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We investigate the possibility that a neutral non-regular lepton, of mass 1784 MeV, and a charged non-regular lepton, of mass 35 MeV exists in six-dimensional space-time. This proposition provides a global rotational symmetry between ordinary third family of leptons and proposed nonregular leptons. The electric charge swap between ordinary leptons produces heavy neutral non-regular leptons of mass 1784 MeV, which may form cold dark matter. The existence of these proposed leptons can be tested once the Large Hadron Collider (LHC) becomes operative at the 10 TeV energy-scale. This proposition may have far reaching applications in astrophysics and cosmology.

Introduction

The nature of dark matter, proposed in 1933 to explain why galaxies in some clusters move faster than their predicted speed if they contained only baryonic matter [1], remains one of the open questions of modern physics. Several models of dark matter have been suggested, such as Light Supersymmetric Particles ( [2][3][4][5][6][7]); heavy fourth generation neutrinos ( [8], [9]); Q-Balls ( [10], [11]); mirror particles ( [12][13][14][15][16]); and axion particles, introduced in an attempt to solve the Charge-Parity (CP) violation problem in particle physics ( [17], [18]). provide a viable dark matter candidate, namely the Lightest Kaluza Klein particle (LKP) ( [36], [37]).

Gauge-Higgs unification models, based on grand unified gauge theories defined on sixdimensional space-time, have interesting properties. In these models, the extra-dimensional space has the topological structure of a two-sphere orbifold 𝑆 2 / 𝑍 2 [68][69][70]. Furthermore, (thin) braneworlds with conical singularities in six-dimensional Einstein-Gauss-Bonnet gravity with a bulk cosmological constant have been investigated [71]. For axially symmetric bulks, however, this model does not provide isotropic braneworld cosmological solutions [71].

In the present paper, we investigate the possibility that a neutral non-regular lepton, of mass 1784 MeV, and a charged non-regular lepton, of mass 35 MeV exists in six-dimensional space-time. This proposition provides a global rotational symmetry between the ordinary third family of lepton and the new non-regular leptons. The electric charge swap between ordinary leptons produces heavy neutral non-regular leptons of mass 1784 MeV, which may form cold dark matter. The existence of these proposed leptons can be tested once the Large Hadron Collider (LHC) becomes operative at the 10 TeV energy-scales.

Solution of 6-dimensional Einstein equations

Following, Gogberashvilli at al. [38], we consider a 6-dimensional spacetime with signature ( , , , , , )       . Einstein's equations in this spacetime have the form 4 

() 2

A B A B A B A B R g R g T M     (1) 
where M the 6-dimensional fundamental is scale and  is the cosmological constant. Capital indices , 0,1, 2, 3, 4, 5 AB .

To split the 6-dimensional space-time into 4-dimensional and 2-dimensional parts, we use the metric ansatz [38]:
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where  and b are constants and ()  is the warp factor. This warp factor equals one at brane location ( 0 )   and decreases to zero in the asymptotic region ()   , at the south pole of the extra 2-dimensional sphere. Here the metric of the ordinary 4-dimensional () a gx  has signature ( , , , )     , with , , 0,1, 2, 3

   
. The extra compact 2-manifold is parameterized by the spherical angles ,  ( 0 , 0 2

       
). This 2-surface is attached to the brane at point 0   . When  changes from 0 to π, therefore, the geodesic distance into the extra dimensions shifts from the north to the south pole of the 2-spheroid. For 1 b  in equation (2), the extra 2-surface is exactly a 2-sphere with radius (0.1TeV -1 ).

The ansatz for the energy-momentum tensor of the bulk matter fields is:

( ), T g E     ( ), ij ij T g P   0. i T   (3) 
Small Latin indices in equation ( 3) correspond to the two extra coordinates. The source functions E and P depend only on the extra coordinate θ. For these ansätze, Einstein's equations (1) take the following form:
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where the prime denotes differentiation d/dθ.

For the 4-dimensional space-time, we have assumed zero cosmological constant. Einstein's equations take the form:

( 4 ) ( 4 ) 1 0, 2 R g R    (5) 
where (4) R  and (4) R are 4-dimensional Ricci tensor and scalar curvature, respectively. In [72] M. Gogberashvili and D. Singleton found a non-singular solution of (4) for boundary conditions (0 ) 1   , (0) 0.
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This solution was given by: 2 ( ) 1 ( 1) sin ( / 2), a

      ( 6 
)
where a is the integration constant. The source terms for this solution were given by: (7) with the radius of the extra 2-spheroid given by 24 10

/ . M  

For simplicity, in this paper we take 0 a  so that the warp factor takes the form:

22 ( ) 1 sin ( / 2) cos ( / 2).        (8) 
This warp factor equals one at the brane location (θ= 0) and decreases to zero in the asymptotic region θ=π, i.e., at the south pole of the extra 2-dimensional spheroid. The expression for the determinant of our ansatz (2) used in this paper is given by: ( 4 ) 2 4 ( ) sin ,

gg        (9) 
where ( 4 ) g  is determinant of 4-dimensional space-time.

Non-regular leptons in six dimensions

Here we assume that the zero mode corresponds to the non-regular leptons which are copies of the third family of leptons. Although uncertain, this assumption is not physically improbable: it is reasonable to expect that, when entering the six-dimensional bulk, third family leptons profoundly change their properties and lose, so to say, their individuality -for instance, spin and magnetic moment. The present assumption is consistent with the Arkani-Hamed, Cheng, Dobrescu, and Hall (ACDH) model ( [75]). The latter proposes a version of "Top Mode Standard Model (TMSM)" in six dimensions, in which the third family of fermions and the gauge boson are placed in the six-dimensional bulk, while the first and second families are in the four-dimensional brane (3-brane). The ACDH model formulates the top condensate fermion-antifermion bound state tt in a way similar to the role of a Cooper Pair in superconductivity, playing the role of Higg boson in the SM ( [START_REF] Miransky | Dynamical Symmetry Breaking in Quantum Field Theories[END_REF], [START_REF] Hill | [END_REF]). Let us now consider spinors in the 6-dimensional space-time (2), where the warp factor ()  has the form (8). The action integral for the 6-dimensional massless fermions in a curved background is:
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)
A D is the covariant derivative and A   is the 6-dimensional flat gamma matrices and we have introduced the sechsbein A A h  through the usual definition [38].

AB AB A B AB g h h       , (11) 
where , AB   are local Lorenz index.

The six dimensional spinor is given by: ( ) .

A x        (12) 
This 6-dimensional spinor has eight components and is equivalent to a pair of 4-dimensional Dirac spinors ,.

 The representation of the flat (8 × 8) gamma-matrices are given in [38]: (13) where 1 denotes the 4-dimensional unit matrix and   are ordinary (4×4) gamma-matrices.
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The representation (13) gives the correct space-time signature ( , , , , , ).
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The generalizing of 5  matrix is: 

The variation of the action (10) yields to the following 6-dimensional massless Dirac equation (15) with the sechsbein for our background metric (2) given by
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)
For the definition of spin connection:
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The non-vanishing components of the spin connection are:
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The covariant derivatives of spinors field have the form:
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The Dirac equation take the form [START_REF] Camporesi | [END_REF], [79]: [START_REF] Rubakov | [END_REF] This system of first-order partial differential equations has the following solutions:
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are the 4-dimensional Dirac spinors.

Here we note that since the dimensions of () , respectively.

A x  in six dimensions is 5 / 2 m , the dimensions
We are looking for 4-dimensional leptonic zero modes. To this end, we consider the conditions under which equation ( 21) obeys the 4-dimensional, massless Dirac equations; 00 ( )

( ) 0 xx              (22) 
Of course, there are also very massive KK modes of masses n/ε. However, we assume that 1/ε ≈10TeV. These massive KK modes, therefore, have a much higher mass and are distinct from the third family of leptons.

For the massless case, the 4 spinors 00 ( ), ( ) . Inserting ( 21) and ( 22) into (20) converts the bulk Dirac equation into:

xx
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The solutions of these equations are: 00 00 ( ) , ( ) sin sin
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)
where A 0 and B 0 are integration constants with the dimension of mass. The normalizable modes are those for which:

  6 ( 4 ) 4 0 0 0 0 g d x g d x           (26) 
In other words, we want the integral over the extra coordinates,  and  to equal 1. Inserting ( 21), (25) and the determinant ( 9) into ( 26), the requirement that the integral over  and  equals 1 gives:

2 * * 0 0 0 0 ( ) 1 A A B B   (27) 
Explicitly, the expressions for the three normalizable 8-spinors ( 21) that solve the 6dimensional Dirac equations (20) are:

0 00 2 0 1 ( ) ( ) 2 sin ( ) A A xx B           (28) 
where constants A 0 and B 0 obey the relations (27).

Non-regular leptons coupling with Higgs field

Brane solutions with different gauge fields and fermion localization mechanisms have been investigated in the literature ( [38][START_REF] Halzen | Quarks and Leptons: An Introduction Course in Modern Particle Physics[END_REF][START_REF] Randjbar | [END_REF][41][42][43]). The mass of the zero mode is given via the Higgs mechanism ( [38][START_REF] Halzen | Quarks and Leptons: An Introduction Course in Modern Particle Physics[END_REF][START_REF] Randjbar | [END_REF][41][42][43][44][45]), ( [58][59][60]).

Following A. Neronov, S. Aguilar and D. Singleton [73], we address both outstanding issues by introducing a coupling between non-regular leptons and the bulk scalar field 0 () A x  (with dimensions (mass) 2 ) by adding to the action an interaction term of the form:

4 int 0 0 0 1 S d xd d g F         . ( 29 
)
F is the coupling constant between the scalar and spinor fields and has the dimensions of mass.

For simplicity, we take the massless, real scalar field to be of the form

0 0 0 ( ) ( ) A xk    (30) 
i.e. we take the scalar field as only depending on the bulk coordinates θ,φ and not on the brane coordinates x μ .

The equation of motion of a massless real scalar field in six dimensions has the form:

0 1 ( ) 0 A B A AB D g g D x g       (31)
Using the form of Laplace operator on our 2-sphere:
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with  derived by (8), equation ( 31) can be written as:
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In order to make meaningful estimates of the masses of non-regular leptons we use approximate solutions. Close to the origin (θ→ 0), when sin θ → 0 and φ → 1, equation ( 33) can be approximated as:

00 cot 0,        (34) 
with the following solution

  00 ( ) 1 ln[tan( / 2)] . D     (35) 
We determine the constants D 0 by requiring that the scalar field is normalized over the extra coordinates; i.e. using (9), we require:

2 4 4 0 0 2 sin ( ) ( ) 1, d         (36) 
From (36) we derive D 0 =10TeV.

Substituting (30) and ( 21) into (29), we find:
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Below, we use the new definition 00 / f k F  for the ratios of the 4-dimensional constant values of Higgs field derived from (30). The mass term is, then, as follows: Such operators may be generated through gravity effects [74]. Violation of the lepton number L s generates neutral non-regular lepton masses:

0 0 ,0 0 0 35 U f D M eV  , (38) 
2 0 ( ) / s ij ij L M l M    (39) 
For λ ij ≈ 1 and

10 s Lc M M TeV 
, we find m ij ≈ 1784 MeV .

The set-up of the electric charge swap (ECS) symmetry

Non-regular leptons have the same mass as ordinary third family leptons. Hypothetical nonregular leptons are, a) a zero-charged version of the tau, 0  (1784MeV) and, b) a positive charged version of the tau neutrino,     (35MeV) . Therefore, non-regular leptons may be obtained by the swap of electric charges between tau and tau neutrino particles. We call these proposed non-regular leptons, electric charged swap (ECS) leptons.

Although ECS leptons have the same mass as the ordinary third family leptons, they are distinguished from the latter by their different lepton numbers ( 1 s L  for ordinary leptons and 1 s L  for ordinary antileptons, respectively), and by their electric charges (positive or neutral for ordinary leptons, and negative or neutral for ordinary antileptons, respectively). We hypothesize that ECS leptons are produced by third family leptons when these enter the six-dimensional bulk: in these conditions, the properties of third family leptons change profoundly as these leptons lose, so to say, their individuality and swapping their electric charge.

Το formulate the swap of electric charge between ordinary leptons, we have to look for symmetry that characterizes swap process in the framework of 2-extra dimensions with compactification scale 10 TeV.

We consider the 2-sphere 2 S as a quotient space 2 L SU [START_REF] Halzen | Quarks and Leptons: An Introduction Course in Modern Particle Physics[END_REF]. This fundamental representation is given by:

[ , ]

j k jkl l I I i I   (40) 
Τhe generators are denoted as:

1 2 ii I   . ( 41 
)
where

1 2 3 1 0 0 1 0 ,, 0 1 0 0 1 i i                           (42) 
are the isospin versions of Pauli matrices.

The action of the latter act on the new leptons states is represented by: 0 10 , 01

L                   . ( 43 
)
To link the two distinct sectors, ordinary and ECS leptons, we assume that neither ordinary L nor ECS s L lepton numbers are conserved, while the overall lepton number must be conserved.

0 overall s L L L    ( 44 
) s LL  , ( ) ( ) 1 s LL       (45) s LL  , 0 ( ) ( ) 1 s LL     (46) 
The quantum numbers of the new ECS leptons of mass 1784 MeV and 35M eV respectively, are given in (Table 1). 

 , v    . New lepton M I I-z Q Y S L S v    35MeV ½ ½ 1 1 -1 0 L  1784MeV ½ -½ 0 1 -1
The next step is to define the group transformation that can account for the swap of electric charges between the tau and tau neutrino particles. The ECS transformation must be derived from a transformation from 1)

(2) / (1)

LY SU U

, in which the fundamental representation of The quotient space SU (2)/U ( 1) is diffeomorphic to the unit 2-sphere S 2 . Consequently, the swap of the electric charges between the tau and neutrino of tau particles must be an automorphism of the 2-sphere to itself.

Here, since the two extra dimensions are endowed with the Fubini-Study [1] metric [46], [47], not all Möbius transformations (e.g. dilations and translations) are isometries. Therefore, the automorphism from the 2 (2) / ( 1)

S SU U 
to itself, which brings the electric charge swap between the tau and neutrino of tau particles, is given by the isometries that form a proper subgroup of the group of projective linear transformations 

E C S SO [46], [47], which is the isometric group of the unit sphere in three-dimensional real space 3 R . The automophism of the Riemann sphere Ĉ is given by:

() ( ) 2 ( arg ) ( ) (3) 
,

E C S E C S C h e R ot C P SU SO  ( 47 
) ĈC   
where Ĉ is the extended complex plane,

( arg )

C h e PSU is the proper subgroup of the projective linear transformations, and swap symmetry,

() (3) 
E C S SO
is the group of rotations in threedimensional vector space 3 R .

The universal cover of ()

(3)

E C S SO
is the special unitary group ()

(2)

E C S SU
. This group is also differomorphic to the unit 3-sphere S 3 .

We regard ordinary and ECS leptons as different electric charge states of the same particleanalogous, that is, to the proton-neutron isotopic pair. Finally, in terms of rotational symmetry between the original lepton and the proposed ECS leptons, the 2-extra dimensional sphere 2

S

is given by:

() 2 () (2) 
/ ( 1)

s E C S YY S SU U  ( 48 
) [1] The round metric of the 2-extra dimensional sphere can be expressed in stereographic coordinates as 22 12 22 (1 )

dy dy g    
, where 22 12 yy  

. The metric g is Fubini-Study metric of the 2-sphere [46], [47].

Where ()

(2)

E C S SU
is the special unitary group, and

() (1) s YY U
is the symmetric group generated by hypercharge () S YY .

6.W, Ζ-boson properties in the presence of the ECS symmetry

There will also be very massive KK modes of masses n/ε. However, we will assume later that 1/ε≈10TeV. Thus these massive KK modes have a much higher mass and are distinct from the third family leptons . We assume that the standard Model (SM) remains valid up to a cut-off of the order of the LHC center-of-mass energy, 10TeV. The SM with a cut-off of this order of energy would be 10% fine tuned, and so we should expect to see new physics at the LHC. The search for new physics involves measuring deviation from the SM. Here, this deviation is small and a precise measurement may be needed. For this reason we envisage an ECS physics program with LHC running at 14 TeV center -of-mass energy, and integrated luminosity of 10fb -1 per year. At the collision scale of energy below the compactification scale ( 10 ) s M T eV  , ordinary third family leptons can decay to second and first family leptons. Therefore, the overall lepton number given by equation ( 44) is not conserved (

s LL  ≠0), s L ≠ L )
, while the ordinary lepton number L and ECS lepton number s L can be conserved.

Here, first and second family leptons of swap electric charge do not exist by assumption. The ECS lepton number sw ap L is conserved because of non-mixing between ordinary leptons and ECS leptons at energy scales below the compactification scale ( 10)

c M T eV 
. Therefore, ECS leptons can be stuck to the scale of energy close to compactification scale ( 10 ) c M T eV  , while ordinary third family leptons are present at collision-scale energy ( 10)

s M T eV  .
The contribution of ECS leptons at collision-scale energy s M ≤ 10 TeV is given by the mixing between the compactification and the current collision scale of energies. This mixing is proportional to ) is modified as:

4 s F F F c M G G G M      . ( 49 
)
The above equation yields to changes of Fermi constant:

4 || s F F F F c M G G G G M         . ( 50 
)
Since the ECS leptons can be stuck to the scale of energy close to compactification scale 

F Z W G g M   , (51) 
where (experimentally) ρ≈1, we obtain a change of 2 g :

2 cos 8 22 FF w Z GG g M       (52) 
Substituting equations ( 50) and (51) to equation ( 52) we obtain

4 22 cos cos 88 2 s F ww c Z Z M G gg M M M         (53) 
Here, because of the small deviation from SM (  ≤ -0.03) at energy-scale close to 

The contribution of ECS leptons to the (W, Z) decays at collision scale of energy (0.1TeV≤M s ≤10TeV) is given by 

) , 62

FW SM GM W        ,   2 0 2 2 () 48 
Z S M V A Z g Z l l c c M      , (57) 
the decay rates of the

W     , 0 Z ll 
, respectively [START_REF] Halzen | Quarks and Leptons: An Introduction Course in Modern Particle Physics[END_REF].

By equations (56) we conclude that the contribution of ECS leptons is suppressed at collisionscale of energy, below the compactification scale (M s <10TeV), and that the ECS lepton does not break the Z pole observables at LEP.2 (M s ≈0.1TeV-1TeV) [50], [51]. However, we find that the contribution of ECS at current collision energy scales (e.g.M s ≈7TeV at the LHC [52,[48][49] is the Z invisible decay into one neutrino species [51]. We find that the contribution of the neutral ECS lepton Z  ≈3.1eV, at LEP.2 collision energy scale is required to be ( 0  ). This is a dark matter particle.

Since ECS lepton number s L is conserved, ECS leptons can be created or annihilated in pairs through (Z, γ). Here we study the process () ee 

F ann s G ee            . ( 59 
)
Substituting equation (50) to equation ( 59) we derive: 

                    , (60) where 00 ( ) 4 2 
F ann SM G ee          
is the SM neutrino cross section of the process.

The cross section of the process () 

ee      
  is given by: ( ) ( ) Substituting equation (50) to equation (61) we get: By equation (62) we conclude that the contribution of ECS leptons at the current LHC collision energy scale (M s ≈7TeV) [52] and LEP.2 measurements of cross-section for electronpositron annihilation [50], [51] is too small to be detected. The E821 experiment at the Brookhaven National Laboratory (BNL) studied the precession of muon and anti-muon in a constant external magnetic field as they circulated in a confining storage ring [50], [51]. For two extra dimensions of radius (1/10TeV), the additional contribution of the proposed ECS lepton ( 35M eV ) to anomalous magnetic moments is: 

s s Q E D e e R e e                              , (61) 
8 s c R M RM           , (62) 
which is too small to be detected by this experiment ( [51][52][53][54][55][56][57]).

For this reason, neither the current LHC [52,[48][49] collision scale of energy, nor the LEP2 measurements of the cross-section for electron-positron annihilation [50], [51] and of anomalous magnetic moments of the electron and muon [50], [51] can prove the existence of the proposed ECS lepton (35 MeV). The energy scale we propose here is larger than the electroweak energy scale. These propositions, and the predicted level of the standard model (SM) loop corrections, can only be tested at a higher energy linear collider with high integrated luminosity >>> 50 fb -1 , such as the LHC.

Discussion

The proposition of electric charge swap predicts the occurrence of a lepton ( 0  ) with mass 1784 MeV. It follows that the predicted lepton ( 0  ) is a stable particle that contributes to the dark matter of the Universe. As long as T≥ M c /10, where (M c ≈10TeV) is the compactification energy scale, ECS -0  leptons could be produced in the early Universe through reactions of 



leptons is determined by their annihilation cross-section, which impels that [2] : 0 37 2 2 00 10 0.1 ()

ann s cm h ee               . ( 64 
)
The interactions of the ( 0  ) lepton freeze out at a temperature such that ( 00 / F x m T   ≈1.7×10 -3 ) is much smaller than 1. Therefore, the ( 0  ) leptons cannot have significant relic abundance today. [2] At the freeze out temperature of ( 1) However, beyond the knowledge that 2 0.1 DM h  , we do not have enough information on the nature of Cold Dark Matter (CDM). More evidence from collider experiments is indispensable for the diagnosis if the CDM particle identity, namely their mass, spin and other internal quantum number(s) [61].

Recently, (PAMELA) reported a sharp increase of positron fraction in the cosmic radiation for the energy range 10 GeV to 100 GeV [62], [63] and no excess in / pp  from the theoretical calculations. And also very recently, (Fermi-LAT) [64] and (HESS) [65] data showed clear excess of () ee   spectra in the multi-hundred GeV range above the conventional model [66], although they do not confirm the previous (ATIC) [67] peak. The phenomenology of ECS dark matter at PAMEL/FERMI is still under investigation.

Conclusions

The (W ± , Z) decay to ECS lepton (1784 MeV) and charged ECS lepton (35 MeV) proposed here is strictly a phenomenon of the 10T eV energy-scale. Its proposition is formulated by reference to a 2-extra dimensional sphere with a global isometric group, the electric chargeswapping group,

(3) E C S SO . Instead of introducing ad hoc new particles, our proposition introduces new particles from ordinary ones, using an alternative interpretation of the distribution of lepton electric charge. We suggest that the additional contribution to SM comes from the proposed new leptons. The existence of these ECS leptons is testable once the LHC becomes operative. The neutral ECS lepton (1784 MeV) is a possible cold dark matter candidate.

Furthermore, we find that the contribution of the proposed ECS leptons on scale of energies below the compactification scale is suppressed. Therefore, the proposed new leptons are not detectable by current collider experiment.

 are indistinguishable from the 4 -

 4 dimensional point of view, and we can write 00( ) 

  non-regular leptons remain massless, since they are not mixed to the states localized on the brane. Violation of the lepton number L s , can be achieved by introducing operators of six-dimension in the number of fields,  is the non-regular lepton doublet, λ ij are the dimensionless couplings ands L Mis the violation energy scale.

2 S

 2 in terms of the new symmetry between the original lepton and the new, ECS lepton doublets. This is achieved in the following steps: First, we observe that both the ordinary lepton doublet 0 ( )( , ) 

Subgroup PSU 2 (

 2 Charge) is isomorphic to the rotation group ()

.

  We consider that the ordinary leptons coupling to (W, Z) gauge bosons by F G , and the ECS leptons coupling to (W, Z) gauge bosons by the changes of F G . Beginning with the relation:

  of ESC -0  leptons also begins to drop. The freeze-out temperature for these leptons is T F =M c /10=1TeV. The relic density of ECS -0

  and LEP.2 measurements at electroweak scale of energy is very small.
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