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Abstract:

Many signal processing tools have been developed by the mechanical and signal processing
community to find the characteristic symptoms of sharp bearing faults (like localized spalling)
from vibratory analysis. However the context of helicopter imposes a limited sampling frequency
regarding the observed phenomena, many noisy vibrations and flight regimes. The performances
of the classical methods are limited in such an environment mainly in identifying fault
frequencies. Local bearing faults induce temporal periodic and impulsive patterns that produce
redundant harmonics in the spectral domain. In this article four methods are proposed to take
advantage of that redundancy. These methods provide an estimator of the fault frequency and
an indicator of the quality of that estimation. These indicators are used to assess the severity of
the fault. The four methods are then tested on synthesized and flight data in order to illustrate

and discuss their efficiency.
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NOMENCLATURE

v(t): recorded vibrations

V(f): Fourier transform of v(t)

f: frequency

a: fault frequency to be fund

e: pointwise product (also called Hadamard product)
I: frequential band around the theoritical value of «
I = [amn — Afsam + Af]

I7: small frequential band around f: [f —df; f+6f] —
{/}

S(n, f): formatted spectrum of the harmonic n (€
[1; N]), for the fundamental frequency f € I

S(., f): vector of the first N harmonics of the funda-
mental frequency f
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1. INTRODUCTION

Early fault detection is a crucial problem in Helicopter
maintenance strategy. Indeed, a small fault, if it is not
detected, could increase and lead to a breakdown of the
system and in some cases lead to an accident. Condition
Monitoring Methods are effective ways to perform health
monitoring of the system. Among Condition Monitoring
Methods, vibration analysis using non-intrusive sensors
matches well with helicopter requirements. Accelerome-
ters are the most suitable sensors for non-intrusive health
monitoring of helicopters in terms of space, cost and qual-
ification Randall [2011].

Among helicopter elements, the health of rolling-element
bearings plays a key role for the power transmission chain
integrity. Its monitoring is therefore worth to be carried
out with the most effective methods.

Efficient vibration analysis methods have been developed

for fault detection that takes advantages of signal pro-
cessing for bearing’s elements monitoring. A demodu-
lation/envelope analysis is presented in Hochmann and
Bechhoefer [2005] while spectum/cepstrum indicators, are
proposed in Keller and Grabill [2003]. However both of
these works do not provide decision rule for automatic
fault detection. Statistical and stochastic properties of
bearings are exploited in Estupinan et al. [2008] with a
second order cyclostationary analysis and in Sawalhi and
Randall [2006] the authors describe a semi-automated way
to detect bearing’s faults.

However, helicopter environment is very noisy, do not
permit to access high harmonics and vibrations induced by
bearing faults are corrupted by neighbor elements: gears,
shafts, local resonances... Performance of classical methods
is limited under these conditions. In particular, statistical
tests proposed in Antoni [2007a] 4.1 or 5.2 suppose that
the sampling frequency is higher than fault frequencies,
that the frequency band with highest signal-to-noise ratio
is known and that the noise is Gaussian and does not
contains other parasitical frequencies. Unfortunately, none
of these assumptions are entirely met in helicopters.

In such an environment, a good understanding of the
features of each sub-system of a bearing gives prior in-
formation that may improve the accuracy of the deci-
sion. Dynamical properties of bearings have been studied
(Randall and Antoni [2011]) to characterize vibrations and
deduce algorithms to differentiate vibrations of bearings
from those of other sub-systems. Diagram 1 details the
four elements of one bearing: inner race (attached to the
shaft), rolling elements, cage (holding rolling elements
together), and outer race (attached to the helicopter struc-
ture). These four sub-elements are prone to degradations
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Fig. 1. Main components of a bearing.

at four different frequencies, (Su and Lin [1992]). It is then
possible to distinguish faults from other components.
The theoretical frequencies are known for the four elements
of a bearing from a kinematic prior analysis. However the
actual dynamical conditions induce uncertainties on these
frequencies. This uncertainty acts mainly for high speed
bearings.

Therefore, the paper focuses on automatic bearings fault
detection from vibration data in-flight conditions of he-
licopters. It proposes to take advantage of the redun-
dancy induced by harmonics of fault frequencies. This
redundancy allows estimating the actual frequency of fault
even in a noisy and corrupted environment. Therefore, the
monitoring of the fault is made easier and more accurate,
furthermore some indicators are proposed from which de-
cision rules are established.

The paper is organized as follows: section 2 deals with
raw vibration pre-processing. Section 3 proposes four im-
proved fault detection methods. Application of the pro-
posed methods on synthesized and in-flight data is finally
given in section 4 that allows a first comparison of their
performances.

2. PREPROCESSING

Preprocessing aims at enhancing fault vibrations from
bearings. Two features are utilized:

— Randomness: because of the random jitters and ran-
dom contact surface of the balls inside the cage,
random delays and random amplitude modulations
are produced between two impacts of two consecutive
balls Antoni and Randall [2002].

— Impulsivity: due to the size and depth of the defect at
its early stages, it produces sharp impulses (Randall
and Antoni [2011] section 2.2.3), and slow decrease of
the harmonics of the fault.

In the presented approach, these two features are used
to enhance the influence of the fault and the following
preprocessing is applied:

(1) Whitening: the vibration is decomposed into a ran-
dom part and a predictable part. The implementation
is made with an autoregressive filter to remove the
linearly predictable part.

(2) FEnwvelope analysis: The random part of the signal ex-
tracted may also contain information about periodic
patterns related to the fault. However as randomness
turns harmonics into spread patterns in the spectrum,
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Fig. 2. Preprocessing steps. The data is preprocessed to
enhance fault’s features, and separates the determin-
istic and the random components. Then the envelope
is extracted from the random part using the Hilbert
transform to avoid aliasing.

a transformation is necessary to make the periodic
component of the random part observable in the
spectrum. The transformation that squares the norm
of the analytical part of the vibrations achieves this
objective, Antoni [2007b].

(3) MED, Minimum Entropy Deconvolution: linear fil-
ter enhancing the impulsivity of vibrations. Such a
preprocessing is particularly relevant for high speed
systems with possible overlapping between two con-
secutive fault pulses. Further explanations are given
Endo and Randall [2007].

The preprocessing produces two output signals, see dia-
gram 2, which are the enhanced deterministic vibrations
and the enhanced envelope vibrations. Both signals have
to be analyzed in order to search the presence of a fault
frequency.

3. REDUNDANCY-BASED ANALYSIS OF
HARMONICS

3.1 Data formatting for redundancy analysis

The theoretical fault frequency associated to one of the
four component of the bearing (figure 1) is noted ay, and
is computed from kinematic properties, Su and Lin [1992].

The actual fault frequency « is assumed to be close to the
theoretical fault frequency ayp: o € I = [y, — Af; ap +
Af]. For example ay, =~ T00H z, a 10% uncertainty on the
speed of the shaft leads to a 2 x 10% x 700 = 140H z-long
frequential band where the actual fault is. The objective
is to identify fault severity at the most probable value of
Q.

The analysis is performed with classic Fourier transform
rather than other methods. Indeed the power spectral
density provides a trade-off between amplitude variance
and frequential resolution, while our objective is to ac-
curately estimate the fault frequency. Time-frequency or



time-scale methods have also been ruled out because the
preprocessing detailed in section 2 reduces the problem to
the detection of purely periodic patterns in vibrations. The
cepstrum was also not selected as it produces very limited
results when the spectrum contains parasitical components
with a small signal-to-noise ratio. As the form and features
of the fault pulse may change depending on the geometry
of the bearing, on the fault, and on the helicopter or flight
context and because of the low signal-to-noise ratio, the
problem is made very difficult.

As helicopter is a highly vibrating structure, many remain-
ing parasitical harmonics exist near the fault frequencies
and can mislead the detection method. To overcome that
difficulty, we proposed to take advantage of the redun-
dancy of the fault harmonics among the amplitude of the
Fourier coefficients.

As the fault frequency « is supposed to be contained in
I, the Fourier transform of the vibrations is restrained to
the first N multiples of that frequential band: V(f) for
fenxI;n=1...N.Where V(f) is the Fourier transform
of the vibrations v(t). In addition the area of each band
n is scaled to 1 in order to balance comparisons between
harmonics. Let us call S(n, f) the formatted spectra:

_ [V x [
S(n. f) = fuel |[V(n xv)|dv

elo;1;fel (1)

Then, n x I is the interval corresponding to the n* har-
monic. It implies that if « is the fault frequency, S(n, «)
should be significantly different from 0 for all n.

3.2 Identification of redundant harmonics

In this part, four criteria are presented in order to find
the most energetic and redundant harmonics using only

S(n, f)-

Geometric mean  Geometric mean penalizes frequencies
with nearly null harmonics. It is then an indicator of
frequential redundancy:

N

vier:n(f) =[] Sm HN (2)

n=1

It requires most of the harmonics of the fault frequency
to be different enough from 0. A simple decision rule is
proposed to check the relevance of each frequency f € I:

[ )y -
Jrel = fislikely to be

I(f) >> s
a fault frequency

A frequency f with high harmonics should be different
enough from the mean value of II.

Mininum harmonic A similar approach is proposed to
get rid of the parasitical frequencies, for each frequency

the minimum harmonic is kept:
Vfel: MinH(f)= Er%inNS(n,f) (3)

That criterion is much more demanding than the geo-
metric mean as it requires all of the harmonics of the

fault frequency to be different enough from 0. Like the
geometrical mean, a simple decision rule is also proposed
to check the relevance of each frequency:

f MinH (v)dv
vel

MinH(f) >> length (D)

= [ is likely to be
a fault frequency

Remark: Convex and Holder inequalities can help to find
intermediate criteria between the geometric mean and the
minimum, as V(ay)x=1...x € [0;+0c], VM > 1:

1/M
s UK K
H ay, = K K M
k=1 > k=1 Lak > k=1 Lay

>

M —o00 .
— min ag
k=1..K
The different values of M provide then intermediary cri-
teria.

Linear optimization  The problem is now written in
terms of one linear optimization problem. For each fre-
quency f, the set S(., f) = [S(n, f)],,_, n represents the
coordinates of a vector in the RV Euclidian space. For each
frequency, the projector P is calculated to maximize the
projection P x S(., f) while keeping the mean projection
on the other close frequencies I constant.

P-S.,I)|

L(f) = P-S(, NI 'th”—’:l 4

(f) = max [P S(, /)" wi length(I7) (4)

(1) The solution P of problem (4) is the eigenvector
associated with the extremal eigenvalue of the pair
of matrices:

S(,HT-S(, f) and

(2) P is scaled by :

)T . f
length(I7T)
A decision rule for f to be a fault frequency is L(f) >> 1
according to problem (4): the projection of a relevant
frequency f should be much bigger than the averaged close
frequencies.

[SCIDIT - (S, 1))
length(I7)

(5)

Optimization with a penalized method It is also possible
to construct a contrast function and to establish another
optimization problem. The objective of the criterion is
to find the frequencies presenting high amplitudes at
harmonics where the close frequencies have a relative low
value. This criterion tries to both maximize the projection
of the harmonics of f and to minimize the correlation
between that harmonics and the harmonics of the close
frequencies in I/. The criterion is:

Pen(f) = max |P-S( )l

o IIP-S( )] e [P-S(, )l dv
length(I7)

Averaged correlation between I and f

(7)



II. MinH Linear Penalization
S(no, f) << 1 |\ N\ e pY
S(no, f) ~1 v — Yo a

Table 1. Impact on the criteria for isolated
changes in one harmonic ng of a frequency f
and starting from S(n, f) ~ 1/length(I).

The absolute value (L; norm) is used as it is robust
to parasitical and high amplitude peaks. The solution is
explicit:

S(n, f)

length(IT)

Pen(f) = ;-

This means that the n!” harmonic of f is weighted by the
inverse mean of the close frequencies at the same harmonic
: the bigger the local noise, the smaller the criterion.
That should avoid the parasitical frequency reaching high
values. When no fault is present without any parasitical
peaks : S(n, f) ~ 1/length(I) and then Pen(f) ~ N/4.
Then a rule for checking the relevance of a fault at
frequency f:

Pen(f) >> N/4 (9)
3.3 Fxpected performances of the criteria

The four methods provide four estimates of the fault
frequency a with decision rules.

&= argrjr[la;{C’rit(f); Crit =11, MinH, L, Pen
€

(10)
The associated rules for decision have been detailed before.
Tabular 1 presents qualitative changes in the different
criteria presented according to the method used. The
geometric mean is expected to follow the global variations
of the harmonics as it is a mean. The MinH criterion
should not be affected by parasitical peaks but requires
all the harmonics to be high enough. One should expect
huge drops in the performances of those two criteria
when redundancy is not strictly observable among all the
harmonics. As the linear approach exploits the FEuclidian
distance, high amplitude parasitical peaks are expected to
boost excessively the criterion. Changes in the penalization
criterion are hard to predict as it depends a lot on the other
frequencies.

4. RESULTS

The four algorithms are now tested on a synthesized model
of harmonics and on flight data.

4.1 Synthesized data

A simple model for S(n,f) has been implemented to
perform benchmarks and to help revealing qualitatively
the performances of the different methods for some test
cases. For each harmonic n a synthesized spectrum is
synthetized:

S(n, f)
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Fig. 3. Synthetized spectra S(n, f) for n = 1...4 and
f=1...200, the four harmonic bands are plotted one
above the other on the top graph and results for the
four methods are plotted below. The parameter used
to generate the model are A = 10 and P4 = 0.01
(A/Py — o0) in equation 11 and frequencies are
indexed as offsets of the theoretical fault frequency.

S(n, f) o< 6a(f) + A X ulf)

—~—
~Ber(Py4)

;forn=1...N

(11)

Where the Dirac distribution d,(f) stands for the har-
monic amplitude at the redundant fault frequency, u(f)
follows an independent Bernoulli law of parameter Py. A
defines the amplitude of the parasitical frequencies. The
symbol o in equation (11) means that synthetized data
are scaled to reduce the area to 1 for each n:

/ S(n,v)dv =1
vel

The frequencies will be referred according to their relative
position with the theoretical fault frequency : f — at”
rather than f.

(12)

High and rare amplitude peak A = 10, P4 = 0.01  The
spectrum is corrupted with non-redundant, high ampli-
tude peaks which should make detection more complex.
A sample of that model for N = 4 harmonics has been
generated in figure 3, where the “actual fault” frequency
is highlighted at 33. The geometric mean II and the MinH
criteria manage to reveal the fault frequency, whereas
the other ones fail. The linear optimization overamplifies
isolated peaks like the one at 40 in figure 3, since it does
not include any penalization for non-redundancy. For the
same reason penalization does not allow to find the actual
frequency. Both linear and penalization method would
have a false-alarm rate for that case.

Medium background noise A = 1, P4 = 0.6  The model
has been changed in order to simulate numerous para-
sitical peaks with medium amplitude. The “actual fault”
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Fig. 4. Synthetized spectra S(n, f) for n = 1...4 and
f = 1...200, the four harmonic bands are plotted
one above the other on the top graph and results for
the four methods are plotted below. The parameter
used to generate the model are A =1 and P4 = 0.6
in equation 11 and frequencies are indexed as offsets
of the theoretical fault frequency.

frequency is still highlighted at 33 on figure 4. All methods
except the linear one reach their maxima at the fault
frequency « and the rules can barely be applied.

It implies that the frequency would not be detected with
enough confidence to take a decision, making uncertain
future maintenance actions. The linear method fails in
identifying a fault frequency but the criterion L(f) remains
low and so no alarm is triggered.

4.2 In-flight data

The four criteria are now tested on flight data during a sta-
bilized flight regime, where a gradual bearing degradation
has been observed. The shaft of interest is turning at 90 Hz,
the sampling frequency is 20 kHz, the recording time is 2.5
second and 97 data sets have been recorded. All the other
information are unknown, in particular nothing is known
neither about the time elapsed between each recording,
nor about the maintenance actions on the whole helicopter
apart from the fact that that nothing has been done to
repair the fault bearing. A growing inner bearing race
wear has been identified by the operators on the studied
data set. The frequencies will be referred according to
their relative position with the theoretical fault frequency:
f — ot instead of f.

The performances of the four methods are presented in
figure 5 and 7 for N = 4 harmonics. As the fault was
not present in the enhanced envelope vibrations, the data
utilized in the following are only the enhanced deter-
ministic vibrations. An off-line version of the Generalized
Likelihood Ratio (GLR) algorithm has been applied with a
minimum expected change of 10 times the lower thresholds
established in subsection 3.2 in order to identify the most
probable change. The GLR algorithm is a classic algo-

rithm for detection of abrupt changes, see Basseville and
Nikiforov [1993] section 2.4.3 for further details. The most
probable fault frequency are strongly fluctuating before
the 33" recording for the four methods, whereas the as-
sociated rules of relevance are not fulfilled. The geometric
mean and penalization methods start changing around the
30" recording, that is confirmed by the recorded spectra
for the 3374 recording in figure 6. One can also check that
the most relevant frequency is always the same (around -
197) from 31%¢ to the last recording in figure 7 for the first
and last criteria.

There is a slight increase in the MinH criterion starting
at the 60" recording, however its performances are low
because of the low level of the fault frequency (o — o' =
—197) at the second harmonic (n = 2). The linear method
performances are unsteady as the criterion fluctuates a lot
(figure 5) and the most relevant frequency oscillates from
one recording to another (figure 7), that may be due to
the high amplitude parasitical peaks.

The rules established in 3.2 allow changes in the criteria to
be found without trend analysis: the geometric mean and
the penalization methods start being more than 10 times
bigger than their threshold ([, II(v)dv/length(I) ~ 14 -

1072 and N/4 = 1) after the 33"¢ recording and that holds
for the MinH ( [,., MinH (v)dv/length(I) = 7-107*)
but with a delay of 28 recordings. The linear optimization
also achieves values significantly different from 1 (> 10)
after the 30*" recording.

Regarding these results geometric mean and penalization
method have similar performances; however penalization
should be rejected when high amplitude parasitical har-
monics are present in the spectrum near the theoretical
fault frequency. The two other ones are rejected because
MinH is actually too harsh and the linear method is
inefficient as the estimated fault frequency is too erratic
even when the fault is well-detectable in figure 7.

5. CONCLUSION

The problem of vibratory detection of sharp bearing faults
in helicopters has been addressed in this article. Even if
most of the faults can be localized according to the theoret-
ical frequency of the produced vibrations, many obstacles
hide it. The difficulties of this problem arise from the low
signal-to-noise ratio, the numerous parasitical peaks and
the wide types bearing uses. Classical preprocessings have
been introduced to enhance fault pattern in the vibra-
tions. These preprocessings are based upon stationary and
random separation, impulsivity enhancement and envelope
analysis.

After that step, the fault should be noticeable in the
spectra by its numerous harmonics. For that reason the
spectra of the resulting signals are formatted in order
to help the search for redundant frequencies among the
spectrum around a theoretical fault frequency. Then four
methods are presented to identify the most redundant
frequency with relevance indicators. The first two methods
are based on indicators and the last two take advantage of
optimization formulation. The linear method fails for the
real and synthetic data. The MinH method works with
a long delay for detection on real data. The penalization
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Fig. 6. Formatted spectra for four recordings at n =
1,33, 65,97. The frequencies are be referred according
to their relative position with the theoretical fault
frequency. The actual fault frequency is located at
a— ot = —197.

has good performances only for real data. The geometric
mean gives good results for both synthetic and real data,
and should be preferred for further developments.
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