux et al., 2009).

3 Anymalign1-N

Enforcing Alignment of N-grams

To solve the above-mentioned problem, we propose a method to force the sampling-based approach to align more n-grams.

Consider that we have a parallel input corpus, i.e., a list of (source, target) sentence pairs, for instance, in French and English. Groups of characters that are separated by spaces in these sentences are considered as words. Single words are referred to as unigrams, and sequences of two and three words are called bigrams and trigrams, respectively.

Theoretically, since the sampling-based alignment method excels at aligning unigrams, we could improve it by making it align bigrams, trigrams, or even longer n-grams as if they were unigrams. We do this by replacing spaces between words by underscore symbols and reduplicating words as many times as needed, which allows to make bigrams, trigrams, and longer n-grams appear as unigrams. Table 3 depicts the way of forcing n-grams into unigrams.

Similar works on the idea of enlarging n-grams have been reported in [START_REF] Ma | Bootstrapping word alignment via word packing[END_REF], in which "word packing" is used to obtain 1-to-n alignments based on co-occurrence frequencies, and [START_REF] Henríquez | Using collocation segmentation to augment the phrase table[END_REF], in which collocation segmentation is performed on bilingual corpus to extract n-to-m alignments. 

Phrase Translation Subtables

It it thus possible to use various parallel corpora, with different segmentation schemes in the source and target parts. We refer to a parallel corpus where source n-grams and target m-grams are assimilated to unigrams as an unigramized n-m corpus. These corpora are then used as input to Anymalign to produce phrase translation subtables, as shown in Table 4. Practically, we call Anymalign1-N the process of running Anymalign with all possible unigramized n-m corpora, with n and m both ranging from 1 to a given N. In total, Anymalign is thus run N × N times. All phrase translation subtables are finally merged together into one large translation table, where translation probabilities are re-estimated given the complete set of alignments. 

• • N-grams unigrams TT 1 × 1 TT 1 × 2 TT 1 × 3 • • • TT 1 × N bigrams TT 2 × 1 TT 2 × 2 TT 2 × 3 • • • TT 2 × N trigrams TT 3 × 1 TT 3 × 2 TT 3 × 3 • • • TT 3 × N • • • • • • • • • • • • • • • • • • N-grams TT N × 1 TT N × 2 TT N × 3 • • • TT N × N
Although Anymalign is capable of directly producing alignments of sequences of words, we use it with a simple filter3 so that it only produces (typographic) unigrams in output, i.e., n-grams and m-grams assimilated to unigrams in the input corpus. This choice was made because it is useless to produce alignment of sequences of words, since we are only interested in phrases in the subsequent machine translation tasks. Those phrases are already contained in our (typographic) unigrams: all we need to do to get the original segmentation is to remove underscores from the alignments.

Evaluation Results with Equal Time Configuration

The same experimental process (i.e., replacing the translation table) as in the preliminary experiment was carried out on Anymalign1-N with equal time distribution, which is, uniformly distributed time among subtables. For a fair comparison, the same amount of time was given: seven hours in total. The results are shown in Table 6. On the whole, MGIZA++ significantly outperforms Anymalign, by more than 4 BLEU points. The proposed approach, Anymalign1-N, produces better results than Anymalign in its basic version, with the best increase with Anymalign1-3 or Anymalign1-4 (+1.3 BP).

The comparison of Table 7 (c) (see last page) and Table 7 (a) shows that Anymalign1-N delivers too many alignments outside of the diagonal (m × m n-grams) and still not enough along the diagonal. Consequently, this number of alignments should be lowered. A way of doing so is by giving less time for alignments outside of the diagonal.

Time Distribution among Subtables

In order to increase the number of phrase pairs along the diagonal of the translation table matrix and decrease this number outside the diagonal (Table 4), we distribute the total alignment time among translation subtables according to the standard normal distribution:

φ (n, m) = 1 √ 2π e -1 2 (n-m) 2 (2)
The alignment time allotted to the subtable between source n-grams and target m-grams will thus be proportional to φ (n, m). Table 5 shows an example of alignment times allotted to each subtable up to 4-grams, for a total processing time of 7 hours.

Evaluation Results with Standard Normal Time Distribution

We performed a third evaluation using the standard normal distribution of time, as in previous experiments, again with a total amount of processing time (7 hours).

The comparison between MGIZA++, Anymalign in its standard use, and Anymalign1-N with standard normal time distribution is shown in Table 6. Anymalign1-4 shows the best performance in terms of mWER and BLEU scores, while Anymalign1-3 gets the best results for the two other evaluation metrics. There is an increase in BLEU scores for almost all Anymalign1-N, from Anymalign1-3 to Anymalign1-10, when compared with the translation qualities of Anymalign1-N with equal time distribution. The greatest increase in BLEU is obtained for Anymalign1-10 (almost +2 BP). Anymalign1-4 shows the best translation qualities among all other settings, but gets a less significant improvement (+0.2 BP). Again, we investigated the number of entries in Anymalign1-N run with this normal time distribution. We compare the number of entries in Table 7 in Anymalign1-4 with (c) equal time distribution and (d) standard normal time distribution (see last page). The number of phrase pairs on the diagonal roughly doubled when using standard normal time distribution. We can see a significant increase in the number of phrase pairs of similar lengths, while the number of phrase pairs with different lengths tends to decrease slightly. This means that the standard normal time distribution allowed us to produce much more numerous useful alignments (a priori, phrase pairs with similar lengths), while maintaining the noise (phrase pairs with different lengths) to a low level, which is a neat advantage over the original method.

Translation Table Pruning

Until now, we were concerned with the shape of phrase translation tables in standard configurations. However, [START_REF] Johnson | Improving translation quality by discarding most of the phrasetable[END_REF] have shown that substantially pruning the phrase translation tables can lead to slight but consistent improvements in translation quality.

They use Fisher's exact significance test to eliminate a substantial number of phrase pairs. The significance of the association between a (source, target) phrase pair is evaluated and their probability of co-occurrence in the corpus is calculated. The hypergeometric distribution is used to compute the observed probability of joint occurrence C( s, t), with s a source phrase and t a target phrase:

p h (C( s, t)) = C( s) C( s,t) N-C( s) C(t)-C( s,t) N C(t) (3)
Here, N is the number of sentences in the input parallel corpus. The p-value is calculated as:

p-value(C( s, t)) = ∞ ∑ k=C( s,t) p h (k) (4) 
Any phrase pair with a p-value greater than a given threshold will thus be filtered out. In practice, this mainly removes phrase pairs with different frequencies. A special case happens when a source phrase and a target phrase, hence the resulting phrase pair as well, occur only once in the corpus (called a 1-1-1 phrase pair in [START_REF] Johnson | Improving translation quality by discarding most of the phrasetable[END_REF]). By considering a p-value of α = log(N), α + ε (where ε is very small) is the smallest threshold that results in none of the 1-1-1 phrase pairs being included, while αε is the largest threshold that results in those pairs being included.

We investigate the impact of pruning on Anymalign's translation tables in terms of n-gram distribution and final translation quality.

Evaluation Results with Pruning

In a fourth set of experiments, we thus compare the phrase translation tables of MGIZA++, and Anymalign1-N (standard normal time distribution), after applying this pruning. The αε filter was used.

Evaluation results on machine translation tasks with pruned translation tables are given in Table 6. The phrase table size reduction brings gains in BLEU scores. Among all Anymalign1-N, Anymalign1-4 once again gets the highest BLEU score of 0.2511 and shows the best performance in all evaluation metrics.

As an example, the number of entries in Anymalign1-4's translation table, after pruning, is shown in Table 7 (e). The largest difference when compared with the non-pruned translation table (Table 7 (d)) is visible in the cell corresponding to 1-1 entries: a substantial decrease of almost 200,000 entries is observed, which corresponds to a reduction of 76%. As a consequence, the most numerous entries are now 2-2 phrase pairs, which account for 19% of the total number of phrase pairs. On the whole, 54% of entries were filtered out from Anymalign1-4's translation table.

Merging translation tables

In order to check exactly how different the translation table of MGIZA++ and that of Anymalign are, we performed an additional set of experiments in which MGIZA++'s translation table is merged with that of Anymalign baseline and we used the union of the two translation tables. As for the feature scores in the translation tables for the intersection part of both aligners, i.e., entries in two translation tables share the same phrase pairs but with different feature scores, we adopted parameters computed either by MGIZA++ or by Anymalign for evaluation.

Evaluation results on machine translation tasks with merged translation tables are given in Table 6. This setting outperforms MGIZA++ on BLEU scores. The translation table with Anymalign parameters for the intersection part is slightly behind the translation table with MGIZA++ parameters. This may indicate that the feature scores in Anymalign translation table need to be revised.

Conclusions and Future Work

We have presented a method to improve the translation quality of the sampling-based subsentential alignment approach for statistical machine translation tasks. Our approach is based on adapting the number of n-grams by investigating their distribution in phrase translation tables. Furthermore, we inspected the influence of pruning the translation tables, a technique described in [START_REF] Johnson | Improving translation quality by discarding most of the phrasetable[END_REF], and merging the translation tables from two aligners (i.e., Anymalign and MGIZA++). Adapting the number of n-grams leads to significantly better evaluation results than the original approach. Merging two translation tables outperforms MGIZA++ alone. As for future work, we plan to modify the computation of the feature scores in Anymalign's phrase translation tables to make them closer to those of MGIZA++. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • total 1,

Table 1 :

 1 Statistics on the French-English parallel corpus used for the training, development, and test sets.

			French	English
	Train sentences	100,000	100,000
		words	3,986,438 2,824,579
		words/sentence	38	27
	Dev	sentences	500	500
		words	18,120	13,261
		words/sentence	36	26
	Test	sentences	1,000	1,000
		words	38,936	27,965
		words/sentence	37	27

Table 3 :

 3 Transforming n-grams into unigrams by inserting underscores and reduplicating words for both the French part and English part of the input parallel corpus.

	n	French	English
	1	le debat est clos .	the debate is closed .
	2	le debat debat est est clos clos .	the debate debate is is closed closed .
	3	le debat est debat est clos est clos .	the debate is debate is closed is closed .
	4	le debat est clos debat est clos .	the debate is closed debate is closed .
	5	le debat est clos .	the debate is closed .

Table 4 :

 4 List of n-gram translation subtables (TT) generated from the training corpus. These subtables are then merged together into a single translation table.

	Target

Table 5 :

 5 Alignment time in seconds allotted to each unigramized parallel corpus of Anymalign1-4. The sum of the figures in all cells amounts to seven hours (25,200 seconds).

				Target		
			unigrams bigrams trigrams 4-grams
	Source	unigrams bigrams trigrams	3,072 1,863 416	1,863 3,072 1,863	416 1,863 3,072	34 416 1,863
		4-grams	34	416	1,863	3,072

Table 6 :

 6 Evaluation results.

		mWER	BLEU	NIST	TER
	MGIZA++	0.5714	0.2742	6.6747	0.6170
	Anymalign	0.6186	0.2285	6.0764	0.6634
	Anymalign1-N	equal time distribution	std.norm.distribution	pruning
		mWER BLEU NIST TER mWER BLEU NIST TER mWER BLEU NIST TER
	Anymalign1-1	0.6818 0.1984 5.6353 0.7188 0.6818 0.1984 5.6353 0.7188 0.6871 0.1953 5.6042 0.7258
	Anymalign1-2	0.6121 0.2406 6.2789 0.6536 0.6121 0.2404 6.2674 0.6535 0.6102 0.2425 6.3093 0.6515
	Anymalign1-3	0.6075 0.2403 6.3009 0.6507 0.6079 0.2441 6.2928 0.6517 0.6117 0.2413 6.2501 0.6561
	Anymalign1-4	0.6142 0.2423 6.2087 0.6583 0.6071 0.2442 6.2844 0.6526 0.5978 0.2511 6.3985 0.6435
	Anymalign1-5	0.6099 0.2376 6.2331 0.6551 0.6134 0.2436 6.2426 0.6548 0.6076 0.2457 6.3120 0.6504
	Anymalign1-6	0.6193 0.2349 6.1574 0.6634 0.6165 0.2403 6.1595 0.6589 0.6104 0.2459 6.2687 0.6545
	Anymalign1-7	0.6157 0.2371 6.2107 0.6559 0.6136 0.2405 6.2124 0.6564 0.6079 0.2419 6.2569 0.6516
	Anymalign1-8	0.6353 0.2253 5.9777 0.6794 0.6151 0.2366 6.1639 0.6597 0.6060 0.2446 6.2986 0.6496
	Anymalign1-9	0.6279 0.2296 6.0261 0.6722 0.6136 0.2402 6.1928 0.6564 0.6078 0.2461 6.2974 0.6493
	Anymalign1-10	0.6475 0.2182 5.8534 0.6886 0.6192 0.2361 6.1803 0.6587 0.6076 0.2459 6.3079 0.6490
	Merge	mWER	BLEU	NIST	TER
	Anymalign param.	0.5671	0.2747	6.7101	0.6128
	MGIZA++ param.	0.5685	0.2754	6.7060	0.6142

Table 7 :

 7 Distribution of phrase pairs in translation tables. (a) Distribution of phrase pairs in MGIZA++'s translation table.

	Target

  Anymalign1-4 with equal time for each n × m n-grams alignments.

			022,594 230,400	86,830	55,534	42,891	37,246	34,531 • • • 1,371,865
			(c) Target			
			unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams	total
		unigrams	171,077 118,848	39,253	13,327	0	0	0	342,505
		bigrams	119,953 142,721	67,872	24,908	0	0	0	355,454
	Source	trigrams 4-grams 5-grams	45,154 15,514 0	75,607 30,146 0	86,181 54,017 0	42,748 60,101 0	0 0 0	0 0 0	0 0 0	249,690 159,778 0
		6-grams	0	0	0	0	0	0	0	0
		7-grams	0	0	0	0	0	0	0	0
		total	351,698 367,322 247,323 141,084	0	0	0 1,107,427
			(d) Anymalign1-4 with standard normal time distribution.		
						Target			
			unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams	total
		unigrams	255,443 132,779	13,803	469	0	0	0	402,494
		bigrams	134,458 217,500	75,441	8,612	0	0	0	436,011
	Source	trigrams 4-grams 5-grams	15,025 635 0	86,973 142,091 10,516 61,741 0 0	48,568 98,961 0	0 0 0	0 0 0	0 0 0	292,657 171,853 0
		6-grams	0	0	0	0	0	0	0	0
		7-grams	0	0	0	0	0	0	0	0
		total	405,561 447,768 293,076 156,610	0	0	0 1,303,015
		(e) Distribution of phrase pairs in Anymalign1-4's translation table (after pruning).	
						Target			
			unigrams bigrams trigrams 4-grams 5-grams 6-grams 7-grams	total
		unigrams	60,297	59,099	8,819	328	0	0	0 128,543
		bigrams	58,232 110,415	51,557	6,954	0	0	0 227,158
	Source	trigrams 4-grams 5-grams	9,777 474 0	58,604 8,586 0	69,431 31,209 0	28,046 31,666 0	0 0 0	0 0 0	0 165,858 0 71,935 0 0
		6-grams	0	0	0	0	0	0	0	0
		7-grams	0	0	0	0	0	0	0	0
		total	128,780 236,704 161,016	66,994	0	0	0 593,494

Contrary to the widely used terminology where it denotes a set of links between the source and target words of a sentence pair, we call "alignment" a (source, target) phrase pair, i.e., it corresponds to an entry in the so-called [phrase] translation tables.

Option -N 1 in the program.